DELIVERY OF SIALIDASE TO CANCER CELLS, IMMUNE CELLS AND THE TUMOR MICROENVIRONMENT

Abstract
Recombinant oncolytic viruses for expression of sialidase and their use in the treatment of cancer, particularly solid tumors, are described.
Description
BACKGROUND

Cancer is the second leading cause of death in the United States. In recent years, great progress has been made in cancer immunotherapy, including immune checkpoint inhibitors, T cells with chimeric antigen receptors, and oncolytic viruses.


Oncolytic viruses are naturally occurring or genetically modified viruses that infect, replicate in, and eventually kill cancer cells while leaving healthy cells unharmed. A recently completed Phase III clinical trial of the oncolytic herpes simplex virus T-VEC in 436 patients with unresectable stage IIIB, IIIC or IV melanoma was reported to meet its primary end point, with a durable response rate of 16.3% in patients receiving T-VEC compared to 2.1% in patients receiving GM-CSF. Based on the results from this trial, FDA approved T-VEC in 2015.


Oncolytic virus constructs from at least eight different species have been tested in various phases of clinical trials, including adenovirus, herpes simplex virus-1, Newcastle disease virus, reovirus, measles virus, coxsackievirus, Seneca Valley virus, and vaccinia virus. It has become clear that oncolytic viruses are well tolerated in patients with cancer. The clinical benefits of oncolytic viruses as stand-alone treatments, however, remain limited. Due to concerns on the safety of oncolytic viruses, only highly attenuated oncolytic viruses (either naturally avirulent or attenuated through genetic engineering) have been used in both preclinical and clinical studies. Since the safety of oncolytic viruses has now been well established it is time to design and test oncolytic viruses with maximal anti-tumor potency. Oncolytic viruses with a robust oncolytic effect will release abundant tumor antigens, resulting in a strong immunotherapeutic effect.


SUMMARY

Provided herein are compositions comprising a recombinant oncolytic virus comprising a nucleic acid molecule encoding one or more human or bacterial sialidases or a functional portion thereof. The oncolytic viruses can be derived from a poxvirus, an adenovirus, a herpes virus or any other suitable oncolytic virus. Suitable recombinant oncolytic viruses can be created by inserting an expression cassette that includes a sequence encoding a sialidase or a portion thereof with sialidase activity into an oncolytic virus.


Many cancer cells are hypersialylated. The recombinant oncolytic viruses described herein are capable of delivering sialidase to tumor cells and the tumor cell environment. The delivered sialidase can reduce sialic acid present on tumor cells and render the tumor cells more vulnerable to killing by immune cells, immune cell-based therapies and other therapeutic agents whose effectiveness is diminished by hypersialylation of cancer cells.


Also provided are methods for delivering a sialidase to the tumor microenvironment. Within the tumor microenvironment the sialidase can remove terminal sialic acid residues on cancer cells, thereby reducing the barrier for entry of immunotherapy reagents and promote cellular immunity against cancer cells.


The term “recombinant” when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified.


The terms “virus” or “virus particle” are used according to its plain ordinary meaning within Virology and refers to a virion including the viral genome (e.g. DNA, RNA, single strand, double strand), viral capsid and associated proteins, and in the case of enveloped viruses (e.g. herpesvirus, poxvirus), an envelope including lipids and optionally components of host cell membranes, and/or viral proteins.


The term “poxvirus” is used according to its plain ordinary meaning within Virology and refers to a member of Poxviridae family capable of infecting vertebrates and invertebrates which replicate in the cytoplasm of their host. In embodiments, poxvirus virions have a size of about 200 nm in diameter and about 300 nm in length and possess a genome in a single, linear, double-stranded segment of DNA, typically 130-375 kilobase.


The term poxvirus includes, without limitation, all genera of poxviridae (e.g., betaentomopoxvirus, yatapoxvirus, cervidpoxvirus, gammaentomopoxvirus, leporipoxvirus, suipoxvirus, molluscipoxvirus, crocodylidpoxvirus, alphaentomopoxvirus, capripoxvirus, orthopoxvirus, avipoxvirus, and parapoxvirus). In embodiments, the poxvirus is an orthopoxvirus (e.g., smallpox virus, vaccinia virus, cowpox virus, monkeypox virus), parapoxvirus (e.g., orf virus, pseudocowpox virus, bovine popular stomatitis virus), yatapoxvirus (e.g., tanapox virus, yaba monkey tumor virus) or molluscipoxvirus (e.g., molluscum contagiosum virus). In embodiments, the poxvirus is an orthopoxvirus (e.g., cowpox virus strain Brighton, raccoonpox virus strain Herman, rabbitpox virus strain Utrecht, vaccinia virus strain WR, vaccinia virus strain IHD, vaccinia virus strain Elstree, vaccinia virus strain CL, vaccinia virus strain Lederle-Chorioallantoic, or vaccinia virus strain AS). In embodiments, the poxvirus is a parapoxvirus (e.g., orf virus strain NZ2 or pseudocowpox virus strain TJS).


A “sialidase catalytic domain protein” is a protein that comprises the catalytic domain of a sialidase, or an amino acid sequence that is substantially homologous to the catalytic domain of a sialidase, but does not comprise the entire amino acid sequence of the sialidase the catalytic domain is derived from, wherein the sialidase catalytic domain protein retains substantially the same activity as the intact sialidase the catalytic domain is derived from. A sialidase catalytic domain protein can comprise amino acid sequences that are not derived from a sialidase, but this is not required. A sialidase catalytic domain protein can comprise amino acid sequences that are derived from or substantially homologous to amino acid sequences of one or more other known proteins, or can comprise one or more amino acids that are not derived from or substantially homologous to amino acid sequences of other known proteins.





DESCRIPTION OF THE DRAWINGS


FIG. 1: Detection of 2,6 sialic acid (by FITC-SNA) on A549 and MCF cells by fluorescence microscopy. A549 and MCF cells were fixed and incubated with FITC-SNA for one hour at 37° C. before imaged under fluorescence microscope to show the FITC-SNA labeled cells (left) and overlay with brightfield cells (right)



FIG. 2: Effective removal of 2,6 sialic acid, 2,3 sialic acid, and exposure of galactose on A549 cells by DAS181 treatment. A549 were treated with DAS181 for two hours at 37° C. and incubated with staining reagents one hour before imaged under fluorescence microscope to show effective removal of sialic acids on tumor cells.



FIG. 3: Effective removal of 2,6 sialic acid on A549 cells by DAS181 but not DAS185 treatment. A549 were treated with DAS181 for 30 minutes or two hours at 37° C. and incubated with FITC-SNA for one hour before examined using flow cytometry to show effective removal of 2,6 sialic acids on tumor cells.



FIG. 4: Effective removal of 2,3 sialic acid on A549 cells by DAS181 but not DAS185 treatment. A549 were treated with DAS181 for 30 minutes or two hours at 37° C. and incubated with FITC-MALII for one hour before examined using flow cytometry to show effective removal of 2,3 sialic acids on tumor cells



FIG. 5: Effective exposure of galactose on A549 cells by DAS181 but not DAS185 treatment. A549 were treated with DAS181 for 30 minutes or two hours at 37° C. and incubated with FITC-PNA for one hour before examined using flow cytometry to show effective exposure of galactose on tumor cells



FIG. 6: DAS181 treatment and PBMC stimulation regimen do not affect A549-red cell proliferation. A549-Red cells were seeded at 2 k/well overnight, followed by replacement of medium containing reagents listed on the left. Scan by IncuCyte was initiated immediately after the reagents were added (0 hr) and scheduled for every 3 hr. A549-red cell proliferation is monitored by analyzing the nuclear (red) counts. Kinetic readouts reveal no effect on A549 cell proliferation by vehicle, DAS181, or various stimulation reagents, without the presence of PBMCs.



FIG. 7: Detection of cytotoxicity in A549-red cells following co-culturing with PBMCs from Donor 1 with or without DAS181 treatment. These results showed that DAS181 treatment significantly boost anti-tumor cytotoxicity by PBMCs from Donor 1. A549-Red cells were seeded at 2 k/well overnight, followed by co-culturing with 100K/well Donor-1 PBMCs (E:T=50:1) in the presence of medium (no activation), CD3+CD28+IL-2 (T cell activation), or CD3+CD29+IL-2+IL-15+IL-21 (T and NK cell activation). Representative images were taken by IncuCyte at 0 hr and 72 hrs post adding PBMCs.



FIG. 8: Detection of cytotoxicity in A549-red cells following co-culturing with PBMCs from Donor 2 with or without DAS181 treatment. These results showed that DAS181 treatment significantly boost anti-tumor cytotoxicity by PBMCs from Donor 2. A549-Red cells were seeded at 2 k/well overnight, followed by co-culturing with 100 k/well Donor-1 PBMCs (E:T=50:1) in the presence of medium (no activation), CD3+CD28+IL-2 (T cell activation), or CD3+CD29+IL-2+IL-15+IL-21 (T and NK cell activation). Representative images were taken by IncuCyte at 0 hr and 72 hrs post adding PBMCs.



FIGS. 9A-9C: Detection of cytotoxicity in A549-red cells following co-culturing with PBMCs from Donor 1 with or without DAS181 treatment. These results showed that DAS181 treatment significantly boost anti-tumor cytotoxicity by PBMCs from Donor 1. The green lines indicate conditions without DAS181, and the blue lines indicate conditions with the DAS-181 treatment. A549-red tumor cells were seeded at 2 k cells/well in 96-well plate. After overnight incubation, PBMCs from Donor 1 mixed with (A) medium (B) CD3/CD28/IL-2, or (C) CD3/CD28/IL-2/IL-15/IL-21 were added into each well as indicated E:T ratio. At mean time, DAS181 (100 nM) was added. Plates were scanned by IncuCyte every 3 hr for total 72 hrs. Proliferation is monitored by analyzing RFP cell counts.



FIGS. 10A-10C: Detection of cytotoxicity in A549-red cells following co-culturing with PBMCs from Donor 2 with or without DAS181 treatment. These results showed that DAS181 treatment significantly boost anti-tumor cytotoxicity by PBMCs from Donor 2. The green lines indicate conditions without DAS181, and the blue lines indicate conditions with the DAS-181 treatment. A549-red tumor cells were seeded at 2 k cells/well in 96-well plate. After overnight incubation, PBMCs from Donor 2 mixed with (A) medium, (B) CD3/CD28/IL-2, or (C) CD3/CD28/IL-2/IL-15/IL-21 were added into each well as indicated E:T ratio. At mean time, DAS 181 (100 nM) was added. Plates were scanned by IncuCyte every 3 hr for total 72 hrs. Proliferation is monitored by analyzing RFP cell counts.



FIG. 11: DAS181 enhances NK-mediated tumor lysis by vaccinia virus, measured by MTS assay. custom-character=T-test P value<0.05, suggesting that DAS181 alone boosts NK cell-mediated U87 tumor killing in vitro, compared to enzyme-dead DAS185. *=T-Test P value<0.05.



FIG. 12: DAS181 increases NK-mediated tumor killing by vaccinia virus as measured by MTS assay. *=T-test P value<0.05, suggesting that DAS181 increases NK cell-mediated killin of U87 cells by VV in vitro.



FIG. 13: DAS181 significantly enhanced expression of maturation markers (CD80, CD86, HLA) in human DC cells that were cultured alone or exposed to VV-infected tumor cells. *=T-test P value<0.05.



FIG. 14: DAS181 significantly enhanced TNF-alpha production by THP-1 derived macrophages. *=T-test P value<0.05



FIG. 15: DAS181 treatment promotes oncolytic adenovirus-mediated tumor cell killing and growth prohibition. A549-red tumor cells were seeded at 2K cells/well in 96-well plates. After overnight incubation, DAS181 vehicle, oncolytic adenovirus, and DAS181 were added as indicated. CD3/CD28/IL-2 were also added into each well with the amount described previously. Graph showed that DAS181 plus oncolytic adenovirus effectively reduced tumor cell proliferation.



FIGS. 16A-16B: DAS181 treatment enhances PBMC-mediated tumor cell killing by vaccinia virus. A549-red tumor cells were seeded at 2K cells/well in 96-well plate. After overnight incubation, fresh PBMCs were added at densities of 10K/well (A) or 40K/well (B). CD3, CD28, IL-2, DAS181, and oncolytic adenovirus were added as indicated in the graph following with the timed scans by IncuCyte. Graph showed that DAS181 plus oncolytic adenovirus dramatically enhanced human PBMC-mediated tumor cell eradication.



FIG. 17: Schematic of a portion of a vaccinia virus construct for expressing a sialidase.



FIG. 18: Sequence of certain elements in a vaccinia virus construct for expressing a sialidase (DAS181).



FIG. 19: Sequence of a portion of a vaccinia virus construct for expressing a sialidase (DAS181).



FIGS. 20A-20B: DAS181 expressed by Sialidase-VV has in vitro activity towards sialic acid-containing substrates. (A) Standard curve of DAS181 activity at 0.5 nM, 1 nM, and 2 nM. (B) 1×106 cells infected with Sialidase-VV express DAS181 equivalent to 0.78 nM-1.21 nM DAS181 in 1 ml medium in vitro.



