Delivery system for functional compounds

Information

  • Patent Grant
  • 7666410
  • Patent Number
    7,666,410
  • Date Filed
    Friday, December 20, 2002
    21 years ago
  • Date Issued
    Tuesday, February 23, 2010
    14 years ago
Abstract
A delivery system for various functional compounds is disclosed. The delivery system incorporates a composition containing alumina. Various functional materials containing particular moieties may be adsorbed onto the alumina and used as desired. The functional compounds can be, for instance, pharmaceuticals, xenobiotics, anti-microbial agents, anti-viral agents, UV absorbers, odor control agents, fragrances, and the like. In one particular embodiment, for instance, certain dyes can be adsorbed onto the alumina surfaces. Once the dye is adsorbed onto the alumina surface, the resulting particles can be combined with a liquid vehicle for use in any suitable printing process.
Description
BACKGROUND OF THE INVENTION

A delivery system generally refers to a system that aids or otherwise facilitates the delivery of a functional material to a desired location. The functional material can be any material that acts upon a substrate or otherwise provides a benefit once delivered to the desired location. Examples of functional materials that may benefit from the use of a delivery system include pharmaceuticals that are intended to be ingested or subcutaneously injected into a patient, fragrances, vitamins and nutrients, and various other and numerous additives.


In one particular application, for instance, the functional material can be a dye that is intended to be printed or otherwise applied to a substrate. In the past, various delivery systems for dyes have been proposed that are intended to facilitate application of the dye to a substrate, such as a textile material. The delivery systems, for instance, are intended to affix the dye to a substrate, prevent the dye from fading when exposed to sunlight, to prevent the dye from degrading when exposed to the environment, to facilitate application of the dye to the substrate, or, for example, to render the dye more stable.


Even in view of recent advances in the art, further improvements in delivery systems for functional materials are still needed. For example, a need currently exists for a delivery system that can bind to various functional materials that does not incorporate relatively expensive chemical formulations or that does not require any complex process steps for incorporating a functional material into the delivery system. With respect to dyes, a need also exists in the art for a delivery system for a dye that is capable of affixing the dye to negatively charged surfaces. For example, a need currently exists for a delivery system for dyes that is capable of affixing the dyes to textile materials containing natural or synthetic polymeric fibers that have a negative surface charge.


SUMMARY OF THE INVENTION

The present invention is generally directed to a delivery system for various functional materials. The functional materials can be, for instance, colorants, UV absorbers, pharmaceuticals, odor control agents, fragrances, anti-microbial agents, anti-viral agents, antibiotics, xenobiotics, nutriceutical agents, and the like. In accordance with the present invention, the functional materials are adsorbed onto alumina that is contained in a particle. The resulting particle can then be used as is or can be combined with a vehicle, such as a liquid vehicle, to deliver the functional material to a desired location. For example, when the functional material is a colorant, the particles of the present invention can be incorporated into a liquid vehicle and applied to a substrate using any conventional printing means.


Thus, in one embodiment, the present invention is directed to a particle containing alumina. At least a portion of the alumina contained within the particle is present on a surface of the particle. A functional compound is bonded to the alumina on the surface of the particle. The functional compound prior to bonding with the alumina contains a moiety comprising:




embedded image



a tautomer thereof, or a functional equivalent thereof and wherein R and R′ comprise independently hydrogen, an alkyl group, or an aryl group.


The above moieties can be present as is on a functional compound. Alternatively, however, each of the above moieties can include further R groups attached to the carbon chain shown above. In general, any such R group can appear in association with the above moieties as long as the R group does not interfere with the bonding of the moiety to an alumina.


The above moieties have been found to form a bond with alumina in constructing the compositions of the present invention. Of particular significance, it was discovered that the functional compound, in some embodiments, can bond with alumina without significantly changing the positive charge character of alumina. For example, under certain conditions, alumina may have a positive surface charge. It has been discovered that even after the functional material is bonded to the alumina, the resulting structure still maintains a positive charge. Thus, in one embodiment of the present invention, positively charged particles are formed. Due to their positive charge, the particles may be securely affixed to the surface of a substrate that carries with it a negative charge through coulombic attraction.


In one particular embodiment of the present invention, novel recording mediums, inks, and nanoparticles containing a colorant compound may be formed. In accordance with the present invention, such recording mediums, when applied to substrates, exhibit improved water and detergent resistance. For example, the delivery system of the present invention can improve the durability performance of the recording mediums especially to substrates having a negative charge. For instance, in one embodiment, a recording medium such as an ink-jet ink, can be produced according to the present invention that is substantive to substrates containing synthetic polymeric fibers, such as polypropylene fibers, polyethylene fibers, polyester fibers, and the like.


