Certain embodiments disclosed herein relate generally to prostheses for implantation within a lumen or body cavity and delivery systems for implanting a prosthesis. In particular, the prostheses and delivery systems relate in some embodiments to replacement heart valves, such as replacement mitral heart valves.
Human heart valves, which include the aortic, pulmonary, mitral and tricuspid valves, function essentially as one-way valves operating in synchronization with the pumping heart. The valves allow blood to flow downstream, but block blood from flowing upstream. Diseased heart valves exhibit impairments such as narrowing of the valve or regurgitation, which inhibit the valves' ability to control blood flow. Such impairments reduce the heart's blood-pumping efficiency and can be a debilitating and life threatening condition. For example, valve insufficiency can lead to conditions such as heart hypertrophy and dilation of the ventricle. Thus, extensive efforts have been made to develop methods and apparatuses to repair or replace impaired heart valves.
Prostheses exist to correct problems associated with impaired heart valves. For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves that can be delivered with less trauma to the patient than through open heart surgery. Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.
Development of prostheses including but not limited to replacement heart valves that can be compacted for delivery and then controllably expanded for controlled placement has proven to be particularly challenging. An additional challenge relates to the ability of such prostheses to be secured relative to intralumenal tissue, e.g., tissue within any body lumen or cavity, in an atraumatic manner.
Delivering a prosthesis to a desired location in the human body, for example delivering a replacement heart valve to the mitral valve, can also be challenging. Obtaining access to perform procedures in the heart or in other anatomical locations may require delivery of devices percutaneously through tortuous vasculature or through open or semi-open surgical procedures. The ability to control the deployment of the prosthesis at the desired location can also be challenging.
Embodiments of the present disclosure are directed to a prosthesis, such as but not limited to a replacement heart valve. Further embodiments are directed to delivery systems, devices and/or methods of use to deliver and/or controllably deploy a prosthesis, such as but not limited to a replacement heart valve, to a desired location within the body. In some embodiments, a replacement heart valve and methods for delivering a replacement heart valve to a native heart valve, such as a mitral valve, are provided.
In some embodiments, a delivery system and method are provided for delivering a replacement heart valve to a native mitral valve location. The delivery system and method may utilize a transseptal or transapical approach. In some embodiments, components of the delivery system facilitate bending of the delivery system to steer a prosthesis from the septum to a location within the native mitral valve. In some embodiments, a capsule is provided for containing the prosthesis for delivery to the native mitral valve location. In other embodiments, the delivery system and method may be adapted for delivery of implants to locations other than the native mitral valve.
The present disclosure includes, but is not limited to, the following embodiments.
A delivery system for a replacement valve. The delivery system can comprise a tether configured to releasably hold a replacement valve, a torqueing manifold configured to retain a first end of the tether, and an engagement pin configured to move from a locked position to an unlocked position, the engagement pin configured to releasably retain a second end of the tether, wherein longitudinal translation of the engagement pin from the locked position to the unlocked position releases the second end of the tether and the replacement valve from the delivery system, and wherein rotational movement of the torqueing manifold with respect to the engagement pin is configured to crimp or uncrimp a portion of the replacement valve.
The delivery system of Embodiment 1, further comprising a manifold shaft having the torqueing manifold on a distal end of the manifold shaft, the torqueing manifold having at least one protrusion extending distally from a distal end of the torqueing manifold, a bearing rotatably retained within the torqueing manifold, and a pin lock shaft having a release plate located proximal of the bearing and located on a distal end of the pin lock shaft, wherein the pin lock shaft is configured to engage the engagement pin in the locked position and the unlocked position.
The delivery system of Embodiment 2, wherein circumferential rotation of the manifold shaft with respect to the pin lock shaft is configured to crimp or uncrimp the portion of the replacement valve.
The delivery system of any one of Embodiments 2-3, wherein the engagement pin extends between the release plate and the bearing in the locked position, and wherein the second end of the tether is retained on the engagement pin between the release plate and the bearing in the locked position.
The delivery system of any one of Embodiments 2-4, wherein the manifold shaft is located within a lumen of the pin lock shaft, wherein the pin lock shaft is configured to longitudinally and rotationally translate with respect to the manifold shaft, and wherein proximal translation of the pin lock shaft releases the engagement pin from the bearing which releases the second end of the tether from the engagement pin
The delivery system of any one of Embodiments 2-5, wherein the torqueing manifold comprises a plurality of distally extending protrusions extending around an outer circumference of the distal end of the torqueing manifold.
The delivery system of any one of Embodiments 1-6, wherein the engagement pin is generally L-shaped.
The delivery system of any one of Embodiments 1-7, further comprising the replacement valve, wherein the replacement valve is a replacement mitral valve.
The delivery system of any one of Embodiments 1-8, wherein the tether is configured to pass through an eyelet of the replacement valve.
A method of releasing a replacement valve from a delivery system, the method comprising expanding the replacement valve from a compressed configuration to an expanded configuration, the replacement valve having a distal end and a proximal end, the replacement valve releasably attached to the delivery system at a location distal to the replacement valve through at least one tether, and rotating a manifold shaft located radially inwards of the replacement valve in a first direction with respect to a locking shaft, wherein the manifold shaft has a manifold on a distal end located distal to the replacement valve, wherein the at least one tether is connected to the manifold and the locking shaft, and wherein the manifold shaft is located within a lumen of the locking shaft, wherein the rotating the manifold shaft in the first direction loosens the at least one tether to uncrimp the distal end of the replacement valve.
The method of Embodiment 10, wherein the expanding the replacement valve comprises proximally translating an outer sheath to uncover the proximal end of the replacement valve, and distally translating a nosecone to uncover the distal end of the replacement valve.
The method of Embodiment 10 or Embodiment 11, further comprising rotating the manifold shaft in a second direction opposite the first direction with respect to the locking shaft to crimp the distal end of the replacement valve.
The method of Embodiment 12, further comprising proximally translating a nosecone to cover the distal end of the replacement valve when the replacement valve is crimped.
The method of any one of Embodiments 10-13, further comprising proximally translating the locking shaft with respect to the manifold shaft to release at least one end of the at least one tether from the delivery system, wherein the release of the at least one end releases the replacement valve from the delivery system.
The method of any one of Embodiments 10-14, wherein the replacement valve is releasably attached to the delivery system via a plurality of tethers.
A crimping ring for a replacement valve, the crimping ring comprising a generally circular body having an inner lumen extending longitudinally therethrough and a plurality of longitudinally extending apertures on an outer circumference of the body, and a plurality of sutures, each of the sutures extending through one of the plurality of apertures and configured to extend proximally from a replacement valve, wherein applying a proximally directed force on one of the plurality of sutures is configured to cause an angular change in the position of the body and the replacement valve, and wherein applying a proximally directed force on all of the plurality of sutures generally at the same time provides proximal longitudinal translation of the body which is configured to at least partially compress a distal end of the replacement valve.
The crimping ring of Embodiment 16, wherein the replacement valve crimp and tilt ring comprises three sutures and wherein the body has three apertures spaced generally evenly around the outer circumference.
The crimping ring of any one of Embodiments 16-17, wherein each of the plurality of sutures is wrapped around the body and passes through one of the plurality of apertures.
The crimping ring of any one of Embodiments 16-18 further comprising the replacement valve attached to a delivery system via a second plurality of sutures extending through the inner lumen of the body, wherein the replacement valve is a replacement mitral valve.
The crimping ring of Embodiment 19, wherein the proximal longitudinal translation of the replacement valve crimp and tilt ring radially compresses the second plurality of sutures and the distal end of the replacement mitral valve prosthesis as the second plurality of sutures and the replacement mitral valve prosthesis pass through the inner lumen.
A delivery system for releasing a replacement valve. The delivery system can comprise a torqueing manifold. The torqueing manifold can have a protrusion. The protrusion can extend distally from a distal end. The torqueing manifold can be located on a distal end of a manifold shaft. The delivery system can further comprise a bearing. The bearing can be rotatably retained within the torqueing manifold. The delivery system can further comprise a release plate. The release plate can be located proximal of the bearing. The release plate can be located on a distal end of a pin lock shaft. The delivery system can further comprise an engagement pin. The engagement pin can extend between the release plate and the bearing. The delivery system can further comprise a suture. A first end the suture can be connected to the protrusion. A second end of the suture can be connected to the engagement pin between the release plate and the bearing. The suture can be configured to pass through an engagement aperture in a replacement valve. The manifold shaft can be located within a lumen of the pin lock shaft. The pin lock shaft can be configured to longitudinally translate with respect to the manifold shaft. Proximal translation of the pin lock shaft can release the engagement pin from the bearing and can release the second end of the suture from the engagement pin. Circumferential rotation of the manifold shaft with respect to the pin lock shaft can be configured to crimp or uncrimp the replacement valve.
A delivery system for a replacement valve. The delivery system can comprise a suture. The suture can be configured to pass through an eyelet of a replacement valve. The delivery system can comprise an inner member. The inner member can be configured to retain the first end of the suture. The delivery system can comprise an engagement pin. The engagement pin can be configured to move from a locked position to an unlocked position. The engagement pin can be configured to retain a second end of the suture. Longitudinal translation of the engagement pin from the locked position to the unlocked position can release the second end of the suture and the replacement valve from the delivery system. Rotational movement of the inner member with respect to the engagement pin is configured to crimp or uncrimp a portion of the replacement valve.
A method of releasing and recapturing a replacement valve from a delivery system. The method can comprise proximally translating an outer sheath to uncover a proximal end of a replacement valve. The method can comprise distally translating a nosecone to uncover a distal end of the replacement valve. The method can comprise rotating a manifold shaft in a first direction to uncrimp the distal end of the replacement valve. The method can comprise rotating the manifold shaft in a second direction to crimp the distal end of the replacement valve. The method can comprise proximally translating the nosecone to cover the distal end of the replacement valve.
A replacement valve crimp and tilt ring. The ring can comprise a body having an inner lumen extending longitudinally. The body can have a plurality of apertures on an outer circumference of the body extending longitudinally. The inner lumen can be configured to receive an end of a replacement valve. The ring can comprise a plurality of sutures. Each of the sutures can be connected to one of the plurality of apertures and can extend proximally. Applying a proximally directed force on one of the plurality of sutures causes an angular change in the position of the circular body and the replacement valve. Applying a proximally directed force on all of the plurality of sutures at the same time provides proximal longitudinal translation of the body to at least partially compress the end of the replacement valve.
The present specification and drawings provide aspects and features of the disclosure in the context of several embodiments of replacement heart valves, delivery systems, and methods that are configured for use in the vasculature of a patient, such as for replacement of natural heart valves in a patient. These embodiments may be discussed in connection with replacing specific valves such as the patient's aortic or mitral valve. However, it is to be understood that the features and concepts discussed herein can be applied to products other than heart valve implants. For example, the controlled positioning, deployment, and securing features described herein can be applied to medical implants, for example other types of expandable prostheses, for use elsewhere in the body, such as within an artery, a vein, or other body cavities or locations. In addition, particular features of a valve, delivery system, etc. should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate. While certain of the embodiments described herein are described in connection with a transapical delivery approach, it should be understood that these embodiments can be used for other delivery approaches such as, for example, transseptal approaches. Moreover, it should be understood that certain of the features described in connection with some embodiments can be incorporated with other embodiments, including those which are described in connection with different delivery approaches.
Transapical Delivery System
The delivery system 100 can be used to deploy a prosthesis, such as a replacement heart valves as described elsewhere in this specification, within the body. The delivery system 10 can receive and/or cover portions of the prosthesis such as a first end 301 and second end 303 of the prosthesis (or implant) 70 illustrated in
Additional details and example designs for a prosthesis are described in U.S. Pat. Nos. 8,403,983, 8,414,644, 8,652,203 and U.S. Patent Publication Nos. 2011/0313515, 2012/0215303, 2014/0277390, 2014/0277422, 2014/0277427, and 2016/0317301 the entirety of these patents and publications are hereby incorporated by reference and made a part of this specification. Further details and embodiments of a replacement heart valve or prosthesis and its method of implantation are described in U.S. Patent Publication No. 2015/0328000, the entirety of which is hereby incorporated by reference and made a part of this specification.