FIG. 21: Sialidase-VV enhances Dendritic cell maturation. GM-CSF/IL4 derived human DC were cultured with Sial-VV or VV infected U87 tumor cell lysate for 24 hours. DAS181 of LPS was used as control DC were collected and stained with antibodies against CD80, CD86, HLA-DR, and HLA-ABC. The expression of DC maturation markers was determined by flow analysis. The results suggested that Sial-VV enhanced DC maturation. *=T-test P value<0.05



FIG. 22: Sialidase-VV induced IFN-gamma and IL2 expression by T cells. CD3 antibody-activated human T cells were co-cultured with A594 tumor cells in the presence of Sial-VV or VV-infected tumor cells lysate for 24 hours, and cytokine IFNr or IL-2 expression was measured by ELISA. The results suggested that Sial-VV cell lysate induced IFNr and IL2 expression by human T cells. *=T-test P value<0.05



FIG. 23: Sialidase-VV enhances T cell-mediated tumor cell lytic activity. CD3 Ab activated human T cells were co-cultured with Sial-VV or VV-infected A594 tumor cells for 24 hours, and tumor cell viability was determined by MTS assay. The results suggested that Sial-VV infection of tumor cells resulted in enhanced tumor killing. *=T-test P value<0.05





DETAILED DESCRIPTION
Oncolytic Viruses

Numerous oncolytic viruses, including Vaccina virus, Coxsackie virus, Adenovirus, Measles, Newcastle disease virus, Seneca Valley virus, Coxsackie A21, Vesicular stomatitis virus, Parvovirus H1, Reovirus, Herpes virus, Lentivirus, and Poliovirus, and Parvovirus. Vaccinia Virus Western Reserve, GLV-1h68, ACAM2000, and OncoVEX GFP, are available. The genomes of these oncolytic virus can be genetically modified to insert a nucleotide sequence encoding a protein that includes all or a catalytic portion of a sialidase. The nucleotide sequence encoding a protein that includes all or a catalytically active portion of a sialidase is placed under the control of a viral expression cassette so that the sialidase is expressed by infected cells.


Vesicular Stomatitis Virus (VSV)

VSV has been used in multiple oncolytic virus applications. In addition, VSV has been engineered to express an antigenic protein of human papilloma virus (HPV) as a method to treat HPV positive cervical cancers via vaccination (REF 18337377, 29998190) and to express pro-inflammatory factors to increase the immune reaction to tumors (REF 12885903). Various methods for engineering VSV to encode an additional gene have been described (REF 7753828). Briefly, the VSV RNA genome is reverse transcribed to a complementary, doubled stranded-DNA with an upstream T7 RNA polymerase promoter and an appropriate location within the VSV genome for gene insertion is identified (e.g., within the noncoding 5′ or 3′ regions flanking VSV glycoprotein (G) (REF 12885903). Restriction enzyme digestion can be accomplished, e.g., with Mlu I and Nhe I, yielding a linearized DNA molecule. An insert consisting of a DNA molecule encoding the gene of interest flanked by appropriate restriction sites can be ligated into the linearized VSV genomic DNA. The resulting DNA can be transcribed with T7 polymerase, yielding a complete VSV genomic RNA containing the inserted gene of interest. Introduction of this RNA molecule to a mammalian cell, e.g., via transfection and incubation results in viral progeny expressing the protein encoded by the gene of interest.


Adenovirus Serotype 5 (Ad5)

Ad5 contains a human E2F-1 promoter, which is a retinoblastoma (Rb) pathway—defective tumor specific transcription regulatory element that drives expression of the essential Ela viral genes, restricting viral replication and cytotoxicity to Rb pathway-defective tumor cells (REF 16397056). A hallmark of tumor cells is Rb pathway defects. Engineering a gene of interest into Ad5 is accomplished through ligation into Ad5 genome. A plasmid containing the gene of interest is generated via and digested, e.g., with AsiSI and PacI. An Ad5 DNA plasmid, e.g., PSF-AD5 (REF Sigma OGS268) is digested with AsiSI and PacI and ligated with recombinant bacterial ligase or co-transformed with RE digested gene of interest into permissive E. coli as has been reported for the generation of human granulocyte macrophage colony stimulating factor (GM-CSF) expressing Ad5 (REF 16397056). Recovery of the DNA and transfection into a permissive host, e.g., human embryonic kidney cells (HEK293) or HeLa yields virus expressing the gene of interest.


Vaccinia Virus (VV)

Various strains of VV have been used as templates for OV therapeutics; the unifying feature is deletion of the viral thymidine kinase (TK) gene, rendering a virus dependent upon actively replicating cells, i.e. neoplastic cells, for productive replication and thus these VVs have preferential infectivity of cancer cells exemplified by the Western Reserve (WR) strain of VV (REF 25876464). Production of VV's with a gene of interest inserted in the genome is accomplished with homologous recombination utilizing lox sites, as described in greater detail below.


Polypeptides with Sialidase Activity for Expression by an Oncolytic Virus


The recombinant oncolytic virus expresses a polypeptide that includes all or a catalytic portion of a sialidase that is capable of removing sialic acid (N-acetylneuraminic acid (Neu5Ac)) from a glycan on a human cell. In general, Neu5Ac is linked via an alpha 2,3, an alpha 2,6 or alpha 2,8 linkage to the penultimate sugar in glycan on a protein by any of a variety of sialyl transferases. The common human sialyltransferases are summarized in Table 1.









TABLE I







Nomenclature of Neu5Ac sialyltransferases














EC



Abbreviation
Resulting Group
Substrate
Number
HGNC














ST3Gal I
Neu5Ac-α-(2,3) Gal
Gal-β-1,3-GalNAc
2.4.99.4
10862


ST3Gal II
Neu5Ac-α-(2,3) Gal
Gal-β-1,3-GalNAc
2.4.99.4
10863


ST3Gal III
Neu5Ac-α-(2,3) Gal
Gal-β-1,3
2.4.99.6
10866




(4)-GlcNAc




ST3Gal IV
Neu5Ac-α-(2,3) Gal
Gal-β-1,4-GlcNAc
2.4.99.9
10864


ST3Gal V
Neu5Ac-α-(2,3) Gal
Gal-β-1,4-Glc
2.4.99.9
10872


ST3Gal VI
Neu5Ac-α-(2,3) Gal
Gal-β-1,4-GlcNAc
2.4.99.9
18080


ST6Gal I
Neu5Ac-α-(2,6) Gal
Gal-β-1,4-GlcNAc
2.4.99.1
10860


ST6Gal II
Neu5Ac-α-(2,6) Gal
Gal-β-1,4-GlcNAc
2.4.99.2
10861


ST6GalNAc
Neu5Ac-α-(2,6)
GalNAc-α-1,
2.4.99.7
23614


I
GalNAc
O-Ser/Thr




ST6GalNAc
Neu5Ac-α-(2,6) c
Gal-β-1,3-GalNAc-
2.4.99.7
10867


II
GalNA
α-1,O-Ser/Tbr




ST6GalNAc
Neu5Ac-α-(2,6)
Neu5Ac-α-2,3-Gal-
2.4.99.7
19343


III
GalNAc
β-1,3-GalNAc




ST6GalNAc
Neu5Ac-α-(2,6)
Neu5Ac-α-2,3Gal-
2.4.99.7
17846


IV
GalNAc
β-1,3-GalNAc




ST6GalNAc
Neu5Ac-α-(2,6)
Neu5Ac-α-2,
2.4.99.7
19342


V
GalNAc
6-GalNAc-






β-1,3-GalNAc




ST6GalNAc
Neu5Ac-α-(2,6)
All α-series
2.4.99.7
23364


VI
GalNAc
gangliosides




ST8Sia I
Neu5Ac-α-(2,8)-
Neu5Ac-α-2,
2.4.99.8
10869



Neu5Ac
3-Gal-β-1,






4-Glc-β-1,






1Cer (GM3)




ST8Sia II
Neu5Ac-α-(2,8)-
Neu5Ac-α-
2.4.99.8
10870



Neu5Ac
2,3-Gal-β-1,






4-GlcNAc




ST8Sia III
Neu5Ac-α-(2,8)-
Neu5Ac-α-2,
2.4.99.8
14269



Neu5Ac
3-Gal-β-1,






4-GlcNAc




ST8Sia IV
Neu5Ac-α-(2,8)-
(Neu5Ac-α-2,8)
2.4.99.8
10871



Neu5Ac
nNeu5Ac-






α-2,3-Gal-β-1-R




ST8Sia V
Neu5Ac-α-(2,8)-
GM1b, GT1b,
2.4.99.8
17827



Neu5Ac
GD1a, GD3




ST8Sia VI
Neu5Ac-α-(2,8)-
Neu5Ac-α-
2.4.99.8
23317



Neu5Ac
2,3(6)-Gal





HGNC: Hugo Gene Community Nomenclature (www.genenames.org)







Domains within Polypeptides Having Sialidase Activity


The expressed polypeptide, in addition to the sialidase or catalytic portion thereof can, optionally, include peptide or protein sequences that contribute to the therapeutic activity of the protein. For example, the protein can include an anchoring domain that promotes interaction between the protein and a cell surface. The anchoring domain and sialidase domain can be arranged in any appropriate way that allows the protein to bind at or near a target cell membrane such that the therapeutic sialidase can exhibit an extracellular activity that removes sialic acid residues. The protein can have more than one anchoring domains. In cases in which the polypeptide has more than one anchoring domain, the anchoring domains can be the same or different. The protein can have more than one sialidase domain. In cases in which a compound has more than one sialidase domain, the sialidase domains can be the same or different. Where the protein comprises multiple anchoring domains, the anchoring domains can be arranged in tandem (with or without linkers) or on alternate sides of other domains, such as sialidase domains. Where a compound comprises multiple sialidase domains, the sialidase domains can be arranged in tandem (with or without linkers) or on alternate sides of other domains.


Sialidase Domain

The sialidase domain expressed by the oncolytic virus can be specific for Neu5Ac linked via alpha 2,3 linkage, specific for Neu5Ac linked via an alpha 2,6 or can cleave Neu5Ac linked via an alpha 2,3 linkage or an alpha 2,6 linkage. A variety of sialidases are described in Tables 2-5.


A sialidase that can cleave more than one type of linkage between a sialic acid residue and the remainder of a substrate molecule, in particular, a sialidase that can cleave both alpha(2, 6)-Gal and alpha(2, 3)-Gal linkages can be used in the compounds of the disclosure. Sialidases included are the large bacterial sialidases that can degrade the receptor sialic acids Neu5Ac alpha(2,6)-Gal and Neu5Ac alpha(2,3)-Gal. For example, the bacterial sialidase enzymes from Clostridium perfringens (Genbank Accession Number X87369), Actinomyces viscosus (GenBankX62276), Arthrobacter ureafaciens GenBank (AY934539), or Micromonospora viridifaciens (Genbank Accession Number D01045) can be used. Sialidase domains of compounds of the present disclosure can comprise all or a portion of the amino acid sequence of a large bacterial sialidase or can comprise amino acid sequences that are substantially homologous to all or a portion of the amino acid sequence of a large bacterial sialidase. In one preferred embodiment, a sialidase domain comprises a sialidase encoded by Actinomyces viscosus, such as that of SEQ ID NO: 1 or 2, or such as sialidase sequence substantially homologous to SEQ ID NO: 12. In yet another preferred embodiment, a sialidase domain comprises the catalytic domain of the Actinomyces viscosus sialidase extending from amino acids 274-666 of SEQ ID NO: or a substantially homologous sequence.


Additional sialidases include the human sialidases such as those encoded by the genes NEU2 (SEQ ID NO:8; Genbank Accession Number Y16535; Monti, E, Preti, Rossi, E., Ballabio, A and Borsani G. (1999) Genomics 57:137-143) and NEU4 (SEQ ID NO:9; Genbank Accession Number NM080741; Monti et al. (2002) Neurochem Res 27:646-663). Sialidase domains of compounds of the present disclosure can comprise all or a portion of the amino acid sequences of a sialidase or can comprise amino acid sequences that are substantially homologous to all or a portion of the amino acid sequences of a sialidase. Preferably, where a sialidase domain comprises a portion of the amino acid sequences of a naturally occurring sialidase, or sequences substantially homologous to a portion of the amino acid sequences of a naturally occurring sialidase, the portion comprises essentially the same activity as the intact sialidase. The present disclosure also includes sialidase catalytic domain proteins. As used herein a “sialidase catalytic domain protein” comprises a catalytic domain of a sialidase but does not comprise the entire amino acid sequence of the sialidase from which the catalytic domain is derived. A sialidase catalytic domain protein has sialidase activity. Preferably, a sialidase catalytic domain protein comprises at least 10%, at least 20%, at least 50%, at least 70% of the activity of the sialidase from which the catalytic domain sequence is derived. More preferably, a sialidase catalytic domain protein comprises at least 90% of the activity of the sialidase from which the catalytic domain sequence is derived.


A sialidase catalytic domain protein can include other amino acid sequences, such as but not limited to additional sialidase sequences, sequences derived from other proteins, or sequences that are not derived from sequences of naturally occurring proteins. Additional amino acid sequences can perform any of a number of functions, including contributing other activities to the catalytic domain protein, enhancing the expression, processing, folding, or stability of the sialidase catalytic domain protein, or even providing a desirable size or spacing of the protein.


