Delivery system and method for bifurcated graft

Information

  • Patent Grant
  • 8328861
  • Patent Number
    8,328,861
  • Date Filed
    Friday, November 16, 2007
    17 years ago
  • Date Issued
    Tuesday, December 11, 2012
    12 years ago
Abstract
A delivery system and method for delivering a bifurcated intracorporeal device. The delivery system comprises a shaft having a distal section supporting a primary support member positioned to be disposed within at least a primary portion of the bifurcated intracorporeal device and a secondary support member extending within a secondary portion of the bifurcated intracorporeal device. At least one belt is configured to be circumferentially disposed about a portion of the secondary support member so to at least partially constrain the secondary portion of the bifurcated intracorporeal device. A tube defining a lumen is secured relative to the secondary support member. A release member is configured to engage and releasably secure the belt in a constraining configuration. The release member extends through at least a portion of the tube lumen such that the release member is accessible adjacent a proximal end of the tube.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to a system and method for the treatment of disorders of the vasculature. More specifically, a system and method for treatment of an abdominal aortic aneurysm and the like, which is a condition manifested by expansion and weakening of the aorta. Prior methods of treating aneurysms have consisted of invasive surgical methods with graft placement within the affected vessel as a reinforcing member of the artery. However, such a procedure requires a surgical cut down to access the vessel, which in turn can result in a catastrophic rupture of the aneurysm due to the decreased external pressure from the surrounding organs and tissues, which are moved during the procedure to gain access to the vessel. Accordingly, surgical procedures can have a high mortality rate due to the possibility of the rupture discussed above in addition to other factors. Other risk factors for surgical treatment of aortic aneurysms can include poor physical condition of the patient due to blood loss, anuria, and low blood pressure associated with the aortic abdominal aneurysm.


Due to the inherent risks and complexities of surgical intervention, various attempts have been made to develop alternative methods for deployment of grafts within aortic aneurysms. One such method is the non-invasive technique of percutaneous delivery by a catheter-based system.


U.S. Patent Application Publication No. US 2004/0138734, which is incorporated herein in its entirety by reference, describes systems and methods for the delivery of endovascular grafts, including bifurcated grafts. FIG. 1 illustrates a delivery system 10 of such publication for delivery and deployment of a bifurcated intracorporeal device 12 within a patient's body. The delivery system 10 includes an elongate shaft 14 having a proximal section and a distal section. The bifurcated intracorporeal device 12 is disposed on the distal section of the elongate shaft 14. The distal section of the elongate shaft 14 also includes an elongate primary belt support member 16 and at least one primary belt 18 secured to the primary belt support member 16. The primary belt 18 is configured to be circumferentially disposed about a primary portion 15 of the bifurcated intracorporeal device 12 to constrain such portion 15 of the device 12. A primary release member 20 engages and releasably secures the primary belt 18 in the constraining configuration. The distal section of the elongate shaft 14 also includes at least one elongate secondary belt support member 22 disposed adjacent the elongate primary belt support member 16. At least one secondary belt 24 is secured to the secondary belt support member 22 and is configured to be circumferentially disposed about a secondary leg portion 23 of the bifurcated intracorporeal device 12 to constrain such portion 23 of the device 12. A secondary release member 26 engages and releasably secures the secondary belt 24 in a constraining configuration.


The distal end of the delivery system 10 is introduced into the patient's body and advanced to a desired site within the patient's body. The delivery system 10 generally delivers the bifurcated intracorporeal device 12 via a single patient lumen or vessel, for example, either the left or right iliac (or femoral) artery. After the delivery system has been positioned above the carina of the iliac artery bifurcation, the secondary belt support member 22, and thereby the secondary leg portion 23, is moved laterally to align with the other of the iliac arteries. To facilitate such, a release strand 28, comprising first and second strands 27 and 29, is looped through a proximal portion of the secondary support member 22. The distal ends of the strands 27 and 29 are interconnected at an actuator hub 30 while the opposed proximal ends of strands 27 and 29 are directed out a secondary opening from the other of the iliac (femoral) arteries. As shown in FIG. 1, the secondary release member 26 is also attached to the actuator hub 30. When both strands 27 and 29 are pulled equally, they can be utilized to pull the secondary support member 22, but they do not cause any relative movement to the secondary release member 26 since the strands 27 and 29 apply an equal force to the actuator hub 30. To release the secondary belt 24, strand 29 is pulled proximally such that the actuator hub 30, and thereby the secondary release member 26, will be pulled proximally until the secondary release member releases the secondary belt 24.


To assist in directing of the strands 27 and 29 of the release strand 28 toward the secondary opening in the other of the arteries, the release strand 28 may initially be covered by a tube 32 or sheath or the like. During initial delivery of the delivery system 10, the tube 32 may either be fished, directed along a guide wire, or otherwise directed through the secondary opening. After the tube 32 is directed through the secondary opening, the tube 32 is removed from the release strand 28 such that both strands 27 and 29 are exposed.


SUMMARY OF THE INVENTION

In one aspect, the present invention may provide a delivery system for a bifurcated or modular intracorporeal device. The delivery system comprises a shaft having a distal section supporting a primary support member positioned to be disposed within at least a primary portion of the bifurcated or modular intracorporeal device and a secondary support member disposed adjacent the primary support member and extending within a secondary portion of the bifurcated or modular intracorporeal device. At least one belt is configured to be circumferentially disposed about a portion of the secondary support member so to at least partially constrain the secondary portion of the bifurcated or modular intracorporeal device. A tube defining a lumen is secured relative to the secondary support member. A release member is configured to engage and releasably secure the belt in a constraining configuration. The release member extends through at least a portion of the tube lumen such that the release member is accessible adjacent a proximal end of the tube.


In another aspect, the invention may provide a method of delivering a bifurcated or modular graft having a main body portion, an ipsilateral leg and a contralateral leg. The method comprises positioning a distal end of a shaft into a target vessel through a first access hole with the distal end of the shaft supporting a primary support member disposed within the main body portion and ipsilateral leg and a secondary support member disposed adjacent the contralateral leg; extending a proximal end of a tube out through a second access hole, a distal end of the tube secured relative to the secondary support member, the tube defining a lumen extending therein; releasing a primary belt configured to be circumferentially disposed about the primary support member to constrain at least a portion of the main body by proximally displacing a primary release member through the first access hole; accessing, through the tube lumen at the proximal end of the tube, a secondary release member configured to engage and releasably secure a secondary belt in a constraining configuration about the contralateral leg to constrain at least a portion thereof; and releasing the secondary belt by proximally displacing the primary release member.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a magnified view of the abdominal aorta area of the patient with a prior art bifurcated endovascular stent graft delivery system illustrated therein.



FIG. 2 is an elevational view in partial section of an embodiment of a delivery system in accordance with one or more aspects of the invention.



FIG. 3 is a perspective view of the belt support member assembly at a distal portion of the delivery system of FIG. 2.



FIG. 3A is a cross-sectional view along the line 3A-3A in FIG. 3.



FIG. 3B is a cross-sectional view along the line 3B-3B in FIG. 3.



FIG. 3C is a cross-sectional view similar to FIG. 3B illustrating the access opening with the cover removed.


FIGS. 4 and 6-8 are perspective views of alternate embodiments of the distal end of the release strand tube of the present invention.



FIG. 5 is a cross-sectional view along the line 5-5 in FIG. 4.



FIGS. 9-13 are perspective views of alternate embodiments of the proximal end of the release strand tube of the present invention.



FIG. 14 is a perspective view of the proximal end of the release strand tube of FIG. 13 illustrating the end being separated to facilitate pulling of the secondary release wire.



FIG. 15 illustrates a portion of the internal vasculature of a patient, including the aorta, iliac and femoral arteries branching therefrom.



FIG. 16 is a magnified view of the abdominal aorta area of the patient shown in FIG. 15 and shows a guidewire positioned in the aorta from the right iliac artery.



FIGS. 17-28 illustrate the magnified view of the abdominal aorta of the patient shown in FIG. 15 and depict a deployment sequence of a bifurcated endovascular stent graft with the delivery system of FIG. 2.



FIG. 29 is a side elevation view of the secondary delivery structure in accordance with one or more aspects of the invention.



FIGS. 30-32 continue to illustrate a deployment sequence of the bifurcated endovascular stent graft delivery system of FIG. 2.





DETAILED DESCRIPTION OF THE INVENTION

Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.


As used herein, the proximal end of the elongate shaft is the end proximal to an operator of the delivery system 410 during use. The distal end of the elongate shaft is the end that enters and extends into the patient's body. The proximal and distal directions for the delivery system and endovascular graft loaded within the delivery system as used herein are the same. This convention is used throughout the specification for the purposes of clarity, although other conventions are commonly used. For example, another useful convention defines the proximal end of an endovascular graft as that end of the graft that is proximal to the source of blood flow going into the graft.



FIGS. 2 and 3 illustrate a delivery system 400, for delivering an expandable intracorporeal device in the form of a bifurcated stent-graft 401, that is a first embodiment of the present invention. The illustrated graft 401 is shown as an example, but the present invention is not limited to use with such grafts and can be utilized with various grafts and other structures. Furthermore, while the illustrated stent-graft 401 is shown as a bifurcated graft, it may alternatively be a modular stent-graft with separate components which are attached to one another after insertion. In the illustrated embodiment, the graft 401 includes a main body portion 402 at a distal end 403 thereof that has a generally tubular cross-sectional profile when the graft takes on an expanded or deployed configuration. An ipsilateral leg 404 and a contralateral leg 405 (short leg), each having a substantially tubular configuration when expanded or deployed, branch from the main body portion 402 at bifurcation 406 and extend in a proximal direction from the bifurcation 406. The ipsilateral leg 404 terminates proximally with a proximal self-expanding member 407 and the contralateral leg 405 terminates proximally with a proximal self-expanding member 408.


A second distal self-expanding member 411 is disposed at a distal end 412 of the main body portion 402 of the graft 401 as with the graft embodiments previously discussed. Also, as with other endovascular graft embodiments discussed herein, the graft 401 may have inflatable channels and inflatable cuffs that serve, among other functions, to provide support for the graft 401 and the inflatable channels and cuffs can have configurations which are the same or similar to those inflatable channels and cuffs of other graft embodiments discussed herein, as well as other configurations. A distal inflatable cuff 413 is disposed at the distal end of the main body portion 402. Proximal inflatable cuffs 414 and 415 are disposed on the ipsilateral leg 404 and the contralateral leg 405, respectively. Inflatable channels 418 are fluid tight conduits which connect the inflatable cuffs 413, 414 and 415. The inflatable channels 418 and inflatable cuffs 413 and 414 are inflatable through an inflation port 421 that may be disposed at or near the proximal end of the ipsilateral leg 404. The inflation port 421 may alternatively be disposed at or near the proximal end 417 of the contralateral leg 405, or it may be disposed on other portions of the device as necessary. Generally, the structure and the materials used in the graft 401 (both the graft portion and the self-expanding members) can have various structures. In one particular embodiment, the main body portion and legs of the graft are made of expanded polytetrafluoroethylene (ePTFE) and the self-expanding members are made of nickel titanium, stainless steel or the like.


A first distal self-expanding member 422 is secured to the second distal self-expanding member 411 as shown in FIG. 2. The first and second distal self-expanding members 422 and 411 may be deployed in any desired sequence. In a particular embodiment having first and second distal self-expanding members, it may be desirable to first deploy the second distal self-expanding member 411 prior to deploying the first distal self-expanding member 422. Deploying the second distal self-expanding member 411 first may allow the operator to accurately adjust the axial position of the graft in the body lumen or vessel to within one to several millimeters before deploying the first distal self-expanding member 422. Using this technique, deployment of the second distal self-expanding member 411 alone provides sufficient resistance to axial displacement of the graft 401 for the graft position to be maintained in normal blood flow, but still allows deliberate axial displacement by the operator to achieve a desired axial position. This may be particularly important if tissue-penetrating members are included on the distal-most or first distal self-expanding member 422. If such tissue penetrating members are used on the first distal self-expanding member 422, axial movement may be difficult or even impossible once this member 422 is deployed without risking damage to the body lumen or vessel. As such, accurate axial placement of the graft 401 prior to deployment of the first distal self-expanding member 422 can be critical.