Replacement heart valves can be delivered to a patient's heart mitral valve annulus or other heart valve location in various ways, such as by open surgery, minimally-invasive surgery, and percutaneous or transcatheter delivery through the patient's vasculature. The delivery system 100 illustrated in
With reference first to the embodiment illustrated in
With continued reference to the embodiment of
In some embodiments, the outer elongate hollow member shaft 114 can cover at least a portion of a collapsed or compressed prosthesis 70 while the prosthesis 70 is being delivered to the deployment site. For example, the outer elongate hollow member shaft 114 can cover at least the second end 303 of the prosthesis 70 while the first end 301 of the prosthesis 70 is received within a hollow nose cone 118, described further below. In some embodiments, the outer elongate hollow member shaft 114 can also cover the first end 301 of the prosthesis 70. The outer elongate hollow member shaft 114 can be sized and shaped such that the outer elongate hollow member shaft 114 can retain the prosthesis 70 in a compressed state as it is delivered to the deployment site. Accordingly, the outer elongate hollow member shaft 114 can function as a “capsule” for receiving the prosthesis 70. As shown in the illustrated embodiment, the outer elongate hollow member shaft 114 can have a constant or substantially constant outer diameter throughout the entirety, or a substantial portion of the entirety, of its length. The outer elongate hollow member shaft 114 can be moveable relative to the nose cone 118 to uncover the second end 303 of the prosthesis 70 while the first end 301 of the prosthesis 70 remains engaged to tether retention mechanism (described below) within the nose cone 118 and remains covered by the nose cone 118.
The outer elongate hollow member shaft 114 can include a marker 117 positioned proximate the distal end, such as a radiopaque marker that allows for visualization by a physician. In some embodiments, the outer elongate hollow member shaft 114 can be formed of multiple layers of material, such that the outer elongate hollow member shaft 114 includes at least a first radial portion and a second radial portion. This can advantageously allow for the use of two types of material for the outer elongate hollow member shaft 114. For example, at least a portion of the first portion can be positioned radially outward from the second portion relative to a central longitudinal axis of the outer elongate hollow member shaft 114. The first portion, which may be considered an outer layer, can be formed from a relatively rigid material, such as PEBAX, ULTEM, PEEK and any other biocompatible material as desired. This can advantageously provide some degree of rigidity for the outer portion of the elongate hollow member shaft 114. The second portion, which may be considered an inner layer, can be formed from a more compliant material, such as PTFE, ePTFE and any other biocompatible material as desired. This can advantageously provide a more compliant inner surface for the outer elongate hollow member shaft 114, which can be beneficial when contacting other components of the delivery system 100 and the prosthesis. In some embodiments, the second portion can be a liner which is applied to the first portion.
While the outer elongate hollow member shaft 114 can be formed with multiple portions formed from multiple materials, it is also contemplated that the outer elongate hollow member shaft 114 can be a formed from a single material.
Additionally, the innermost shaft in the delivery system 100 can be the nose cone shaft which has a proximal end operably connected to the handle 110 and a distal end coupled to nose cone 118. The nose cone shaft may be hollow along its length to receive a guidewire, though in some embodiments the nose cone shaft is not hollow. Nose cone 118 can include an elongate, hollow portion with a proximally facing opening, and a tapered distal portion (as shown in
The outermost diameter of the nose cone 118 can be similar to, or equal to, the outer diameter of an outer shaft and/or outer component, such as the outer elongate hollow member shaft 114. This can form a generally smooth transition in diameter between the nose cone 118 and the outer shaft and/or the outer component if and when the nose cone 118 is brought into contact with the outer shaft and/or the outer component. In some embodiments, the nose cone 118 can have an outer diameter of approximately 31 Fr or 32 Fr and the outer shaft and/or outer component can have an outer diameter of approximately 31 Fr or 32 Fr.
In some embodiments, the outer diameter of the nose cone 118 can be similar to, or equal to, the inner diameter of the outer elongate hollow member shaft 114 such that nose cone 118 can be partially received within the outer elongate hollow member shaft 114. In some embodiments, the nose cone 118 can have an outer diameter of approximately 30 Fr and the outer shaft and/or outer component can have an inner diameter of approximately 30 Fr. In some embodiments, the outer shaft can be an outermost shaft of the delivery system.
The tether retention configuration discussed below can cooperate with the nose cone 118 to release a first end 301 of the prosthesis from the nose cone 118. The first end 301 of the prosthesis 70 can be placed in a compressed state such that the first end 301 of the prosthesis 70 is retained within the nose cone 118 when the nose cone 118 is in the proximal position. Distal movement of the nose cone 118 can release the first end 301 of the prosthesis 70 from the nose cone 118, allowing it to expand. If the prosthesis 70 is not covered by the outer elongate hollow member shaft 114, once the nose cone 118 is moved distally to uncover the first end 301 of the prosthesis 70, the first end 301 of the prosthesis 70 may completely self-expand from its compressed state to an expanded configuration.
Additional details and example designs for transapical delivery systems are described in U.S. Patent Publication No. 2017/0056169, the entirety of which is hereby incorporated by reference and made a part of this specification. Further details and embodiments of a transapical delivery systems and methods of delivery are described in U.S. Patent Pub. Nos. 2018/0116790 and 2017/0056169, the entirety of each of which is hereby incorporated by reference and made a part of this specification.
Tether Prosthesis Retention
Advantageously, embodiments of the delivery system 100 allow the prosthesis 70 to be fully expanded (e.g., released from the nosecone 118 and the outer elongate hollow member shaft 114) but remain attached to the delivery system 100 through the use of one or more tethers. This allows the prosthesis 70 to be maneuvered after expansion, such as by translating the delivery system 100 or different shafts within the delivery system 100, for optimizing the position of the prosthesis 70 in a patient. The delivery system 100 further allows the prosthesis 70 to be compressed and withdrawn back into one or more sheathing members (e.g., nosecone 118/outer elongate hollow member shaft 114) if positioning and placement is undesirable. Thus, the prosthesis 70 may be recaptured by the delivery system 100 after expansion.
In order to use the tether attachment system, the delivery system 100 discussed above can be modified. For example, the nosecone 118 and outer elongate hollow member shaft 114 shown in
As shown in the schematic of
After attaching to the prosthesis 70, the tethers 212 can extend distally (e.g., towards the manifold 204) from the prosthesis 70 where the second end of the tethers 212 (e.g., temporary or removable end) can be attached onto, for example, release pins 208. The tethers 212 can attach to the release pins 208 such as by looping around a portion of the release pins 208, though the particular attachment is not limiting. Thus, the prosthesis 70, in particular the first end 301, can be held onto the delivery system 100 through the use of the tethers 212 after expansion of the prosthesis 70. Additionally, as shown, the manifold 204 and/or the release pins 208 and/or bearing 206 can be located generally distally to the prosthesis 70 in the expanded state. In some embodiments, a second manifold can be located proximal to the prosthesis 70, and a similar configuration can be used to attach the second end 303 to the secondary manifold. Alternatively, a tether loop attached to the handle 110 can at least partially surround the second end 303 to slow expansion, such as discussed in U.S. Pat. Publication No. 2017/0056169.
Further,
The delivery system 100 can include the same, more, or less tethers 212 than apertures 214 on the prosthesis 70. In some embodiments, the delivery system 100 can use 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 tethers 212 for connecting the prosthesis 70 to the delivery system 100. In some embodiments, each aperture 214 contains a different tether 212. In some embodiments, a tether 212 may pass through multiple apertures 214. While
As mentioned above, the second end of the tethers 212 can releasably attach onto release pins 208, such as by a tether loop which can slide along the release pins 208, as shown in
In some embodiments, the release pins 208 have a generally L-shape with a straight portion 214 attached to a bent portion 216 to form the L as shown in
As shown in
When it is desirable to release the prosthesis 70 from the delivery system 100, the release plate 210 can be translated (e.g., pulled, moved) proximally, such as by a user at a handle 110 of the delivery system 100, thus providing a proximal force on the bent portion 216 and pulling the pins 208 proximally with respect to the bearing 206. A user can pull on a portion of a handle 110, or activate an actuator (such as a button or knob) to withdraw the release plate 210. Once the pins 208 are fully pulled proximally through the bearing 206, the straight portions 212 come free from the bearing 206 and the tethers 212 are released as the bearing 206 no longer blocks the path of the second end of the tethers 212 (the first end of the tether 212 continues to remain on the manifold 204). In some embodiments, as the tethers 212 are under tension when attached they will automatically be released from the pins 208 once the pins 208 are released from the bearing 206. In some embodiments, the tethers 212 can be manually removed from the pins 208 by a user. Once the second end of the tethers 212 are released from the pins 208, the prosthesis 70 can fully release from the delivery system 100.
As shown in
Moving to the individual components,
The tabs 236 can be used to wrap/wind one end of the tether 212 around (such as by using a loop), thereby retaining the tether 212 onto the manifold 204. In some embodiments, the tabs 236 can be bent or crushed inwards in order to permanently retain the end of the tether 212. In some embodiments, the tethers 212 can be permanently affixed to the manifold 204 through other means, such as by adhesives or mechanical fastening. As shown, the manifold 204 can include twelve tabs 236 for twelve tethers 212, though the particular number of tabs does not limit the disclosure. There can be the same number of tabs 236 as there are tethers 212. For example, there can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 tabs 236. Moving radially inwards is a gap 238 which has a general ring shape, and inwards of the gap 238 is the raised circular protrusion 240. The gap 238 can be sized configured to allow the protrusions 236 to bend into the gap 238 to hold the tethers 212.
Moving proximally, the diameter of the manifold 204 can be reduced, for example in a step reduction, though in other embodiments there is no reduction of diameter. Therefore, the proximal end 234 of the manifold 204 can have a smaller diameter than the distal end 232, such as ¼, ⅓, or ½ the diameter. This makes it so the first end 301 of the prosthesis 70 can circumferentially surround the proximal end 234 proximal the step, such as at surface 205, in the fully crimped position and be within the diameter of the distal end 232 so that the prosthesis 70 does not get caught by the nosecone 118 upon recapture. As shown in
Next,
Further, in certain implementation the bearing 206 can include notches 256 on an outer circumferential surface of the bearing 206. The notches can be aligned with the apertures 254 in some implementations. In some embodiments, an inner surface of the manifold 204 can include protrusions that mate with the notches 256 for proper initial alignment, though the bearing 206 is free to circumferentially rotate within the manifold 204 after initial insertion. Other implementations include protrusions on the bearing 206 and notches on the inner surface of the manifold 204. In some embodiments, notches are not used on the bearing 206. In some embodiments, the bearing 206 is free to rotate circumferentially within the manifold 204 and around the manifold shaft 222. This allows proper alignment of the release pins 208 with respect to the release plate 210.
Moving proximally on the delivery system 100,
The release plate 210 can be similar to the bearing 206 discussed above, and can have a number of apertures 266 extending proximally to distally and spaced around the outer circumference for receiving the release pins 208. The apertures 266 can be sized to receive the straight portion 214 of the release pins 208, but prevent the bent portion 216 from translating distally. The apertures 266 can be evenly spaced around the circumference in some embodiments, and can generally align with the apertures 254 on the bearing 206. There can be an equal number of apertures 266 as there are release pins 208, for example 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 apertures 266. In some embodiments, there are more apertures 266 than release pins 208.
The tether guide 218 can also include a number of apertures 268 on an outer circumference extending proximally to distally configured to allow the tethers 212 to pass through. In some embodiments, there can be as many apertures 268 as tethers 212 or as protrusions 236 on the manifold 204. For example, there can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 apertures 268. The tether guide 218 may have the same diameter as the release plate 210, or may have a greater diameter than the release plate 210.
As discussed above, embodiments of the delivery system 100 can be used to retain the prosthesis 70 after expansion. Thus, the prosthesis 70 can be moved within a patient by moving the delivery system 100 upon release of the prosthesis 70.
Advantageously, components in the delivery system 100 can be torqued or rotated to provide crimping/uncrimping forces onto the prosthesis 70, in particular the first end 301 which is attached by tethers 212. Specifically, the manifold shaft 222 can be circumferentially rotated within the lumen of the pin lock shaft 220. Alternatively, the pin lock shaft 220 can be circumferentially rotated with respect to the manifold shaft 222. This can be done by the user, for example at the handle 110 such as through knobs or other actuators. Thus, the manifold 204 (holding the first end of the tethers 212) can be rotated with respect to the engagement pins 208 (holding the second end of the tethers 212). Accordingly, the tethers 212 will be pulled tight as the ends of the tethers 212 move away from one another, and the tethers 212 will loosen as the ends are moved towards one another. This tightening and loosening of the tethers 212 will pull the first end 301 of the prosthesis 70 radially inwards, thus causing crimping/uncrimping of the prosthesis 70. When the prosthesis 70 is crimped, the nosecone can be slid over the first end 301 of the prosthesis 70 for recapturing of the prosthesis 70.
Embodiments of the disclosed delivery system 100 can be inserted into a patient, such as in a transapical approach. The prosthesis 70 can be generally aligned with the native mitral valve (or other valve). The nosecone 118 can be advanced distally, thereby uncovering the first end 301 of the prosthesis 70, which allows the prosthesis 70 to begin expansion. The prosthesis 70 is still attached to the delivery system 100 by the tethers 212. Further, the outer elongate hollow member shaft 114 can be translated proximally to release the second end 303 of the prosthesis 70, which allows the prosthesis 70 to be fully expanded while still connected to the delivery system 100 by the tethers 212.