A preferred sialidase catalytic domain protein is a protein that comprises the catalytic domain of the A. viscosus sialidase. Preferably, an A. viscosus sialidase catalytic domain protein comprises amino acids 270-666 of the A. viscosus sialidase sequence (SEQ ID NO:12). Preferably, an A. Viscosus sialidase catalytic domain protein comprises an amino acid sequence that begins at any of the amino acids from amino acid 270 to amino acid 290 of the A. viscosus sialidase sequence (SEQ ID NO: 12) and ends at any of the amino acids from amino acid 665 to amino acid 901 of said A. viscosus sialidase sequence (SEQ ID NO: 12), and lacks any A. viscosus sialidase protein sequence extending from amino acid 1 to amino acid 269.


In some preferred embodiments, an A. viscosus sialidase catalytic domain protein comprises amino acids 274-681 of the A. viscosus sialidase sequence (SEQ ID NO: 12) and lacks other A. viscosus sialidase sequence. In some preferred embodiments, an A. viscosus sialidase catalytic domain protein comprises amino acids 274-666 of the A. viscosus sialidase sequence (SEQ ID NO: 12) and lacks any other A. viscosus sialidase sequence. In some preferred embodiments, an A. viscosus sialidase catalytic domain protein comprises amino acids 290-666 of the A. viscosus sialidase sequence (SEQ ID NO: 12) and lacks any other A. viscosus sialidase sequence. In yet other preferred embodiments, an A. viscosus sialidase catalytic domain protein comprises amino acids 290-681 of the A. viscosus sialidase sequence (SEQ ID NO: 12) and lacks any other A. viscosus sialidase sequence.









TABLE 2







Engineered Sialidases








Name
Sequence





AvCD
MGDHPQATPAPAPDASTELPASMSQAQHLAANTATDNYRIPAI



TTAPNGDLLISYDERPKDNGNGGSDAPNPNHIVQRRSTDGGKT



WSAPTYIHQGTETGKKVGYSDPSYVVDHQTGTIFNFHVKSYDQ



GWGGSRGGTDPENRGIIQAEVSTSTDNGWTWTHRTITADITKD



KPWTARFAASGQGIQIQHGPHAGRLVQQYTIRTAGGAVQAVSV



YSDDHGKTWQAGTPIGTGMDENKVVELSDGSLMLNSRASDGSG



FRKVAHSTDGGQTWSEPVSDKNLPDSVDNAQIIRAFPNAAPDD



PRAKVLLLSHSPNPRPWSRDRGTISMSCDDGASWTTSKVFHEP



FVGYTTIAVQSDGSIGLLSEDAHNGADYGGIWYRNFTMNWLGE



QCGQKPAE



(SEQ ID NO: 1)





DAS181
MGDHPQATPAPAPDASTELPASMSQAQHLAANTATDNYRIPAI



TTAPNGDLLISYDERPKDNGNGGSDAPNPNHIVQRRSTDGGKT



WSAPTYIHQGTETGKKVGYSDPSYVVDHQTGTIFNFHVKSYDQ



GWGGSRGGTDPENRGIIQAEVSTSTDNGWTWTHRTITADITKD



KPWTARFAASGQGIQIQHGPHAGRLVQQYTIRTAGGAVQAVSV



YSDDHGKTWQAGTPIGTGMDENKVVELSDGSLMLNSRASDGSG



FRKVAHSTDGGQTWSEPVSDKNLPDSVDNAQIIRAFPNAAPDD



PRAKVLLLSHSPNPRPWSRDRGTISMSCDDGASWTTSKVFHEP



FVGYTTIAVQSDGSIGLLSEDAHNGADYGGIWYRNFTMNWLGE



QCGQKPAKRKKKGGKNGKNRRNRKKKNP



(SEQ ID NO: 2)
















TABLE 3







Human Sialidases












Uniprot




Name
Identifier
SEQ ID NO















Human Neu 1
Q99519
3



Human Neu 2
Q9Y3R4
4



Human Neu 3
Q9UQ49
5



Human Neu 4
Q8WWR8
6



Human Neu 4
Q8WWR8
7



Isoform 2





Human Neu 4
Q8WWR8
8



Isoform 3

















TABLE 4







Sialidases in organisms that are


largely commensal with humans











Uniprot/





Genbank
Gene
SEQ


Organism
ID
name
ID NO














Actinomyces viscosus

Q59164
nanH
9



Actinomyces viscosus

A0A448PLN7
nanA
10



Streptococcus oralis

A0A081R4G6
nanA
11



Streptococcus oralis

D4FUA3
nanH
12



Streptococcus mitis

A0A081Q0I6
nanA
13



Streptococcus mitis

A0A3R9LET9
nanA_1
14



Streptococcus mitis

A0A3R9J1C3
nanA_2
15



Streptococcus mitis

A0A3R9IIK2
nanA_3
16



Streptococcus mitis

A0A3R9IXG7
nanA_4
17



Streptococcus mitis

A0A3R9K5C5
nanA_5
18



Streptococcus mitis

J1H2U0
nanH
19



Porphyromonas gingivalis

B2RL82

20



Tannerella forsythia

Q84BM9
siaHI
21



Tannerella forsythia

A0A1D3USB1
nanH
22



Akkermansia Muciniphila

B2UPI5

23



Akkermansia Muciniphila

B2UN42

24



Bacteroides thetaiotaomicron

Q8AAK9

25
















TABLE 5







Additional sialidases











Uniprot/Genbank



Organism
ID








Actinotignum schaalii

S2VK03




Anaerotruncus colihominis

B0PE27




Ruminococcus gnavus

A0A2N5NZH2




Clostridium difficile

Q185B3




Clostridium septicum

P29767




Clostridium perfringens

P10481




Clostridium perfringens

Q8XMY5




Clostridium perfringens

A0A2Z3TZA2




Vibrio cholerae

P0C6E9




Salmonella typhimurium

P29768




Paeniclostridium sordellii

A0A446I8A2




Streptococcus pneumoniae (NanA)

P62576




Streptococcus pneumoniae (NanB)

Q54727




Pseudomonas aeruginosa

A0A2X4HZU8




Aspergillus fumigatus

Q4WQS0




Arthrobacter ureafaciens

Q5W7Q2




Micromonospora viridifaciens

Q02834










Anchoring Domain

As used herein, an “extracellular anchoring domain” or “anchoring domain” is any moiety that interacts with an entity that is at or on the exterior surface of a target cell or is in close proximity to the exterior surface of a target cell. An anchoring domain serves to retain a compound of the present disclosure at or near the external surface of a target cell. An extracellular anchoring domain preferably binds 1) a molecule expressed on the surface of a cancer cell, or a moiety, domain, or epitope of a molecule expressed on the surface of a cancer cell, 2) a chemical entity attached to a molecule expressed on the surface of a cancer cell, or 3) a molecule of the extracellular matrix surrounding a cancer cell.


Useful anchoring domains bind to heparin/sulfate, a type of GAG that is ubiquitously present on cell membranes. Many proteins specifically bind to heparin/heparan sulfate, and the GAG-binding sequences in these proteins have been identified (Meyer, F A, King, M and Gelman, R A. (1975) Biochimica et BiophysicaActa 392: 223-232; Schauer, S. ed., pp 233. Sialic Acids Chemistry, Metabolism and Function. Springer-Verlag, 1982). For example, the GAG-binding sequences of human platelet factor 4 (PF4) (SEQ ID NO:2), human interleukin 8 (IL8) (SEQ ID NO:3), humanantithrombin III (AT III) (SEQ ID NO:4), human apoprotein E (ApoE) (SEQ ID NO:5), human angio-associated migratory cell protein (AAMP) (SEQ ID NO:6), or human amphiregulin (SEQ ID NO:7) have been shown to have very high affinity to heparin.


Linkers

A protein that includes a sialidase or a catalytic domain thereof can optionally include one or more polypeptide linkers that can join domains of the compound. Linkers can be used to provide optimal spacing or folding of the domains of a protein. The domains of a protein joined by linkers can be sialidase domains, anchoring domains, or any other domains or moieties of the compound that provide additional functions such as enhancing protein stability, facilitating purification, etc. Some preferred linkers include the amino acid glycine. For example, linkers having the sequence: (GGGGS (SEQ ID NO:10))n, where n is 1-20.


EXAMPLES
Example 1: DAS181 Treatment Reduces Surface Sialic Acid on Tumor Cells

In this study the impact of DAS181 on the sialic acid burden of certain tumor cells was examined. Briefly, FACs and image-based quantitation of α-2,3 and α-2,6 sialic acid modifications on A549 (human alveolar basal epithelial adenocarcinoma) and MCF (human mamillary epithelial adenocarcinoma) tumor cells were conducted. Galatose exposure after sialic acid removal in A549 and MCF7 cells was detected by PNA-FITC using flow cytometry analysis and imaging approaches. As discussed above, there are two sialic acid is most often attached to the penultimate sugar by an α-2,3 linkage or an α-2,6 linkage, which can that can be detected by Maackia Amurensis Lectin II (MAL II) and Sambucus Nigra Lectin (SNA), respectively. In addition, surface galactose (e.g., galactose exposed after sialic acid removal) can be detected using Peanut Agglutinin (PNA).



FIG. 1 depicts the detection of 2,6 sialic acid by FITC-SNA on A549 and MCF cells by fluorescence imaging.


A549 cells were treated with various concentrations of DAS181 and them stained to image 2,6 linked sialic acid (FITC-SNA), 2,3 linked sialic acid (FITC-MALII) or galactose (FITC-PNA). As can be seen in FIG. 2, DAS181 effectively removed both 2,3 and 2,6 linked sialic acid and exposed galactose.


In contrast, DAS185, a variant of DAS181 lacking sialidase activity due to Y348F mutation, was not able to remove 2,6 linked sialic acid or 2,3 linked sialic acid. As shown in FIG. 3, incubation of A549 cells with DAS185 had essentially no impact on surface 2,3 linked sialic acid, while DAS181 reduced surface 2,3 linked sialic acid in a concentration dependent manner. Similarly, incubation of A549 cells with DAS185 had essentially no impact on surface 2,6 linked sialic acid, while DAS181 reduced surface 2,6 linked sialic acid in a concentration dependent manner (FIG. 4). Consistent with these results, incubation of A549 cells with DAS185 had essentially no impact on surface galactose, while DAS181 increased surface galactose in a concentration dependent manner.


Example 2: DAS181 Treatment Increases PDMC-Mediated Tumor Cell Killing

A549 cells were genetically labelled with a red fluorescent protein (A549-red). Fresh human PMBCs were harvested and stimulated with various cytokine and antibody combinations to activate effector T cells (CD3, CD38 and IL-2) or, in some cases, T cells and NK cells (CD3, CD28, IL-15 and IL-21). Activated PBMCs were then co-cultured with A549-red cells that had been exposed to DAS181 (100 nM). Tumor cell killing by PBMCs was monitored by live cell imaging and quantification with IncuCyte. The cell culture medium was collected and analyzed by ELISA to assess cytokine production by PBMCs.



FIG. 6 shows that neither the treatments used to stimulate PBMC nor DAS181 in combination with treatment used to stimulate PBMC impact A549-red cell proliferation.



FIG. 7 shows that DAS181 significantly increases tumor cell toxicity mediated by PBMC (Donor 1), both T cell mediated and NK cell mediated, compared to a vehicle only control. Similar results were observed using PBMC from a different donor (Donor 2; FIG. 8). FIG. 9 and FIG. 10 present a quantification of the data presented in FIG. 7 and FIG. 8, respectively.


Example 3: NK Cell Mediated Killing of Tumor Cells by Oncolytic Vaccinia Virus and DAS181

In this study the impact of an oncolytic vaccina virus (Western Reserve) and DAS181 on NK cell-mediated killing was examined. DAS185, a variant protein lacking sialidase activity was used as a control.


Briefly, tumor cells (U87-GFP) were plated in a 96-well tissue culture plate at 5×104 cells per well (100 ul) in DMEM and incubated overnight at 37° C. On Day 2 the cells were infected with VV at MOI 0.5, 1, or 2 in fetal bovine serum-free medium for 2 hours and then exposed to 1 nM DAS181 or 1 mM DAS185. Tumor cells were then mixed with purified NK cells at Effector:Tumor (E:T)=1:1, 5:1, 10:1. The cells were cultured in medium supplemented with 2% FBS in order to decrease neuraminidase/sialidase background. After 24 hrs, tumor killing were measured by MTS assay (96 well plate), and cell culture medium was collected. Expression of IFN gamma were measured by ELISA. The results of this study are shown in FIG. 11 and FIG. 12 where it can be seen the DAS181, but not inactive DAS185, increased tumor cell killing by oncolytic vaccinia virus.


Example 4: Impact of DAS181 on DC Maturation and Antigen Presenting Activity in the Presence of Tumor Cells

In this study, the impact of DAS181 on monocyte-derived dendritic cell was examined DAS185, a variant protein lacking sialidase activity was used as a control.