In addition, although not shown in the figures, this graft embodiment 401 may include two or more proximal self-expanding members disposed on one or both of the ipsilateral leg 404 and/or contralateral leg 405. These self-expanding members may have a configuration similar to that of the first and second distal self-expanding members 411 and 422



FIG. 2 shows delivery system 400 in partial section having an elongate shaft 423 with a proximal end 424, a distal end 425 and a distal section 426. A proximal adapter 427 is disposed at the proximal end 424 of the elongate shaft 423 and houses the controls that enable the operator to manipulate elements at the distal section 426 of delivery system 400 to release and deploy the graft 401, including inflating the graft channels 418 and cuffs 413, 414 and 415. The elongate shaft 423 has an inner tubular member 430 and an outer tubular member 431 disposed about the inner tubular member 430. The outer tubular member 431 is generally configured to slide in an axial direction over the inner tubular member 430. A proximal end 432 of the inner tubular member 430 is secured to or disposed on the proximal adapter 427. The inner and outer tubular members 430 and 431 may be made of polymeric materials, e.g., polyimides, polyester elastomers (HYTREL™), or polyether block amides (PEBAX™), and other thermoplastics and polymers. The proximal adapter 427 is generally fabricated from a polymeric material such as polyethylene, acetal resins (DELRIN™), etc., but can also be made from any other suitable material.


Bifurcated stent graft 401 is shown in FIG. 2 disposed within the distal section 426 of the elongate shaft 423 in a constrained configuration. The outer tubular member 431 is disposed about the graft 401 in the constrained state but can be retracted proximally so as to expose the constrained graft 401 by proximally retracting a proximal end 433 of the outer tubular member 431.



FIG. 2 shows the inner tubular member 430 disposed within the outer tubular member 431 and the guidewire tube 436 disposed within the inner tubular member 430. The guidewire tube 436 may be made from polymeric materials such as polyimide, polyethylene, polyetheretherketones (PEEK™).


A release member tube in the form of a release wire tube 441 is disposed about a distal primary release member in the form of a distal primary release wire 442. The release wire tube 441 is also disposed about a proximal primary release member in the form of a proximal primary release wire 443. Both the release member tube 441 and an inflation tube 444 are disposed within an inner lumen 445 of the inner tubular member 430.


A potted portion 446 is disposed between an inner surface of a distal end of the inner tubular member 430, the release wire tube 441, the guidewire tube 436 and the inflation tube 444. The potted portion 446 seals the inner lumen 445 of the inner tubular member 430 from bodily fluids that are exposed to the constrained graft 401 and potted portion 446 once the outer tubular member 431 is proximally retracted. The potted portion 446 may be made from adhesives, thermoforming plastics, epoxy, metals, or any other suitable potting material. Alternatively, a molded or machined plug may be bonded or affixed to the distal end of the inner tubular member, with lumens to accommodate the passage of tubes 441, 436 and 444.


A distal section 451 of the guidewire tube 436 serves as a primary belt support member 452 and is disposed within the main body portion 402 and ipsilateral leg 404 of the graft 401. Alternatively, the primary belt support member 452 may be disposed adjacent the graft main body portion 402 and ipsilateral leg 404. A secondary belt support member housing 453 is secured to the primary belt support member 452. An additional length of guidewire tube or other elongate member serving as a secondary belt support member 454 is slidably disposed within an appropriately configured lumen 455 of the housing 453. The secondary belt support member 454 is shown disposed within the graft main body portion 402 and contralateral leg 405; however, the secondary belt support member 454 may also be disposed adjacent the contralateral leg 405, regardless of whether the primary belt support member 452 is disposed adjacent or within the main body portion 402 and ipsilateral leg 404.


The secondary belt support member housing lumen 455 and secondary support member 454 cross sections may be keyed, singly or in combination, to allow relative sliding motion without relative rotation motion and therefore limit any twisting of the secondary support member 454 and the contralateral leg 405. The secondary belt support member 454 may be made from alloys such as nickel titanium, stainless steel, or polymeric materials such as polyimide.


A proximal primary belt 456 is shown disposed about and radially constraining the proximal self-expanding member 407 of the ipsilateral leg 404. This proximal self-expanding member 407 in turn is disposed about a bushing 457 that is shown as cylindrical in form, but which may have other configurations as well. The bushing 457 is secured to the primary belt support member 452 adjacent the proximal self-expanding member 407 of the ipsilateral leg 404.


A first distal primary belt 458 is disposed about and radially constraining the first distal self-expanding member 422, which itself is disposed about a cylindrical bushing 461. A second distal primary belt 462 is disposed about and radially constraining the second distal self-expanding member 411 and the second distal self-expanding member 411 is disposed about a cylindrical bushing 463.


A secondary belt 464 is shown disposed about and radially constraining the proximal self-expanding member 408 of the contralateral leg 405. This proximal self-expanding member 408 is disposed about a bushing 465 that is cylindrical in shape.


The belts 456, 458, 462 and 464 are typically made from nickel titanium, an alloy that is capable of exhibiting a unique combination of high strain without elastic deformation, high strength and biocompatability. However, any other suitable materials may be used including other metallic alloys such as stainless steel, high strength fibers such as carbon, KEVLAR™, polytetrafluoroethylene (PTFE), polyimide, or the like.


A distal portion 466 of the proximal primary release wire 443 is disposed within end loops 468 of the proximal primary belt 456 so as to releasably secure the proximal self-expanding member 407 of the ipsilateral leg 404 in a constrained state. The proximal primary belt 456 may be disposed about the self-expanding member 407 in a hoop-like configuration. The proximal self-expanding member 407 exerts outward radial pressure on the releasably secured belt 456. The primary proximal release wire 443 is axially moveable within the end loops 468 of the proximal primary belt 456 to allow for release of the belt by proximal retraction of the primary proximal release wire 443 in the same manner as described above with respect to other embodiments of the present invention.


Likewise, a distal portion 471 of the distal primary release wire 442 is disposed within end loops 472 of the second distal primary belt 462 that radially constrains the second distal self-expanding member 411. The second distal primary belt 462 is formed in a hoop configuration about the second distal self-expanding member 411 and the second distal self-expanding member 411 exerts outward radial force on the second distal primary belt 462. The distal primary release wire 442 is axially moveable within the end loops 472 of the second distal primary belt 462 to allow for release of the radial constraint as discussed above with respect to the proximal primary release wire 443. The distal portion 471 of the distal primary release wire 442 is also disposed within end loops 473 of the first distal primary belt 458 and radially constrains the first distal self-expanding member 422 in a similar fashion.


Although the distal primary release wire 442 and proximal primary release wire 443 are shown as two separate components, the release wires 442 and 443 could be combined into a single release member, such as a branched release wire. A branched release wire is capable of releasing multiple belts in a desired sequence by proper configuration of the lengths of the various branches of the wire. The relative amount of the release wire extending beyond the looped ends of the belt controls the timing of the release of the belts. Alternatively, a single release wire may engage both distal and proximal primary belts 456, 458 and 462. As this single release wire 150 is moved proximally, the first distal primary belt 458 is first released, followed by the release of the second distal primary belt 462 and then release of the proximal primary belt 456.


A distal portion 474 of a secondary release member in the form of a secondary release wire 475 is disposed within end loops 476 of a secondary belt 464 that radially constrains the proximal self-expanding member 408 of the contralateral leg 405. The proximal self-expanding member 408 of the contralateral leg 405 exerts outward radial force on the secondary belt 464 when the self-expanding member 408 is in a constrained configuration. The secondary release wire 475 is axially moveable within the end loops 476 of the secondary belt 464.


A proximal end 477 of the secondary release wire 475 passes into an inner lumen 484 of a release strand tube 438, as seen in FIG. 3. The release strand tube 438 will be described in more detail hereinafter. The release wires 442, 443 and 475 are generally made from a biocompatible high strength alloy such as stainless steel, but can also be made from any other suitable materials. Examples include other metallic alloys such as nickel titanium, non-metallic fibers such as carbon, polymeric materials, composites thereof, and the like. The diameter and stiffness of the release wires 442, 443 and 475 can be selected in accordance with the diameter and stiffness of the belts 456, 458, 462 and 464. The configuration of the end loops 468, 472, 473 and 476 of the belts 456, 458, 462 and 464 may vary to suit the particular embodiment of the delivery system 400 and device to be delivered, as illustrated in FIGS. 7C-7H of U.S. Patent Application Publication No. US 2004/0138734, which is incorporated herein in its entirety by reference.


Referring to FIGS. 3 and 3A-3C, the release strand tube 438 of the present embodiment generally comprises a tubular body 435 extending between a distal end 438A and a proximal end 438B. The tubular body 435 is preferably manufactured from a thermoplastic material, for example, Pebax™ or nylon, with or without a radiopaque material, for example, tungsten, bismuth or barium sulfate, mixed therewith. The tubular body 435 defines a lumen 484 extending substantially the length thereof. In the present embodiment, the body 435 includes a single lumen 484, but as described in other embodiments, the tubular body 435 may define more than one lumen 484.


The lumen 484 of the present embodiment is configured to receive the secondary release wire 475 such that the proximal end 477 thereof is adjacent to the proximal end 438B of the release strand tube 438. The release strand tube 438 may configured with sufficient column strength to facilitate pulling of the release wire 475 relative thereto. Alternatively, a separate instrument or the like may be utilized. The present embodiment includes a through passage 440 extending from the outer surface of the tubular body 435 to the lumen 484. The secondary release wire 475 extends through the passage 440 and through the lumen 484. An access opening 439 is provided in the proximal end 438B of the release strand tube 438 to facilitate access to the proximal end 477 of the secondary release wire 475. During delivery of the device 400, while the proximal end 438B of the release strand tube 438 is being passed through the patient, a cover 437 is positioned over the access opening 439. The cover 437 may be retained by an adhesive or the like. When access to the secondary release wire 475 is desired, the cover 437 is peeled away to reveal the access opening 439 which is in communication with the lumen 484. Alternatively, the cover 437 may be an integral part of the tubular body 435 which is cut away when access to the secondary release wire 475 is desired. To prevent accidental deployment of the proximal self-expanding member 408, the cover 437 is preferably removed just prior to deployment, although such is not required.


Again referring to FIG. 3, the distal end 438A of the release strand tube 438 is connected directly to the proximal end 483 of the secondary belt support member 454. The release strand tube 438 may interconnected in various manners, including, but not limited to, adhesives, bonding, ultrasonic welding, metallic welding, hot melt bonding, compression fitting, barbs, or any other suitable means. Alternatively, the release strand tube 438 and the secondary belt support member 454 may be formed integral with one another, either from similar material or different materials, for example, using a multi-step molding process.


Referring to FIGS. 4-15, various configurations for the distal and proximal ends 438A and 438B of the release strand tube 438 will be described. In each of these embodiments, the tubular body 435′ includes a first lumen 484 configured to receive the secondary release wire 475 and a second lumen 481 configured to receive a secondary support strand 481. The secondary support strand 481 is connected to the proximal end 483 of the secondary belt support member 454. As will be described hereinafter, in each embodiment, the secondary support strand 481 is in turn connected to the release strand tube 438. Movement of the release strand tube 438 will be translated through the secondary support strand 481 and result in a corresponding force on the secondary belt support member 454.


In the embodiment illustrated in FIG. 4, both of the lumens 482 and 484 extend to the distal face of the distal end 438A′ of the release strand tube 438 and the corresponding strand/wire enters straight in to the respective lumen 482, 484. The embodiment of FIG. 6 is similar and again both of the lumens 482 and 484 extend to the distal face of the distal end 438A″ of the release strand tube 438 and the corresponding strand/wire enters straight in to the respective lumen 482, 484. The distal portion 438A″ further includes a tube 478 manufactured from tetrafluoroethylene or the like which surrounds the secondary support strand 481 and secondary release wire 475 to provide greater protection therefore. The tube 478 may be bonded, welded, heat shrunk or otherwise attached to the distal end 438A″. Turning to FIG. 7, the lumen 482 extends to the front face of distal end 438′″ and the secondary support strand 481 is received therein. To further facilitate entry of the secondary release wire 475 in to lumen 484, a portion of the upper surface of distal end 438A′″ is removed at 477 to enlarge the opening into the lumen 484. The distal end 438A′″ of FIG. 8 is similar to that of FIG. 7 and additionally includes the tube 478 as described with respect to FIG. 6.


Referring to FIGS. 9-14, various embodiments of the proximal end 438B of the release strand tube 438 will be described. The proximal end 438B′ illustrated in FIG. 9 is similar to the embodiment of FIG. 3 and includes an access opening 439 to access the secondary release wire 475. In the present embodiment, the secondary release wire 475 is glued, bonded or otherwise adhered at 429 within the lumen 484 adjacent to the proximal end 438B′. As such, the secondary release wire 475 can be pulled up from the access opening 439 as indicated by arrow A, but will not come free from the lumen 484. Similarly, the secondary support strand 481 is glued, bonded or otherwise adhered at 429 within the lumen 482 adjacent to the proximal end 438B′. While secondary support strand 481 is illustrated as being bonded adjacent proximal end 438B′, such is not required, and secondary support strand 481 may be bonded further distal along the lumen 482. Additionally, the secondary support strand 481 may be bonded at more than one location. As explained above, bonding of the secondary support strand 481 to the release strand tube 438 causes the secondary support strand 481, and thereby the secondary belt support member 454, to move with the release strand tube 438.