Upon full expansion of the prosthesis 70, it can be determined whether the prosthesis 70 is located in the proper position within the patient. If necessary, the manifold shaft 222 and pin lock shaft 220 can be circumferentially rotated with respect to one another to crimp at least the first end 301 of the prosthesis 70. The nosecone 118 can then be proximally retracted to cover the first end 301, so that the prosthesis 70 can be repositioned or withdrawn from the patient.
Once the prosthesis 70 is in the correct position, it can be released from the delivery system 100. For example, the pin lock shaft 220 can be translated proximally, thereby releasing the pins 208 from the bearing 206. Once released, the tethers 212 are released from the pins 208, thereby disconnecting the prosthesis 70 from the delivery system 100. The delivery system 100 can then be withdrawn through a lumen in the prosthesis 70 for removal. In some embodiments, the nosecone is retracted proximally and the outer elongate hollow member shaft can be advanced distally so that the two components contact one another. This can alleviate any issues of the delivery system 100 catching on the prosthesis 70 during removal. In other implementations, the nosecone and outer elongate hollow member shaft do not need to be moved after release of the prosthesis 70 for removal of the delivery system 100.
While the above description discusses the use of tethers and pins for releasable connection of the prosthesis, other engagement mechanisms can be used as well and the disclosure is not so limited. For example, the tethers can be releasably attached by clips, locks or clamps to a portion of the delivery system 110. Additionally, frictional components or chemicals/adhesives can be used which can be overcome by an applied force greater than that applied by the expanded prosthesis 70. Further, other locking structures can be manipulated to release one or more ends of the tether, such as at the handle 110 of the delivery system 100. Thus, while the above tethers can be used to connect the prosthesis 70 to the handle 110, other methods or release can be used, and the disclosure is not so limited.
In some embodiments, a similar structure as described above, but reversed proximally/distally, can be used to retain the second end 303 of the prosthesis 70. For example, the manifold 204 can be located proximal to the prosthesis 70 and the position of the prosthesis 70 and manifold 204 can be reversed (e.g., the first end 301 is proximal to the second end 303). Accordingly, the tether guide 218 and release plate 210 will be aligned distal to the prosthesis 70. Thus, a transseptal delivery system, such as disclosed in U.S. Patent Pub. No. 2017/0056171, hereby incorporated in its entirety, can be used with the components discussed above. For example, the outer retention ring/midshaft and the inner retention ring/inner shaft can be replaced with the manifold/locking shafts discussed above.
Valve Crimp and Tilt Ring
Disclosed are embodiments of a valve crimp and tilt ring (e.g., crimping ring) for aided prosthesis recapture and repositioning post-deployment. In some embodiments, it can be advantageous to be able to reposition the prosthesis 70 after partial or full expansion of the valve from the delivery system. Further, it may be necessary to partially or fully recapture a partially or fully expanded prosthesis 70 for a number of reasons, such as incorrect positioning within a heart. Embodiments of the disclosed ring can be optionally used with respect to the suturing retention mechanism discussed above. However, in some embodiments the ring is not used. Further, the ring system can be used without the suturing retention system discussed above.
In some embodiments, the ring may be used to crimp the prosthesis 70 instead of the rotational torqueing discussed above the manifold shaft 222. In some embodiments, the ring may fit within a nosecone 118 of the delivery system 100. For example, the ring may freely float within the nosecone 118. In some embodiments, the ring can allow the nosecone 118 to have a 30 French outer diameter, a 27 French outer diameter, or less than 30 French or less than 27 French outer diameter.
The lumen 404 can be sized to receive and surround a portion of the prosthesis 70, in particular the first end 301 of the prosthesis 70, along with the tethers 212 attaching the prosthesis 70 to the manifold 204 discussed above. Prior to any crimping, the ring 400 can be located distal to the prosthesis 70.
As mentioned, the ring 400 can include a number of the smaller apertures 406. In some embodiments, they are spaced evenly around the circumference of the ring 400. In some embodiments, they are not spaced evenly around the circumference of the ring 400. The ring 400 can include 1, 2, 4, 5, 6, 7, 8, 9, or 10 apertures 404. In some embodiments, the apertures 406 may be notched.
The apertures 404 can be configured to receive and hold the ends of sutures (e.g., tethers, threads, cords, tapes) which can extend proximally through the delivery system 100, for example through lumens of various shafts. An example of the sutures 408 (in this case three sutures) attaching and extending away is shown in
When one of the sutures 408 is pulled in a proximal direction, the ring 400 can then tilt in the direction of the pull. As the sutures 212 attached to the prosthesis 70 are held within the ring 400 such as shown in
Further, when the ring 400 is pulled proximally by all of the sutures 408 at the same time, the sutures 212 attached to the prostheses 70 can be compressed inwards into the lumen 404 and the first end 301 of the prosthesis 70 can be compressed to fit within the lumen 404 as shown in
Release of Valve
The embodiments of
With reference next to the step of
With reference next to the step of
It should be noted that the first end 301 of the prosthesis 70 can remain covered by the nose cone 118 during this step such that the first end 301 remains in a radially compacted state. Moreover, as shown in the illustrated embodiment, the second end 303 of the prosthesis 70 has at least partially expanded in the radial dimension with the ventricular anchors 80 having been flipped to extend distally away from the second end of the prosthesis 70 (and distally away from the handle 110). By controlling the expansion of the second end 303 of the prosthesis 70 with the tether 136, the user can minimize the risk of the ventricular anchors 80 catching on surrounding tissue when the ventricular anchors 80 flip from extending proximally to extending distally.
As shown in
Next, as shown in
With reference next to the step of
After expansion and release of the prosthesis 70, the different distal end attachment components and the nose cone 118 can be withdrawn through the center of the prosthesis 70 and into the outer elongate hollow member shaft 114.
The delivery device 100 may be provided to users with an prosthesis 70 preinstalled, such as illustrated in
Further discussion on the release of the valve are described in U.S. Pat. Pub. No. 2017/0056169, hereby incorporated by reference in its entirety.
Insertion Methodology
In some embodiments, the prosthesis 70 can be delivered under fluoroscopy so that a user can view certain reference points for proper positioning of the prosthesis 70. Further, echocardiography can be used for proper positioning of the prosthesis 70.
Prior to insertion of the delivery system 100, the access site into the patient can be dilated. Further, a dilator can be flushed with, for example, heparinized saline prior to use. The delivery system 100 can then be inserted over a guide wire 2001.
The delivery system 100 can be advanced until a distal end of the delivery system 100 through the left ventricle 1070 and mitral annulus 106 into the left atrium 1078. Thus, the distal end of the delivery system 100 can be located in the left atrium 1078. In some embodiments, the delivery system 100 can be rotated, such as under fluoroscopy, into a desired position. The position of the delivery system 100, and the prosthesis 70 inside, can be verified using echocardiography and fluoroscopic guidance.
In some embodiments, the prosthesis 70 can be located, prior to release, above the mitral annulus 106, in line with the mitral annulus 106, just below the mitral annulus 106, or below the mitral annulus 106. In some embodiments, the prosthesis 70 can be located, prior to expansion, fully above the mitral annulus 106, in line with the mitral annulus 106, just below the mitral annulus 106, or fully below the mitral annulus 106. In some embodiments, the prosthesis 70 can be located, prior to expansion, partially above the mitral annulus 106, in line with the mitral annulus 106, or partially below the mitral annulus 106.
In some embodiments, the position of the mitral plane and the height of any papillary muscles 2004 on the fluoroscopy monitor can be marked to indicate an example target landing zone.
Further, the delivery system 100 can be positioned to be coaxial to the mitral annulus 106, or at least as much as possible, while still reducing contact with the left ventricular wall, the left atrial wall, and/or the mitral annulus 106 and reducing delivery system tension. An echo probe can be position to view the anterior mitral leaflet (AML), the posterior mitral leaflet (PML) (leaflets 108), mitral annulus 106, and outflow tract. Using fluoroscopy and echo imaging, the prosthesis 70 can be confirmed to be positioned at a particular depth and coaxiality with the mitral annulus 106.
Afterwards the prosthesis 70 is aligned to be generally perpendicular to the mitral annulus 106, the elongate hollow member shaft 114 can be retracted to expose the left ventricular anchors 80. In some embodiments, once exposed, the elongate hollow member shaft 114 can be reversed in direction to relieve tension on the elongate hollow member shaft 114. The tether 136 can keep the prosthesis 70 from quickly expanding.
An embodiment of the position of the delivery system 100 for release of the ventricular anchors 80 is shown in
As discussed in detail above, upon release from the delivery system 100, the ventricular anchors 80 can flip from extending distally to extending proximally. Accordingly, in some embodiments, the ventricular anchors 80 can be flipped in either the left atrium 1078 (e.g., super-annular flip), generally aligned with the mitral valve annulus 106 (e.g., intra-annular flip), or below the mitral valve annulus 106 (e.g., sub-annular flip). The ventricular anchors 80 can be released and flipped in the left atrium 1078 (or generally aligned with the mitral valve annulus 106) or in the left ventricle 1080. The atrial anchors 82 can remain within the delivery system 100. In some embodiments, all of the ventricular anchors 80 can be flipped together. In other embodiments, a subset of the ventricular anchors 80 can be flipped while at a first position and another subset of the ventricular anchors 80 can be released while at a second position. For example, some of the ventricular anchors 80 can be flipped in the left atrium 1078 and some of the ventricular anchors 80 can be flipped while generally aligned with the mitral valve annulus 106 or just below the mitral valve annulus 106.
In some embodiments, the ventricular anchors 80 may be positioned in line with the annulus 106 in the non-flipped position. In some embodiments, the ventricular anchors 80 may be position in line with the annulus 106 in the flipped position. In some embodiments, the ventricular anchors 80 may be just below the annulus 106 in the non-flipped position. In some embodiments, the ventricular anchors 80 may be just below the annulus 106 in the flipped position. In some embodiments, prior to flipping the ventricular side of the prosthesis 70 can be located within or below the mitral valve annulus 106. However, flipping the anchors can cause, without any other movement of the delivery system 100, the ventricular side of the prosthesis 70/anchors 80 to move upwards, moving it into the left atrium 1078 or moving it in line with the mitral annulus 106. Thus, in some embodiments the ventricular anchors 80 can begin flipping at the annulus 106 but be fully within the left atrium 1078 upon flipping. In some embodiments the ventricular anchors 80 can begin flipping below the annulus 106 but be generally in line with the annulus 106 upon flipping.
In some embodiments, the ventricular anchors 80 can be distal (e.g., toward the left atrium 1078) of a free edge of the mitral leaflets 108 upon release and flipping. In some embodiments, the ventricular anchors 80 can be aligned with (e.g., toward the left atrium 1078) a free edge of the mitral leaflets 108 upon release and flipping. In some embodiments, the ventricular anchors 80 can be distal (e.g., toward the left atrium 1078) of a free edge of the mitral valve annulus 106 upon release and flipping. In some embodiments, the ventricular anchors 80 can be aligned with (e.g., toward the left atrium 1078) a free edge of the mitral valve annulus 106 upon release and flipping. In some embodiments, the ventricular anchors 80 can be proximal (e.g., toward the left ventricle 1080) of a free edge of the mitral leaflets 108 upon release and flipping.
Thus, in some embodiments the ventricular anchors 80 can be released/flipped above where the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments the ventricular anchors 80 can be released/flipped above where some the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments the ventricular anchors 80 can be released/flipped above where all the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments, the ventricular anchors 80 can be released/flipped above the mitral valve annulus 106. In some embodiments, the ventricular anchors 80 can be released/flipped above the mitral valve leaflets 108. In some embodiments, the ventricular anchors 80 can be released/flipped generally in line with the mitral valve annulus 106. In some embodiments, the ventricular anchors 80 can be released/flipped generally in line with the mitral valve leaflets 108. In some embodiments, the tips of the ventricular anchors 80 can be released/flipped generally in line with the mitral valve annulus 106. In some embodiments, the tips of the ventricular anchors 80 can be released/flipped generally in line with the mitral valve leaflets 108. In some embodiments the ventricular anchors 80 can be released/flipped below where some the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments the ventricular anchors 80 can be released/flipped below where all the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments, the ventricular anchors 80 can be released/flipped below the mitral valve annulus 106. In some embodiments, the ventricular anchors 80 can be released/flipped below the mitral valve leaflets 108.
Once the ventricular anchors 80 are released and flipped, the delivery system 100 can be translated back towards the left ventricle 1080 through the mitral valve annulus 106 so that the ventricular anchors 80 enter the left ventricle 1080 as shown in
In some embodiments, the ventricular anchors 80 are fully expanded prior to passing through the mitral valve annulus 106, such as the tether 136 being fully released. In some embodiments, the ventricular anchors 80 are partially expanded prior to passing through the mitral valve annulus 106, such as the tether 136 maintaining tension, and continued operation of the delivery system 100 can fully expand the ventricular anchors 80 in the left ventricle 1080.