Briefly, monocyte-derived dendritic cells (DC) were prepared by resuspending 5×106 adherent PBMC in 3 ml of medium supplemented with 100 ng/ml of GM-CSF and 50 ng/ml of IL-4. After 48 hrs, 2 ml of fresh medium supplemented with 100 ng/ml of GM-CSF and 50 ng/ml of IL-4 was added to each well. After another 72 hrs, tumor cell (U87-GFP) were plated in 24-well plates in DMEM. The tumor cells were infected with VV at various MOI in FBS free medium for 2 hours. DC cultured in the presence of 1 nM DAS181 or DAS185 were mixed with tumor cells at 1:1 tumor cell:DC ratio. Dendritic cell maturation (expression of CD86, CD80, MHC-I) and production of pro-inflammatory cytokines (TNF-alpha) was then measured and quantified by flow cytometry and ELISA, respectively.


As can be seen in FIG. 13, DAS181 significant enhanced expression of dendritic cell maturation markers whether the cells were cultured alone or with vaccinia virus infected tumor cells.


The results of this study demonstrate that exposure to DAS181 increased and increased TNF-alpha secretion by dendritic cells (FIG. 14).


Example 5: DAS181 Increases Oncolytic Adenovirus Tumor Cell Killing in the Absence of Immune Cells

A549 cells were genetically labelled with red fluorescent protein (A549-red). Tumor cell proliferation and killing by oncolytic adenovirus (Ad5) in the presence or absence of DAS181 was monitored by live cell imaging and quantification with IncuCyte. The cell culture medium was collected for ELISA measurement of cytokine production by PBMCs. As shown in FIG. 15, DAS181 increased oncolytic adenovirus-mediated tumor cell killing and growth inhibition.


Example 6: DAS181 Increases Oncolytic Adenovirus Tumor Cell Killing in the Presence of PBMC

A549 cells were genetically labelled by a red fluorescent protein (A549-red). Fresh human PMBCs were harvested and stimulated with proper cytokine and antibody combinations to activate effector T cells. Activated PBMCs were then co-cultured with A549-red cells that have been treated with DAS181 with or without the oncolytic adenovirus (Ad5). Tumor cell killing by PBMCs was monitored by live cell imaging and quantification with IncuCyte. The cell culture medium was collected for ELISA measurement of cytokine production by PBMCs. As shown in FIG. 16, DAS181 significantly increased tumor cell killing when present together with oncolytic adenovirus in the presence of PBMC.


Example 7: Construction and Characterization of an Oncolytic Virus Expressing DAS181

A construct designed for expression of DAS181 is depicted schematically in FIG. 17.


To generate a recombinant VV expressing DAS181, a pSEM-1 vector was modified to include a sequence encoding DAS181 as well as two loxP sites with the same orientation flanking the sequence encoding the GFP protein (pSEM-1-TK-DAS181-GFP). DAS181 expression is under the transcriptional control of the F17R late promoter in order to limit the expression within tumor tissue. The sequences certain of the components and a portion of the construct and are shown in FIG. 18 and FIG. 19.


Western Reserve VV was used as the parental virus. VV expressing DAS181 was generated by recombination with pSEM-1-TK-DAS181-GFP into the TK gene of Western Reserve VV to generated VV-DAS181.


Recombinant Virus can be Generated as Follows.


Transfection:

Seed CV-1 cells in 6-well plate at 5×105 cells/2 ml DMEM-10% FBS/well and grow overnight. Prepare parent VV virus (1 ml/well) by diluting a virus stock in DMEM/2% FBS at MOI 0.05. Remove medium from CV-1 wells and immediately add VV, and culture for 1-2 hours. CV-1 cells should be 60-80% confluent at this point. Transfection mix in 1.5 ml tubes. For each Transfection, dilute 9 ul Genejuice in 91 ul serum-free DMEM and incubate at room temperature for 5 min. Add 3 ug pSEM-1-TK-DAS181-GFP DNA gently by pipetting up and down two or three times. Leave at room temperature for 15 min. Aspirate VV virus from the CV-1 well and wash the cells once with 2 ml serum-free DMEM. Add 2 ml DMEM-2% FBS and add the DNA-genejuice solution drop-by-drop. Incubate at 37° C. for 48-72 hr or until all the cells round up. Harvest the cells by pipetting repeatedly. Release the virus from cells by repeated freeze-thawing of the harvested cells by first placing them in dry-ice/ethanol bath and then thawing them in a 37° C. water bath and vortexing. Repeat the freeze-thaw cycling three times. The cell lysate can be stored at −80° C.


Plaque Isolation:

Seed CV-1 cells in 6-well plates at 5×105 cells/2 ml DMEM-10% FBS/well and grow overnight. CV-1 cells should be 60-80% confluent when receiving cell lysate. Sonicate the cell lysate on ice using sonic dismembrator with an ultrasonic convertor probe for 4 cycles of 30 s until the material in the suspension is dispersed. Make 10-fold serial dilutions of the cell lysate in DMEM-2% FBS. Add 1 ml of the cell lysate-medium per well at dilutions 10−2, 10−3, 10−4, incubate at 37° C. Pick well-separated GFP+ plaques using pipet tip. Rock the pipet tip slightly to scrape and detach cells in the plaque. Gently transfer to a microcentrifuge tube containing 0.5 ml DMEM medium. Freeze-thaw three times and sonicate. Repeat the same process of plaque isolation 3-5 times.


Virus Amplification:

Seed CV-1 cells 5×105 cells/2 ml DMEM-10% FBS/well and grow overnight in 6-well plate. CV-1 should be confluent when starting the experiment. Infect 1 well with 250 ul of plaque lysate/1 ml DMEM-2% FBS, and incubate at 37° C. for 2 h. Remove the plaque lysate and add 2 ml fresh DMEM-2% FBS, and incubate for 48-72 hr until cells round up. Collect the cells by repeatedly pipetting, freeze-thaw 3 times and sonicate. Add half of the cell lysate in 4 ml DMEM-2% FBS and infect CV-1 cells in 75-CM2 flask, after 2 h, remove virus and add 12 ml DMEM-2% FBS and culture 48-72 h (until cell round up). Harvest the cells, spin down 5 min at 1800 G, and discard supernatant and resuspend in 1 ml DMEM-2.5% FBS.


Virus Titration:

Seed CV-1 cells 5×105 cells/2 ml DMEM-10% FBS/well and grow overnight in 6-well plate. Dilute virus in DMEM-2% FBS, 50 ul virus/4950 ul DMEM-2% FBS (A, 10−2), 500 ul A/4500 ul medium (B, 10−3), and 500 ul B/4500 ul medium (C, 10−4), 10−7 to 10−10 for virus stock. Remove medium and wash 1× with PBS, and cells were infected with 1 ml virus dilution in duplicate. Incubate the cells for 1 h, rock the plate every 10 min. 1 h later, remove the virus and add 2 ml DMEM-10% FBS and incubate 48 h. Remove the medium, add 1 ml of 0.1% crystal violet in 20% ethanol for 15 min at room temperature. Remove the medium and allow to dry at room temperature for 24 hr. Count the plaque and express as plaque forming units (pfu) per ml.


Detection of DAS181 Expression by VV-RAS181:

CV-1 cells were infected with VV-DAS181 at MOI 0.2. 48 hours later, CV-1 cells were collected. DNA was extracted using Wizard SV Genomic DAN Purification System and used as template for DAS181 PCR amplification. PCR was conducted using standard PCR protocol and primer sequences (SialF: GGCGACCACCCACAGGCAACACCAGCACCTGCCCCA and SialR: CCGGTTGCGCCTATTCTTGCCGTTCTTGCCGCC). The expected PCR product (1251 bp) was found.


Example 8: DAS181 Expressed by Vaccinia Virus is Active In Vitro

CV-1 cells were plated in six well plate. The cells were transduced with Sialidase-VV or control VV at MOI 0.1 or MOI 1. After 24 hrs, transfected cells were collected, and single cell suspension were made in PBS at 3×106/500 ul. Cell lysate was prepared using Sigma's Mammalian cell lysis kit for protein extraction (Sigma, MCL1-1KT), and supernatant was collected. The sialidase (DAS181) activity was measured using Neuraminidase Assay Kit (Abcam, ab138888) according to manufacturer's instruction. 1 nM, 2 nM, and 10 nM DAS181 was added to the VV-cell lysate as control and generated the standard curve. 1×10{circumflex over ( )}6 cells infected with Sialidase-VV express DAS181 equivalent to 0.78 nM-1.21 nM of DAS181 in 1 ml medium. As shown in FIG. 20, the DAS181 has sialidase activity in vitro.


Example 9: Vaccinia Virus-Sialidase Promotes Dendritic Cell Maturation

To determine if Sialidase-VV can promote DC activation and maturation, adherent human PBMC were re-suspend at 5×106 cells in 3 ml medium supplemented with 100 ng/ml of GM-CSF and 50 ng/ml of IL-4 then cultured in 6-well plates with 2 ml per well of fresh medium supplemented with same concentrations of GM-CSF and IL-4. After 48 hrs, the cells were cultured in the presence of Sialidase-VV infected tumor cell lysate, VV-infected tumor cell lysate, VV-infected tumor cell lysate plus synthetic DAS181 protein, or LPS (positive control). After another 24 hrs, expression of CD86, CD80, MHC-II, MHC-I were determined by flow cytometry. As shown in FIG. 21, Sialidase-VV promotes the expression of markers indicative of dendritic cell activation and maturation.


Example 10: Sialidase-VV Enhances T Lymphocyte-Mediated Cytokine Production and Oncolytic Activity

To assess whether DAS181 can activate human T cells by inducing IFN-gamma (IFNr) and IL-2 expressing, human PBMCs were activated by adding CD3 antibody at 10 ug/ml, proliferation was further stimulated by adding IL-2 by every 48 hrs. On day 15, tumor cells (A549) were infected with VVs at MOI 0.5, 1, or 2 in 2.5% FBS medium for 2 hours. Activated T cells were added to the culture at effector:target ratio of 5:1 or 10:1 in the presence of CD3 antibody at 1 ug/ml. After another 24 hrs, tumor cytotoxicity was measured and cell culture medium was collected for cytokine array. As can be seen in FIG. 22, Sialidase-VV induces a significantly greater IL2 and IFN-gamma expression by CD3 activated T cells than does VV. In addition, as can be seen in FIG. 23, Sialidase-VV elicits stronger anti-tumor response than VV at and E;T of 5:1.