The proximal end 438B″ of FIG. 10 is similar to the embodiment of FIG. 9, except that the secondary release wire 475 is not bonded, but instead is free to be pulled free through the access opening 439. In both embodiments of FIGS. 9 and 10, instead of a complete opening 439, such may be formed as a closed skive cut which is bent or the like to cause opening thereof as desired.


With respect to the proximal end 438B′″ of the release strand tube 438 illustrated in FIG. 11, the secondary release wire 475 does not extend to the end of the tube, but instead terminates a distance L from the end. The secondary release wire 475 will still be accessible through the access opening 439 and may either be bonded, as illustrated, or free. The additional length L of the release strand tube 438 will be less rigid without the secondary release wire 475, which increases the ability to snag the release strand tube 438 during the initial passage thereof through the patient. Alternatively, the secondary support strand 481 may terminate a distance from the end, for example, prior to the access opening 439, while the secondary release wire 475 extends substantially to the end. In yet another embodiment, both the secondary release wire 475 and the secondary support strand 481 may terminate at least a distance L from the end of the release strand tube 438, thereby providing a substantially flexible proximal end 438B′″.


Referring to FIG. 12, the access opening 439 extends to the end of proximal end 438B″″, making the secondary release wire 475 easily accessible. To prevent entanglement or the like of the release wire 475 during passage of the release strand tube 438 through the patient, a heat shrink wrap 447 or the like may be provided over the proximal end 438B″″. The heat shrink wrap 447 may be made from tetrafluoroethylene, polyolefin or other suitable materials. The heat shrink wrap 447 may be configured to be removed prior to actuation of the secondary release wire 475 or the release wire 475 may be accessible through the access opening 439 with the heat shrink wrap 447 still on the proximal end 438B″″.


Referring to FIGS. 13 and 14, a release strand tube 438 with a separable proximal end 438B′″″ is illustrated. The proximal end 438B′″″ abuts an intermediate portion 438C of the release strand tube 438 and is maintained thereto via a heat shrink tube 478. Other connecting means, for example, adhesives, welding, bonding, clips, straps or any other suitable means, may be used to interconnect the proximal end 438B′″″ to the intermediate portion 438C. The intermediate portion 438C may be integral with or a separate component from the distal end 438A. The secondary release wire 475 extends into the proximal end 438B′″″ and is bonded thereto as indicated at 429. The secondary support strand 481 may extend into the proximal end 438B′″″, but is not bonded thereto. The secondary support strand 481 is bonded in the intermediate portion 438C or the distal end 438A. To actuate the secondary release wire 475, the proximal end 438B′″″ is disconnected from the intermediate portion 438C, as illustrated in FIG. 14, by bending, twisting or the like to break the tube 478 in the illustrated embodiment. Other detachment mechanisms may be used if different connecting means are utilized. The proximal end 438B′″″ can then be moved proximally relative to the intermediate portion 438C, thereby pulling the secondary release wire 475.


While FIGS. 3-14 illustrate various configurations of the release strand tube 438, other configurations may also be utilized without departing from the invention.


Referring again to FIG. 2, inflation port 421 extends proximally from the proximal end 416 of the ipsilateral leg 404 of the graft 401. The inflation port 421 is coupled to a distal end 487 of the inflation tube 444 by a retention mechanism, such as a retention wire 488. Typically, the retention wire 488 extends from the inflation port 421 proximally to the proximal adapter 427 of delivery system 400. The distal end 487 of the inflation tube 444 can be disengaged from the inflation port 421 by pulling on a proximal end 491 of retention wire 488. The retention wire 488 may be a small diameter wire made from a material such as a polymer, stainless steel, nickel titanium, other alloy or metal, or composite; in a particular embodiment of the invention, retention wire 488 may be a spring formed of a variety of suitable spring materials. Alternatively, the retention wire 488 may have a braided or stranded configuration.



FIG. 2 illustrates proximal adapter 427 which is suitable for use with embodiments of the present invention. The proximal adapter 427 houses the proximal termination of the primary release wires 442 and 443, guidewire tube 436, retention wire 488 and release wire tube 441. The proximal adapter 427 has a first side arm 492 with an inner lumen 493 that secures the proximal end of the release wire tube 441 and second side arm 499 having an inner lumen in fluid communication with inflation material lumen that houses proximal end 491 of retention wire 488. The proximal adapter 427 has a distal primary release wire handle 495 and a proximal s primary release wire handle 496 that are disposed in a nested configuration on the first side arm 492. A proximal end of the proximal primary release wire 443 is secured to the proximal primary release-wire handle 496. A proximal end of the distal primary release wire 442 is secured to the distal primary release wire handle 495. This configuration prevents the operator from inadvertently deploying or activating the proximal primary release wire 443 prior to deployment or activation of the distal primary release wire 442 which could result in an undesirable graft 401 deployment sequence. Various proximal adapters 427 are illustrated in U.S. Patent Application Publication No. US 2004/0138734, which is incorporated herein in its entirety by reference.



FIG. 3 illustrates a belt support member assembly 507 of the delivery system 400. The distal end 508 of the secondary belt support member 454 is slidingly disposed within the secondary belt support member housing 453 that is secured to the primary belt support member 452. The second distal primary belt 462 is secured to the primary belt support member 452 (which in this embodiment is the guidewire tube 436) and extends radially therefrom through an optional second distal primary standoff tube 511. Similar optional first distal primary standoff tube 512, proximal primary standoff tube 513 and optional secondary standoff tube 514 are disposed on the first distal primary belt 458, proximal primary belt 456 and secondary belt 464, respectively.


Having described the components of the various embodiments of the delivery system 400, operation of an illustrative embodiment will be described with reference to FIGS. 15-32. FIG. 15 illustrates generally the anatomy of a patient's heart 515, aorta 516 and iliac arteries 517. The aorta 516 extends from the heart 515 and descends into the abdomen of the patient's body. An aneurysm 518 is disposed in the aorta 516 just below the renal arteries 519. The aorta 516 branches into the right and left iliac arteries 517 below the aneurysm, which then become the femoral arteries 520.


One delivery procedure of the present invention begins with delivery of a first guidewire 530 into an access hole 531 in a femoral artery, the right femoral artery 532 for the procedure depicted in FIG. 16, and advanced distally through the iliac artery 517 and into the patient's aorta 516. Access into the femoral artery 532 is generally accomplished with a standard sheath and trocar kit, although sheathless access may also be employed. It should be noted that although the procedure described herein and illustrated in FIGS. 15-32 is initiated in the right femoral artery 532, the same procedure could be carried out beginning in the left femoral artery 533 with the orientation reversed.


Referring to FIG. 17, with the first guidewire 530 positioned across the aneurysm 518, a second guidewire 534 is then introduced into the ipsilateral or right femoral artery 532 and guided into the iliacs 517 and then back down into the contralateral or left femoral artery 533. A distal end 535 of the second guidewire 534 may then be captured with a snare 536 or similar device inserted through an access hole 537 in the left femoral artery 533. The distal end 535 of the second guidewire 534 may then be pulled out of the left femoral artery 533 through the same left femoral artery access hole 537, providing a continuous length of wire passing through each iliac artery 517 via the left and right femoral artery access holes 537 and 531, as shown in FIG. 17.


Once the second guidewire 534 exits the access hole 537 in the left femoral artery 533, a tubular catheter 538 may be advanced over the second guidewire 534 through the left femoral artery access hole 537 so as to extend out of the body from the access hole 531 in the right femoral artery 532 as shown in FIG. 18. This provides a continuous conduit between the right and left iliac arteries 517. With a distal end 541 of the tubular catheter 538 extending from the access hole 531 in the right femoral artery 532, a distal end 542 of the release strand tube 438 may then be affixed to a proximal end 543 of the second guidewire 534 as shown in FIG. 19. Each of the various embodiments of the release strand tube 438 described above may be utilized herein. Other variations of this tube are also within the scope of the present invention.


The second guidewire 534 is then pulled out of the tubular catheter 538 from the left femoral artery access hole 537, in the direction indicated by the arrow 544 in FIG. 19, so that the release strand tube 438 then extends through the tubular catheter 538 from the right iliac artery to the left iliac artery. The tubular catheter 538 may then be withdrawn, leaving the release strand tube 438 extending through the left and right iliac arteries 517 from the access hole 531 in the right femoral artery 532 to the access hole 537 in the left femoral artery 533, as shown in FIG. 20. The first guidewire 530 remains in position across the aneurysm 518.


Referring to FIG. 21, the delivery system 400 is then advanced into the patient's right femoral artery 532 through the access hole 531 over the first guidewire 530. It may be desirable to apply tension to the release strand tube 438 as the delivery system 400 is advanced to the vicinity of the aneurysm 518 so as to remove slack in the tube 438 and prevent tangling thereof or the like. Tension on the release strand tube 438 may also help to prevent twisting of the delivery system 400 during insertion.


An optional marker band 551 may disposed adjacent nosepiece 434 or generally in the vicinity of the distal end of the delivery system 400. Such a marker band 551 may also be integral with the delivery system 400; for example, it may be incorporated as part of the distal nosepiece 434. A useful marker 551 can be one that does not add to the profile of the delivery system 400. Such a marker may be used to aid the operator in introducing the delivery system 400 without twisting. Various types of marker bands are described in U.S. Patent Application Publication No. US 2004/0138734, which is incorporated herein in its entirety by reference.


The delivery system 400 is positioned in a location suitable for initiating the deployment process, such as one in which the distal end 425 of the delivery system 400 is disposed beyond, or distal to the position in which the graft 401 will be placed, as shown in FIG. 22. This position allows the proximal end 483 of the secondary belt support member 454 to be laterally displaced without mechanical interference from the patient's vasculature.


Once the distal section 426 of the elongate shaft 423 and the endovascular graft 401 are positioned, the deployment process is initiated. First, the outer tubular member 431 is proximally retracted by pulling on the proximal end 433 of the outer tubular member 431 relative to the inner tubular member 430. The inner tubular member 430 should be maintained in a stable axial position, as the position of the inner tubular member 430 determines the position of the constrained bifurcated graft 401 prior to deployment. Upon retraction of the outer tubular member 431, the constrained bifurcated graft 401 is exposed and additional slack is created in the release strand tube 438 as shown in more detail in FIG. 23.


Alternatively, a variety of different components may be substituted for the outer tubular member 431 in some of the embodiments of the invention. For instance, a shroud, corset, mummy-wrap, or other cover may be released or actuated to expose the constrained graft 401 after the delivering system 400 is introduced into the vasculature.


The slack in the release strand tube 438 is taken up by applying tension to the release strand tube 438 as shown by the arrow 563 in FIG. 23. Since, in the present embodiment, the release strand tube 438 is connected directly to the secondary belt support member 454, tension on the release strand tube 438 is applied directly to the secondary belt support member 454. As such, the secondary belt support member 454 begins to slide within the secondary belt support member housing 453 in a proximal direction as shown by the arrow 564 in FIG. 25. The secondary belt support member 454 continues to slide proximally until all the slack is removed from an axially compressed or folded portion 565 of the contralateral leg 405 of the graft 401 shown in FIG. 24 and the primary and secondary belt support members 452 and 454 are oriented relative to the secondary belt support member housing 453 as generally shown in FIG. 26. Rotational movement of the secondary belt support member 454 relative to the secondary belt support member housing 453 is prevented by the non-circular or asymmetric cross section of the member 454 as shown in FIG. 3. This prevents the contralateral leg 405 from twisting or becoming entangled with other components of the graft 401 or delivery system 400 during deployment.


Axial compression of all or a portion of the contralateral leg 405 while the graft 401 is in a constrained state within the delivery system 400 prior to deployment allows the axial position of the two proximal self-expanding members 407 and 408 to be axially offset from each other. Alternatively, graft legs 404 and 405 having different lengths may be used to prevent overlap of the self-expanding members 407 and 408 within the delivery system 400. The cross sectional profile or area of the overlap self-expanding members 407 and 408 is generally greater than that of the adjacent polymer material portion of the legs 404 and 405 of the graft 401, so eliminating the overlap can be desirable. The self-expanding members 407 and 408 are typically made of a metal or metallic alloy and maintain a cylindrical configuration, even when in a constrained state. The polymer material of the legs 404 and 405 or main body portion 402 of the graft 401, by contrast, is relatively soft and malleable and can conform to the shape of whatever lumen in which it may be constrained. Placing both proximal self-expanding members 407 and 408 adjacent each other in a compressed state at a single axial position within the delivery system 400 would require a configuration in which two objects having an approximately circular cross section are being placed within another circular lumen. Such a configuration generates a significant amount of wasted or unused cross sectional area within that axial position of the delivery system 400 and would likely result in less flexibility and greater cross section than a delivery system 400 in which the proximal self-expanding members 407 and 408 are axially offset.