When the ventricular anchors 80 enter the left ventricle 1080, the ventricular anchors 80 can pass through the chordae 110 and move behind the mitral valve leaflets 108, thereby capturing the leaflets 108. In some embodiments, the ventricular anchors 80 and/or other parts of the prosthesis 70 can push the chordae 110 and/or the mitral valve leaflets 108 outwards.
Thus, after release of the ventricular anchors 80, the delivery system 100 can then be repositioned as needed so that the ends of the left ventricular anchors 80 are at the same level of the free edge of the native mitral valve leaflets as shown in
As shown above, in some embodiments, only the ventricular anchors 80 are released in the left atrium 1078 before the prosthesis 1010 is move to a position within, or below, the annulus. In some alternate embodiments, the distal end of the prosthesis 70 can be further expanded in the left atrium 1078, as shown in
To facilitate passage through the annulus 106, the delivery system 100 can include a leader element (not shown) which passes through the annulus 106 prior to the prosthesis 10 passing through the annulus 106. For example, the leader element can include an expandable member, such as an expandable balloon, which can help maintain the shape, or expand, the annulus 106. The leader element can have a tapered or rounded shape (e.g., conical, frustoconical, semispherical) to facilitate positioning through and expansion of the annulus 106. In some embodiments, the delivery system 100 can include an engagement element (not shown) which can apply a force on the prosthesis 70 to force the prosthesis 70 through the annulus 106. For example, the engagement element can include an expandable member, such as an expandable balloon, positioned within or above the prosthesis 70. In some embodiments, the engagement element can include one or more tethers.
However, if only the ventricular anchors 80 are flipped, and no other expansion occurs such as shown in
Further, the PML and AML 108 can be captured, for example by adjusting the depth and angle of the prosthesis 70.
In some embodiments, once the ventricular anchors 80 enter the left ventricle 1080 the system 100 can be pushed upwards (e.g., towards the left atrium 1078) to fully capture the leaflets 108 as shown in
The delivery system 100 can be maneuvered to be coaxial and height relative to the mitral annulus 106, such as by translating or rotating the delivery system 100. As needed, the prosthesis 70 can be repositioned to capture the free edge of the native mitral valve leaflets 108. Once full engagement of the leaflets 108 is confirmed, the prosthesis 70 can be set perpendicular (or generally perpendicular) to the mitral annular plane. The tether 136 can continue to be released to continue expansion of the prosthesis 70.
Following, the nose cone 118 can be advanced distally until the first end 301 of the prosthesis 70 and the left atrial anchors 82 are exposed and the prosthesis 70 expanded as shown in
In some embodiments, atrial anchors 82 may not be released from the system 10 until the ventricular anchors 80 have captured the leaflets 108. In some embodiments, atrial anchors 82 may be released from the system 10 prior to the ventricular anchors 80 capturing the leaflets 108. In some embodiments, the atrial anchors 82 can be released when the ventricular anchors 80 are super or intra annular and the expanded prosthesis 70 (either partially or fully expanded) can be translated through the mitral annulus 106.
After, the leaflet capture and positioning of the prosthesis 70 can be confirmed, along with the relatively perpendicular position with respect to the mitral annular plane. Proper positioning of the prosthesis 70 can be confirmed using TEE and fluoroscopic imaging.
Following, the delivery system 100 can be centralized within the prosthesis 70. The nose cone 118 can be translated to be flush with the outer elongate hollow member shaft 114. The delivery system 100 can then be retracted into the left atrium 1078 and removed.
This intra-super annulus release can have a number of advantageous. For example, this allows the ventricular anchors 80 to be properly aligned when contacting the chordae 110. If the ventricular anchors 80 were released in the left ventricle 1080, this could cause misalignment or damage to heart tissue, such as the leaflets 108 or chordae 110.
In any of the procedures described herein, a user can utilize rapid pacing at any step of the process. In some instances, this can facilitate positioning and/or anchoring of the prosthesis 1010 to native tissue.
From the foregoing description, it will be appreciated that an inventive product and approaches for implant delivery systems are disclosed. While several components, techniques and aspects have been described with a certain degree of particularity, it is manifest that many changes can be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.
Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any subcombination or variation of any subcombination.
Moreover, while methods may be depicted in the drawings or described in the specification in a particular order, such methods need not be performed in the particular order shown or in sequential order, and that all methods need not be performed, to achieve desirable results. Other methods that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional methods can be performed before, after, simultaneously, or between any of the described methods. Further, the methods may be rearranged or reordered in other implementations. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, other implementations are within the scope of this disclosure.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than or equal to 10% of, within less than or equal to 5% of, within less than or equal to 1% of, within less than or equal to 0.1% of, and within less than or equal to 0.01% of the stated amount. If the stated amount is 0 (e.g., none, having no), the above recited ranges can be specific ranges, and not within a particular % of the value. For example, within less than or equal to 10 wt./vol. % of, within less than or equal to 5 wt./vol. % of, within less than or equal to 1 wt./vol. % of, within less than or equal to 0.1 wt./vol. % of, and within less than or equal to 0.01 wt./vol. % of the stated amount.
Some embodiments have been described in connection with the accompanying drawings. The figures are drawn to scale, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed inventions. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
While a number of embodiments and variations thereof have been described in detail, other modifications and methods of using the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, materials, and substitutions can be made of equivalents without departing from the unique and inventive disclosure herein or the scope of the claims.
This application is a continuation of International Application No. PCT/US2019/014999, filed Jan. 24, 2019, designating the United States and published in English by the International Bureau on Aug. 1, 2019 as WO 2019/147846, which claims priority to U.S. Provisional App. No. 62/622,036, filed Jan. 25, 2018, the entirety of each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3739402 | Cooley et al. | Jun 1973 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4079468 | Liotta et al. | Mar 1978 | A |
4204283 | Bellhouse et al. | May 1980 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4340977 | Brownlee et al. | Jul 1982 | A |
4470157 | Love | Sep 1984 | A |
4477930 | Totten et al. | Oct 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4553545 | Maass et al. | Nov 1985 | A |
4655771 | Wallsten | Apr 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4865600 | Carpentier et al. | Sep 1989 | A |
4994077 | Dobben | Feb 1991 | A |
5197978 | Hess | Mar 1993 | A |
5315996 | Lundquist | May 1994 | A |
5326371 | Love et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5368564 | Savage | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397355 | Marin et al. | Mar 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5415667 | Frater | May 1995 | A |
5439446 | Barry | Aug 1995 | A |
5439466 | Kilejian | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5474563 | Myler et al. | Dec 1995 | A |
5545214 | Stevens | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5575818 | Pinchuk | Nov 1996 | A |
5607444 | Lam | Mar 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5693061 | Pierce et al. | Dec 1997 | A |
5697382 | Love et al. | Dec 1997 | A |
D390957 | Fontaine | Feb 1998 | S |
5725519 | Penner et al. | Mar 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5782809 | Umeno et al. | Jul 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5810873 | Morales | Sep 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5868777 | Lam | Feb 1999 | A |
5868782 | Frantzen | Feb 1999 | A |
5879381 | Moriuchi et al. | Mar 1999 | A |
5902334 | Dwyer et al. | May 1999 | A |
5935108 | Katoh et al. | Aug 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5992000 | Humphrey et al. | Nov 1999 | A |
6004328 | Solar | Dec 1999 | A |
6015431 | Thornton et al. | Jan 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6053940 | Wijay | Apr 2000 | A |
6086612 | Jansen | Jul 2000 | A |
6113612 | Swanson et al. | Sep 2000 | A |
6113631 | Jansen | Sep 2000 | A |
6132458 | Staehle et al. | Oct 2000 | A |
6152937 | Peterson et al. | Nov 2000 | A |
6159237 | Alt et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6168616 | Brown, III | Jan 2001 | B1 |
6251093 | Valley et al. | Jun 2001 | B1 |
6280466 | Kugler et al. | Aug 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6336938 | Kavteladze et al. | Jan 2002 | B1 |
6352543 | Cole | Mar 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6475237 | Drasler et al. | Nov 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6511491 | Grudem et al. | Jan 2003 | B2 |
6527800 | McGuckin, Jr. et al. | Mar 2003 | B1 |
6540778 | Quiachon et al. | Apr 2003 | B1 |
6540782 | Snyders | Apr 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6602281 | Klein | Aug 2003 | B1 |
6610088 | Gabbay | Aug 2003 | B1 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6641606 | Ouriel et al. | Nov 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6664058 | Kumar et al. | Dec 2003 | B2 |
D484979 | Fontaine | Jan 2004 | S |
6676698 | McGuckin, Jr. et al. | Jan 2004 | B2 |
6682537 | Ouriel et al. | Jan 2004 | B2 |
6695878 | McGuckin, Jr. et al. | Feb 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6716207 | Farnholtz | Apr 2004 | B2 |
6729356 | Baker et al. | May 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6746422 | Noriega et al. | Jun 2004 | B1 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6767362 | Schreck | Jul 2004 | B2 |
6780200 | Jansen | Aug 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6814746 | Thompson et al. | Nov 2004 | B2 |
6846325 | Liddicoat | Jan 2005 | B2 |