Sequences of certain Sialidases















SEQ ID NO: 3


        10         20         30         40         50         60         70         80


MTGERPSTAL PDRRWGPRIL GFWGGCRVWV FAAIFLLLSL AASWSKAEND FGLVQPLVTM EQLLWVSGRQ IGSVDTFRIP


        90        100        110        120        130        140        150        160


LITATPRGTL LAFAEARKMS SSDEGAKFIA LRRSMDQGST WSPTAFIVND GDVPDGLNLG AVVSDVETGV VFLVYSLCAH


       170        180        190        200        210        220        230        240


KAGCQVASTM LWVSKKDGVS WSTPRNLSLD IGTEVFAPGP GSGIQKQREP RKGRLIVCGH GTLERDGVFC LLSDDHGASW


       250        260        270        280        290        300        310        320


RYGSGVSGIP YGQPKQENDF NPDECQPYEL PDGSVVINAR NQNNYHCHCR IVLRSYDACD TLRPRDVTFD PELVDPVVAA


       330        340        350        360        370        380        390        400


GAVVTSSGIV FFSNPAHPEF RVNLTLRWSF SNGTSWRKET VQLWPGPSGY SSLATLEGSM DGEEQAPQLY VLYEKGRNHY


       410


TESISVAKIS VYGTL





SEQ ID NO: 4


        10         20         30         40         50         60         70         80


MASLPVLQKE SVFQSGAHAY RIPALLYLPG QQSLLAFAEQ RASKKDEHAE LIVLRRGDYD APTHQVQWQA QEVVAQRALD


        90        100        110        120        130        140        150        160


GHRSMNPCPL YDAQTGTLFL FFIAIPGQVT EQQQLQTRAN VTRLCQVTST DHGRTWSSPR DLTDAAIGPA YREWSTFAVG


       170        180        190        200        210        220        230        240


PGHCLQLHDR ARSLVVPAYA YRKLHPIQRP IPSAFCFLSH DHGRTWARGH FVAQDTLECQ VAEVETGEQR VVTLNARSHL


       250        260        270        280        290        300        310        320


RARVQAQSTN DGLDFQESQL VKKLVEPPPQ GCQGSVISFP SPRSGPGSPA QWLLYTHPTH SWQRADLGAY LNPRPPAPEA


       330        340        350        360        370        380


WSEPVLLAKG SCAYSDLQSM GTGPDGSPLF GCLYEANDYE EVIFLMFTLK QAFPAEYLPQ





SEQ ID NO: 5


        10         20         30         40         50         60         70         80


MEEVTTCSFN SPLFRQEDDR GITYRIPALL YIPPTHTFLA FAEKRSTRRD EDALHLVLRR GLRIGQLVQW GPLKPLMEAT


        90        100        110        120        130        140        150        160


LPGHRTMNPC PVWEQKSGCV FLFFICVRGH VTERQQIVSG RNAARLCFIY SQDAGCSWSE VRDLTEEVIG SELKHWATFA


       170        180        190        200        210        220        230        240


VGPGHGIQLQ SGRLVIPAYT YYIPSWFFCF QLPCKTRPHS LMIYSDDLGV TWHHGRLIRP MVTVECEVAE VTGRAGHPVL


       250        260        270        280        290        300        310        320


YCSARTPNRC RAEALSTDHG EGFQRLALSR QLCEPPHGCQ GSVVSFRPLE IPHRCQDSSS KDAPTIQQSS PGSSLRLEEE


       330        340        350        360        370        380        390        400


AGTPSESWLL YSHPTSRKQR VDLGIYLNQT PLEAACWSRP WILHCGPCGY SDLAALEEEG LFGCLFECGT KQECEQIAFR


       410        420


LFTHREILSH LQGDCTSPGR NPSQFKSN





SEQ ID NO: 6


        10         20         30         40         50         60         70         80


MGVPRTPSRT VLFERERTGL TYRVPSLLPV PPGPTLLAFV EQRLSPDDSH AHRLVLRRGT LAGGSVRWGA LHVLGTAALA


        90        100        110        120        130        140        150        160


EHRSMNPCPV HDAGTGTVFL FFIAVLGHTP EAVQIATGRN AARLCCVASR DAGLSWGSAR DLTEEAIGGA VQDWATFAVG


       170        180        190        200        210        220        230        240


PGHGVQLPSG RLLVPAYTYR VDRRECFGKI CRTSPHSFAF YSDDHGRTWR CGGLVPNLRS GECQLAAVDG GQAGSFLYCN


       250        260        270        280        290        300        310        320


ARSPLGSRVQ ALSTDEGTSF LPAERVASLP ETAWGCQGSI VGFPAPAPNR PRDDSWSVGP GSPLQPPLLG PGVHEPPEEA


       330        340        350        360        370        380        390        400


AVDPRGGQVP GGPFSRLQPR GDGPRQPGPR PGVSGDVGSW TLALPMPFAA PPQSPTWLLY SHPVGRRARL HMGIRLSQSP


       410        420        430        440        450        460        470        480


LDPRSWTEPW VIYEGPSGYS DLASIGPAPE GGLVFACLYE SGARTSYDEI SFCTFSLREV LENVPASPKP PNLGDKPRGC





CPWS





SEQ ID NO: 7


        10         20         30         40         50         60         70         80


MMSSAAFPRW LSMGVPRTPS RTVLFERERT GLTYRVPSLL PVPPGPTLLA FVEQRLSPDD SHAHRLVLRR GTLAGGSVRW


        90        100        110        120        130        140        150        160


GALHVLGTAA LAEHRSMNPC PVHDAGTGTV FLFFIAVLGH TPEAVQIATG RNAARLCCVA SRDAGLSWGS ARDLTEEAIG


       170        180        190        200        210        220        230        240


GAVQDWATFA VGPGHGVQLP SGRLLVPAYT YRVDRRECFG KICRTSPHSF AFYSDDHGRT WRCGGLVPNL RSGECQLAAV


       250        260        270        280        290        300        310        320


DGGQAGSFLY CNARSPLGSR VQALSTDEGT SFLPAERVAS LPETAWGCQG SIVGFPAPAP NRPRDDSWSV GPGSPLQPPL


       330        340        350        360        370        380        390        400


LGPGVHEPPE EAAVDPRGGQ VPGGPFSRLQ PRGDGPRQPG PRPGVSGDVG SWTLALPMPF AAPPQSPTWL LYSHPVGRRA


       410        420        430        440        450        460        470        480


RLHMGIRLSQ SPLDPRSWTE PWVIYEGPSG YSDLASIGPA PEGGLVFACL YESGARTSYD EISFCTFSLR EVLENVPASP


       490


KPPNLGDKPR GCCWPS





SEQ ID NO: 8


        10         20         30         40         50         60         70         80


MMSSAAFPRW LQSMGVPRTP SRTVLFERER TGLTYRVPSL LPVPPGPTLL AFVEQRLSPD DSHAHRLVLR RGTLAGGSVR


        90        100        110        120        130        140        150        160


WGALHVLGTA ALAEHRSMNP CPVHDAGTGT VFLFFIAVLG HTPEAVQIAT GRNAARLCCV ASRDAGLSWG SARDLTEEAI


       170        180        190        200        210        220        230        240


GGAVQSWATF AVGPGHGVQL PSGRLLVPAY TYRVDRRECF GKICRTSPHS FAFYSDDHGR TWRCGGLVPN LRSGECQLAA


       250        260        270        280        290        300        310        320


VDGGQAGSFL YCNARSPLGS RVQALSTDEG TSFLPAERVA SLPETAWGCQ GSIVGFPAPA PNRPRDDSWS VGPGSPLQPP


       330        340        350        360        370        380        390        400


LLGPGVHEPP EEAAVDPRGG QVPGGPFSRL QPRGDGPRQP GPRPGVSGDV GSWTLALPMP FAAPPQSPTW LLYSHPVGRR


       410        420        430        440        450        460        470        480


ARLHMGIRLS QSPLDPRSWT EPWVIYEGPS GYSDLASIGP APEGGLVFAC LYESGARTSY DEISFCTFSL REVLENVPAS


       490


PKPPNLGDKP RGCCWPS





SEQ ID NO: 9


        10         20         30         40         50         60         70         80


MTSHSPFSRR RLPALLGSLP LAATGLIAAA PPAHAVPTSD GLADVTITQV NAPADGLYSV GDVMTFNITL TNTSGEAHSY


        90        100        110        120        130        140        150        160


APASTNLSGN VSKCRWRNVP AGTTKTDCTG LATHTVTAED LKAGGFTPQI AYEVKAVEYA GKALSTPETI KGATSPVKAN


       170        180        190        200        210        220        230        240


SLRVESITPS SSQENYKLGD TVSYTVRVRS VSDKTINVAA TESSFDDLGR QCHWGGLKPG KGAVYNCKPL THTITQADVD


       250        260        270        280        290        300        310        320


AGRWTPSITL TATGTDGATL QTLTATGNPI NVVGDHPQAT PAPAPDASTE LPASMSQAQH LAANTATDNY RIPAIPPPPM


       330        340        350        360        370        380        390        400


GTCSSPTTSA RRTTATAAAT TPNPNHIVQR RSTDGGKTWS APTYIHQGTE TGKKVYGSDP SYVVDHQTGT IFNFHVKSYD 


       410        420        430        440        450        460        470        480


QGWGGSRGGT DPENRGIIQA EVSTSTDNGW TWTHRTITAD ITKDKPWTAR FAASGQGIQI QHGPHAGRLV QQYTIRTAGG


       490        500        510        520        530        540        550        560


PVQAVSVYSD DHGKTWQAGT PIGTGMDENK VVELSDGSLM LNSRASDGSG FRKVAHSTDG GQTWSEPVSD KNLPDSVDNA


       570        580        590        600        610        620        630        640


QIIRAFPNAA PDDPRAKVLL LSHSPNPRPW CRDRGTISMS CDDGASWTTS KVFHEPFVGY TTIAVQSDGS IGLLSEDAHN


       650        660        670        680        690        700        710        720


GADYGGIWYR NFTMNWLGEQ CGQKPAEPSP GRRRRRHPQR HRRRSRPRRP RRALSPRRHR HHPPRPSRAL RPSRAGPGAG


       730        740        750        760        770        780        790        800


AHDRSEHGAH TGSCAQSAPE QTDGPTAAPA PETSSAPAAE PTQAPTVAPS VEPTQAPGAQ PSSAPKPGAT GRAPSVVNPK


       810        820        830        840        850        860        870        880


ATGAATEPGT PSSSASPAPS RNAAPTPKPG MEPDEIDRPS DGTMAQPTGA PARRVPRRRR RRRPAAGCLA RDQRAADPGP


       890        900        910


CGCRGCRRVP AAAGSPFEEL NTRRAGHPAL STD





SEQ ID NO: 10


        10         20         30         40         50         60         70         80


MTTTKSSALR RLSALAGSLA LAVTGIIAAA PPAHATPTSD GLADVTITQT HAPADGIYAV GDVMTFDITL TNTSGQARSF


        90        100        110        120        130        140        150        160


APASTNLSGN VLKCRWSNVA AGATKTDCTG LATHTVTAED LKAGGFTPQI AYEVKAVGYK GEALNKPEPV TGPTSQIKPA


       170        180        190        200        210        220        230        240


SLKVESFTLA SPKETYTVGD VVSYTVRIRS LSDQTINVAA TDSSFDDLAR QCHWGNLKPG QGAVYNCKPL THTITQADAD


       250        260        270        280        290        300        310        320


HGTWTPSITL AATGTDGAAL QTLAATGEPL SVVVERPKAD PAPAPDASTE LPASMSDAQH LAENTATDNY RIPAITTAPN


       330        340        350        360        370        380        390        400


GDLLVSYDER PRDNGNNGGD SPNPNHIVQR RSTDGGKTWS APSYIHQGVE TGRKVGYSDP SYVVDNQTGT IFNFHVKSFD


       410        420        430        440        450        460        470        480


QGWGHSQAGT DPEDRSVIQA EVSTSTDNGW SWTHRTITAD ITRDNPWTAR FAASGQGIQI HQGPHAGRLV QQYTIRTADG


       490        500        510        520        530        540        550        560


VVQAVSVYSD DHGQTWQAGT PTGTGMDENK VVELSDGSLM LNSRASDGTG FRKVATSTDG GQTWSEPVPD KNLPDSVDNA


       570        580        590        600        610        620        630        640


QIIRPFPNAA PSDPRAKVLL LSHSPNPRPW SRDRGTISMS CDNGASWVTG RVFNEKFVGY TTIAVQSDGS IGLLSEDGNY


       650        660        670        680        690        700        710        720


GGIWYRNFTM GWVGDQCSQP RPEPSPSPTP SAAPSAEPTS EPTTAPAPEP TTAPSSEPSV SPEPSSSAIP APSQSSSATS


       730        740        750        760        770        780        790


GPSTEPDEID RPSDGAMAQP TGGAGRPSTS VTGATSRNGL SRTGTNALLV LGVAAAAAAG GYLVLRIRRA RTE





SEQ ID NO: 11


        10         20         30         40         50         60         70         80


MNYKSLDRKQ RYGIRKFAVG AASVVIGTVV FGANPVLAQE QANAAGNATE TVEPGQGLSE LPKEASSGDL AHLDKDLAGK


        90        100        110        120        130        140        150        160


LAAAQDNGVE VDQDHLKKNE SAESETPSST ETPAEEANKE EESEDQGAIP RDYYSRDLKN ANPVLEKEDV ETNAANGQRV


       170        180        190        200        210        220        230        240


DLSNELDKLK QLKNATVHME FKPDASAPRF YNLFSVSSDT KENEYFTMSV LDNTALIEGR GANGEQFYDK YTDAPLKVRP


       250        260        270        280        290        300        310        320


GQWNSVTFTV EQPTTELPHG RVRLYVNGVL SRTSLKSGNF IKDMPDVNQA QLGATKRGNK TVWASNLQVR NLTVYDRALS


       330        340        350        360        370        380        390        400


PDEVQTRSQL FERGELEQKL PEGAKVTEKE DVFEGGRNNQ PNKDGIDSYR IPALLKTDKG TLIAGTDERR LHHSDWGDIG


       410        420        430        440        450        460        470        480


MVVRRSSDNG KTWGDRIVIS NPRDNEHAKH ADWPSPVNID MALVQDPETK RIFAIYDMFL ESKAVFSLPG QAPKAYEQVG


       490        500        510        520        530        540        550        560


DKVYQVLYKQ GESGRYTIRE NGEVFDPQNR KTDYRVVVDP KKPAYSDKGD LYKGNELIGN IYFEYSEKNI FRVSNTNYLW


       570        580        590        600        610        620        630        640


MSYSDDDGKT WSAPKDITHG IRKDWMHFLG TGPGTGIALR TGPHKGRLVI PVYTTNNVSY LSGSQSSRVI YSDDHGETWQ


       650        660        670        680        690        700        710        720


AGEAVNDNRP VGNQTIHSST MNNPGAQNTE STVVQLNNGD LKLFMRGLTG DLQVATSHDG GATWDKEIKR YPQVKDVYVQ


       730        740        750        760        770        780        790        800


MSAIHTMHEG KEYILLSNAG GPGRNNGLVH LARVEENGEL GKFAYNSLQE LGNGEYGLLY EHADGNQNDY EHADGNQNDY


       810        820        830        840        850        860        870        880


TLSYKKFNWD FLSRDRISPK EAKVKYAIQK WPGIIAMEFD SEVLVNKAPT LQLANGKTAT FMTQYDTKTL LFTIDPEDMG


       890        900        910        920        930        940        950        960


QRITGLAEGA IESMHNLPVS LAGSKLSDGI NGSEAAIHEV PEFTGGVNAE EAAVAEIPEY TGPLATVGEE VAPTVEKPEF


       970        980        990       1000       1010       1020       1030       1040


TGGVNAEEAP VAEMPEYTGP LSTVGEEVAP TVEKPEFTGG VNAVEAAVHE LPEFKGGVNA VLAASNELPE YRGGANFVLA


      1050       1060       1070       1080       1090       1100       1110       1120


