This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2014-245862, filed on Dec. 4, 2014; the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a delivery processing apparatus and a delivery processing method.
Delivery processing apparatuses (postal sorters) that are used by postal services and the like perform processing in which a delivery sort destination corresponding to a region to which the address belongs is specified based on the address that is e.g. written on a delivery object, and the delivery object is transported to one out of a plurality of stackers (stackers) that corresponds to that delivery sort destination. At that time, when there are many delivery objects that are to be delivered to a specific region, it may happen that the stacker corresponding to that region becomes full, and to address this, a technique is known in which backup stackers are kept ready, and the delivery sort destination is temporarily assigned to such a backup stacker. However, in the conventional technology, there are cases in which the sorting and stacking of the delivery objects cannot be carried out efficiently.
According to one embodiment, there is provided a delivery processing apparatus including a plurality of stackers configured to stack delivery objects; a conveyer configured to transport the delivery objects to a designated stacker out of the plurality of stackers; a first detector configured to detect that a monitored stacker out of the plurality of stackers is in an overflow state in which more than a predetermined amount of delivery objects have accumulated; a second detector configured to detect that a monitored stacker out of the plurality of stackers is in an empty state in which all delivery objects have been retrieved from the stacker; and a main controller configured to specify a regular stacker that is a stacker out of the plurality of stackers and serving as a sort destination of the delivery object, based on address information that is obtained from the delivery object and, control the conveyer such that the delivery object is transported to the regular stacker serving as the sort destination, out of the plurality of regular stackers, that is specified, wherein, if the stacker serving as the sort destination specified is in the overflow state, then the main controller stops the transport of delivery objects to the regular stacker serving as the sort destination that has gone into the overflow state and assigns a backup stacker that is a stacker out of the plurality of stackers not correlated with any address information as a sort destination substituting for the sort destination that has gone into the overflow state, and after assigning the substitute sort destination, when a regular stacker that had gone into the overflow state goes into the empty state, the main controller stops transport of delivery objects to the backup stacker that has been assigned as the substitute sort destination, and resumes the transport of delivery objects to the regular stacker that has gone into the empty state.
Referring to the accompanying drawings, the following is an explanation of a delivery processing apparatus and a delivery processing method according to several embodiments.
The delivery processing apparatus 1 includes a classification pre-processing unit 10 and a classification unit 20, for example. A plurality of stackers (accumulation units) 30(1) to 30(9) are disposed in the classification unit 20. In the following, numerals written in parentheses that accompany reference numerals are assumed to be stacker identification information. Note that the number of stackers 30 should be plural, that is, there should be two or more of them.
A plurality of delivery objects S are set manually e.g. by an operator in the feeder 11. The pickup unit 12 takes out, one by one, the delivery objects S that are set in the feeder 11, and supplies them to a transport path. On this transport path, delivery objects S that are contaminated by foreign matter and delivery objects S that are not of the prescribed format are eliminated and accumulated in the reject stacker 13.
The bar code reader 14 reads in bar codes from the delivery objects S on which stealth bar codes are printed, decodes the information that is encoded by the stealth bar codes and outputs the decoded information to a main controller 50 (to be described later). At this point, delivery objects S on which the stealth bar codes are printed are for example delivery objects S from which identification information could be read by VC processing (to be explained later), but which could not be transported to the stacker corresponding to their respective classification.
The OCR processor 15 includes a camera (line sensor) that takes an image of the delivery objects S, performs OCR processing on the images taken by the camera, and reads such information as a postal code, address and sender of the delivery object S. Note that a portion of the OCR processing (for example the character recognition other than that for the postal code) may also be carried out in a distributed manner by other computers that are connected via a network.
The VC request unit 16 sends images of delivery objects S for which a part or all of the information could not be read by the OCR processor 15 over the network NW to a VC terminal 90, and receives information (for example postal code or address) relating to delivery objects S from the VC terminal 90. The images received from the delivery processing apparatus 1 are displayed by the VC terminal 90 to an operator, and the information entered by the operator is returned to the delivery processing apparatus 1. This processing of displaying images and entering information is referred to as “VC processing”.
The IJP 17 prints objects encoding the information about the delivery objects S that was obtained by the OCR processor 15 or the VC request unit 16 as stealth bar codes onto the delivery objects S. The stealth bar codes are then read by a bar code reader attached to the IJP 17 and verified.