6858034 | Hijlkema et al. | Feb 2005 | B1 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6926732 | Derus et al. | Aug 2005 | B2 |
6929660 | Ainsworth et al. | Aug 2005 | B1 |
6936058 | Forde et al. | Aug 2005 | B2 |
6974464 | Quijano et al. | Dec 2005 | B2 |
7018401 | Hyodoh et al. | Mar 2006 | B1 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7044962 | Elliott | May 2006 | B2 |
7087088 | Berg et al. | Aug 2006 | B2 |
7147660 | Chobotov et al. | Dec 2006 | B2 |
7147661 | Chobotov et al. | Dec 2006 | B2 |
7153322 | Alt | Dec 2006 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7192440 | Andreas et al. | Mar 2007 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
D553747 | Fliedner | Oct 2007 | S |
7276078 | Spenser et al. | Oct 2007 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7329279 | Haug et al. | Feb 2008 | B2 |
7331992 | Randall et al. | Feb 2008 | B2 |
7354450 | Bicek et al. | Apr 2008 | B2 |
7381198 | Noriega et al. | Jun 2008 | B2 |
7381219 | Salahieh et al. | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7402168 | Sanderson et al. | Jul 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7553324 | Andreas et al. | Jun 2009 | B2 |
7569071 | Haverkost et al. | Aug 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7608114 | Levine et al. | Oct 2009 | B2 |
7615072 | Rust et al. | Nov 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7628805 | Spenser et al. | Dec 2009 | B2 |
7632298 | Hijlkema et al. | Dec 2009 | B2 |
7637902 | Eversull et al. | Dec 2009 | B2 |
7658759 | Case et al. | Feb 2010 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7749266 | Forster et al. | Jul 2010 | B2 |
7753949 | Lamphere et al. | Jul 2010 | B2 |
D622387 | Igaki | Aug 2010 | S |
D622388 | Igaki | Aug 2010 | S |
7771463 | Ton et al. | Aug 2010 | B2 |
7785360 | Freitag | Aug 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7806917 | Xiao | Oct 2010 | B2 |
7806919 | Bloom et al. | Oct 2010 | B2 |
7815589 | Meade et al. | Oct 2010 | B2 |
7815673 | Bloom et al. | Oct 2010 | B2 |
7824443 | Salahieh et al. | Nov 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
D635261 | Rossi | Mar 2011 | S |
D635262 | Rossi | Mar 2011 | S |
7914466 | Davis et al. | Mar 2011 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7918819 | Karmarkar et al. | Apr 2011 | B2 |
7947075 | Goetz et al. | May 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7981151 | Rowe | Jul 2011 | B2 |
7988724 | Salahieh et al. | Aug 2011 | B2 |
7993392 | Righini et al. | Aug 2011 | B2 |
8016877 | Seguin et al. | Sep 2011 | B2 |
8048153 | Salahieh et al. | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8057538 | Bergin et al. | Nov 2011 | B2 |
8070799 | Righini et al. | Dec 2011 | B2 |
8070800 | Lock et al. | Dec 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8075615 | Eberhardt et al. | Dec 2011 | B2 |
8080054 | Rowe | Dec 2011 | B2 |
8092444 | Lentz et al. | Jan 2012 | B2 |
8092520 | Quadri | Jan 2012 | B2 |
8109996 | Stacchino et al. | Feb 2012 | B2 |
8118866 | Herrmann et al. | Feb 2012 | B2 |
8136218 | Millwee et al. | Mar 2012 | B2 |
8137398 | Tuval et al. | Mar 2012 | B2 |
8157852 | Bloom et al. | Apr 2012 | B2 |
8167926 | Hartley et al. | May 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8167934 | Styrc et al. | May 2012 | B2 |
8177799 | Orban, III | May 2012 | B2 |
8182528 | Salahieh et al. | May 2012 | B2 |
8182530 | Huber | May 2012 | B2 |
8197528 | Colgan et al. | Jun 2012 | B2 |
8216261 | Solem | Jul 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8219229 | Cao et al. | Jul 2012 | B2 |
8220121 | Hendriksen et al. | Jul 2012 | B2 |
8221482 | Cottone et al. | Jul 2012 | B2 |
8221493 | Boyle et al. | Jul 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
D665079 | Zago | Aug 2012 | S |
D665080 | Zago | Aug 2012 | S |
8236045 | Benichou et al. | Aug 2012 | B2 |
8241350 | Randall et al. | Aug 2012 | B2 |
8246675 | Zegdi | Aug 2012 | B2 |
8246678 | Salahieh et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8252052 | Salahieh et al. | Aug 2012 | B2 |
8262563 | Bakos et al. | Sep 2012 | B2 |
8287584 | Salahieh et al. | Oct 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8308798 | Pintor et al. | Nov 2012 | B2 |
8313525 | Tuval et al. | Nov 2012 | B2 |
8317854 | Ryan et al. | Nov 2012 | B1 |
8323241 | Salahieh et al. | Dec 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8348995 | Tuval et al. | Jan 2013 | B2 |
8353953 | Giannetti et al. | Jan 2013 | B2 |
8361137 | Perouse | Jan 2013 | B2 |
8403982 | Giannetti et al. | Mar 2013 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8414644 | Quadri et al. | Apr 2013 | B2 |
8414645 | Dwork et al. | Apr 2013 | B2 |
8425593 | Braido et al. | Apr 2013 | B2 |
8444689 | Zhang | May 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8449625 | Campbell et al. | May 2013 | B2 |
8454685 | Hariton et al. | Jun 2013 | B2 |
8460365 | Haverkost et al. | Jun 2013 | B2 |
8460368 | Taylor et al. | Jun 2013 | B2 |
8465541 | Dwork | Jun 2013 | B2 |
8470020 | Schaeffer et al. | Jun 2013 | B2 |
8470023 | Eidenschink et al. | Jun 2013 | B2 |
8470025 | Lenihan et al. | Jun 2013 | B2 |
8470028 | Thornton et al. | Jun 2013 | B2 |
8475521 | Suri et al. | Jul 2013 | B2 |
8475522 | Jimenez et al. | Jul 2013 | B2 |
8475523 | Duffy | Jul 2013 | B2 |
8479380 | Malewicz et al. | Jul 2013 | B2 |
8486137 | Suri et al. | Jul 2013 | B2 |
8491650 | Wiemeyer et al. | Jul 2013 | B2 |
8500733 | Watson | Aug 2013 | B2 |
8500785 | Gunderson | Aug 2013 | B2 |
8500798 | Rowe et al. | Aug 2013 | B2 |
8511244 | Holecek et al. | Aug 2013 | B2 |
8512401 | Murray, III et al. | Aug 2013 | B2 |
8518096 | Nelson | Aug 2013 | B2 |
8518106 | Duffy et al. | Aug 2013 | B2 |
8535368 | Headley, Jr. et al. | Sep 2013 | B2 |
8562663 | Mearns et al. | Oct 2013 | B2 |
8568472 | Marchand et al. | Oct 2013 | B2 |
8579963 | Tabor | Nov 2013 | B2 |
8579964 | Lane et al. | Nov 2013 | B2 |
8579965 | Bonhoeffer et al. | Nov 2013 | B2 |
8579966 | Seguin et al. | Nov 2013 | B2 |
8584849 | McCaffrey | Nov 2013 | B2 |
8585749 | Shelso | Nov 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8585756 | Bonhoeffer et al. | Nov 2013 | B2 |
8591460 | Wilson et al. | Nov 2013 | B2 |
8591570 | Revuelta et al. | Nov 2013 | B2 |
8597348 | Rowe et al. | Dec 2013 | B2 |
8617236 | Paul et al. | Dec 2013 | B2 |
8623075 | Murray, III et al. | Jan 2014 | B2 |
8640521 | Righini et al. | Feb 2014 | B2 |
8641757 | Pintor et al. | Feb 2014 | B2 |
8647381 | Essinger et al. | Feb 2014 | B2 |
8652145 | Maimon et al. | Feb 2014 | B2 |
8652201 | Oberti et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8668733 | Haug et al. | Mar 2014 | B2 |
8672992 | Or | Mar 2014 | B2 |
8673000 | Tabor et al. | Mar 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8679404 | Liburd et al. | Mar 2014 | B2 |
8685084 | Rolando et al. | Apr 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8707957 | Callister et al. | Apr 2014 | B2 |
8721707 | Boucher et al. | May 2014 | B2 |
8721708 | Seguin et al. | May 2014 | B2 |
8721713 | Tower et al. | May 2014 | B2 |
8721714 | Kelley | May 2014 | B2 |
8728154 | Alkhatib | May 2014 | B2 |
8728155 | Montorfano et al. | May 2014 | B2 |
8740974 | Lambrecht et al. | Jun 2014 | B2 |
8740976 | Tran et al. | Jun 2014 | B2 |
8747458 | Tuval et al. | Jun 2014 | B2 |
8747459 | Nguyen et al. | Jun 2014 | B2 |
8747460 | Tuval et al. | Jun 2014 | B2 |
8753384 | Leanna | Jun 2014 | B2 |
8758432 | Solem | Jun 2014 | B2 |
8764814 | Solem | Jul 2014 | B2 |
8764818 | Gregg | Jul 2014 | B2 |
8771338 | Schaeffer et al. | Jul 2014 | B2 |
8771344 | Tran et al. | Jul 2014 | B2 |
8771345 | Tuval et al. | Jul 2014 | B2 |
8771346 | Tuval et al. | Jul 2014 | B2 |
8778019 | Knippel et al. | Jul 2014 | B2 |
8778020 | Gregg et al. | Jul 2014 | B2 |
8784337 | Voeller et al. | Jul 2014 | B2 |
8784478 | Tuval et al. | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790387 | Nguyen et al. | Jul 2014 | B2 |
8795355 | Alkhatib | Aug 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8808356 | Braido et al. | Aug 2014 | B2 |
8814931 | Wang et al. | Aug 2014 | B2 |
8828078 | Salahieh et al. | Sep 2014 | B2 |
8828079 | Thielen et al. | Sep 2014 | B2 |
8834564 | Tuval et al. | Sep 2014 | B2 |
8845718 | Tuval et al. | Sep 2014 | B2 |
8852267 | Cattaneo | Oct 2014 | B2 |
8858620 | Salahieh et al. | Oct 2014 | B2 |
8870790 | Davis et al. | Oct 2014 | B2 |
8870947 | Shaw | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870950 | Hacohen | Oct 2014 | B2 |
8876883 | Rust | Nov 2014 | B2 |
8876892 | Tran et al. | Nov 2014 | B2 |
8876893 | Dwork et al. | Nov 2014 | B2 |
8876894 | Tuval et al. | Nov 2014 | B2 |
8876895 | Tuval et al. | Nov 2014 | B2 |
8894703 | Salahieh et al. | Nov 2014 | B2 |
8900163 | Jacobsen et al. | Dec 2014 | B2 |
8911455 | Quadri et al. | Dec 2014 | B2 |
8915865 | Jacobsen et al. | Dec 2014 | B2 |
8926692 | Dwork | Jan 2015 | B2 |
8926693 | Duffy et al. | Jan 2015 | B2 |
8926694 | Costello | Jan 2015 | B2 |
8939960 | Rosenman et al. | Jan 2015 | B2 |
8945146 | Steingisser et al. | Feb 2015 | B2 |
8945209 | Bonyuet et al. | Feb 2015 | B2 |
8951243 | Crisostomo et al. | Feb 2015 | B2 |
8951299 | Paul et al. | Feb 2015 | B2 |
8961583 | Hojeibane et al. | Feb 2015 | B2 |
8961593 | Bonhoeffer et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8974524 | Yeung et al. | Mar 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8986372 | Murry, III et al. | Mar 2015 | B2 |
8986375 | Garde et al. | Mar 2015 | B2 |
8992608 | Haug et al. | Mar 2015 | B2 |
8998979 | Seguin et al. | Apr 2015 | B2 |
8998980 | Shipley et al. | Apr 2015 | B2 |
9005270 | Perkins et al. | Apr 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9005278 | Pintor et al. | Apr 2015 | B2 |
9011521 | Haug et al. | Apr 2015 | B2 |
9011523 | Seguin | Apr 2015 | B2 |
9011524 | Eberhardt | Apr 2015 | B2 |
9028545 | Taylor | May 2015 | B2 |
9029418 | Dove et al. | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9034033 | McLean et al. | May 2015 | B2 |
9039676 | Klima | May 2015 | B2 |
9039757 | McLean et al. | May 2015 | B2 |
9055937 | Rowe et al. | Jun 2015 | B2 |
9061119 | Le et al. | Jun 2015 | B2 |
9066801 | Kovalsky et al. | Jun 2015 | B2 |
9078749 | Lutter et al. | Jul 2015 | B2 |
9078751 | Naor | Jul 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9084694 | Goodin et al. | Jul 2015 | B2 |
9125738 | Figulla et al. | Sep 2015 | B2 |
9138312 | Tuval et al. | Sep 2015 | B2 |
9155619 | Liu et al. | Oct 2015 | B2 |
9161834 | Taylor et al. | Oct 2015 | B2 |
9168129 | Valdez et al. | Oct 2015 | B2 |
9173737 | Hill et al. | Nov 2015 | B2 |
9173738 | Murray, III et al. | Nov 2015 | B2 |
9180004 | Alkhatib | Nov 2015 | B2 |
9186249 | Rolando et al. | Nov 2015 | B2 |
9192469 | Mearns et al. | Nov 2015 | B2 |
9216056 | Datta et al. | Dec 2015 | B2 |
9220594 | Braido et al. | Dec 2015 | B2 |
9241790 | Lane et al. | Jan 2016 | B2 |
9241794 | Braido et al. | Jan 2016 | B2 |
9248014 | Lane et al. | Feb 2016 | B2 |
9271856 | Duffy et al. | Mar 2016 | B2 |