ASNDLPEYIG GVNGAEAAVH ELPEYKGDTN LVLAAADNKL SLGQDVTYQA PAAKQAGLPN TGSKETHSLI SLGLAGVLLS


      1130


LFAFGKKRKE





SEQ ID NO: 12


        10         20         30         40         50         60         70         80


MSDLKKYEGV IPAFYACYDD QGEVSPERTR ALVQYFIDKG VQGLYVNGSS GECIYQSVED RKLILEEVMA VAKGKLTIIA


        90        100        110        120        130        140        150        160


HVACNNTKDS MELARHAESL GVDAIATIPP IYFRLPEYSV AKYWNDISAA APNTDYVIYN IPQLAGVALT PSLYTEMLKN


       170        180        190        200        210        220        230        240


PRVIGVKNSS MPVQDIQTFV SLGGEDHIVF NGPDEQFLGG RLMGAKAGIG GTYGAMPELF LKLNQLIAEK DLETARELQY


       250        260        270        280        290        300


AINAIIGKLT SAHGNMYGVI KEVLKINEGL NIGSVRSPLT PVTEEDRPVV EAAAQLIRET KERFL





SEQ ID NO: 13


        10         20         30         40         50         60         70         80


MNQRHFDRKQ RYGIRKFTVG AASVVIGAVV FGVAPALAQE APSTNGETAG QSLPELPKEV ETGNLTNLDK ELADKLSTAT


        90        100        110        120        130        140        150        160


DKGTEVNREE LQANPGSEKA AETEASNETP ATESEDEKED GNIPRDFYAR ELENVNTVVE KEDVETNPSN GQRVDMKEEL


       170        180        190        200        210        220        230        240


DKLKKLQNAT IHMEFKPDAS APRFYNLFSV SSDTKVNEYF TMAILDNTAI VEGRDANGNQ FYGDYKTAPL KIKPGEWNSV


       250        260        270        280        290        300        310        320


TFTVERPNAD QPKGQVRVYV NGVLSRTSPQ SGRFIKDMPD VNQVQIGTTK RTGKNFWGSN LKVRNLTVYD RALSPEEVKK


       330        340        350        360        370        380        390        400


RSQLFERGEL EKKLPEGAKV TDKLDVFQGG ENRKPNKDGI ASYRIPALLK TDKGTLIAGA DERRLHHSDW GDIGMVVRRS


       410        420        430        440        450        460        470        480


DDKGKTWGDR IVISNPRDNE NARRAHAGSP VNIDMALVQD PKTKRIFSIF DMFVEGEAVR DLPGAKPQAY EQIGNKVYQV


       490        500        510        520        530        540        550        560


KYKKGEAGHY TIRENGEVFD PENRKTEYRV VVDPKKPAYS DKGDLYKGEE LIGNVYFDYS DKNIFRVSNT NYLWMSYSDD


       570        580        590        600        610        620        630        640


DGKTWSAPKD ITYGIRKDWM HFLGTGPGTG IALHSGPHKG RLVIPAYTTN NVSYLGGSQS SRVIYSDDHG ETWHAGEAVN


       650        660        670        680        690        700        710        720


DNRPIGNQTI HSSTMNNPGA QNTESTVVQL NNGDLKLFMR GLTGDLQVAT SKDGGATWEK DVKRYADVKD VYVQMSAIHT


       730        740        750        760        770        780        790        800


VQEGKEYIIL SNAGGPGRYN GLVHVARVEA NGDLTWIKHN PIQSGKFAYN SLQDLGNGEF GLLYEHATAT QNEYTLSYKK


       810        820        830        840        850        860        870        880


FNWDFLSKDG VAPTKATVKN AVEMSKNVIA LEFDSEVLVN QPPVLKLANG NFATFLTQYD SKTLLFAASK EDIGQEITEI


       890        900        910        920        930        940        950        960


IDGAIESMHN LPVSLEGAGV PGGKNGAKAA IHEVPEFTGA VNGEGTVHED PAFEGGINGE EAAVHDVPDF SGGVNGEVAA


       970        980        990       1000       1010       1020       1030       1040


IHEVPEFTGG INGEEAAKLE LPSYEGGANA VEAAKSELPS YEGGANAVEA AKLELPSYES GAHEVQPASS LNPTLADSVN


      1050       1060       1070       1080       1090       1100       1110








SEQ ID NO: 14


        10         20         30         40         50         60         70         80


MNQSSLNRKN RYGIRKFTIG VASVAIGSVL FGITPALAQE TTTNIDVSKV ETSLESGAPV SEPVTEVVSG DLNHLDKDLA


        90        100        110        120        130        140        150        160


DKLALATNQG VDVNKHNLKE ETSKPEGNSE HLPVESNTGS EESIEHHPAK IEGADDAVVP PRDFFARELT NVKTVFERED


       170        180        190        200        210        220        230        240


LATNTGNGQR VDLAEELDQL KQLQNATIHN EFKPDANAPQ FYNLFSVSSD KKKDEYFSMS VNKGTAMVEA RGADGSHFYG


       250        260        270        280        290        300        310        320


SYSDAPLKIK PGQWNSVTFT VERPKADQPN GQVRLYVNGV LSRTNTKSGR FIKDMPDVNK VQIGATRRAN QTMWGSNLQI


       330        340        350        360        370        380        390        400


RNLTVYNRAL TIEEVKKRSH LFERNDLEKK LPEGAEVTEK KDIFESGRNN QPNGEGINSY RIPALLKTDK GTLIAGGDER


       410        420        430        440        450        460        470        480


RLHHFDYGDI GMVIRRSQDN GKTWGDKLTI SNLRDNPEAT DKTATSPLNI DMVLVQDPTT KRIFSIYDMF PETRAVFGMP


       490        500        510        520        530        540        550        560


NQPEKAYEEI GDKTYQVLYK QGETERYTLRDNGEIFNSQN KKTEYRVVVN PTEAGFRDKG DLYKNQEILIG NIYFKQSDKN


       570        580        590        600        610        620        630        640


PFRVANTSYL WMSYSDDDGK TWSAPKDITP GIRQDWMKFL GTGPGTGIVL RTGAHKGRIL VPAYTTNNIS HLGGSQSSRL


       650        660        670        680        690        700        710        720


IYSDDHGQTW HAGESPNDNR PVGNSVIHSSNMNKSSAQNT IESTVLQLNNG DVKLFMRGLT GDLQVATSKD GGVTWEKTIK


       730        740        750        760        770        780        790        800


RYPEVKDAYV QMSAIHTMHD GKEYILLSNA AGPGRERKNG LVHLARVEEN GELTWLHNNP IQNGEFAYNS LQELGGGEYG


       810        820        830        840        850        860        870        880


LLYEHRENGQ NYYTLSYKKF NWDFVSDKLI SPTEAKVSQA YEMGKGVFGL EFDSEVLVNR APILRLANGR TAVFMTQYDS


       890        900        910        920        930        940        950        960


KTLLFAVDKK DIGQEITGIV DGSIESMHNL TVNLAGAGIP GGMNAAESVE HYTEEYTGVL GTSGVEGVPT ISVPEYEGGV


       970        980        990       1000       1010       1020       1030       1040


NSELALVSEK EDYRGGVNSA SSVVTEVLEY TGPLSTVGSE DAPTVSVLEY EGGVNIDSPE VTEAPEYKEP IGTSGYELAP


      1050       1060       1070       1080       1090       1100       1110       1120


TVDKPAYTGT IEPLEKEENS GAIIEEGNVS YITENNNKPL ENNNVTTSSI ISESSKLKHT LKNATGSVQI HASEEVLKNV


      1130       1140       1150       1160       1170       1180       1190       1200


KDVKIQEVKV SSLSSLNYKA YDIQLNDASG KAVQPKGTVI VTFAAEQSVE NVYYVDSKGN LHTLEFLQKD GEVTFETNHF


      1210       1220       1230       1240       1250       1260       1270       1280


SIYAMTFQLS LDNVVLDNHR EDKNGEVNSA SPKLLSINGH SQSSQLENKV SNNEQSKLPN TGEDKSISTV LLGFVGVILG


      1290


AMIFYRRKDS EG





SEQ ID NO: 15


        10         20         30         40         50         60         70         80


MDKKKIILTS LASVAVLGAA LAASQPSLVK AEEQPTASQP AGETGTKSEV TSPEIKQAEA DAKAAEAKVT EAQAKVDTTT


        90        100        110        120        130        140        150        160


PVADEAAKKL ETEKKEADEA DAAKTKAEEA KKTADDELAA AKEKAAEADA KAKEEAKKEE DAKKEEADSK EALTEALKQL


       170        180        190        200        210        220        230        240


PDNELLDKKA KEDLLKAVEA GDLKASDILA ELADDDKKAE ANKETEKKLR NKDQANEANV ATTPAEEAKS KDQLPADIKA


       250        260        270        280        290        300        310        320


GIDKAEKADA ARPASEKLQD KADDLGENVD ELKKEADALK AEEDKKAETL KKQEDTLXEA KEALKSAKDN GFGEDITAPL


       330        340        350        360        370        380        390        400


EKAVTAIEKE RDAAQNAFDQ AASDTKAVAD ELNKLTDEYN KTLEEVKAAK EKEANEPAKP VEEEPAKPAE KTEAEKAAEA


       410        420        430        440        450        460        470        480


KTEADAKVAE LQKKADEAKT KADEATAKAT KEAEDVKAAE KAKEEADKAK TDAEAELAKA KEEAEKAKAK VEELKKEEKD


       490        500        510        520        530        540        550        560


NLEALKAALD QLEKDIDADA TITNKEEAKK ALGKEDILAA VEKGDLTAGD VLKELENQNA TAEATKDQDP QADEIGATKQ


       570        580        590        600        610        620        630        640


EGKPLSELPA ADKEKLDAAY NKEASKPIVK KLQDIADDLV EKIEKLTKVA DKDKADATEK AKAVEEKNAA LKKQKETLDK


       650        660        670        680        690        700        710        720


AKAALETAKK NQADQAIDQG LQDAVTKLEA SFASAKTAAD EAQAKFDEVN EVVKAYKAAI DELTDDYNAT LGHIENLKEV


       730        740        750        760        770        780        790        800


PKGEEPKDFS GGVNDDEAPS STPNTNEFTG GANADAPATA PNANEFAGGV NDEEAPTTEN KEPFNGGVND EEAPTVPNKP


       810        820        830        840        850        860        870        880


EGEAPKPTGE NAKDAPVVKL PEFGANNPEI KKILDEIAKV KEQIKDGEEN GSEDYYVEGL KERLADLEEA FDTLSKNLPA


       890        900        910        920        930        940        950        960


VNKVPEYTGP VTPENGQTQP AVNTPGGQQG GSSQQTPAVQ QGGSGQQAPA VQQGGSNQQV PAVQQTNTPA VAGTSQDNTY


       970        980        990       1000


QAPAAKEEDK KELPNTGGQE SAALASVGFL GLLLGALPFV





SEQ ID NO: 16


        10         20         30         40         50         60         70         80


MKYRDFDRKR RYGIRKFAVG AASVVIGTVV FGANPVLAQE QANAAGANTE TVEPGQGSLE LPKEASSGDL AHLDKDLAGK


        90        100        110        120        130        140        150        160


LAAAQDNGVE VDQDHLKKNE SAESETPSST ETPAEGTNKE EESEDQGAIP RDYYSRDLKN ANPVLEKEDV ETNAANGQRV


       170        180        190        200        210        220        230        240


DLSNELDKLK QLKNATVHME FKPDASAPRF YNLFSVSSDT KENEYFTISV LDNTALIEGR GANGEQFYDK YTDAPLKVRP


       250        260        270        280        290        300        310        320


GQWNSVFTFV EQPTTELPHG RVRLYVNGVL SRTSLKSGNF IKDMPDVNQA QLGATKRGNK TVWASNLQVR NLTVYDRALS


       330        340        350        360        370        380        390        400


PDEVQTRSQL FERGELEQKL PEGAKVTEKE DVFEGGRNNQ PNKDGIKSRY IPALLKTDKG TLIAGTDERR LHHSDWGDID


       410        420        430        440        450        460        470        480


MVVRRSSDNG KTWGDRIVIS NPRDNEHAKH ADWPSPVNID MALVQDPETK RIFAIYDMFL ESKAVFSLPG QAPKAYEQVG


       490        500        510        520        530        540        550        560


DKVYQVLYKQ GESGRYTIRE NGEVFDPQNR KTDYRVVVDP KKPAYDDKGD LYKGNELIGN IYFEYSEKNI FRVSNTNYLW


       570        580        590        600        610        620        630        640


MSYSDDDGKT WSAPKDITHG IRKDWMHFLG TGPGTGIALR TGPHKGRLVI PVYTTNNVSY LSGSQSSRVI YSDDHGETWQ


       650        660        670        680        690        700        710        720


AGEAVNDNRP VGNQTIHSST NMMPGAQNTE STVVQLNNGD LKLFMRGLTG DLQVATSHDG GATWDKEIKR YPQVKDVYVQ


       730        740        750        760        770        780        790        800


MSAIHTMHEG KEYILLSNAG GPGRNNGLVH LARVEENGEL TWLKHNPIQS GKFAYNSLQD LGNGEYGLLY EHADGNQNDY


       810        820        830        840        850        860        870        880


TLSYKKFNWD FLTKDWISPK EAKVKYAIEK WPGILAMEFD SEVLVNKAPT LQLANGKTAR FMTQYDTKTL LFTVDSEDMG


       890        900        910        920        930        940        950        960


QKVTGLAEGA IESMHNLPVS VAGTKLSNGM NGSEAAVHEV PEYTGPLGTA GEEPAPTVEK PEFTGGVNGE EAAVHEVPEY


       970        980        990       1000       1010       1020       1030       1040


TGPLGTSGEE PAPTVEKPEF TGGVNAVEAA AHEVPEYTGP LGTSGKEPAP TVEKPEYTGG VNAVEAAVHE VEPYTGPLAT


      1050       1060       1070       1080       1090       1100       1110       1120