The diverter unit 31 directs for example delivery objects S, which are clamped by the belt and transported in the direction D1, towards the transport path 32. In the transport path 32, the delivery objects S are accumulated in an orientation parallel to the backup plate unit 33. In the drawing, the backup plate unit 33 is biased in a direction opposite to the direction D2 and thus moves in the direction D2 as the delivery objects S accumulate.
The sensors 34 and 35 output a signal in response to coming in contact with the backup plate unit 33, which is made out of metal, or the like. For example, the pre-full sensor 34 may be set up to output a signal (pre-full signal) when the stack of delivery objects S has reached about 80% of the maximum accumulation capacity of the stacker 30, and the full sensor 35 may be set up to output a signal (full signal) when the stack of delivery objects S has reached about 100% of the maximum accumulation capacity of the stacker 30.
The full lamp 36, the stacking ready notification/sweeping and notification switch 37 and the label printing switch 38 may be installed at any location (for example at an end of the lateral wall of the transport path 32). The full lamp 36 may, for example, be caused to emit yellow light when a pre-full signal is output, and may be caused to emit red light when a full signal is output. The stacking ready notification/sweeping and notification switch 37 is a switch that is to be operated when an operator has retrieved all delivery objects S from the stacker 30. For example, the stacking ready notification/sweeping and notification switch 37 may be set to ordinarily output an OFF signal and to output an ON signal when it has been operated by the operator. The label printing switch 38 is a switch for letting the apparatus issue a slip on which identification information regarding the stacker 30 is printed.
The individual units of the delivery processing apparatus 1 configured as described above are controlled by the main controller 50.
Moreover, the main controller 50 is connected to a transport mechanism 40, a label printer unit 45, an input unit 70, a display unit 72, and a memory unit 80, for example. The transport mechanism 40 includes a motor that drives the diverter unit 31 in the above-described stacker 30, the belt that transports the delivery objects S in the classification unit 20, a motor driving the belt, and the like. The label printer unit 45 is a printer that is separate from the IJP 17. The input unit 70 is an input device such as a keyboard, a mouse or a touch panel. The display unit 72 is a display device such as an LCD (liquid crystal display), an organic EL (electroluminescence) display device or the like. The memory unit 80 can be realized, for example, by a RAM (random access memory), a ROM (read-only memory), a HDD (hard-disk drive), a flash memory or the like. In addition to programs that are executed by the processor of the main controller 50, the memory unit 80 stores delivery object state information 81, allocation information 82, stacker state information 83, bucket content information 85 and the like.
The picking up control unit 51 controls the pickup unit 12. The format reject control unit 52 controls for example the motor that drives the diverter unit (not shown) that directs the delivery objects toward the reject stacker 13.
The sorting judgment unit 53 obtains the processing results from the bar code reader 14, the OCR processor 15, and the VC request unit 16, and specifies, based on the address information (for example the postal address included in the processing result), the stackers 30 to which the delivery objects S are to be sorted (sort destinations). In the case of addresses in Japan, for example, the sort destinations are determined by aggregating addresses in which the “block number” (in Japanese: “-chome”) in the address match. The sorting judgment unit 53 refers to correlation information that correlates the address information to the sort destination, and specifies the sort destination. It should be noted that this correlation information may be in the form of tabulated data, or information that is embedded in variables and programs.
Based on the signals that are input from the sensors 34, 35 and the signal that is input from the stacking ready notification/sweeping and notification switch 37, the transport control unit 54 lets the transport mechanism 40 transport the delivery objects S to the stacker 30 corresponding to their respective sort destination. This will be explained later. The IJP control unit 55 controls the IJP 17.
The delivery object state recognition unit 56 consolidates the processing results of the sorting judgment unit 53, the transport control unit 54, the IJP control unit 55 and the like, and recognizes the state of the delivery objects S taken out by the pickup unit 12. The delivery object state recognition unit 56 stores the recognition results as delivery object state information 81 in the memory unit 80.
The lamp control unit 57 controls the full lamp 36 based on the signals that are input from the sensors 34 and 35. And the print control unit 58 controls the label printer unit 45 such that a list of the content of a bucket is printed in response to a request for list production by an operator. Also, when the operator has operated a label printing switch 38, the print control unit 58 lets the label printer unit 45 print identification information of the stacker 30 corresponding to that label printing switch 38.
The following is an explanation of the dynamic allocation control executed by the transport control unit 54. As shown in
The transport control unit 54 uses the allocation information 82 to manage which backup stacker is temporarily assigned as a substitute sort destination as described above.