A gap 566 indicated by the arrows 567 in FIG. 27 allows the proximal end 483 of the secondary belt support member 454 to move in a lateral direction without mechanical interference from the carina 568 of the iliac artery bifurcation 569.


Gap 566 may vary depending on the patient's particular anatomy and the specific circumstances of the procedure.


The lateral movement of the contralateral leg 405 and secondary belt support member 454 is accomplished by application of tension on the release strand tube 438. This movement away from the primary belt support member 452 allows the secondary belt support member 454 to transition from alignment with the right iliac artery 572 to alignment with the left iliac artery 573 as shown in FIG. 27. As illustrated in FIGS. 27-31, an obturator 598 may be utilized to assist in moving and positioning the secondary belt support member 454 and the contralateral leg 405. The obturator 598 is slid over the release strand tube 438 and can be connected thereto with a hemostatic valve 599 or the like. The size of the release strand tube 438, relative to the small diameter strands, is large enough such that the hemostatic valve 599 provides a secure connection between the obturator 598 and the release strand tube 438. As such, movement of the obturator 598 will directly control movement of the release strand tube 438, and thereby the secondary belt support member 454 which is attached thereto. Even in the multi-lumen embodiments of the release strand tube 438 illustrated in FIGS. 4-14, the secondary support strand 481 is connected to the release strand tube 438 at one or more points, such that operation of the obturator 598 will allow for easy control of the secondary belt support member 454.


Once the ipsilateral leg 404 of the graft 401 and contralateral leg 405 of the graft 401 are aligned with the right and left iliac arteries 572 and 573, respectively, the delivery system 400 may then be retracted proximally, as shown by the arrow 574 in FIG. 28, so as to reposition the distal section 426 of the elongate shaft 423 and the bifurcated graft 401 into the desired position for deployment as shown in FIG. 29.


When deploying the graft 401 in the abdominal aorta 516 it is generally desirable to ensure that the distal end 403 of the graft main body portion 402 is installed proximal to, or below, the renal arteries 519 in order to prevent their significant occlusion. However, the distal self-expanding members 411 and 422 of the graft 401 may, depending upon the anatomy of the patient and the location of the aneurysm 518, partially or completely span the ostia 575 of one or both renal arteries 519. It can be desirable, however, to ensure that ostia 575 of the renal arteries 519 are not blocked by the distal end 403 of the graft main body portion 402. As discussed previously, a variety of imaging markers may be used on either or both the delivery system 400 and the graft 401 itself to help guide the operator during the graft positioning process.


After proper positioning, the first and second distal self-expanding members 411 and 422 may then be deployed. The operator first unscrews or otherwise detaches a threaded portion of the distal primary release wire handle 495 and the distal primary release wire handle 495 is proximally retracted, which in turn retracts the distal primary release wire 442 in a proximal direction. As the distal end 582 of the distal primary release wire 442 passes through the end loops 472 and 473 of the first distal primary belt 458 and second distal primary belt 462, the end loops 472 and 473 are released, freeing the first distal self-expanding member 422 and second distal self-expanding member 411 to self-expand in an outward radial direction so to contact an inner surface 583 of the patient's aorta 516. The first and second distal primary belts 458 and 462 remain secured to the primary belt support member 452 and will eventually be retracted from the patient with the delivery system 400 after deployment is complete.


As the first and second distal self-expanding members 411 and 422 expand and contact the aorta 516, a distal end 403 of the graft main body portion 402 opens with the self-expanding members 411 and 422 and promotes opening of the graft polymer material portion from the flow of blood into the distal end 403 of the graft main body portion 402 with a “windsock” effect. As a result, once the first and second distal self-expanding members 411 and 422 are expanded to contact the aorta inner surface, the graft main body portion 402 and legs 404 and 405 balloon out or expand while the proximal ends 416 and 417 of the legs 404 and 405 of the graft 401 remain constricted due to the constrained configuration of the proximal self-expanding members 407 and 408 of the ipsilateral and contralateral legs 404 and 405. At this point, there typically will be partial or restricted blood flow through and around the graft 401.


Bifurcated graft 401 may then be optionally be inflated with an inflation material via inflation tube 444 and inflation port 421 until the inflatable channels 418 and inflatable cuffs 413, 414 and 415 have been filled to a sufficient level to meet sealing and other structural requirements necessary for the bifurcated graft main body portion 402 and the ipsilateral and contralateral legs 404 and 405 to meet clinical performance criteria. Inflating the graft 401 prior to deploying the proximal and distal self-expanding members 407 and 408, respectively, may be useful in anatomies where the vasculature is tortuous or angled.


Next, the proximal self-expanding member 407 of the ipsilateral leg 404 is deployed. Deployment of the first and second distal self-expanding member 411 and 422 has exposed the proximal primary release wire handle 496, making it accessible to the operator. The proximal primary release wire handle 496 is retracted proximally so as to deploy the proximal primary belt 456 and proximal self-expanding member 407 of the ipsilateral leg 404.



FIGS. 29 and 30 depict an enlarged view of the proximal end 483 of the secondary belt support member 454. The proximal self-expanding member 408 of the contralateral leg 405 is secured to the proximal end 417 of the contralateral leg 405. The proximal self-expanding member 408 is constrained in a radial direction by the secondary belt 464, which has end loops 476 releasably constrained by the distal end 587 of the secondary release wire 475. To access the proximal end 477 of the secondary release wire 475, the covering 437 over access opening 439 is peeled away. The proximal end of the secondary release wire 475 is accessed through the access opening 439 and the secondary release wire is pulled in the proximal direction to release the distal end 587 of the secondary release wire 475 from the end loops 468 of the secondary belt 464 so as to release the radial constraint on the proximal self-expanding member 408 imposed by the secondary belt 464. Upon release of the radial constraint, the proximal self-expanding member 408 expands so as to contact an inside surface 592 of the left iliac artery 573 as shown in FIG. 31. Once the proximal self-expanding member 408 of the contralateral leg 405 is expanded, the operator may then apply tension to the obturator 598 in the proximal direction to withdraw the obturator 598 which, through its connection, withdraws the release strand tube 438, which in turn, withdraws the secondary belt support member 454. As shown in FIG. 32, the secondary belt support member 454 slides from the housing 453 and is easily removed from the patient's vasculature through the left femoral artery access hole 537.