VGEEAAPKVD KPEFTGGVNA VEAAVHELPE YTGGVNAADA AVHEIAEYKG ADSLVTLAAE DYTYKAPLAQ QTLPDTGNKE


      1130       1140


SSLLASLGLT AFFLGLFAMG KKREK





SEQ ID NO: 17


        10         20         30         40         50         60         70         80


MEKIWREKSC RYSIRKLTVG TASVLLGAVF LASHTVSADT IKVKQNESTL EKTTAKTDTV TKTTESTEHT QPSEAIDHSK


        90        100        110        120        130        140        150        160


QVLANNSSSE SKPTEAKVAS ATTNQASTEA IVKPNENKET EKQELPVTEQ SNYQLNYDRP TAPSYDGWEK QALPVGNGEM


       170        180        190        200        210        220        230        240


GAKVFGLIGE ERIQYNEKTL WSGGPRPDST DYNGGNYRER YKILAEIRKA LEDGDRQKAK RLAEQNLVGP NNAQYGRYLA


       250        260        270        280        290        300        310        320


FGDIFMVFNN QKKGLDTVTD YHRGLDITEA TTTTSYTQDG TTFKRETFSS YPDDVTVTHL TQKGDKKLDF TVWNSLTEDL


       330        340        350        360        370        380        390        400


LANGDYSAEY SNYKSGHVTT DPNGILLKGT VKDNGLQFAS YLGIKTDGKV TVHEDSLTIT GASYATLLLS AKTNFAQNPK


       410        420        430        440        450        460        470        480


TNYRKDIDLE KTVKGIVEAA QGKYYETLKR NHIKDYQSLF NRVKLNLGGS NIAQTTKEAL QTYNPTKGQK LEELFFQYGR


       490        500        510        520        530        540        550        560


YLLISSSRSR TDALPANLQG VWNAVDNPPW NADYHLNVNL QMNYWPAYMS NLAETAKPMI NYIDDMRYYG RIAAKEYAGI


       570        580        590        600        610        620        630        640


ESKDGQENGW LVHTQATPFG WTTPGWNYYW GWSPAANAWM MQNVYDYYKF TKDETYLKEK IYPMLKETAK FWNSFLHYDQ


       650        660        670        680        690        700        710        720


ASDRWVSSPS YSPEHGTITI GNTFDQSLVW QLFHDYMEVA NHLNVDKDLV TEVKAKFDKL KPLHINKEGT IKEWYEEDSP


       730        740        750        760        770        780        790        800


QFTNEGIENN HRHVSHLVGL FPGTLFSKDQ AEYLEAARAT LNHRGDGGTG WSKANKINLW ARLLDGNRAH RLLAEQLKYS


       810        820        830        840        850        860        870        880


TLENLWDTHA PFQIDGNFGA TSGIAEMLLQ SHTGYIAPLP ALPDAWKDGQ VSGLVARGNF EVSMQWKDKN LQSLSFLSNV


       890        900        910        920        930        940        950        960


GGDLVVDYPN IEASQVKVNG KPVKATVLKD GRIQLATQKG DVITFEHFSG RVTSLTAVRQ NGVTAELTFN QVEGATHYVI


       970        980        990       1000       1010       1020       1030       1040


QRQVKDESGQ TSATREFVTN QTHFIDRSLD PQLAYTYTVK AMLGNVSTQV SEKANVETYN QLMDDRDSRI QYGSAFGNWA


      1050       1060       1070       1080       1090       1100       1110       1120


DSELFGGTEK FADLSLGNYT DKDATATIPF NGVGIEYIGL KSSQLGIAEV KIDGKSVGEL DFYTAGATEK GSLIGRFTGL


      1130       1140       1150       1160       1170       1180       1190       1200     


SDGAHVMTIT VKQEHKHRGS ERSKISLDYF KVLPGQGTTI EKMDDRDSRI QYGSQFKDWS DTELYKSTEK YADINNSDPS


      1210       1220       1230       1240       1250       1260       1270       1280


TASEAQATIP FTGTGIRIYG LKTSALGKAL VTLDGKEMPS LDFYTAGATQ KATLIGEFTN LTDGNHILTL KVDPNSPAGR


      1290       1300       1310       1320       1330       1340       1350       1360


KKISLDSFDV IKSPAVSLDS PSIAPLKKGD KNISLTLPAG DWEAIAVTFP GIKDPLVLRR IDDNHLVTTG DQTVLSIQDN


      1370       1380       1390       1400       1410       1420       1430       1440


QVQIPIPDET NRKIGNAIEA YSIQGNTTSS PVVAVFTKKD EKKVENQQPT TSKGDDPAPI VEIPEYTKPI GTAGLEQPPT


      1450       1460       1470       1480       1490       1500       1510       1520


VSIPEYTQPI GTAGLEQAPT VSIPEYTKPV GTAGIEQAPT VSIPEYTKPI GTAGLEQAPT VSIPEYTQPI GTAGLEQPPT


      1530       1540       1550       1560       1570       1580       1590       1600


VSIPEYTKSI GTAGLEQPPV VNVPEYTQPI GTAGIEQPPT VSIPEYTKPI GTAGQEQALT VSIPEYTKPI GTAGQEQAPT


      1610       1620       1630       1640       1650       1660       1670       1680


VSVPEYKLRV LKDERTGVEI IGGATDLEGI SHISSRRVLA QELFGKTYDA YDLHLKNSTD QSLQPKGSVL VRLPISSAVE


      1690       1700       1710       1720       1730       1740       1750       1760


NVYYLTPSKE LQALDFTIRE GMAEFTTSHF STYAVVYQAN GASTTAEQKP SETDIKPLAN SSEQVSSSPD LVQSTNDSPK


      1770       1780       1790


EQLPATGETS NPLLFLSGLS LVLTATFLLK SKKDESN





SEQ ID NO: 18


        10         20         30         40         50         60         70         80


MKQYFLEKGR IFSIRKLTVG VASVAVGLTF FASGNVAASE LVTEPKLEVD GQSKEVADVK HEKEEAVKEE AVKEEVTEKT


        90        100        110        120        130        140        150        160


ELTAEKATEE AKTAEVAGDV LPEEIPDRAY PDTPVKKVDT AAIVSEQESP QVETKSILKP TAVAPTEGEK ENRAVINGGQ


       170        180        190        200        210        220        230        240


DLKRINYEGQ PATSAAMVYT IFSSPLAGGG SRRYLNSGSG IFVAPNIMLT VAHNFLVKDA DTNAGSIRGG DTTKFYYNVG


       250        260        270        280        290        300        310        320


SNTAKNNSLP TSGNTVLFKE KDIHFWNKEK FGEGIKNDLA LVVAPVPLSI ASPNKAATFT PLAEHREYKA GEPVSTIGYP


       330        340        350        360        370        380        390        400


TDSTSPELKE PIVPGQLYKA DGVVKGTEKL DDKGAVGITY RLTSVSGLSG GGIINGDGKV IGIHQHGTVD NMNIAEKDRF


       410        420        430        440        450        460        470        480


GGGLVLSPEQ LAWVKEIIDK YGVKGWYQGD NGNRYYFTPE GEMIRNKTAV IGKNKYSFDQ NGIATLLEGV DYGRVVVEHL


       490        500        510        520        530        540        550        560


DQKDNPVKEN DTFVEKTEVG TQFDYNYKTE IEKTDFYKKN KEKYEIVSID GKAVNKQLKD TWGEDYSVVS KAPAGTRVIK


       570        580        590        600        610        620        630        640


VVYKVNKGSF DLRYRLKGTD QELAPATVDN NDGKEYEVSF VHRFQAKEIT GYRAVNASQE ATIQHKGVNQ VIFEYEKIED


       650        660        670        680        690        700        710        720


PKPATPATPV VDPKDEETEI GNYGPLPSKA QLDYHKEELA AFIHYGMNTY TNSEWGNGRE NPQNFNPTNL DTDQWIKTLK


       730        740        750        760        770        780        790        800


DAGFKRTIMV VKHHDGFVIY PSQYTKHTVA ASPWKDGKGD LLEEISKSAT KYDMNMGVYL SPWDANNPKY HVSTEKEYNE


       810        820        830        840        850        860        870        880


YYLNQLEKIL GNPKYGNKGK FIEVWMDGAR GSGAQKVTYT FDEWFKYIKK AEGDIAIFSA QPTSVRWIGN ERGIAGDPVW


       890        900        910        920        930        940        950        960


HKVKKAKITD DVKNEYLNHG DPEGDMYSVG EADVSIRSGW FYHDNQQPKS IKDLMDIYFK SVGRGTPLLL NIPPNKEGKF


       970        980        990       1000       1010       1020       1030       1040


ADADVARLKE FRATLDQMYA TDFAKGATVT ASSTRKNHLY QASNLTDGKD DTSWALSNDA KTGEFTVDLG QKRRFDVVEL


      1050       1060       1070       1080       1090       1100       1110       1120


KEDIAKGQRI SGFKVEVELN GRWVPYGEGS TVGYRRLVQG QPVEAQKIRV TITNSQATPI LTNFSVYKTP SSIEKTDGYP


      1130       1140       1150       1160       1170       1180       1190       1200     


LGLDYHSNTT ADKANTTWYD ESEGIRGTSM WTNKKDASVT YRFNGTKAYV VSTVDPNHGE MSVYVDGQKV ADVQTNNAAR


      1210       1220       1230       1240       1250       1260       1270       1280


KRSQMVYETD DLAPGEHTIK LVNKTGKAIA TEGIYTLNNA GKGMFELKET TYEVQKGQPV TVTIKRVGGS KGAATVHVVT


      1290       1300       1310       1320       1330       1340       1350       1360


EPGTGVHGKV YKDTTADLTF QDGETEKTLT IPTIDFTEQA DSIFDFKVKM TSASDNALLG FASEATVRVM KADLLQKDQV


      1370       1380       1390       1400       1410       1420       1430       1440


SHDDQASQLD YSPGWHHETN SAGKYQNTES WASFGRLNEE QKKNASVTAY FYGTGLEIKG FVDPGHGIYK VTLDGKELEY


      1450       1460       1470       1480       1490       1500       1510       1520


QDGQGNATDV NGKKYFSGTA TTRQGDQTLV RLTGLEEGWH AVTLQLDPRK NDTSRNIGIQ VDKFITRGED SALYTKEELV


      1530       1540       1550       1560       1570       1580       1590       1600


QAMKNWKDEL AKFDQTSLKN TEPARQAFKS NLDKLSEQLS ASPANAQEIL KIATALQAIL DKEENYGKED TPTSEQPEEP


      1610       1620       1630       1640       1650       1660       1670       1680


NYDKAMASLS EAIQNKSKEL SSDKEAKKKL VELSEQALTA IQEAKTQDAV DKALQAALTS INQLQATPKE EVKPSQPEEP


      1690       1700       1710       1720       1730       1740       1750       1760


NYDKAMASLA EAIQNKSKEL GSDKESKKKL VELSEQALTA IQEAKTQDAV DKALQAALTS INQLQATPKE EAKPSQPEEP


      1770       1780       1790       1800       1810       1820       1830       1840


NYDKAMASLA EAIQNKSKEL GSDKEAKKKL VELSEQALTA IQEAKTQDAV DKALQAALTS INQLQATPKE EVKHSIVPTD


      1850       1860       1870       1880       1890       1900       1910       1920


GDKELVQPQP SLEVVEKVIN FKKVKQEDSS LPKGETRVTQ VGRAGKERIL TEVAPDGSRT IKLREVVEVA QDEIVLVGTK


      1930       1940       1950       1960       1970       1980       1990       2000  


KEESGKIASS VHEVPEFTGG VIDSEATIHN LPEFTGGVTD SEAAIHNLPE FTGGVTDSEA AIHNLPEFTG GMTDSEAAIH


      2010       2020       2030       2040       2050       2060       2070       2080