9277990 | Klima et al. | Mar 2016 | B2 |
9277993 | Gamarra et al. | Mar 2016 | B2 |
9289291 | Gorman, III et al. | Mar 2016 | B2 |
9289296 | Braido et al. | Mar 2016 | B2 |
9295551 | Straubinger et al. | Mar 2016 | B2 |
9308105 | Carlson et al. | Apr 2016 | B2 |
9326815 | Watson | May 2016 | B2 |
9326871 | Schaeffer et al. | May 2016 | B2 |
9331328 | Eberhardt et al. | May 2016 | B2 |
9339382 | Tabor et al. | May 2016 | B2 |
9351831 | Braido et al. | May 2016 | B2 |
9364321 | Alkhatib et al. | Jun 2016 | B2 |
9370423 | Ryan | Jun 2016 | B2 |
9375312 | Weber | Jun 2016 | B2 |
9414915 | Lombardi et al. | Aug 2016 | B2 |
9445897 | Bishop et al. | Sep 2016 | B2 |
9456877 | Weitzner et al. | Oct 2016 | B2 |
9504564 | Nguyen et al. | Nov 2016 | B2 |
9532870 | Cooper et al. | Jan 2017 | B2 |
9572662 | Morriss et al. | Feb 2017 | B2 |
9579193 | Rafiee | Feb 2017 | B2 |
9579196 | Morriss et al. | Feb 2017 | B2 |
9585751 | Morriss et al. | Mar 2017 | B2 |
9592120 | Tuval et al. | Mar 2017 | B2 |
9597181 | Christianson et al. | Mar 2017 | B2 |
9597182 | Straubinger et al. | Mar 2017 | B2 |
9629718 | Gloss et al. | Apr 2017 | B2 |
9675452 | Valdez et al. | Jun 2017 | B2 |
9681968 | Goetz et al. | Jun 2017 | B2 |
9700329 | Metzger et al. | Jul 2017 | B2 |
9700411 | Klima et al. | Jul 2017 | B2 |
9717593 | Alkhatib et al. | Aug 2017 | B2 |
9737398 | Bruchman et al. | Aug 2017 | B2 |
9737400 | Fish et al. | Aug 2017 | B2 |
9750606 | Ganesan et al. | Sep 2017 | B2 |
9763780 | Morriss et al. | Sep 2017 | B2 |
9770329 | Lane et al. | Sep 2017 | B2 |
9775705 | Ottma et al. | Oct 2017 | B2 |
9788945 | Ottma et al. | Oct 2017 | B2 |
9795479 | Lim et al. | Oct 2017 | B2 |
9833313 | Board et al. | Dec 2017 | B2 |
9833315 | Vidlund et al. | Dec 2017 | B2 |
9839511 | Ma et al. | Dec 2017 | B2 |
9861473 | Lafontaine | Jan 2018 | B2 |
9861476 | Salahieh et al. | Jan 2018 | B2 |
9861477 | Backus et al. | Jan 2018 | B2 |
9867695 | Stacchino et al. | Jan 2018 | B2 |
9867697 | Alkhatib et al. | Jan 2018 | B2 |
9867698 | Kovalsky et al. | Jan 2018 | B2 |
9877830 | Lim et al. | Jan 2018 | B2 |
9889002 | Bonhoeffer et al. | Feb 2018 | B2 |
9889029 | Li et al. | Feb 2018 | B2 |
9895225 | Rolando et al. | Feb 2018 | B2 |
9901443 | Morriss et al. | Feb 2018 | B2 |
9907681 | Tobis et al. | Mar 2018 | B2 |
9913714 | Tuval et al. | Mar 2018 | B2 |
9925045 | Creaven et al. | Mar 2018 | B2 |
9931232 | Gunderson et al. | Apr 2018 | B2 |
9962260 | Krans et al. | May 2018 | B2 |
9974651 | Hariton et al. | May 2018 | B2 |
9987463 | Guo et al. | Jun 2018 | B2 |
10010418 | Marchand et al. | Jul 2018 | B2 |
10039642 | Hillukka | Aug 2018 | B2 |
10058420 | Levi | Aug 2018 | B2 |
10058422 | Braido | Aug 2018 | B2 |
10064718 | Keidar | Sep 2018 | B2 |
10070954 | Braido et al. | Sep 2018 | B2 |
10080656 | Schweich, Jr. et al. | Sep 2018 | B2 |
10092400 | Jimenez et al. | Oct 2018 | B2 |
10098736 | Carmi et al. | Oct 2018 | B2 |
10117744 | Ratz et al. | Nov 2018 | B2 |
10123871 | Liu et al. | Nov 2018 | B2 |
10130467 | Braido et al. | Nov 2018 | B2 |
10130470 | Thomas et al. | Nov 2018 | B2 |
10149758 | Racchini et al. | Dec 2018 | B2 |
10149760 | Johnson et al. | Dec 2018 | B2 |
10154921 | Stante et al. | Dec 2018 | B2 |
10172732 | Murphy et al. | Jan 2019 | B2 |
10179044 | Ratz et al. | Jan 2019 | B2 |
10188536 | Lombardi et al. | Jan 2019 | B2 |
10201417 | Lin et al. | Feb 2019 | B2 |
10213301 | Ganesan et al. | Feb 2019 | B2 |
10226309 | Ho et al. | Mar 2019 | B2 |
10231827 | Mulvihill | Mar 2019 | B2 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010047200 | White et al. | Nov 2001 | A1 |
20020016623 | Kula et al. | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020045929 | Diaz | Apr 2002 | A1 |
20020052644 | Shaolian et al. | May 2002 | A1 |
20020111619 | Keast et al. | Aug 2002 | A1 |
20030069522 | Jacobsen et al. | Apr 2003 | A1 |
20030105517 | White et al. | Jun 2003 | A1 |
20030120333 | Ouriel et al. | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030176914 | Rabkin et al. | Sep 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20030220683 | Minasian et al. | Nov 2003 | A1 |
20040117009 | Cali et al. | Jun 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040186561 | McGuckin et al. | Sep 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040215325 | Penn et al. | Oct 2004 | A1 |
20040225353 | McGuckin et al. | Nov 2004 | A1 |
20040236411 | Sarac et al. | Nov 2004 | A1 |
20040243230 | Navia et al. | Dec 2004 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050090887 | Pryor | Apr 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050107872 | Mensah et al. | May 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050159811 | Lane | Jul 2005 | A1 |
20050177131 | Lentz et al. | Aug 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060095115 | Bladillah et al. | May 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060100695 | Peacock et al. | May 2006 | A1 |
20060116625 | Renati et al. | Jun 2006 | A1 |
20060173537 | Yang et al. | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060212110 | Osborne et al. | Sep 2006 | A1 |
20060224232 | Chobotov | Oct 2006 | A1 |
20060241564 | Corcoran et al. | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060293745 | Carpentier et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070050021 | Johnson | Mar 2007 | A1 |
20070100432 | Case et al. | May 2007 | A1 |
20070129794 | Realyvasquez | Jun 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070219620 | Eells et al. | Sep 2007 | A1 |
20070250151 | Pereira | Oct 2007 | A1 |
20070255394 | Ryan | Nov 2007 | A1 |
20070293940 | Schaeffer et al. | Dec 2007 | A1 |
20080009934 | Schneider et al. | Jan 2008 | A1 |
20080021546 | Patz et al. | Jan 2008 | A1 |
20080082164 | Friedman | Apr 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080097571 | Denison et al. | Apr 2008 | A1 |
20080097581 | Shanley | Apr 2008 | A1 |
20080147179 | Cai et al. | Jun 2008 | A1 |
20080147183 | Styrc | Jun 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080177373 | Huang et al. | Jul 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080183273 | Mesana et al. | Jul 2008 | A1 |
20080208307 | Ben-Muvhar et al. | Aug 2008 | A1 |
20080208327 | Rowe | Aug 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080234799 | Acosta et al. | Sep 2008 | A1 |
20080243233 | Ben-Muvhar et al. | Oct 2008 | A1 |
20080319526 | Hill et al. | Dec 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090082844 | Zacharias et al. | Mar 2009 | A1 |
20090082847 | Zacharias et al. | Mar 2009 | A1 |
20090088832 | Chew et al. | Apr 2009 | A1 |
20090118810 | Klein et al. | May 2009 | A1 |
20090125096 | Chu et al. | May 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090149946 | Dixon | Jun 2009 | A1 |
20090171438 | Chuter et al. | Jul 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090182407 | Leanna et al. | Jul 2009 | A1 |
20090182413 | Burkart et al. | Jul 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20090270972 | Lane | Oct 2009 | A1 |
20090276027 | Glynn | Nov 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281618 | Hill et al. | Nov 2009 | A1 |
20090287296 | Manasse | Nov 2009 | A1 |
20090292350 | Eberhardt et al. | Nov 2009 | A1 |
20090306768 | Quadri | Dec 2009 | A1 |
20090312832 | Delap | Dec 2009 | A1 |
20100114299 | Ben Muvhar et al. | May 2010 | A1 |
20100114305 | Kang et al. | May 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100249894 | Oba et al. | Sep 2010 | A1 |
20100249911 | Alkhatib | Sep 2010 | A1 |
20100256723 | Murray | Oct 2010 | A1 |
20100305685 | Millwee et al. | Dec 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110029067 | McGuckin, Jr. et al. | Feb 2011 | A1 |
20110208297 | Tuval et al. | Aug 2011 | A1 |
20110208298 | Tuval et al. | Aug 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110264196 | Savage et al. | Oct 2011 | A1 |
20110264198 | Murray, III et al. | Oct 2011 | A1 |
20110288626 | Straubinger et al. | Nov 2011 | A1 |
20110313515 | Quadri et al. | Dec 2011 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120035702 | Horvath et al. | Feb 2012 | A1 |
20120041550 | Salahieh et al. | Feb 2012 | A1 |
20120059454 | Millwee et al. | Mar 2012 | A1 |
20120078360 | Rafiee | Mar 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120259405 | Weber et al. | Oct 2012 | A1 |
20120271398 | Essinger et al. | Oct 2012 | A1 |
20120290062 | McNamara et al. | Nov 2012 | A1 |
20120310328 | Olson et al. | Dec 2012 | A1 |
20130006294 | Kashkarov et al. | Jan 2013 | A1 |
20130030520 | Lee et al. | Jan 2013 | A1 |
20130035759 | Gross et al. | Feb 2013 | A1 |
20130053950 | Rowe et al. | Feb 2013 | A1 |
20130116705 | Salahieh et al. | May 2013 | A1 |
20130131788 | Quadri et al. | May 2013 | A1 |
20130144375 | Giasolli et al. | Jun 2013 | A1 |
20130144378 | Quadri et al. | Jun 2013 | A1 |
20130172983 | Clerc et al. | Jul 2013 | A1 |
20130190861 | Chau et al. | Jul 2013 | A1 |
20130211508 | Lane et al. | Aug 2013 | A1 |
20130253635 | Straubinger et al. | Sep 2013 | A1 |
20130253642 | Brecker | Sep 2013 | A1 |
20130296718 | Ranganathan et al. | Nov 2013 | A1 |
20130310923 | Kheradvar | Nov 2013 | A1 |
20130310928 | Morriss et al. | Nov 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20130338766 | Hastings et al. | Dec 2013 | A1 |
20130345786 | Behan | Dec 2013 | A1 |
20140005764 | Schroeder | Jan 2014 | A1 |
20140018912 | Delaloye et al. | Jan 2014 | A1 |
20140025163 | Padala et al. | Jan 2014 | A1 |
20140046427 | Michalak | Feb 2014 | A1 |
20140052237 | Lane et al. | Feb 2014 | A1 |
20140052242 | Revuelta et al. | Feb 2014 | A1 |
20140058502 | Marchand et al. | Feb 2014 | A1 |
20140067037 | Fargahi | Mar 2014 | A1 |
20140067054 | Chau et al. | Mar 2014 | A1 |
20140088565 | Vongphakdy et al. | Mar 2014 | A1 |
20140088685 | Yevzlin et al. | Mar 2014 | A1 |
20140100651 | Kheradvar et al. | Apr 2014 | A1 |
20140100653 | Savage et al. | Apr 2014 | A1 |
20140128969 | Hill et al. | May 2014 | A1 |
20140155990 | Nyuli et al. | Jun 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140172077 | Bruchman et al. | Jun 2014 | A1 |
20140172083 | Bruchman et al. | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140214154 | Nguyen et al. | Jul 2014 | A1 |
20140214155 | Kelley | Jul 2014 | A1 |
20140214160 | Naor | Jul 2014 | A1 |
20140215791 | Soundararajan et al. | Aug 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140222139 | Nguyen et al. | Aug 2014 | A1 |
20140222142 | Kovalsky et al. | Aug 2014 | A1 |
20140230515 | Tuval et al. | Aug 2014 | A1 |
20140236288 | Lambrecht et al. | Aug 2014 | A1 |
20140243957 | Wang et al. | Aug 2014 | A1 |
20140257467 | Lane et al. | Sep 2014 | A1 |
20140276395 | Wilson et al. | Sep 2014 | A1 |
20140277390 | Ratz et al. | Sep 2014 | A1 |
20140277402 | Essinger et al. | Sep 2014 | A1 |
20140277422 | Ratz et al. | Sep 2014 | A1 |
20140277427 | Ratz et al. | Sep 2014 | A1 |
20140296973 | Bergheim et al. | Oct 2014 | A1 |
20140296975 | Tegels et al. | Oct 2014 | A1 |