Claims
  • 1. A delivery system for a bifurcated intracorporeal device comprising: a shaft having a distal section supporting:a primary support member positioned to be disposed within at least a primary portion of the bifurcated intracorporeal device; anda secondary support member adjacent the primary support member and positioned to be disposed within a secondary portion of the bifurcated intracorporeal device;at least one belt configured to be circumferentially disposed about a portion of the secondary support member so to at least partially constrain the secondary portion of the bifurcated intracorporeal device;a tube including a distal end which is directly connected to the secondary support member such that movement of the tube is translated to a corresponding force on the secondary support member; anda release member configured to engage and releasably secure the belt in a constraining configuration, the release member extending through at least a portion of the tube such that the release member is accessible adjacent a proximal end of the tube.
  • 2. The delivery system of claim 1 wherein the bifurcated intracorporeal device is a bifurcated endovascular graft.
  • 3. The delivery system of claim 1 wherein the release member comprises a release wire moveably disposed within opposed looped ends of the belt.
  • 4. The delivery system of claim 1 further comprising a secondary support member housing secured to the primary support member wherein the secondary support member is configured to move axially within the housing and the housing and secondary support member are configured to prevent relative rotational movement therebetween.
  • 5. The delivery system of claim 1 wherein the distal end of the tube is adhesively bonded to the secondary support member.
  • 6. The delivery system of claim 1 wherein the distal end of the tube is welded to the secondary support member.
  • 7. The delivery system of claim 1 wherein the distal end of the tube is formed integrally with the secondary support member.
  • 8. The delivery system of claim 1 wherein a portion of the distal end of the tube is removed to define an enlarged opening into a tube lumen.
  • 9. The delivery system of claim 1 wherein an access opening in communication with a tube lumen is formed adjacent the proximal end of the tube to facilitate access to the release wire.
  • 10. The delivery system of claim 9 wherein the access opening is formed by cutting away a portion of the proximal end of the tube.
  • 11. The delivery system of claim 9 wherein the access opening is formed by providing a skive portion of the proximal end of the tube which is broken open to provide access.
  • 12. The delivery system of claim 9 further comprising a removable cover positioned over the access opening.
  • 13. The delivery system of claim 9 further comprising a heat shrink wrap over at least a portion of the access opening.
  • 14. The delivery system of claim 9 wherein the release member is bonded within the tube lumen proximal from the access opening.
  • 15. The delivery system of claim 1 wherein the release member is bonded within a tube lumen adjacent the proximal end and the proximal end of the tube is releasably connected to an intermediate portion of the tube such that the release member is actuated by disconnecting the proximal end of the tube from the intermediate portion and moving the proximal end of the tube proximally relative to the intermediate portion.
  • 16. The delivery system of claim 15 wherein the intermediate portion is formed integrally with the distal end of the tube.
US Referenced Citations (1096)
Number Name Date Kind
3076737 Roberts Feb 1963 A
3540431 Uddin Nov 1970 A
3631854 Fryer et al. Jan 1972 A
3657744 Ersek Apr 1972 A
3669586 Kramer Jun 1972 A
3814137 Martinez Jun 1974 A
3818511 Goldberg et al. Jun 1974 A
3902198 Cooper Sep 1975 A
3991767 Miller et al. Nov 1976 A
4096227 Gore Jun 1978 A
4110392 Yamazaki Aug 1978 A
4140126 Choudhury Feb 1979 A
4183102 Guiset Jan 1980 A
4187390 Gore Feb 1980 A
4208745 Okita Jun 1980 A
4214587 Sakura, Jr. Jul 1980 A
4229838 Mano Oct 1980 A
4248924 Okita Feb 1981 A
4385093 Hubis May 1983 A
4416028 Eriksson et al. Nov 1983 A
4434797 Silander Mar 1984 A
4459252 MacGregor Jul 1984 A
4474630 Planck et al. Oct 1984 A
4478665 Hubis Oct 1984 A
4482516 Bowman et al. Nov 1984 A
4497074 Rey et al. Feb 1985 A
4503569 Dotter Mar 1985 A
4512338 Balko et al. Apr 1985 A
4550447 Seiler, Jr. et al. Nov 1985 A
4552707 How Nov 1985 A
4562596 Kornberg Jan 1986 A
4577631 Kreamer Mar 1986 A
4580568 Gianturco Apr 1986 A
4592754 Gupte et al. Jun 1986 A
4617932 Kornberg Oct 1986 A
4647416 Seiler, Jr. et al. Mar 1987 A
4655769 Zachariades Apr 1987 A
4655771 Wallsten Apr 1987 A
4665906 Jervis May 1987 A
4705517 DiPisa, Jr. Nov 1987 A
4731073 Robinson Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4740207 Kreamer Apr 1988 A
4743480 Campbell et al. May 1988 A
4760102 Moriyama et al. Jul 1988 A
4776337 Palmaz Oct 1988 A
4787899 Lazarus Nov 1988 A
4816028 Kapadia et al. Mar 1989 A
4830003 Wolff et al. May 1989 A
4856516 Hillstead Aug 1989 A
4871365 Dumican Oct 1989 A
4877661 House et al. Oct 1989 A
4902423 Bacino Feb 1990 A
4932938 Goldberg et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4955899 Della et al. Sep 1990 A
4957669 Primm Sep 1990 A
4985296 Mortimer, Jr. Jan 1991 A
4994071 MacGregor Feb 1991 A
4994077 Dobben Feb 1991 A
5019090 Pinchuk May 1991 A
5041126 Gianturco Aug 1991 A
5052998 Zimmon Oct 1991 A
5059211 Stack et al. Oct 1991 A
5064435 Porter Nov 1991 A
5098625 Huang et al. Mar 1992 A
5100422 Berguer et al. Mar 1992 A
5104399 Lazarus Apr 1992 A
5104400 Berguer et al. Apr 1992 A
5104404 Wolff Apr 1992 A
5108424 Hoffman, Jr. et al. Apr 1992 A
5110527 Harada et al. May 1992 A
5116365 Hillstead May 1992 A
5122154 Rhodes Jun 1992 A
5123917 Lee Jun 1992 A
5133732 Wiktor Jul 1992 A
5135536 Hillstead Aug 1992 A
5139480 Hickle et al. Aug 1992 A
5150304 Berchem et al. Sep 1992 A
5151105 Kwan-Gett Sep 1992 A
5152782 Kowligi et al. Oct 1992 A
5156620 Pigott Oct 1992 A
5163955 Love Nov 1992 A
5167614 Tessmann Dec 1992 A
5171262 MacGregor Dec 1992 A
5192310 Herweck et al. Mar 1993 A
5195984 Schatz Mar 1993 A
5197976 Herweck et al. Mar 1993 A
5197978 Hess Mar 1993 A
5201757 Heyn et al. Apr 1993 A
5202352 Okada et al. Apr 1993 A
5207695 Trout, III May 1993 A
5217483 Tower Jun 1993 A
5219355 Parodi et al. Jun 1993 A
5226913 Pinchuk Jul 1993 A
5234456 Silvestrini Aug 1993 A
5250059 Andreas et al. Oct 1993 A
5275622 Lazarus et al. Jan 1994 A
5282823 Schwartz et al. Feb 1994 A
5282824 Gianturco Feb 1994 A
5282847 Trescony et al. Feb 1994 A
5290305 Inoue Mar 1994 A
5292331 Boneau Mar 1994 A
5304200 Spaulding Apr 1994 A
5314472 Fontaine May 1994 A
5316023 Palmaz et al. May 1994 A
5320100 Herweck et al. Jun 1994 A
5321109 Bosse et al. Jun 1994 A
5330528 Lazim Jul 1994 A
5334164 Guy et al. Aug 1994 A
5334201 Cowan Aug 1994 A
5344426 Lau et al. Sep 1994 A
5344444 Glastra Sep 1994 A
5344451 Dayton Sep 1994 A
5350398 Pavcnik Sep 1994 A
5354310 Garnic et al. Oct 1994 A
5354329 Whalen Oct 1994 A
5360443 Barone et al. Nov 1994 A
5365996 Crook Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5370682 Schmitt Dec 1994 A
5370691 Samson Dec 1994 A
5374473 Knox et al. Dec 1994 A
5382261 Palmaz Jan 1995 A
5383892 Cardon et al. Jan 1995 A
5383928 Scott et al. Jan 1995 A
5387235 Chuter et al. Feb 1995 A
5389106 Tower et al. Feb 1995 A
5391147 Imran et al. Feb 1995 A
5397345 Lazarus Mar 1995 A
5405377 Cragg Apr 1995 A
5405378 Strecker Apr 1995 A
5405379 Lane Apr 1995 A
5411550 Herweck et al. May 1995 A
5415634 Glynn et al. May 1995 A
5423851 Samuels Jun 1995 A
5433909 Martakos et al. Jul 1995 A
5437900 Kuzowski Aug 1995 A
5441515 Khosravi et al. Aug 1995 A
5443458 Eury Aug 1995 A
5443498 Fontaine Aug 1995 A
5445646 Euteneuer et al. Aug 1995 A
5447152 Kohsai et al. Sep 1995 A
5449373 Pinchasik et al. Sep 1995 A
5456713 Chuter Oct 1995 A
5464419 Glastra Nov 1995 A
5464449 Ryan et al. Nov 1995 A
5466509 Kowllgl et al. Nov 1995 A
5474824 Martakos et al. Dec 1995 A
5476506 Lunn Dec 1995 A
5476589 Bacino Dec 1995 A
5478330 Imran et al. Dec 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5505887 Zdrahala et al. Apr 1996 A
5507769 Marin et al. Apr 1996 A
5507770 Turk Apr 1996 A
5512360 King Apr 1996 A
5514154 Lau et al. May 1996 A
5522880 Barone et al. Jun 1996 A
5522881 Lentz Jun 1996 A
5522883 Slater et al. Jun 1996 A
5524633 Heaven et al. Jun 1996 A
5527353 Schmitt Jun 1996 A
5527355 Ahn Jun 1996 A
5529653 Glastra Jun 1996 A
5529820 Nomi et al. Jun 1996 A
5534024 Rogers et al. Jul 1996 A
5536274 Neuss Jul 1996 A
5545135 Iacob et al. Aug 1996 A
5549662 Fordenbacher Aug 1996 A
5549663 Cottone, Jr. Aug 1996 A
5552100 Shannon et al. Sep 1996 A
5554180 Turk Sep 1996 A
5554181 Das Sep 1996 A
5554183 Nazari Sep 1996 A
5554185 Block et al. Sep 1996 A
5556414 Turi Sep 1996 A
5556426 Popadiuk et al. Sep 1996 A
5560986 Mortimer, Jr. Oct 1996 A
5562697 Christiansen Oct 1996 A
5562724 Vorwerk et al. Oct 1996 A
5562726 Chuter Oct 1996 A
5562727 Turk et al. Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5569295 Lam Oct 1996 A
5571171 Barone et al. Nov 1996 A
5571172 Chin Nov 1996 A
5571173 Parodi Nov 1996 A
5575817 Martin Nov 1996 A
5575818 Pinchuk Nov 1996 A
5578071 Parodi Nov 1996 A
5578072 Barone et al. Nov 1996 A
5588964 Imran et al. Dec 1996 A
5591195 Taheri et al. Jan 1997 A
5591197 Orth et al. Jan 1997 A
5591229 Parodi Jan 1997 A
5597378 Jervis Jan 1997 A
5603721 Lau et al. Feb 1997 A
5607478 Lentz et al. Mar 1997 A
5609624 Kalis Mar 1997 A
5609625 Piplani et al. Mar 1997 A
5609627 Goicoechea et al. Mar 1997 A
5609628 Keranen Mar 1997 A
5609629 Fearnont Mar 1997 A
5612885 Love Mar 1997 A
5618301 Hauenstein et al. Apr 1997 A
5620763 House et al. Apr 1997 A
5626599 Bourne et al. May 1997 A
5628783 Quiachon et al. May 1997 A
5628786 Banas et al. May 1997 A
5628788 Pinchuk May 1997 A
5630829 Lauterjung May 1997 A
5632772 Alcime et al. May 1997 A
5632840 Campbell May 1997 A
5639278 Dereume et al. Jun 1997 A
5641373 Shannon et al. Jun 1997 A
5645915 Kranzler et al. Jul 1997 A
5649978 Samson Jul 1997 A
5653745 Trescony et al. Aug 1997 A
5653746 Schmitt Aug 1997 A
5656029 Imran et al. Aug 1997 A
5662675 Stockert et al. Sep 1997 A