NLPEFTGGMT DSEGVAHGVS NVEEGVPSGE ATSHQESGFT SDVTDSETTM NEIVYKNDEK SYVVPPMLED KTYQAPANRQ


      2090       2100       2110


EVLPKTGSED GSAFASVGII GMFLGMIGIV KRKKD





SEQ ID NO: 19


        10         20         30         40         50         60         70         80


MSGLKKYEGV IPAFYACYDD AGEVSPERTR ALVQYFIDKG VQGLYVNGSS GECIYQSVED RKLILEEVMA VAKGKLTIIA


        90        100        110        120        130        140        150        160


HVACNNTKDS IELARHAESL GVDAIATIPP IYFRLPEYSV AKYWNDISAA APNTDYVIYN IPQLAGVALT PSLYTEMLKN


       170        180        190        200        210        220        230        240


PRVIGVKNSS MPVQDIQTFV SLGGDDHIVF NGPDEQFLGG RLMGAKAGIG GTYGAMPELF LKLNQLIADK DLETARELQY


       250        260        270        280        290        300


AINAIIGKLT AAHGNMYCVI KEVLKINEGL NIGSVRSPLT PVTEEDRPVV EAAAQILIRES KERFL





SEQ ID NO: 20


        10         20         30         40         50         60         70         80


MANNTLLAKT RRYVCLVVFC CLMAMMHLSG QEVTMWGDSH GVAPNQVRRT LVKVALSESL PPGAKQIRIG FSLPKETEEK


        90        100        110        120        130        140        150        160


VTALYLLVSD SLAVRDLPDY KGRVSYDSFP ISKEDRTTAL SADSVAGRCF FYLAADIGPV ASFSRSDTLT ARVEELAVDG


       170        180        190        200        210        220        230        240


RPLPLKELSP ASRRLYREYE ALFVPGDGGS RNYRIPSILK TANGTLIAMA DRRKYNQTDL PEDIDIVMRR STDGGKSWSD


       250        260        270        280        290        300        310        320


PRIIVQGEGR NHGFGDVALV QTQAGKLLMI FVGGVGLWQS TPDRPQRTYI SESRDEGLTW SPPRDITHIF FGKDCADPGR


       330        340        350        360        370        380        390        400


SRWLASFCAS GQGLVLPSGR VMFVAAIRES GQEYVLNNYV LYSDDEGGTW QLSDCAYHRG DEAKLSLMPD GRVLMSVRNQ


       410        420        430        440        450        460        470        480


GRQESRQRFF ALSSDDGLTW ERAKQFEGIH DPGCNGAMLQ VKRNGRNQML HSLPLGPDGR RDGAVYLFDH VSGRWSAPVV


       490        500        510        520


VNSGSSAYSD MTLLADGTIG YFVEEDDEIS LVFIRFVLDD LFDARQ





SEQ ID NO: 21


        10         20         30         40         50         60         70         80


MTKKSSISRR SFLKSTALAG AAGMVGTGGA ATLLTSCGGG ASSNENANAA NKPLKEPGTY YVPELPDMAA DGKELKAGII


        90        100        110        120        130        140        150        160


GCGGRGSGAA MNFLAAANGV SIVALGDTFQ DRVDSLAQKL KDEKNIDIPA DKRFVGLDAY KQVIDSDVDV VIVATPPNFR


       170        180        190        200        210        220        230        240


PIHFQYAVEK SKHCFLEKPI CVDAVGYRTI MATAKQAQAK NLCVITGTQR HHQRSYIASY QQIMNGIAGE ITGGTVYWNQ


       250        260        270        280        290        300        310        320


SMLWYRERQA GWSDCEWMIR DWVNWKWLSG DHIVEQHVHN IDVFTWFSGL KPVKAVGFGS RQRRITGDQY DNFSIDFTME


       330        340        350        360        370        380        390        400


NGIHLHSMCR QIDGCANNVS EFIQGTKGSW NSTDMGIKDL AGNVIWKYDV EAEKASFKQN DPYTLEHVNW INTIRAGKSI


       410        420        430        440        450        460


DQASETAVSN MAAIMGRESA YTGEETTWEA MTAAALDYTP ADLNLGKMDM KPFVVPVPGK PLEKK





SEQ ID NO: 22


        10         20         30         40         50         60         70         80


MKKFFWIIGL FISMLTTRAA DSVYVQNPQI PILIDRTDNV LFRIRIPDAT KGDVLNRLTI RFGNEDKLSE VKAVRLFYAG


        90        100        110        120        130        140        150        160


TEAGTKGRSR FAPVTYVSSH NIRNTRSANP SYSVRQDEVT TVANTLTLKT RQPMVKGINY FWVSVEMDRN TSLLSKLTPT


       170        180        190        200        210        220        230        240


VTEAVINDKP AVIAGEQAAV RRMGIGVRHA GDDGSASFRI PGLVTTNEGT LLGVYDVRYN NSVDLQEHID VGLSRSTDKG


       250        260        270        280        290        300        310        320


QTWEPMRIAM SFGETDGLPS GQNGVGDPSI LVDERTNTVW VVAAWTHGMG NARAWTNSMP GMTPDETAQL MMVKSTDDGR


       330        340        350        360        370        380        390        400


TWSEPINITS QVKDPSWCFL LQGPGRGITM RDGTLVFPIQ FIDSLRVPHA GIMYSKDRGE TWHISQPART NTTEAQVAEV


       410        420        430        440        450        460        470        480


EPGVLMLNMR DNRGGSRAVS ITRDLGKSWT EHSSNRSALP ESICMASLIS VKAKDNIIGK DLLFFSNPNT TEGRHHITIK


       490        500        510        520        530


ASLDGGVTWL PAHQVLLDEE DGWGYSCLSM IDRETVGIFY ESSVAHMTFQ AVKIKDLIR





SEQ ID NO: 23


        10         20         30         40         50         60         70         80


MTWLLCGRGK WNKVKRMMNS VFKCLMSAVC AVALPAFGQE EKTGFPTDRA VTVFSAGEGN PYASIRIPAL LSIGKGQLLA


        90        100        110        120        130        140        150        160


FAEGRYKNTD QGENDIIMSV SKNGGKTWSR PRAIAKAHGA TFNNPCPVYD AKTRTVTVVF QRYPAGVKER QPNIPDGWDD


       170        180        190        200        210        220        230        240


EKCIRNFMIQ SRNGGSSWTK PQEITKTTKR PSGVDIMASG PNAGTQLKSG AHKGRLVIPM NEGPFGKWVI SCIYSDDGGK


       250        260        270        280        290        300        310        320


SWKLGQPTAN MKGMVNETSI AETDNGGVVM VARHWGAGNC RRIAWSQDGG ETWGQVEDAP ELFCDSTQNS LMTYSLSDQP


       330        340        350        360        370        380        390        400


AYGGKSRILF SGPSAGRRIK GQVAMSYDNG KTWPVKKLLG EGGFAYSSLA MVEPGIVGVL YEENQEHIKK LKFVPITMEW


       410


LTDGEDTGLA PGKKAPVLK





SEQ ID NO: 24


        10         20         30         40         50         60         70         80


MGLGLLCALG LSIPSVLGKE SFEQARRGKF TTLSTKYGLM SCRNGVAEIG GGGKSGEASL RMFGGQDAEL KLDLKDTPSR


        90        100        110        120        130        140        150        160


EVRLSAWAER WTGQAPFEFS IVAIGPNGEK KIYDGKDIRT GGFHTRIEAS VPAGTRSLVF RLTSPENKGM KLDDLFLVPC


       170        180        190        200        210        220        230        240


IPMKVNPQVE MASSAYPVMV RIPCSPVLSL NVRTDGCLNP QFLTAVNLDF TGTTKLSDIE SVAVIRGEEA PIIHHGEEPF


       250        260        270        280        290        300        310        320


PKDSSQVLGT VKLAGSARPQ ISVKGKMELE PGDNYLWACV TMKEGASLDG RVVVRPASVV AGNKPVRVAN AAPVAQRIGV


       330        340        350        360        370        380        390        400


AVVRHGDFKS KFYRIPGLAR SRKGTLLAVY DIRYNHSGDL PANIDVGVSR STDGGRTWSD VKIAIDDSKI SPSLGATRGV


       410        420        430        440        450        460        470        480


GDPAILVDEK TGRIWVAAIW SHRHSIWGSK SGDNSPEACG QLVLAYSDDD GLTWSSPINI TEQTKNKDWR ILFNGPGNGI


       490        500        510        520        530        540        550        560


CMKDGTLVFA AQYWDGKGVP WSTIVYSKDR GKTWHCGTGV NQQTTEAQVI ELEDGSVMIN ARCNWGGSRI VGVTKDLGQT


       570        580        590        600        610        620        630        640


WEKHPTNRTA QLKEPVCQGS LLAVDGVPGA GRVVLFSNPN TTSGRSHMTL KASTNDAGSW PEDKWLLYDA RKGWGYSCLA


       650        660        670


PVDKNHVGVL YESQGALNFL KIPYKDVLNA KNAR





SEQ ID NO: 25


        10         20         30         40         50         60         70         80


MKRNHYLFTL ILLLGCSIFV KASDTVFVHQ TQIPILIERQ DNVLFYFRLD AKESRMMDEI VLDFGKSVNL SDVQAVKLYY


        90        100        110        120        130        140        150        160


GGTEALQDKG KKRFAPVDYI SSHRPGNTLA AIPSYSIKCA EALQPSAKVV LKSHYKLFPG INFFWISLQM KPETSLFTKI


       170        180        190        200        210        220        230        240


SSELQSVKID GKEAICEERS PKDIIHRMAV GVRHAGDDGS ASFRIPGLVT SNKGTLLGVY DVRYNSSVDL QEYVDVGLSR


       250        260        270        280        290        300        310        320


STDGGKTWEK MRLPLSFGEY DGLPAAQNGV GDPSILVDTQ TNTIWVVAAW THGMGNQRAW WSSHPGMDLY QTAQLVMAKS


       330        340        350        360        370        380        390        400


TDDGKTWSKP INITEQVKDP SWYFLLQGPG RGITMSDGTL VFPTQFIDST RVPNAGIMYS KDRGKTWKMH NMARTNTTEA


       410        420        430        440        450        460        470        480


QVVETEPGVL MLNMRDNRGG SRAVIATKDL GKTWTEHPSS RKALQEPVCM ASLIHVEAED NVLDKDILLF SNPNTTRGRN


       490        500        510        520        530        540


HITIKASLDD GLTWPLEHQL MLDEGEGWGY SCLTMIDRET IGILYESSAA HMTFQAVKLK DLIR









While certain embodiments have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A recombinant oncolytic virus comprising a nucleotide sequence encoding a polypeptide comprising a sialidase domain, wherein the nucleotide sequence encoding the sialidase is operably linked to a promoter.
  • 2. The oncolytic virus of claim 1, wherein said oncolytic virus is selected from the group consisting of: vaccinia virus, reovirus, Seneca Valley virus (SVV), vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), herpes simplex virus (HSV), morbillivirus virus, retrovirus, influenza virus, Sinbis virus, poxvirus, measles virus, cytomegalovirus (CMV), lentivirus, and adenovirus.
  • 3. The oncolytic virus of claim 2, wherein said oncolytic virus is a poxvirus, and said poxvirus is a vaccinia virus.
  • 4. The oncolytic virus of claim 3, wherein the vaccinia virus is selected from among Dryvax; Lister; M63; LIVP; Tian Tan; Modified Vaccinia Ankara; New York City Board of Health, Dairen, Ikeda, LC16M8, Tashkent, IHD-J, Brighton, Dairen I, Connaught, Elstree, Wyeth, Copenhagen, and Western Reserve strains; vaccinia virus strain Elstree, vaccinia virus strain CL, vaccinia virus strain Lederle-Chorioallantoic, vaccinia virus strain AS.
  • 5. The oncolytic virus of claim 1, wherein the sialidase is a human sialidase or a bacterial sialidase.
  • 6. The oncolytic virus of claim 1, wherein the sialidase is a Neu5Ac alpha(2,6)-Gal sialidase or a Neu5Ac alpha(2,3)-Gal sialidase.
  • 7. The oncolytic virus of claim 1, wherein the human or bacterial sialidase is selected from the group consisting of: Clostridium perfringens sialidase, Actinomyces viscosus sialidase, Arthrobacter ureafaciens sialidase, NEU2, and NEU4.
  • 8. The recombinant oncolytic virus of claim 1, wherein the promotor is a viral early promoter.
  • 9. The recombinant oncolytic of claim 2, wherein the oncolytic virus is a poxvirus and the promoter is a poxvirus early promoter.
  • 10. The recombinant oncolytic virus of claim 1, wherein the oncolytic virus is Talimogene Laherparepvec.
  • 11. The recombinant oncolytic virus of claim 1 wherein the virus is a reovirus.
  • 12. The recombinant oncolytic virus of claim 1, wherein the virus is an adenovirus having an E1ACR2 deletion.
  • 13. The recombinant oncolytic virus of claim 1, wherein the sialidase is DAS181.
  • 14. The recombinant oncolytic virus of claim 1, wherein the sialidase comprises the amino acid sequence of SEQ ID NO:1 or SEQ ID NO:2.
  • 15. The recombinant oncolytic virus of claim 1 wherein the virus is vaccinia virus Western Reserve.
  • 16. A method of treating solid tumor comprising administering to a patient in need thereof the recombinant virus of claim 1.
CLAIM OF PRIORITY

This application is a U.S. National Phase application under 35 U.S.C. § 371 of International Patent Application No. PCT/US2019/042848, filed Jul. 22, 2019, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/796,518, filed Jan. 24, 2019 and Ser. No. 62/701,481, filed Jul. 20, 2018. The entire contents of each of the foregoing applications are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/042848 7/22/2019 WO
Provisional Applications (2)
Number Date Country
62796518 Jan 2019 US
62701481 Jul 2018 US