20140303719 | Cox et al. | Oct 2014 | A1 |
20140309728 | Dehdashtian et al. | Oct 2014 | A1 |
20140309732 | Solem | Oct 2014 | A1 |
20140324160 | Benichou et al. | Oct 2014 | A1 |
20140324162 | Knippel et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140330368 | Gloss et al. | Nov 2014 | A1 |
20140330371 | Gloss et al. | Nov 2014 | A1 |
20140330372 | Weston et al. | Nov 2014 | A1 |
20140331475 | Duffy et al. | Nov 2014 | A1 |
20140336754 | Gurskis et al. | Nov 2014 | A1 |
20140343669 | Lane et al. | Nov 2014 | A1 |
20140343670 | Bakis | Nov 2014 | A1 |
20140343671 | Yohanan et al. | Nov 2014 | A1 |
20140350663 | Braido et al. | Nov 2014 | A1 |
20140350666 | Righini | Nov 2014 | A1 |
20140350668 | Delaloye et al. | Nov 2014 | A1 |
20140358221 | Ho et al. | Dec 2014 | A1 |
20140358223 | Rafiee et al. | Dec 2014 | A1 |
20140364939 | Deshmukh et al. | Dec 2014 | A1 |
20140364943 | Conklin | Dec 2014 | A1 |
20140371842 | Marquez et al. | Dec 2014 | A1 |
20140371844 | Dale et al. | Dec 2014 | A1 |
20140371847 | Madrid et al. | Dec 2014 | A1 |
20140371848 | Murray, III et al. | Dec 2014 | A1 |
20140379067 | Nguyen et al. | Dec 2014 | A1 |
20140379068 | Thielen et al. | Dec 2014 | A1 |
20140379077 | Tuval et al. | Dec 2014 | A1 |
20150005863 | Para | Jan 2015 | A1 |
20150005873 | Chang et al. | Jan 2015 | A1 |
20150012085 | Salahieh et al. | Jan 2015 | A1 |
20150018938 | Von Segesser et al. | Jan 2015 | A1 |
20150018944 | O'Connell et al. | Jan 2015 | A1 |
20150039083 | Rafiee | Feb 2015 | A1 |
20150045880 | Hacohen | Feb 2015 | A1 |
20150099997 | Cabiri | Apr 2015 | A1 |
20150119974 | Rothstein | Apr 2015 | A1 |
20150127094 | Salahieh et al. | May 2015 | A1 |
20150142100 | Morriss et al. | May 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150148731 | McNamara et al. | May 2015 | A1 |
20150148815 | Steingisser et al. | May 2015 | A1 |
20150157457 | Hacohen | Jun 2015 | A1 |
20150157458 | Thambar et al. | Jun 2015 | A1 |
20150173897 | Raanani et al. | Jun 2015 | A1 |
20150196390 | Ma et al. | Jul 2015 | A1 |
20150202044 | Chau et al. | Jul 2015 | A1 |
20150209141 | Braido et al. | Jul 2015 | A1 |
20150238315 | Rabito et al. | Aug 2015 | A1 |
20150238336 | Johnson et al. | Aug 2015 | A1 |
20150272737 | Dale et al. | Oct 2015 | A1 |
20150282964 | Beard et al. | Oct 2015 | A1 |
20150297346 | Duffy et al. | Oct 2015 | A1 |
20150328000 | Ratz et al. | Nov 2015 | A1 |
20150328001 | McLean et al. | Nov 2015 | A1 |
20150328002 | McLean et al. | Nov 2015 | A1 |
20150335424 | McLean et al. | Nov 2015 | A1 |
20150342736 | Rabito et al. | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20150359629 | Ganesan et al. | Dec 2015 | A1 |
20160000591 | Lei et al. | Jan 2016 | A1 |
20160030169 | Shahriari | Feb 2016 | A1 |
20160030171 | Quijano et al. | Feb 2016 | A1 |
20160038281 | Delaloye et al. | Feb 2016 | A1 |
20160074160 | Christianson et al. | Mar 2016 | A1 |
20160100885 | Datta et al. | Apr 2016 | A1 |
20160113765 | Ganesan et al. | Apr 2016 | A1 |
20160113768 | Ganesan et al. | Apr 2016 | A1 |
20160135951 | Salahieh et al. | May 2016 | A1 |
20160143732 | Glimsdale | May 2016 | A1 |
20160158010 | Lim et al. | Jun 2016 | A1 |
20160166383 | Lim et al. | Jun 2016 | A1 |
20160184097 | Lim et al. | Jun 2016 | A1 |
20160199206 | Lim et al. | Jul 2016 | A1 |
20160213473 | Hacohen et al. | Jul 2016 | A1 |
20160235525 | Rothstein et al. | Aug 2016 | A1 |
20160270935 | Rasmussen et al. | Sep 2016 | A1 |
20160278918 | Ibeling | Sep 2016 | A1 |
20160279386 | Dale et al. | Sep 2016 | A1 |
20160310267 | Zeng et al. | Oct 2016 | A1 |
20160317301 | Quadri et al. | Nov 2016 | A1 |
20160346513 | Swaney | Dec 2016 | A1 |
20170000603 | Conklin et al. | Jan 2017 | A1 |
20170000604 | Conklin et al. | Jan 2017 | A1 |
20170035568 | Lombardi et al. | Feb 2017 | A1 |
20170056171 | Cooper et al. | Mar 2017 | A1 |
20170079780 | Schweich, Jr. et al. | Mar 2017 | A1 |
20170128199 | Gurovich et al. | May 2017 | A1 |
20170128204 | Morriss et al. | May 2017 | A1 |
20170128209 | Morriss et al. | May 2017 | A1 |
20170156859 | Chang | Jun 2017 | A1 |
20170165064 | Nyuli et al. | Jun 2017 | A1 |
20170209266 | Lane et al. | Jul 2017 | A1 |
20170216023 | Lane et al. | Aug 2017 | A1 |
20170216026 | Quill et al. | Aug 2017 | A1 |
20170216029 | Crowley | Aug 2017 | A1 |
20170216575 | Asleson et al. | Aug 2017 | A1 |
20170252153 | Chau et al. | Sep 2017 | A1 |
20170258614 | Griffin | Sep 2017 | A1 |
20170273787 | Passman et al. | Sep 2017 | A1 |
20170319341 | Jimenez et al. | Nov 2017 | A1 |
20170325954 | Perszyk | Nov 2017 | A1 |
20170348096 | Anderson | Dec 2017 | A1 |
20180000582 | Tuval et al. | Jan 2018 | A1 |
20180021129 | Peterson et al. | Jan 2018 | A1 |
20180021132 | Ottma et al. | Jan 2018 | A1 |
20180028177 | van Oepen et al. | Feb 2018 | A1 |
20180049873 | Manash | Feb 2018 | A1 |
20180055629 | Oba et al. | Mar 2018 | A1 |
20180055636 | Valencia et al. | Mar 2018 | A1 |
20180085218 | Eidenschink | Mar 2018 | A1 |
20180092744 | von Oepen et al. | Apr 2018 | A1 |
20180104051 | Salahieh et al. | Apr 2018 | A1 |
20180104052 | Salahieh et al. | Apr 2018 | A1 |
20180104055 | Salahieh et al. | Apr 2018 | A1 |
20180104056 | Salahieh et al. | Apr 2018 | A1 |
20180110534 | Gavala et al. | Apr 2018 | A1 |
20180110622 | Gregg | Apr 2018 | A1 |
20180116843 | Schreck et al. | May 2018 | A1 |
20180125642 | White et al. | May 2018 | A1 |
20180125646 | Bruchman et al. | May 2018 | A1 |
20180125651 | Nasr | May 2018 | A1 |
20180126127 | Devereux et al. | May 2018 | A1 |
20180133006 | Jones et al. | May 2018 | A1 |
20180185179 | Murphy et al. | Jul 2018 | A1 |
20180193140 | Weber | Jul 2018 | A1 |
20180206983 | Noe et al. | Jul 2018 | A1 |
20180207010 | Kheradvar | Jul 2018 | A1 |
20180235657 | Abunassar | Aug 2018 | A1 |
20180235658 | Perszyk et al. | Aug 2018 | A1 |
20180250126 | O'Connor et al. | Sep 2018 | A1 |
20180250130 | Hariton et al. | Sep 2018 | A1 |
20180256323 | Hariton et al. | Sep 2018 | A1 |
20180271651 | Christianson et al. | Sep 2018 | A1 |
20180271653 | Vidlund et al. | Sep 2018 | A1 |
20180280171 | Gloss | Oct 2018 | A1 |
20180296335 | Miyashiro | Oct 2018 | A1 |
20180296336 | Cooper et al. | Oct 2018 | A1 |
20180296378 | Aristizabal | Oct 2018 | A1 |
20180296801 | Tegg et al. | Oct 2018 | A1 |
20180303606 | Rothstein et al. | Oct 2018 | A1 |
20180303609 | Kenny et al. | Oct 2018 | A1 |
20180325668 | Morrissey et al. | Nov 2018 | A1 |
20180333259 | Dibie | Nov 2018 | A1 |
20180353292 | Keidar | Dec 2018 | A1 |
20180360603 | Levi | Dec 2018 | A1 |
20190008639 | Landon et al. | Jan 2019 | A1 |
20190008640 | Cooper et al. | Jan 2019 | A1 |
20190021850 | Nathe et al. | Jan 2019 | A1 |
20190030285 | Prabhu et al. | Jan 2019 | A1 |
20190038404 | Iamberger et al. | Feb 2019 | A1 |
20190038405 | Iamberger et al. | Feb 2019 | A1 |
20190069997 | Ratz et al. | Mar 2019 | A1 |
20190070001 | Calomeni et al. | Mar 2019 | A1 |
20190083243 | Hariton et al. | Mar 2019 | A1 |
20190083244 | Hariton et al. | Mar 2019 | A1 |
20190083245 | Hariton et al. | Mar 2019 | A1 |
20190083246 | Hariton et al. | Mar 2019 | A1 |
20190083247 | Hariton et al. | Mar 2019 | A1 |
20190083248 | Hariton et al. | Mar 2019 | A1 |
20190083249 | Hariton et al. | Mar 2019 | A1 |
20190083250 | Hariton et al. | Mar 2019 | A1 |
20190083251 | Hariton et al. | Mar 2019 | A1 |
20190083252 | Hariton et al. | Mar 2019 | A1 |
20190083253 | Hariton et al. | Mar 2019 | A1 |
20190083254 | Hariton et al. | Mar 2019 | A1 |
20190110893 | Haarer et al. | Apr 2019 | A1 |
20190175338 | White et al. | Jun 2019 | A1 |
20190175342 | Hariton et al. | Jun 2019 | A1 |
20190192293 | Yu et al. | Jun 2019 | A1 |
20190247188 | Wallace | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2304325 | Oct 2000 | CA |
2827556 | Jul 2012 | CA |
1745727 | Mar 2006 | CN |
102006052564 | Dec 2007 | DE |
202007018551 | Dec 2008 | DE |
0680351 | Nov 1995 | EP |
0778039 | Jun 1997 | EP |
0778040 | Jun 1997 | EP |
0657147 | Aug 1999 | EP |
0713408 | Oct 2001 | EP |
1259194 | Feb 2005 | EP |
1171059 | Nov 2005 | EP |
1478307 | Nov 2006 | EP |
1735038 | Dec 2006 | EP |
1255510 | Apr 2007 | EP |
1768732 | Apr 2007 | EP |
1768738 | Apr 2007 | EP |
1827558 | Sep 2007 | EP |
1239901 | Oct 2007 | EP |
1868530 | Dec 2007 | EP |
1895943 | Mar 2008 | EP |
1922038 | May 2008 | EP |
1945141 | Jul 2008 | EP |
1988851 | Nov 2008 | EP |
2007325 | Dec 2008 | EP |
2018204 | Jan 2009 | EP |
1472996 | Sep 2009 | EP |
2109416 | Oct 2009 | EP |
1709987 | Dec 2009 | EP |
1935377 | Mar 2010 | EP |
1469793 | Jun 2010 | EP |
1978895 | Jun 2010 | EP |
2250975 | Nov 2010 | EP |
0688576 | Dec 2010 | EP |
2308425 | Apr 2011 | EP |
1526887 | Sep 2011 | EP |
2370028 | Oct 2011 | EP |
2397108 | Dec 2011 | EP |
2398543 | Dec 2011 | EP |
1281375 | Feb 2012 | EP |
2421479 | Feb 2012 | EP |
2074964 | Mar 2012 | EP |
2218425 | May 2012 | EP |
2445568 | May 2012 | EP |
2453970 | May 2012 | EP |
2459266 | Jun 2012 | EP |
2496182 | Sep 2012 | EP |
2285317 | Dec 2012 | EP |
2566416 | Mar 2013 | EP |
2319458 | Apr 2013 | EP |
2605725 | Jun 2013 | EP |
2605729 | Jun 2013 | EP |
2608741 | Jul 2013 | EP |
2616004 | Jul 2013 | EP |
2616006 | Jul 2013 | EP |
2616007 | Jul 2013 | EP |
2629706 | Aug 2013 | EP |
2073756 | Oct 2013 | EP |
2670357 | Dec 2013 | EP |
2167179 | Feb 2014 | EP |
2699201 | Feb 2014 | EP |
1369098 | Apr 2014 | EP |
2739214 | Jun 2014 | EP |
2117469 | Jul 2014 | EP |
2124826 | Jul 2014 | EP |
2419050 | Jul 2014 | EP |
2750630 | Jul 2014 | EP |
2750631 | Jul 2014 | EP |
2771064 | Sep 2014 | EP |
2777616 | Sep 2014 | EP |
2777617 | Sep 2014 | EP |
1765445 | Mar 2015 | EP |
2870946 | May 2015 | EP |
2745805 | Jun 2015 | EP |
2749254 | Jun 2015 | EP |
2877132 | Jun 2015 | EP |
2898858 | Jul 2015 | EP |
2250976 | Aug 2015 | EP |
2590595 | Aug 2015 | EP |
2921139 | Sep 2015 | EP |
1734903 | Oct 2015 | EP |
2962664 | Jan 2016 | EP |
2967858 | Jan 2016 | EP |
2926766 | Feb 2016 | EP |
2985006 | Feb 2016 | EP |
2168536 | Apr 2016 | EP |
2238947 | Apr 2016 | EP |
2815725 | Apr 2016 | EP |
2237746 | May 2016 | EP |
2582326 | May 2016 | EP |
2453969 | Jun 2016 | EP |
2901966 | Jun 2016 | EP |
2815723 | Jul 2016 | EP |
2618779 | Aug 2016 | EP |
2853238 | Aug 2016 | EP |
3062745 | Sep 2016 | EP |
3069696 | Sep 2016 | EP |
3073965 | Oct 2016 | EP |
3075354 | Oct 2016 | EP |
3107497 | Dec 2016 | EP |
3107500 | Dec 2016 | EP |
3111888 | Jan 2017 | EP |
2967931 | Feb 2017 | EP |
2262451 | May 2017 | EP |
2538880 | May 2017 | EP |
2351541 | Jun 2017 | EP |
3184083 | Jun 2017 | EP |
2480167 | Aug 2017 | EP |
2865355 | Sep 2017 | EP |
3256073 | Dec 2017 | EP |
2446915 | Jan 2018 | EP |
3057541 | Jan 2018 | EP |
2934392 | Feb 2018 | EP |
3283011 | Feb 2018 | EP |
3037064 | Mar 2018 | EP |
3046511 | Mar 2018 | EP |
3142603 | Mar 2018 | EP |
3290004 | Mar 2018 | EP |
3294220 | Mar 2018 | EP |
3316822 | May 2018 | EP |
3316823 | May 2018 | EP |
2379322 | Jun 2018 | EP |
3335672 | Jun 2018 | EP |
3344190 | Jul 2018 | EP |
2967845 | Aug 2018 | EP |
3081195 | Oct 2018 | EP |
3426193 | Jan 2019 | EP |