5662700 Lazarus Sep 1997 A
5665115 Cragg Sep 1997 A
5665117 Rhodes Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5669936 Lazarus Sep 1997 A
5676671 Inoue Oct 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5681346 Orth et al. Oct 1997 A
5683449 Marcade Nov 1997 A
5683451 Lenker et al. Nov 1997 A
5683453 Palmaz Nov 1997 A
5690644 Yurek et al. Nov 1997 A
5693083 Baker et al. Dec 1997 A
5693084 Chuter Dec 1997 A
5693087 Parodi Dec 1997 A
5693088 Lazarus Dec 1997 A
5697968 Rogers et al. Dec 1997 A
5697971 Fischell et al. Dec 1997 A
5700285 Myers et al. Dec 1997 A
5707378 Ahn et al. Jan 1998 A
5707388 Lauterjung Jan 1998 A
5708044 Branca Jan 1998 A
5709701 Parodi Jan 1998 A
5709703 Lukie et al. Jan 1998 A
5712315 Dolan Jan 1998 A
5713917 Leonhardt et al. Feb 1998 A
5716393 Lindenberg et al. Feb 1998 A
5716395 Myers et al. Feb 1998 A
5718159 Thompson Feb 1998 A
5718973 Lewis et al. Feb 1998 A
5720776 Chuter et al. Feb 1998 A
5723004 Dereume et al. Mar 1998 A
5725547 Chuter Mar 1998 A
5725549 Lam Mar 1998 A
5728131 Frantzen et al. Mar 1998 A
5733303 Israel et al. Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5735892 Myers et al. Apr 1998 A
5735893 Lau et al. Apr 1998 A
5735897 Buirge Apr 1998 A
5741324 Glastra Apr 1998 A
5741325 Chaikof et al. Apr 1998 A
5747128 Campbell et al. May 1998 A
5749880 Banas et al. May 1998 A
5749894 Engelson May 1998 A
5749920 Quiachon et al. May 1998 A
5749921 Lenker et al. May 1998 A
5755772 Evans et al. May 1998 A
5755776 Al-Saadon May 1998 A
5766203 Imran et al. Jun 1998 A
5769882 Fogarty et al. Jun 1998 A
5769885 Quiachon et al. Jun 1998 A
5769887 Brown et al. Jun 1998 A
5772884 Tanaka et al. Jun 1998 A
5776142 Gunderson Jul 1998 A
5776161 Globerman Jul 1998 A
5776183 Kanesaka et al. Jul 1998 A
5780807 Saunders Jul 1998 A
5782789 Herweck et al. Jul 1998 A
5782838 Beyar et al. Jul 1998 A
5782904 White et al. Jul 1998 A
5782909 Quiachon et al. Jul 1998 A
5785679 Abolfathi et al. Jul 1998 A
5788626 Thompson Aug 1998 A
5789047 Sasaki et al. Aug 1998 A
5797951 Mueller Aug 1998 A
5798924 Eufinger et al. Aug 1998 A
5799384 Schwartz et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5800512 Lentz et al. Sep 1998 A
5800515 Nadal et al. Sep 1998 A
5800518 Piplani et al. Sep 1998 A
5800522 Campbell et al. Sep 1998 A
5800524 Borghi Sep 1998 A
5800526 Anderson et al. Sep 1998 A
5810870 Myers et al. Sep 1998 A
5810872 Kanesaka et al. Sep 1998 A
5814405 Branca et al. Sep 1998 A
5817102 Johnson et al. Oct 1998 A
5824037 Fogarty et al. Oct 1998 A
5824039 Piplani et al. Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824042 Lombardi et al. Oct 1998 A
5824044 Quiachon et al. Oct 1998 A
5824046 Smith et al. Oct 1998 A
5824058 Ravenscroft et al. Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5827310 Marin et al. Oct 1998 A
5827320 Richter et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5833651 Donovan et al. Nov 1998 A
5833707 Mcintyre et al. Nov 1998 A
5836964 Richter et al. Nov 1998 A
5836966 St. Germain Nov 1998 A
5840775 Howard, Jr. et al. Nov 1998 A
5843158 Lenker et al. Dec 1998 A
5843160 Rhodes Dec 1998 A
5843162 Inoue Dec 1998 A
5843164 Frantzen et al. Dec 1998 A
5843166 Lentz et al. Dec 1998 A
5843167 Dwyer et al. Dec 1998 A
5843170 Ahn Dec 1998 A
5843173 Shannon et al. Dec 1998 A
5843175 Frantzen Dec 1998 A
5853419 Imran Dec 1998 A
5855598 Pinchuk Jan 1999 A
5858556 Eckert et al. Jan 1999 A
5861027 Trapp Jan 1999 A
5871536 Lazarus Feb 1999 A
5871537 Holman et al. Feb 1999 A
5871538 Dereume Feb 1999 A
5873906 Lau et al. Feb 1999 A
5876432 Lau et al. Mar 1999 A
5891193 Robinson et al. Apr 1999 A
5904713 Leschinsky May 1999 A
5906619 Olson et al. May 1999 A
5906641 Thompson et al. May 1999 A
5910168 Meyers et al. Jun 1999 A
5910277 Ishino et al. Jun 1999 A
5911754 Kanesaka et al. Jun 1999 A
5916264 Von Oepen et al. Jun 1999 A
5919204 Lukic et al. Jul 1999 A
5922020 Klein et al. Jul 1999 A
5925061 Ogi et al. Jul 1999 A
5925075 Myers et al. Jul 1999 A
5931865 Silverman et al. Aug 1999 A
5935667 Calcote et al. Aug 1999 A
5939198 Howard, Jr. et al. Aug 1999 A
5944750 Tanner et al. Aug 1999 A
5948016 Jang Sep 1999 A
5954729 Bachmann et al. Sep 1999 A
5955016 Goldfarb Sep 1999 A
5957973 Quiachon et al. Sep 1999 A
5961545 Lentz et al. Oct 1999 A
5961546 Robinson et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5968090 Ratcliff et al. Oct 1999 A
5972023 Tanner et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5972441 Campbell et al. Oct 1999 A
5976155 Foreman et al. Nov 1999 A
5976179 Inoue Nov 1999 A
5976192 McIntyre et al. Nov 1999 A
5976650 Campbell et al. Nov 1999 A
5980530 Willard et al. Nov 1999 A
5980570 Simpson Nov 1999 A
5984955 Wisselink Nov 1999 A
5984956 Tweden et al. Nov 1999 A
5984964 Roberts et al. Nov 1999 A
5989287 Yang et al. Nov 1999 A
5993481 Marcade et al. Nov 1999 A
5993489 Lewis et al. Nov 1999 A
5997573 Quijano et al. Dec 1999 A
6001123 Lau Dec 1999 A
6004346 Wolff et al. Dec 1999 A
6004347 McNamara et al. Dec 1999 A
6004348 Banas et al. Dec 1999 A
6007575 Samuels Dec 1999 A
6015429 Lau et al. Jan 2000 A
6015431 Thornton et al. Jan 2000 A
6015432 Rakos et al. Jan 2000 A
6017362 Lau Jan 2000 A
6017364 Lazarus Jan 2000 A
6019778 Wilson et al. Feb 2000 A
6019779 Thorud et al. Feb 2000 A
6019787 Richard et al. Feb 2000 A
6022359 Frantzen Feb 2000 A
6024763 Lenker et al. Feb 2000 A
6025044 Campbell et al. Feb 2000 A
6027779 Campbell et al. Feb 2000 A
6027811 Campbell et al. Feb 2000 A
6030413 Lazarus Feb 2000 A
6030414 Taheri Feb 2000 A
6030415 Chuter Feb 2000 A
6036640 Corace et al. Mar 2000 A
6036702 Bachinski et al. Mar 2000 A
6036723 Anidjar et al. Mar 2000 A
6036724 Lentz et al. Mar 2000 A
6036725 Avellanet Mar 2000 A
6039754 Caro Mar 2000 A
6039758 Quiachon et al. Mar 2000 A
6042589 Marianne Mar 2000 A
6042605 Martin et al. Mar 2000 A
6042606 Frantzen Mar 2000 A
6045557 White et al. Apr 2000 A
6048484 House et al. Apr 2000 A
6051020 Goicoechea et al. Apr 2000 A
6053943 Edwin et al. Apr 2000 A
6059821 Anidjar et al. May 2000 A
6059823 Holman et al. May 2000 A
6060534 Ronan et al. May 2000 A
6063114 Nash et al. May 2000 A
6068626 Harrington et al. May 2000 A
6070589 Keith et al. Jun 2000 A
6074341 Anderson et al. Jun 2000 A
6075180 Sharber et al. Jun 2000 A
6077296 Shokoohi et al. Jun 2000 A
6077297 Robinson et al. Jun 2000 A
6077298 Tu et al. Jun 2000 A
6090128 Douglas Jul 2000 A
6093203 Uflacker Jul 2000 A
6096052 Callister et al. Aug 2000 A
6096070 Ragheb et al. Aug 2000 A
6098630 Papazoglou Aug 2000 A
6102918 Kerr Aug 2000 A
6102938 Evans et al. Aug 2000 A
6102940 Robichon et al. Aug 2000 A
6103172 Newman et al. Aug 2000 A
6106548 Roubin et al. Aug 2000 A
6110198 Fogarty et al. Aug 2000 A
6113628 Borghi Sep 2000 A
6117168 Yang et al. Sep 2000 A
6123722 Fogarty et al. Sep 2000 A
6124523 Banas et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6129756 Kugler et al. Oct 2000 A
6132457 Chobotov Oct 2000 A
6132459 Piplani et al. Oct 2000 A
6139572 Campbell et al. Oct 2000 A
6142973 Carleton et al. Nov 2000 A
6143014 Dehdashtian et al. Nov 2000 A
6143015 Nobles Nov 2000 A
6143016 Bleam et al. Nov 2000 A
6143021 Staehle Nov 2000 A
6143022 Shull et al. Nov 2000 A
6146389 Geitz Nov 2000 A
6146416 Andersen et al. Nov 2000 A
6146417 Ischinger Nov 2000 A
6149665 Gabbay Nov 2000 A
6149681 Houser et al. Nov 2000 A
6149682 Frid Nov 2000 A
6152944 Holman et al. Nov 2000 A
6152956 Pierce Nov 2000 A
6156063 Douglas Dec 2000 A
6156064 Chouinard Dec 2000 A
6159229 Jendersee et al. Dec 2000 A
6159237 Alt et al. Dec 2000 A
6159238 Killion et al. Dec 2000 A
6159239 Greenhalgh Dec 2000 A
6159565 Campbell et al. Dec 2000 A
6162243 Gray et al. Dec 2000 A
6162245 Jayaraman Dec 2000 A
6162246 Barone Dec 2000 A
6165210 Lau et al. Dec 2000 A
6165211 Thompson Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6165213 Goicoechea et al. Dec 2000 A
6165214 Lazarus Dec 2000 A
6168610 Marin et al. Jan 2001 B1
6168614 Andersen et al. Jan 2001 B1
6168616 Brown, III Jan 2001 B1
6168617 Blaeser et al. Jan 2001 B1
6168618 Frantzen Jan 2001 B1
6168619 Dinh et al. Jan 2001 B1
6168620 Kerr Jan 2001 B1
6174326 Kitaoka et al. Jan 2001 B1
6183481 Lee et al. Feb 2001 B1
6183504 Inoue Feb 2001 B1
6187034 Frantzen Feb 2001 B1
6187036 Shaolian et al. Feb 2001 B1
6187054 Colone et al. Feb 2001 B1
6193745 Fogarty et al. Feb 2001 B1
6196230 Hall et al. Mar 2001 B1
6197046 Piplani et al. Mar 2001 B1
6197049 Shaolian et al. Mar 2001 B1
6200339 Leschinsky et al. Mar 2001 B1
6203550 Olson Mar 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6203569 Wijay Mar 2001 B1
6203735 Edwin et al. Mar 2001 B1
6203779 Ricci et al. Mar 2001 B1
6210422 Douglas Apr 2001 B1
6210434 Quiachon et al. Apr 2001 B1
6210435 Piplani et al. Apr 2001 B1
6214038 Piplani et al. Apr 2001 B1
6214039 Banas et al. Apr 2001 B1
6217608 Penn et al. Apr 2001 B1
6221102 Baker et al. Apr 2001 B1
6224609 Ressemann et al. May 2001 B1
6231562 Khosravi et al. May 2001 B1
6235050 Quiachon et al. May 2001 B1
6235051 Murphy May 2001 B1
6238432 Parodi May 2001 B1
6240616 Yan Jun 2001 B1
6241759 Piplani et al. Jun 2001 B1
6245097 Inoue Jun 2001 B1
6245099 Edwin et al. Jun 2001 B1
6245100 Davila et al. Jun 2001 B1
6245101 Drasler et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6248116 Chevillon et al. Jun 2001 B1
6251132 Ravenscroft et al. Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254593 Wilson Jul 2001 B1
6254632 Wu et al. Jul 2001 B1
6258073 Mauch Jul 2001 B1
6258114 Konya et al. Jul 2001 B1
6258116 Hojeibane Jul 2001 B1
6261316 Shaolian et al. Jul 2001 B1
6261317 Inoue Jul 2001 B1
6264662 Lauterjung Jul 2001 B1
6264684 Banas et al. Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6267834 Shannon et al. Jul 2001 B1
6270524 Kim Aug 2001 B1
6270525 Letendre et al. Aug 2001 B1
6270707 Hori et al. Aug 2001 B1
6273909 Kugler et al. Aug 2001 B1
6273910 Limon Aug 2001 B1
6273911 Cox et al. Aug 2001 B1
6280457 Wallace et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6280467 Leonhardt et al. Aug 2001 B1
6283991 Cox et al. Sep 2001 B1
6287315 Wijeratne et al. Sep 2001 B1
6287329 Duarig et al. Sep 2001 B1
6287330 Johansson et al. Sep 2001 B1
6287335 Drasler et al. Sep 2001 B1
6287336 Globerman et al. Sep 2001 B1
6290728 Phelps et al. Sep 2001 B1
6293966 Frantzen Sep 2001 B1
6293968 Taheri Sep 2001 B1