As shown in Situation (A) in
Then, as shown in Situation (B) in
Next, as shown in Situation (C) in
Then, as shown in Situation (E) in
With this control, the delivery processing apparatus 1 of the present embodiment can perform the sorting and stacking of delivery objects S more efficiently. First of all, with the delivery processing apparatus 1 of the present embodiment, it is possible to avoid wasteful control in which, after a regular stacker that had gone into an overflow state has gone into the empty state, the transport of delivery objects to the backup stacker assigned as the substitute sort destination is stopped and the transport of the delivery objects to the regular stacker that has returned to the empty state is resumed, leading to frequent changes of the stacker 30 to which the delivery objects are transported.
Moreover, with the delivery processing apparatus 1 of the present embodiment, it is possible to prevent incomplete states in which, after a regular stacker that was in the overflow state has gone into the empty state, when the backup stacker assigned as a substitute sort destination has not yet gone into the overflow state, the transport of delivery objects to the empty regular stacker is resumed, so that the transport destination is changed to the regular stacker in a state in which there is still room on the backup stacker.
Moreover, with the delivery processing apparatus 1 of the present embodiment, if the backup stacker assigned as a substitute sort destination has gone into the empty state, the assignment to that backup stacker is cancelled, and thereafter, that backup stacker may be assigned as a substitute sort destination for a regular stacker, so that the backup stackers can be used more flexibly and it is possible to sort and stack delivery objects S more efficiently.
The following is an explanation of the processing that is carried out by the transport control unit 54 in order to realize the control shown in
If a stacker 30 is specified by the sorting judgment unit 53 as the sort destination, then the transport control unit 54 looks up the stacker state information 83 and determines whether the regular stacker serving as the sort destination is in the overflow state (Step S104). If the regular stacker serving as the sort destination is not in the overflow state, then the transport control unit 54 determines whether the regular stacker serving as the sort destination is in the standby state (Step S106). If the regular stacker serving as the sort destination is not in the standby state, then the transport control unit 54 lets the transport mechanism 40 transport the delivery object S to the regular stacker serving as the sort destination (Step S108). On the other hand, if the regular stacker serving as the sort destination is in the standby state, then the transport control unit 54 lets the transport mechanism 40 transport the delivery object S to the backup stacker that is already assigned as the substitute sort destination (Step S114).
If it is determined in Step S104 that the regular stacker serving as the sort destination is in the overflow state, then the transport control unit 54 looks up the allocation information and determines if a backup stacker has been assigned to substitute as the sort destination (Step S110). If a backup stacker has already been assigned, then it is determined whether that backup stacker is in the overflow state (Step S112). If that backup stacker is not in the overflow state, then the transport control unit 54 lets the transport mechanism 40 transport the delivery object S to the backup stacker that is already assigned (Step S114).
If it is determined in Step S110 that there is no backup stacker that is assigned to substitute as that sort destination or if it is determined in Step S112 that that backup stacker is in the overflow state, then the transport control unit 54 assigns a new backup stacker as the substitute for that sort destination and lets the transport mechanism 40 transport the delivery object S to that backup stacker (Step S116).
Next, the transport control unit 54 determines whether the stackers 30 to which the delivery object S is transported is in an overflow state (Step S118). If the stacker 30 to which the delivery object S is transported is in an overflow state, then the transport control unit 54 updates the stacker state information (Step S120). With this, the processing for one delivery object S finishes.
In the present embodiment, the processing when the stacking ready notification/sweeping and notification switch 37 is operated may be carried out separately and in parallel to the flowchart in
First of all, the transport control unit 54 waits until the stacking ready notification/sweeping and notification switch 37 is operated (Step S200). When the stacking ready notification/sweeping and notification switch 37 is operated, the transport control unit 54 determines whether the stacking ready notification/sweeping and notification switch 37 of a regular stacker has been operated (Step S202). If the stacking ready notification/sweeping and notification switch 37 of a regular stacker has been operated, then the transport control unit 54 changes the state 1 of that regular stacker in the stacker state information 83 to the empty state (0) and changes the state 2 to the standby state (1) (Step S204).
On the other hand, if the stacking ready notification/sweeping and notification switch 37 of a backup stacker has been operated, then the transport control unit 54 changes, in the stacker state information 83, the state 2 of the regular stacker to which it is assigned in substitution, to the non-standby state (0), cancelling the standby state, changes the state 1 of that backup stacker to the empty state (0) and furthermore cancels, in the allocation information 82, the assignment as a substitution for a sort destination by clearing the assigned sort destination of that standby stacker (Step S206).