2379009 | Feb 2019 | EP |
2793991 | Feb 2019 | EP |
3468480 | Apr 2019 | EP |
2663259 | May 2019 | EP |
3496664 | Jun 2019 | EP |
1264471 | Feb 1972 | GB |
1315844 | May 1973 | GB |
2245495 | Jan 1992 | GB |
2398245 | Aug 2004 | GB |
2002540889 | Dec 2002 | JP |
2008541865 | Nov 2008 | JP |
Entry |
---|
Backer, Ole De, MD, et al., “Percutaneous Transcatheter Mitral Valve Replacement—An Overview of Devices in Preclinical and Early Clinical Evaluation,” Contemporary Reviews in Interventional Cardiology, Circ Cardiovasc Interv. 2014;7:400-409, Applicant believes this may have been available as early as Jun. of 2014. |
Banai, Shmeul et al., The Journal of the American College of Cardiology, “Transapical Mitral Implantation of the Tiara Bioprosthesis Pre-Clinical Results,” Feb. 2014, <http://interventions.onlinejacc.org/article.aspx?articleid=1831234>. |
Bavaria, Joseph E M.D.: “CardiAQ Valve Technologies: Transcatheter Mitral Valve Implantation,” Sep. 21, 2009. |
Bavaria, Joseph E. M.D et al.: “Transcatheter Mitral Valve Implantation: The Future Gold Standard for MR?,” Applicant requests the Examiner to consider this reference to be prior art as of Dec. of 2010. |
Berreklouw, Eric, PhD, et al., “Sutureless Mitral Valve Replacement With Bioprostheses and Nitinol Attachment Rings: Feasibility In Acute Pig Experiments,” The Journal of Thoracic and Cardiovascular Surgery, vol. 142, No. 2, Aug. 2011 in 7 pages, Applicant believes this may have been available online as early as Feb. 7, 2011. |
BioSpace, “CardiAQ Valve Technologies (CVT) Reports Cardiovascular Medicine Milestone: First-In-Humannonsurgical Percutaneous Implantation of a Bioprosthetic Mitral Heart Valve,” Jun. 14, 2012, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports/263900. |
BioSpace, “CardiAQ Valve Technologies (CVT) Reports First-In-Human Percutaneous Transfemoral, Transseptal Implantation With Its Second Generation Transcatheter Bioprosthetic Mitral Heart Valve,” Jun. 23, 2015, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports-first-in/382370. |
Boudjemline, Younes, et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves,” JACC, vol. 46, No. 2, Jul. 19, 2005:360-5. |
“CardiAQTM Valve Technologies reports Successful First-in-Human Trans-Apical implantation of its Second Generation Transcatheter Mitral Valve,” CardiAQ Valve Technologies Press Release, May 20, 2014. |
“Company Overview,” at TVT on Jun. 25, 2009. |
Chiam, Paul T.L., et al., “Percutaneous Transcatheter Aortic Valve Implantation: Assessing Results, Judging Outcomes, and Planning Trials,” JACC: Cardiovascular Interventions, The American College of Cardiology Foundation, vol. 1, No. 4, Aug. 2008:341-50. |
CardiAQ Valve Technologies, “Innovations in Heart Valve Therapy,” In3 San Francisco, Jun. 18, 2008, PowerPoint presentation in 19 slides. |
Condado, Jose Antonio, et al., “Percutaneous Treatment of Heart Valves,” Rev Esp Cardio. 2006;59(12):1225-31, Applicant believes this may have been available as early as Dec. of 2006. |
Engager System, Precise Valve Positioning, Transcatheter Aortic Valve Implantation System, Transcatheter Aortic Valve Replacement—TAVR I Medtronic Engager, http://www.medtronic-engager.com/home/transcatheter-aortic-valve-repl., 2014 Medtronic, Inc. in 2 pages. Applicant believes this may have been available online as early as Aug. 25, 2013. |
Fanning, Jonathon P., et al., “Transcatheter Aortic Valve Implantation (TAVI): Valve Design And Evolution,” International Journal of Cardiology 168 (2013) 1822-1831, Applicant believes this may have been available as eariy as Oct. 3, 2013. |
Fornell, Dave, “Transcatheter Mitral Valve replacement Devices in Development,” Diagnostic and Interventional Cardiology, Dec. 30, 2014, p. 3, <http://www.dicardiology.com/article/transcatheter-mitial-valve-replacement-devices-development>. |
Feldman, Ted, MD. “Prospects for Percutaneous Valve Therapies,” Circulation 2007; 116:2866-2877. Applicant believes that this may be available as early as Dec. 11, 2007. |
Fitzgerald, Peter J. M.D., “Tomorrow's Technology: Percutaneous Mitral Valve Replacement, Chordal Shortening, and Beyond,” Transcatheter Valve Therapies (TVT) Conference. Seattle, WA. Applicant believes this may have been available as early as Jun. 7, 2010. |
Grube, E. et al., “Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome.” J Am Coll Cardiol. Jul. 3, 2007;50(1):69-76. Epub Jun. 6, 2007. |
Horvath et al.: “Transapical Aortic Valve Replacement under Real-time Magnetic Resonance Imaging Guidance: Experimental Results with Balloon- Expandable and Self-Expanding Stents,” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038190/. Jun. 2011. |
Karimi, Houshang, et al., “Percutaneous Valve Therapies,” SIS 2007 Yearbook, Chapter 11, pp. 1-11. |
Kronemyer, Bob, “CardiAQ Valve Technologies: Percutaneous Mitral Valve Replacement,” Start Up—Windhover Review of Emerging Medical Ventures, vol. 14, Issue No. 6, Jun. 2009, pp. 48-49. |
Leon, Martin B., et al., “Transcatheter Aortic Valve Replacement in Patients with Critical Aortic Stenosis: Rationale, Device Descriptions, Early Clinical Experiences, and Perspectives,” Semin. Thorac. Cardiovasc. Surg. 18:165-174, 2006 in 10 pages, Applicant believes this may have been available as early as the Summer of 2006. |
Lutter, Georg, et al., “Off-Pump Transapical Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 36 (2009) 124-128, Applicant believes this may have been available as early as Apr. 25, 2009. |
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: On-Going Experience in Swine Model,” Applicant believes this may have been presented on Nov. of 2011 at TCT. |
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: A Short-term Experience in Swine Model,” Applicant believes this may have been presented on May of 2011 at TVT. |
Ma, Liang, et al., “Double-Crowned Valved Stents For Off-Pump Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 28 (2005) 194-199, Applicant believes this may have been available as early as Aug. of 2005. |
Mack, Michael M.D., “Advantages and Limitations of Surgical Mitral Valve Replacement; Lessons for the Transcatheter Approach,” Applicant believes this may have been available as early as Jun. 7, 2010. Applicant believes this may have been presented at the Texas Cardiovascular Innovative Ventures (TCIV) Conference in Dallas, TX on Dec. 8, 2010. |
Masson, Jean-Bemard, et al., “Percutaneous Treatment of Mitral Regurgitation,” Circulation: Cardiovascular Interventions, 2:140-146, Applicant believes this may have been available as early as Apr. 14, 2009. |
NJ350: Vote for Your Favorite New Jersey Innovations, Jun. 27, 2014, http://www.kilmerhouse.com/2014/06/nj350-vote-for-your-favorite-new-jersey-innovations/. |
Neovasc corporate presentation, Oct. 2009, available at http://www.neovasc.com/investors/documents/Neovasc-Corporate-Presentation-October.2009.pdf. |
Ostrovsky, Gene, “Transcatheter Mitral Valve Implantation Technology from CardiAQ,” medGadget, Jan. 15, 2010, available at: http://www.medgadget.com/2010/01/transcatheter_mitral_valve_implantation_technology_from_cardiaq.html. |
Pluth, James R., M.D., et al., “Aortic and Mitral Valve Replacement with Cloth-Covered Braunwald-Cutter Prosthesis, A Three-Year Follow-up,” The Annals Of Thoracic Surgery, vol. 20, No. 3, Sep. 1975, pp. 239-248. |
Piazza, Nicoló, MD, et al., “Anatomy of the Aortic Valvar Complex and Its Implications for Transcatheter Implantation of the Aortic Valve,” Contemporary Reviews in Interventional Cardiology, Circ. Cardiovasc. Intervent., 2008;1:74-81, Applicant believes this may have been available as early as Aug. of 2008. |
Preston-Maher, Georgia L., et al., “A Technical Review of Minimally Invasive Mitral Valve Replacements,” Cardiovascular Engineering and Technology, vol. 6, No. 2, Jun. 2015, pp. 174-184. Applicant believes this may have been available as early as Nov. 25, 2014. |
Quadri, Arshad M.D., “Transcatheter Mitral Valve Implantation (TMVI) (An Acute In Vivo Study),” Applicant believes this may have been presented on Sep. 22, 2010 at TCT. |
Ratz, J. Brent et al., “Any experiences making an expandable stent frame?” Arch-Pub.com, Architecture Forums: Modeling, Multiple forum postings from Feb. 3, 2009 to Feb. 4, 2009, http://www.arch-pub.com. |
Ratz, J. Brent, “LSI EMT Spotlight,” May 15, 2009. |
Ruiz, Carlos E., “Overview of Novel Transcatheter Valve Technologies,” Applicant believes this may have been presented on May 27, 2010 at EuroPCR. |
Raiz, J. Brent, “In3 Company Overview,” Jun. 24, 2009. |
Seidel, Wolfgang, et al., “A Mitral Valve Prosthesis and a Study of Thrombosis on Heart Valves in Dogs,” JSR—vol. II, No. 3—May 1962, submitted for publication Oct. 9, 1961. |
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at TCT 2013. |
Sondergaard, Lars, “CardiAQ TMVR FIH—Generation 2,” Applicants believe this may have been presented in 2014 at the TVT symposium. |
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at EuroPCR 2013. |
Spillner, J. et al., “New Sutureless ‘Atrial- Mitral-Valve Prosthesis’ For Minimally Invasive Mitral Valve Therapy,” Textile Research Journal, 2010, in 7 pages, Applicant believes this may have been available as early as Aug. 9, 2010. |
Taramasso et al.: “New devices for TAVI: technologies and initial clinical experiences” http://www.nature.com/nrcardio/journal/v11/n3/full/nrcardio.2013.221..html?message-global=remove#access. Jan. 21, 2014. |
Treede et al.: “Transapical transcatheter aortic valve implantation using the JenaValve™ system: acute and 30-day results of the multicentre CE-mark study.” http://ejcts.oxfordjoumals.org/content/41/6/e131.long. Apr. 16, 2012. |
“Update,” Applicant believes this may have been presented on Jun. 6, 2010 at TVT. |
Van Mieghem, et al., “Anatomy of the Mitral Valvular Complez and Its Implications for Transcatheter Interventions for Mitral Regurgitation,” J. Am. Coll. Cardiol., 56:617-626 (Aug. 17, 2010). |
Vu, Duc-Thang, et al., “Novel Sutureless Mitral Valve Implantation Method Involving A Bayonet Insertion And Release Mechanism: A Proof Of Concept Study In Pigs,” The Journal of Thoracic and Cardiovascular Surgery, vol. 143, No. 4, 985-988, Apr. 2012, Applicant believes this may have been available online as early as Feb. 13, 2012. |
Wayback Machine, Cleveland Clinic Lerner Research Institute, Transcatheter Mitral Stent/Valve Prosthetic, https://web.archive.org/web/20130831094624/http://mds.clevelandclinic.org/Portfolio.aspx?n=331, indicated as archived on Aug. 31, 2013. |
Webb, John G., et al., “Transcatheter Aortic Valve Implantation: The Evolution Of Prostheses, Delivery Systems And Approaches,” Archives of Cardiovascular Disease (2012) 105, 153-159. Applicant believes this may have been available as early as Mar. 16, 2012. |
Number | Date | Country | |
---|---|---|---|
20200345494 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62622036 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2019/014999 | Jan 2019 | US |
Child | 16934879 | US |