6293969 Chuter Sep 2001 B1
6296661 Davila et al. Oct 2001 B1
6302891 Nadal Oct 2001 B1
6302905 Goldsteen et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6302908 Parodi Oct 2001 B1
6303100 Ricci et al. Oct 2001 B1
6306141 Jervis Oct 2001 B1
6306145 Leschinsky Oct 2001 B1
6306164 Kujawski Oct 2001 B1
6306165 Patnaik et al. Oct 2001 B1
6312458 Golds Nov 2001 B1
6312460 Drasler et al. Nov 2001 B2
6312462 McDermott et al. Nov 2001 B1
6315791 Gingras et al. Nov 2001 B1
6319276 Holman et al. Nov 2001 B1
6319278 Quinn Nov 2001 B1
6319279 Shannon et al. Nov 2001 B1
6322587 Quiachon et al. Nov 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6325823 Horzewski et al. Dec 2001 B1
6325824 Limon Dec 2001 B2
6325825 Kula et al. Dec 2001 B1
6328762 Anderson et al. Dec 2001 B1
6331186 Wang et al. Dec 2001 B1
6331188 Lau et al. Dec 2001 B1
6331190 Shokoohi et al. Dec 2001 B1
6331191 Chobotov Dec 2001 B1
6334869 Leonhardt et al. Jan 2002 B1
6336937 Vonesh et al. Jan 2002 B1
6344044 Fulkerson et al. Feb 2002 B1
6344054 Parodi Feb 2002 B1
6344055 Shukov Feb 2002 B1
6346118 Baker et al. Feb 2002 B1
6346119 Kuwahara et al. Feb 2002 B1
6348065 Brown et al. Feb 2002 B1
6350277 Kocur Feb 2002 B1
6352553 Van der Burg et al. Mar 2002 B1
6352561 Leopold et al. Mar 2002 B1
6355055 Waksman et al. Mar 2002 B1
6355056 Pnheiro Mar 2002 B1
6355060 Lenker et al. Mar 2002 B1
6355063 Calcote Mar 2002 B1
6357104 Myers Mar 2002 B1
6358276 Edwin et al. Mar 2002 B1
6358284 Fearnot et al. Mar 2002 B1
6361637 Martin et al. Mar 2002 B2
6363938 Saadat Apr 2002 B2
6364856 Ding et al. Apr 2002 B1
6364904 Smith Apr 2002 B1
6368346 Jadhav Apr 2002 B1
6368347 Maini et al. Apr 2002 B1
6368355 Uflacker Apr 2002 B1
6371979 Beyar et al. Apr 2002 B1
6372136 Nakatsuka Apr 2002 B1
6375787 Lukic Apr 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6379382 Yang Apr 2002 B1
6379392 Walak Apr 2002 B1
6383213 Wilson et al. May 2002 B2
6383214 Banas et al. May 2002 B1
6387119 Wolf et al. May 2002 B2
6387124 Buscemi et al. May 2002 B1
6391050 Broome May 2002 B1
6391052 Buirge et al. May 2002 B2
6395019 Chobotov May 2002 B2
6395022 Piplani et al. May 2002 B1
6395208 Herweck et al. May 2002 B1
6398803 Layne et al. Jun 2002 B1
6402779 Colone et al. Jun 2002 B1
6406489 Richter et al. Jun 2002 B1
6409749 Maynard Jun 2002 B1
6409750 Hyodoh Jun 2002 B1
6409754 Smith et al. Jun 2002 B1
6409756 Murphy Jun 2002 B1
6409757 Trout et al. Jun 2002 B1
6409761 Jang Jun 2002 B1
6413269 Bui et al. Jul 2002 B1
6416535 Lazarus Jul 2002 B1
6416536 Yee Jul 2002 B1
6416537 Martakos et al. Jul 2002 B1
6416538 Ley et al. Jul 2002 B1
6416539 Hassdenteufel Jul 2002 B1
6416542 Marcade et al. Jul 2002 B1
6419701 Cook et al. Jul 2002 B1
6423084 St. Germain Jul 2002 B1
6423089 Gingras et al. Jul 2002 B1
6423090 Hancock Jul 2002 B1
6425855 Tomonto Jul 2002 B2
6425898 Wilson et al. Jul 2002 B1
6428506 Simhambhatla et al. Aug 2002 B1
6428565 Wisselink Aug 2002 B1
6428566 Holt Aug 2002 B1
6428567 Wilson et al. Aug 2002 B2
6428569 Brown Aug 2002 B1
6428570 Globerman Aug 2002 B1
6428571 Lentz et al. Aug 2002 B1
6432129 DiCaprio Aug 2002 B2
6432131 Ravenscroft Aug 2002 B1
6432132 Cottone et al. Aug 2002 B1
6436104 Hoieibane Aug 2002 B2
6436133 Furst et al. Aug 2002 B1
6436134 Richter et al. Aug 2002 B2
6436135 Goldfarb Aug 2002 B1
6440165 Richter et al. Aug 2002 B1
6443941 Slepian et al. Sep 2002 B1
6443979 Stalker et al. Sep 2002 B1
6443981 Colone et al. Sep 2002 B1
6447501 Solar et al. Sep 2002 B1
6447522 Gambale et al. Sep 2002 B2
6451047 McCrea et al. Sep 2002 B2
6451050 Rudakov et al. Sep 2002 B1
6451053 Dehdashtian et al. Sep 2002 B1
6454796 Barkman et al. Sep 2002 B1
6461381 Israel et al. Oct 2002 B2
6464720 Boatman et al. Oct 2002 B2
6464721 Marcade et al. Oct 2002 B1
6464722 Israel et al. Oct 2002 B2
6471718 Staehle et al. Oct 2002 B1
6471720 Ehr et al. Oct 2002 B1
6471721 Dang Oct 2002 B1
6471722 Inoue Oct 2002 B1
6475166 Escano Nov 2002 B1
6475208 Mauch Nov 2002 B2
6475236 Roubin et al. Nov 2002 B1
6475237 Drasler Nov 2002 B2
6475238 Fedida Nov 2002 B1
6475466 Ricci et al. Nov 2002 B1
6478807 Foreman et al. Nov 2002 B1
6478815 Alt Nov 2002 B1
6478816 Kveen et al. Nov 2002 B1
6482227 Solovay Nov 2002 B1
6485507 Walak et al. Nov 2002 B1
6485508 McGuinness Nov 2002 B1
6485509 Killion et al. Nov 2002 B2
6485511 Lau et al. Nov 2002 B2
6485513 Fan Nov 2002 B1
6485515 Strecker Nov 2002 B2
6485524 Strecker Nov 2002 B2
6488694 Lau et al. Dec 2002 B1
6488700 Klumb et al. Dec 2002 B2
6488701 Nolting et al. Dec 2002 B1
6488705 Schmitt et al. Dec 2002 B2
6491718 Ahmad Dec 2002 B1
6491719 Fogary et al. Dec 2002 B1
6494875 Mauch Dec 2002 B1
6494904 Love Dec 2002 B1
6494907 Bulver Dec 2002 B1
6494909 Greenhalgh Dec 2002 B2
6497722 Von Oepen et al. Dec 2002 B1
6497723 Starck et al. Dec 2002 B1
6500202 Shaolian et al. Dec 2002 B1
6500203 Thompson et al. Dec 2002 B1
6500204 Igaki Dec 2002 B1
6500532 Ruefer et al. Dec 2002 B1
6503271 Duerig et al. Jan 2003 B2
6506211 Doran et al. Jan 2003 B1
6508833 Pavcnik et al. Jan 2003 B2
6508834 Pinchasik et al. Jan 2003 B1
6514281 Blaeser et al. Feb 2003 B1
6517558 Gittings et al. Feb 2003 B2
6517571 Brauker et al. Feb 2003 B1
6517573 Pollock et al. Feb 2003 B1
6517574 Chuter Feb 2003 B1
6520983 Colgan et al. Feb 2003 B1
6520984 Garrison et al. Feb 2003 B1
6520986 Martin et al. Feb 2003 B2
6524334 Thompson Feb 2003 B1
6524335 Hartley et al. Feb 2003 B1
6524336 Papazolgou et al. Feb 2003 B1
6530765 Zdrahala et al. Mar 2003 B1
6530947 Euteneuer et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6533806 Sullivan et al. Mar 2003 B1
6533807 Wolinsky et al. Mar 2003 B2
6533808 Thompson et al. Mar 2003 B1
6533811 Ryan et al. Mar 2003 B1
6537202 Frantzen Mar 2003 B1
6540778 Quiachon et al. Apr 2003 B1
6540780 Zilla et al. Apr 2003 B1
6547813 Stiger et al. Apr 2003 B2
6547814 Edwin et al. Apr 2003 B2
6547815 Myers Apr 2003 B2
6547817 Fischell et al. Apr 2003 B1
6548013 Kadavy et al. Apr 2003 B2
6551350 Thornton et al. Apr 2003 B1
6554857 Zilla et al. Apr 2003 B1
6554858 Dereume et al. Apr 2003 B2
6558414 Layne May 2003 B2
6558415 Thompson May 2003 B2
6562063 Euteneuer et al. May 2003 B1
6565597 Fearnot May 2003 B1
6569150 Teague May 2003 B2
6569190 Whalen, II et al. May 2003 B2
6569193 Cox et al. May 2003 B1
6572649 Berry et al. Jun 2003 B2
6575994 Marin Jun 2003 B1
6576009 Ryan et al. Jun 2003 B2
6579314 Lombardi et al. Jun 2003 B1
6582458 White et al. Jun 2003 B1
6589274 Stiger et al. Jul 2003 B2
6589275 Ivancev et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6602269 Wallace et al. Aug 2003 B2
6602280 Chobotov Aug 2003 B2
6602283 Doran et al. Aug 2003 B2
6605110 Harrison Aug 2003 B2
6607551 Sullivan et al. Aug 2003 B1
6613082 Yang Sep 2003 B2
6613083 Alt Sep 2003 B2
6613084 Yang Sep 2003 B2
6620190 Colone Sep 2003 B1
6626938 Butaric et al. Sep 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6645240 Yee Nov 2003 B2
6652554 Wholey et al. Nov 2003 B1
6652570 Smith et al. Nov 2003 B2
6652573 von Oepen Nov 2003 B2
6652575 Wang Nov 2003 B2
6652580 Chutter Nov 2003 B1
6656215 Yanez et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660030 Shaolian et al. Dec 2003 B2
6663662 Pacetti et al. Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6663664 Pacetti Dec 2003 B1
6663665 Shaolian et al. Dec 2003 B2
6663667 Dehdashtian et al. Dec 2003 B2
6669720 Pierce Dec 2003 B1
6669723 Killion et al. Dec 2003 B2
6669724 Park et al. Dec 2003 B2
6673102 Vonesh et al. Jan 2004 B1
6673103 Golds et al. Jan 2004 B1
6673106 Mitelberg et al. Jan 2004 B2
6673107 Brandt et al. Jan 2004 B1
6676667 Mareiro et al. Jan 2004 B2
6676695 Solem Jan 2004 B2
6679911 Burgermeister Jan 2004 B2
6685736 White et al. Feb 2004 B1
6689158 White et al. Feb 2004 B1
6689159 Hartigan et al. Feb 2004 B2
6692523 Holman et al. Feb 2004 B2
6694983 Wolf et al. Feb 2004 B2
6695833 Frantzen Feb 2004 B1
6695875 Stelter et al. Feb 2004 B2
6695877 Brucker et al. Feb 2004 B2
6696666 Merdan et al. Feb 2004 B2
6699274 Stinson Mar 2004 B2
6699277 Freidberg et al. Mar 2004 B1
6702847 DiCarlo Mar 2004 B2
6702849 Dutta et al. Mar 2004 B1
6706064 Anson Mar 2004 B1
6709449 Camrud et al. Mar 2004 B2
6709455 Chouinard Mar 2004 B1
6712827 Ellis et al. Mar 2004 B2
6716238 Elliott Apr 2004 B2
6716239 Sowinski Apr 2004 B2
6719783 Lentz et al. Apr 2004 B2
6726712 Raeder-Devens Apr 2004 B1
6730119 Smalling May 2004 B1
6733521 Chobotov et al. May 2004 B2
6736839 Cummings May 2004 B2
6740111 Lauterjung May 2004 B1
6740114 Burgermeister May 2004 B2
6740115 Lombardi May 2004 B2
6743210 Hart et al. Jun 2004 B2
6743511 Dittrich et al. Jun 2004 B2
6746890 Gupta Jun 2004 B2
6752829 Kocur et al. Jun 2004 B2
6755855 Yurek et al. Jun 2004 B2
6758858 McCrea et al. Jul 2004 B2
6761733 Chobotov et al. Jul 2004 B2
6770086 Girton et al. Aug 2004 B1
6770087 Layne et al. Aug 2004 B2
6773453 Ravenscroft Aug 2004 B2
6773457 Ivancev et al. Aug 2004 B2
6776604 Chobotov et al. Aug 2004 B1
6776793 Brown et al. Aug 2004 B2
6786920 Shannon et al. Sep 2004 B2
6790227 Burgermeister Sep 2004 B2
6790230 Beyersdorf et al. Sep 2004 B2
6793672 Khosravi et al. Sep 2004 B2
6796999 Pinchasik Sep 2004 B2
6802849 Blaeser et al. Oct 2004 B2
6802856 Wilson Oct 2004 B2
6814753 Schmitt Nov 2004 B2
6818013 Mitelberg et al. Nov 2004 B2
6821292 Pazienza et al. Nov 2004 B2
6824558 Parodi Nov 2004 B2
6827726 Parodi Dec 2004 B2
6827731 Annstrong et al. Dec 2004 B2
6827735 Greenberg Dec 2004 B2
6827737 Hill et al. Dec 2004 B2
6833004 Ishii et al. Dec 2004 B2
6841213 Parsonage et al. Jan 2005 B2
6843802 Villalobos et al. Jan 2005 B1
6849086 Cragg Feb 2005 B2
6858035 Whayne Feb 2005 B2
6860900 Clerc et al. Mar 2005 B2
6863685 Davila et al. Mar 2005 B2
6869443 Buscemi et al. Mar 2005 B2
6878160 Gilligan et al. Apr 2005 B2
6878161 Lenker Apr 2005 B2
6884260 Kugler et al. Apr 2005 B2
6899728 Phillips et al. May 2005 B1
6918925 Tehrani Jul 2005 B2
6918927 Bates et al. Jul 2005 B2
6923827 Campbell et al. Aug 2005 B2
6926732 Derus et al. Aug 2005 B2
6929659 Pinchuk Aug 2005 B2
6929709 Smith Aug 2005 B2
6939370 Hartley et al. Sep 2005 B2
6939374 Banik et al. Sep 2005 B2
6942689 Majercak Sep 2005 B2
6945989 Rourke et al. Sep 2005 B1
6945992 Goodson et al. Sep 2005 B2
6949120 Kveen et al. Sep 2005 B2
6962602 Vardi et al. Nov 2005 B2
6962603 Brown Nov 2005 B1
6964677 Osypka Nov 2005 B2