The delivery object state recognition unit 56 generates the bucket content information 85. This is explained in the following. A bucket is a storage container in which the delivery objects S retrieved from the stackers 30 are collected.
When a certain amount of delivery objects S has been collected in the bucket B, the operator operates the input portion 70 to request the delivery processing apparatus 1 to print the bucket content information 85. In preparation of this, every time the stacking ready notification/sweeping and notification switch 37 is operated, the delivery object state recognition unit 56 obtains the characteristic (individual) information of the delivery objects S collected in the corresponding stacker 30 from the delivery object state information 81 and adds it to the bucket content information 85. Then, when there is a request to print the bucket content information 85, the print control unit 58 instructs the label printer unit 45 to print a list L based on the bucket content information 85. Thus, a list L with characteristic information of the delivery objects S collected in the bucket B is printed. As shown in the drawing, the bucket content information 85 serving as a basis for the list L is information that lists characteristic information of the delivery objects S for each stacker 30 from which delivery objects S are collected. It should be noted that the label printer unit for printing the slips P and the label printer unit for printing the list L were stated to be the same, but these label printer units may also be realized by separate hardware. In this case (and also if the same label printer unit prints the slips P and the list L), the print control unit that controls the printing of the slips P and the print control unit that controls the printing of the list L may be separate functional units, that is, separate software functional units realized by separate program modules, or may include separate hardware.
As noted above, when the operator who operates the delivery processing apparatus 1 according to the present embodiment retrieves the delivery objects S from a stacker 30, he retrieves all of the delivery objects S collected in that stacker 30 and then operates the stacking ready notification/sweeping and notification switch 37. Thus, since the bucket content information 85 is updated when this is triggered by the operation of the stacking ready notification/sweeping and notification switch 37 that indicates that all of the delivery objects S collected in the stacker 30 have been retrieved, the delivery processing apparatus 1 can grasp more accurately which delivery objects S have been collected in which order in the bucket B. If it were allowed to collect in the bucket B only a portion of the delivery objects S collected in a stacker 30, then it would be difficult to grasp accurately from how many stackers 30 the delivery objects S have been collected in the bucket B.
With the delivery processing apparatus 1 according to the first embodiment as explained above, if a regular stacker serving as a sort destination specified by the sorting judgment unit 53 goes into the overflow state, then the transport of delivery objects S to this regular stacker is stopped and a backup stacker out of the plurality of stackers 30 that is not correlated with any address information is assigned as a substitute sort destination for the sort destination in the overflow state. And after assigning it as a substitute sort destination, when the regular stacker that went into the overflow state goes into the empty state, the transport of the delivery objects S to the backup stacker that is assigned as the substitute sort destination is stopped, and the transport of the delivery objects S to the empty regular stacker is resumed, so that the sorting and stacking of the delivery objects can be carried out more efficiently.
In the following, a second embodiment is explained. Here, the explanations focus on the differences to the first embodiment, and aspects that are the same as in the first embodiment are omitted.
If a stacker 30 is specified by the sorting judgment unit 53 as the sort destination, then the transport control unit 54 looks up the transport history information 84 and determines whether the stacker 30 to which the delivery object S was transported as the previous transport destination is a backup stacker (Step S304). If the previous transport destination is not a backup stacker (but rather a regular stacker), then the transport control unit 54 determines whether this regular stacker is in the overflow state (Step S306). If the regular stacker is not in the overflow state, then the transport control unit 54 lets the transport mechanism 40 transport the delivery object S to the regular stacker (Step S308). On the other hand, if the regular stacker is in the overflow state, then the transport control unit 54 assigns a backup stacker as the new sort destination, and lets the transport mechanism 40 transport the delivery object S to the assigned backup stacker (Step S316).
If the previous transport destination is a backup stacker, then the transport control unit 54 determines whether the backup stacker of the previous transport destination is in the overflow state (Step S310). If the backup stacker of the previous transport destination is not in the overflow state, then the transport control unit 54 lets the transport mechanism 40 transport the delivery object S to the backup structure that served as the previous transport destination (Step S312).
If the backup stacker of the previous transport destination is in the overflow state, then the transport control unit 54 looks up the stacker state information 83 and determines whether the original regular stacker is in the standby state (Step S314). If the original regular stacker is in the standby state, then the transport control unit 54 lets the transport mechanism 40 transport the delivery object S to the original regular stacker (Step S308). On the other hand, if the original regular stacker is not in the standby state, then the transport control unit 54 assigns a new backup stacker as the sort destination and lets the transport mechanism 40 transport the delivery object S to this newly assigned backup stacker (Step S316).