6974471 Van Schie et al. Dec 2005 B2
6974472 Hong et al. Dec 2005 B2
6981982 Armstrong et al. Jan 2006 B2
6989026 Richter et al. Jan 2006 B2
6994722 DiCarlo Feb 2006 B2
6997945 Germain Feb 2006 B2
6998060 Tomonto Feb 2006 B2
7001407 Hansen et al. Feb 2006 B2
7001419 DiCaprio et al. Feb 2006 B2
7001431 Bao et al. Feb 2006 B2
7011673 Fischell et al. Mar 2006 B2
7011674 Brenneman Mar 2006 B2
7022132 Kocur Apr 2006 B2
7022135 Zilla et al. Apr 2006 B2
7033389 Sherry Apr 2006 B2
7056325 Makower Jun 2006 B1
7056336 Armstrong et al. Jun 2006 B2
7056412 Henderson Jun 2006 B2
7066951 Chobotov Jun 2006 B2
7073504 Callister et al. Jul 2006 B2
7081129 Chobotov Jul 2006 B2
7081132 Cook Jul 2006 B2
7083642 Sirhan et al. Aug 2006 B2
7090693 Chobotov et al. Aug 2006 B1
7094255 Penn et al. Aug 2006 B2
7108715 Brown et al. Sep 2006 B2
7115140 Stoltze et al. Oct 2006 B2
7125464 Chobotov et al. Oct 2006 B2
7128754 Bolduc Oct 2006 B2
7128755 Su et al. Oct 2006 B2
7147455 Chobotov et al. Dec 2006 B2
7147660 Chobotov et al. Dec 2006 B2
7147661 Chobotov et al. Dec 2006 B2
7150758 Kari et al. Dec 2006 B2
7160318 Greenberg et al. Jan 2007 B2
7166125 Baker et al. Jan 2007 B1
7175651 Kerr Feb 2007 B2
7175652 Cook et al. Feb 2007 B2
7189256 Smith Mar 2007 B2
7192441 Sherry Mar 2007 B2
7223280 Anson et al. May 2007 B2
7226474 Iancea et al. Jun 2007 B2
7229470 Brown et al. Jun 2007 B2
7232459 Greenberg Jun 2007 B2
7244242 Freyman Jul 2007 B2
7273494 Rolando et al. Sep 2007 B2
7284399 Sisco Oct 2007 B1
7294147 Hartley Nov 2007 B2
7314484 Deem et al. Jan 2008 B2
7338518 Chobotov Mar 2008 B2
7351256 Hojeibane et al. Apr 2008 B2
7425219 Quadri Sep 2008 B2
7452374 Hain et al. Nov 2008 B2
7465270 Li Dec 2008 B2
7485138 Fearnot et al. Feb 2009 B2
7491230 Holman et al. Feb 2009 B2
7491234 Palasis et al. Feb 2009 B2
7500988 Butaric et al. Mar 2009 B1
7510571 Spiridigliozzi et al. Mar 2009 B2
7520890 Phillips Apr 2009 B2
7520895 Douglas et al. Apr 2009 B2
7530988 Evans et al. May 2009 B2
7550004 Bahler et al. Jun 2009 B2
7550005 Bates et al. Jun 2009 B2
7556645 Lashinski et al. Jul 2009 B2
7591843 Escano Sep 2009 B1
7597710 Obermiller Oct 2009 B2
20010014794 Moll Aug 2001 A1
20010019659 Hirai Sep 2001 A1
20010029349 Leschinsky Oct 2001 A1
20010039445 Hall et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010049534 Lachat Dec 2001 A1
20020007193 Tanner et al. Jan 2002 A1
20020011684 Bahar et al. Jan 2002 A1
20020016626 DiMatteo et al. Feb 2002 A1
20020029051 Callister et al. Mar 2002 A1
20020032408 Parker et al. Mar 2002 A1
20020040236 Lau et al. Apr 2002 A1
20020040237 Lentz et al. Apr 2002 A1
20020042644 Greenhalgh Apr 2002 A1
20020045931 Sogard et al. Apr 2002 A1
20020045933 Jang Apr 2002 A1
20020045934 Jang Apr 2002 A1
20020045935 Jang Apr 2002 A1
20020049487 Lootz et al. Apr 2002 A1
20020049490 Pollock et al. Apr 2002 A1
20020049493 Jang Apr 2002 A1
20020052627 Boylan et al. May 2002 A1
20020052644 Shaolin et al. May 2002 A1
20020052649 Greenhalgh May 2002 A1
20020055768 Hess et al. May 2002 A1
20020065552 Jayaraman et al. May 2002 A1
20020072792 Burgermeister et al. Jun 2002 A1
20020072793 Rolando et al. Jun 2002 A1
20020076542 Kramer et al. Jun 2002 A1
20020077692 Besselink Jun 2002 A1
20020082680 Stanley et al. Jun 2002 A1
20020082682 Barclay et al. Jun 2002 A1
20020082685 Sirhan et al. Jun 2002 A1
20020095208 Gregorich et al. Jul 2002 A1
20020096252 Lukic Jul 2002 A1
20020107561 Pinheiro Aug 2002 A1
20020120321 Gunderson et al. Aug 2002 A1
20020120327 Cox et al. Aug 2002 A1
20020123790 White et al. Sep 2002 A1
20020123791 Harrison Sep 2002 A1
20020123796 Majercak et al. Sep 2002 A1
20020143387 Soetikno et al. Oct 2002 A1
20020147492 Shokoohi et al. Oct 2002 A1
20020151953 Chobotov et al. Oct 2002 A1
20020151956 Chobotov et al. Oct 2002 A1
20020161376 Barry et al. Oct 2002 A1
20020165603 Thornton et al. Nov 2002 A1
20020169497 Wholey et al. Nov 2002 A1
20020183826 Dorn et al. Dec 2002 A1
20020183827 Derus et al. Dec 2002 A1
20020188346 Healy et al. Dec 2002 A1
20020188347 Mathis Dec 2002 A1
20020193867 Gladdish, Jr. et al. Dec 2002 A1
20020193872 Trout et al. Dec 2002 A1
20020193873 Brucker et al. Dec 2002 A1
20020198585 Wisselink Dec 2002 A1
20020198587 Greenberg et al. Dec 2002 A1
20030004560 Chobotov et al. Jan 2003 A1
20030004565 Harnek et al. Jan 2003 A1
20030009212 Kerr Jan 2003 A1
20030014075 Rosenbluth et al. Jan 2003 A1
20030040803 Rioux et al. Feb 2003 A1
20030050684 Abrams et al. Mar 2003 A1
20030068296 Ricci et al. Apr 2003 A1
20030083736 Brown et al. May 2003 A1
20030097170 Friedrich et al. May 2003 A1
20030120263 Ouriel et al. Jun 2003 A1
20030120331 Chobotov et al. Jun 2003 A1
20030125797 Chobotov Jul 2003 A1
20030135256 Gallagher et al. Jul 2003 A1
20030135261 Kugler et al. Jul 2003 A1
20030176912 Chuter et al. Sep 2003 A1
20030191518 Spiridigliozzi et al. Oct 2003 A1
20030204236 Letort Oct 2003 A1
20030204244 Stiger Oct 2003 A1
20030212449 Cox Nov 2003 A1
20030220683 Minasian Nov 2003 A1
20030225453 Murch Dec 2003 A1
20040024446 Smith Feb 2004 A1
20040034407 Sherry Feb 2004 A1
20040044395 Nelson Mar 2004 A1
20040049212 Whayne Mar 2004 A1
20040049264 Sowinski et al. Mar 2004 A1
20040093055 Bartorelli et al. May 2004 A1
20040093064 Bosma May 2004 A1
20040093068 Bergen et al. May 2004 A1
20040093078 Moll et al. May 2004 A1
20040098096 Eton May 2004 A1
20040106974 Greenberg et al. Jun 2004 A1
20040116997 Taylor et al. Jun 2004 A1
20040138734 Chobotov et al. Jul 2004 A1
20040162607 Masroor Aug 2004 A1
20040167614 Anson Aug 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040215213 Dolan Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040220664 Chobotov Nov 2004 A1
20040254625 Stephens Dec 2004 A1
20050033406 Bamhart et al. Feb 2005 A1
20050049691 Mercile et al. Mar 2005 A1
20050058920 Tokarski et al. Mar 2005 A1
20050075715 Borges et al. Apr 2005 A1
20050090804 Chobotov et al. Apr 2005 A1
20050090901 Studer Apr 2005 A1
20050158272 Whirley et al. Jul 2005 A1
20050171593 Whirley et al. Aug 2005 A1
20050177222 Mead Aug 2005 A1
20050222669 Purdy Oct 2005 A1
20050228484 Stephens et al. Oct 2005 A1
20060009833 Chobotov et al. Jan 2006 A1
20060020319 Kim Jan 2006 A1
20060079952 Kaplan et al. Apr 2006 A1
20060136047 Obermiller et al. Jun 2006 A1
20060149364 Walak et al. Jul 2006 A1
20060178732 Chobotov et al. Aug 2006 A1
20060186143 Argentine Aug 2006 A1
20060212112 Evans et al. Sep 2006 A1
20060224232 Chobotov Oct 2006 A1
20060233990 Humphrey et al. Oct 2006 A1
20060233991 Humphrey et al. Oct 2006 A1
20060287713 Douglas et al. Dec 2006 A1
20060292206 Kim et al. Dec 2006 A1
20070012396 Chobotov et al. Jan 2007 A1
20070016281 Melsheimer Jan 2007 A1
20070055347 Arbefeuille Mar 2007 A1
20070112413 Smith May 2007 A1
20070162106 Evans et al. Jul 2007 A1
20070167901 Herrig et al. Jul 2007 A1
20070203571 Kaplan et al. Aug 2007 A1
20070219627 Chu et al. Sep 2007 A1
20070239273 Allen Oct 2007 A1
20070244539 Lentz et al. Oct 2007 A1
20070276477 Lee et al. Nov 2007 A1
20070282369 Gilson et al. Dec 2007 A1
20080015687 Lashinski et al. Jan 2008 A1
20080027529 Hartley et al. Jan 2008 A1
20080051705 Von Oepen et al. Feb 2008 A1
20080114441 Rust May 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080114443 Mitchell May 2008 A1
20080115678 Weinberg May 2008 A1
20080172119 Yamasaki et al. Jul 2008 A1
20080228255 Rust Sep 2008 A1
20090036971 Humphrey et al. Feb 2009 A1
20090042796 Wallach et al. Feb 2009 A1
20090082841 Zacharias et al. Mar 2009 A1
20090082842 Glynn Mar 2009 A1
20090082845 Chobotov et al. Mar 2009 A1
20090082846 Chobotov et al. Mar 2009 A1
20090082847 Zacharias et al. Mar 2009 A1
20090092844 Ware et al. Apr 2009 A1
20090099649 Chobotov et al. Apr 2009 A1
20090132020 Watson May 2009 A1
20090132026 Martin et al. May 2009 A1
20090171431 Swanson et al. Jul 2009 A1
20090182406 Eidenschink Jul 2009 A1
20090198267 Evans et al. Aug 2009 A1
20090287145 Cragg et al. Nov 2009 A1
20100211052 Brown et al. Aug 2010 A1
20100331958 Chobotov et al. Dec 2010 A1
20110218609 Chobotov et al. Sep 2011 A1
Foreign Referenced Citations (97)
Number Date Country
0646365 Apr 1995 EP
0714641 Jun 1996 EP
0775472 May 1997 EP
0792627 Sep 1997 EP
0808613 Nov 1997 EP
0819411 Jan 1998 EP
0943302 Sep 1999 EP
0997115 May 2000 EP
0480667 Apr 2001 EP
1093772 Apr 2001 EP
1138280 Oct 2001 EP
0808140 Dec 2001 EP
1163991 Dec 2001 EP
1212991 Jun 2002 EP
1266636 Dec 2002 EP
1380270 Jan 2004 EP
1415617 Apr 2004 EP
49 042773 Apr 1974 JP
3109404 May 1991 JP
5161665 Jun 1993 JP
6100054 Apr 1994 JP
09117511 May 1997 JP
18-126862 Jun 2006 JP
18-136382 Jun 2006 JP
2029527 Feb 1995 RU
1217402 Mar 1986 SU
1237201 Jun 1986 SU
1237202 Jun 1986 SU
1273077 Nov 1986 SU
1342511 Oct 1987 SU
1389778 Apr 1988 SU
1457921 Feb 1989 SU
1482714 May 1989 SU
1560134 Apr 1990 SU
1586718 Aug 1990 SU
1650127 May 1991 SU
1732964 May 1992 SU
1768154 Oct 1992 SU
1812980 Apr 1993 SU
WO 9100792 Jan 1991 WO
WO 9222604 Dec 1992 WO
WO 9313824 Jul 1993 WO
WO 9319804 Oct 1993 WO
WO 9403127 Feb 1994 WO
WO 9503754 Feb 1995 WO
WO 9509586 Apr 1995 WO
WO 9614095 May 1996 WO
WO 9614808 May 1996 WO
WO 9707751 Mar 1997 WO
WO 9729716 Aug 1997 WO
WO 9806355 Feb 1998 WO
WO 9838947 Sep 1998 WO
WO 9841167 Sep 1998 WO
WO 9844870 Oct 1998 WO
WO 9844873 Oct 1998 WO
WO 9900073 Jan 1999 WO
WO 9926559 Jun 1999 WO
WO 9938455 Aug 1999 WO
WO 9943378 Sep 1999 WO
WO 9943379 Sep 1999 WO
WO 0010487 Mar 2000 WO
WO 0013613 Mar 2000 WO
WO 0042947 Jul 2000 WO
WO 0042948 Jul 2000 WO
WO 0044808 Aug 2000 WO
WO 0051522 Sep 2000 WO
WO 0067675 Nov 2000 WO
WO 0071179 Nov 2000 WO
WO 0105331 Jan 2001 WO
WO 0108599 Feb 2001 WO
WO 0115633 Mar 2001 WO
WO 0121108 Mar 2001 WO
WO 0130270 May 2001 WO
WO 0141675 Jun 2001 WO
WO 0156500 Aug 2001 WO
WO 0156504 Aug 2001 WO
WO 0158384 Aug 2001 WO
WO 0158387 Aug 2001 WO
WO 0166037 Sep 2001 WO
WO 0167993 Sep 2001 WO
WO 0174270 Oct 2001 WO
WO 0182836 Nov 2001 WO
WO 0236332 May 2002 WO
WO 0241804 May 2002 WO
WO 02078569 Oct 2002 WO
WO 02083038 Oct 2002 WO
WO 02100454 Dec 2002 WO
WO 03022180 Mar 2003 WO
WO 03053287 Jul 2003 WO
WO 03094795 Nov 2003 WO
WO 03094799 Nov 2003 WO
WO 2004002370 Jan 2004 WO
WO 2004002371 Jan 2004 WO
WO 2004017866 Mar 2004 WO
WO 2004078065 Sep 2004 WO
WO 2009042796 Apr 2009 WO
WO 2009086200 Jul 2009 WO
Related Publications (1)
Number Date Country
20090132026 A1 May 2009 US