With this delivery processing apparatus 1 according to the second embodiment as explained above, it is possible to achieve a similar effect as in the first embodiment through different software processing than in the first embodiment.
Further Considerations
In the foregoing embodiments, it was explained that a list L of characteristic information concerning the delivery objects S collected in the bucket B is printed, but it is also possible to output this list L of characteristic information concerning the delivery objects S as data to another device, instead of printing it out on paper or the like.
Furthermore, in the foregoing embodiments, it was explained that the transport control unit 54 detects that a stacker 30 is in the empty state when the corresponding stacking ready notification/sweeping and notification switch 37 is operated, but it is also possible that each stacker 30 is provided with a sensor that detects whether the respective stacker 30 is in the empty state, and based on the output of the sensor, the transport control unit 54 detects that the respective stacker 30 is in the empty state.
In accordance with at least one embodiment as explained above, if a regular stacker serving as a sort destination specified by the sorting judgment unit 53 goes into the overflow state, then the transport of delivery objects S to that regular stacker is stopped and, out of the plurality of stackers 30, a backup stacker that is not correlated with any address information is assigned as the sort destination substituting for the sort destination that has gone into the overflow state, and after assigning the backup stacker as the substitute sort destination, when the regular stacker that had gone into the overflow state goes into the empty state, the transport of delivery objects S to the backup stacker that was assigned as the substitute sort destination is stopped, and the transport of delivery objects S to the regular stacker that has gone into the empty state is resumed, so that the sorting and stacking of delivery objects S can be carried out more efficiently.
The above-described embodiments can be summarized as follows: a delivery processing apparatus that includes a plurality of stackers in which delivery objects can be stacked; a conveyer configured to transport the delivery objects to a designated stacker out of the plurality of stackers; a sensor for detecting the amount of stacked delivery objects in a monitored stacker out of the plurality of stackers; a switch that is operated by an operator when all delivery objects have been retrieved from the monitored stacker, out of the plurality of stackers; a specifying unit for looking up correlating information in which address information is correlated with a sort destination, using the address information obtained from a delivery object, and specifying a stacker serving as the sort destination of that delivery object; a transport controller unit configured to control the conveyer such that the delivery object is transported to that stacker serving as the sort destination, out of the plurality of stackers, that is specified by the specifying unit, wherein, if the stacker serving as the sort destination specified by the specifying unit is in the overflow state, then the transport controller unit stops the transport of delivery objects to the stacker serving as the sort destination that has gone into the overflow state and assigns, out of the plurality of stackers, a backup stacker that is not correlated with any address information, as a sort destination substituting for the sort destination that has gone into the overflow state, and after assigning the substitute sort destination, when a stacker that had gone into the overflow state goes into the empty state, the transport controller unit stops transport of delivery objects to the backup stacker that has been assigned as the substitute sort destination, and resumes the transport of delivery objects to the stacker that has gone into the empty state.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2014-245862 | Dec 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5358238 | Mandel | Oct 1994 | A |
5363971 | Weeks | Nov 1994 | A |
5815764 | Tomory | Sep 1998 | A |
6283304 | Gottlieb | Sep 2001 | B1 |
7251047 | Meade, II | Jul 2007 | B2 |
7735621 | Hallowell | Jun 2010 | B2 |
7923655 | Quine | Apr 2011 | B2 |
8504192 | Faivre | Aug 2013 | B2 |
20040251180 | McDonald | Dec 2004 | A1 |
20050119786 | Kadaba | Jun 2005 | A1 |
20060070929 | Fry | Apr 2006 | A1 |
20060113223 | Quine et al. | Jun 2006 | A1 |
20090283453 | Bowers | Nov 2009 | A1 |
20120296467 | Bowers et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
1 655 080 | May 2006 | EP |
2 119 510 | Nov 2009 | EP |
2 298 457 | Mar 2011 | EP |
2298457 | Mar 2011 | EP |
2007-75762 | Mar 2007 | JP |
Entry |
---|
Extended European Search Report dated Aug. 23, 2016 Application No. 15197625.5. |
Partial European Search Report dated Apr. 28, 2016 in Patent Application No. 15197625.5. |
Office Action dated Feb. 3, 2017 in Russian Patent Application No. 2015151971/12 (with English translation). |
Number | Date | Country | |
---|---|---|---|
20160159602 A1 | Jun 2016 | US |