Other features and aspects of the present invention are discussed in greater detail.







DETAILED DESCRIPTION

It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary construction.


In general, the present invention is directed to a delivery system for functional compounds. Functional compounds can be any suitable substance that can provide a benefit to a location once delivered. In accordance with the present invention, the delivery system is generally directed to the construction of a particle containing alumina. The alumina contained within the particle provides a bonding site on the surface of the particle for a functional compound. Specifically, the functional compound becomes adsorbed onto the surface of the alumina. Once the functional compound is bonded to the alumina, the resulting particle can then be used to deliver the functional compound to a particular location. The particles can be used as is, for instance, or can be combined with a liquid vehicle which may facilitate delivery of the particles depending upon the particular application.


Functional compounds that are well suited for use in the present invention include compounds that contain at least one of the following moieties:




embedded image



a tautomer thereof, or a functional equivalent thereof and wherein R and R′ comprise independently hydrogen, an alkyl group, or an aryl group. As used herein, a functional equivalent to one of the above moieties refers to functional materials that include similar reactive groups as shown above, but which are not positioned on a molecule as exactly shown above and yet will still bond with alumina in a similar manner.


Referring to the moieties shown above, moiety (1) may be considered a carboxy-hydroxy moiety. Moiety (2) may be considered a hyrdoxy-hydroxy moiety, while moiety (3) may be considered a carboxy-carboxy moiety. Moieties (4) and (5), on the other hand, can be considered vinylalogous amide moieties. In moieties (4) and (5) above, the amine groups can be primary amines, secondary amines, or tertiary amines. In general, any suitable functional compound containing one of the above moieties or a functional equivalent thereof may be used in accordance with the present invention. Further, it should be understood that various additional R groups may be included with the above moieties as long as the R groups do not interfere with the bond that is formed with alumina.


The present inventors have discovered that the above moieties may form a relatively strong bond to an alumina surface. The functional compounds may be bonded to the alumina surface in order to change the properties of the resulting particle or to perform a particular function. Without wishing to be bound by theory, it is believed that the above moieties form a bidentate ligand bonding system with alumina surfaces. For instance, it is believed that alumina forms a covalent bond and a coordinate bond with the above moieties. Further, it is believed that a surface reaction occurs causing the functional compound to remain on the surface of the particle and form a coating thereon. The functional material can cover the entire resulting particle or can be located at particular locations on the particle. Further, it should be understood that the particles of the present invention can contain more than one functional compound.


Of particular advantage, in many embodiments, it has also been discovered that a functional compound can be bonded to alumina without significantly impacting on the positive surface charge of alumina, which can be measured as zeta potential. The term “zeta potential” is used herein to mean without limitation a potential gradient that arises across an interface. This term especially refers to the potential gradient that arises across the interface between the boundary layer in contact with the particle of the present invention and the diffuse layer surrounding the particle. Zeta potential measurements can be taken using, for instance, a Zetapals instrument which are available from the Brookhaven Instrument Corporation of Holtsville, N.Y. For example, zeta potential measurements can be conducted by adding one to three drops of a sample into a cuvet containing 1 mM KCl solution, using the instrument's default functions preset for aqueous solutions.


Thus, once alumina is bonded to the functional material, the resulting molecule continues to maintain a relatively strong positive charge. For instance, particles made according to the present invention can have a zeta potential of greater than 20 mV, particularly greater than 30 mV, and, in some embodiments, greater than 40 mV. By remaining positively charged, the particles are well suited for being affixed to substrates that carry a negative surface charge through coulombic attraction. Depending upon the difference in charge between the particle of the present invention and the surface of a substrate, the bond in some applications can be relatively permanent and substantive. Consequently, the delivery system of the present invention can be used to affix functional compounds to various substrates without the use of chemical binders or other attachment structures.


Various different particles and compositions can be used in the present invention that contain alumina. For example, in one embodiment, the functional material is combined with an alumina sol. Many different types of alumina sols are commercially available with varying particle size. Of particular advantage, alumina sols can be prepared that carry a relatively strong positive surface charge or zeta potential. In this embodiment, the particle that is reacted with the functional compound contains primarily and in some embodiments exclusively alumina.


In other embodiments, however, the particle reacted with the functional compound can contain various other ingredients. In general, the particle can contain any material that does not adversely interfere with ability of the functional material to bond to alumina. In this regard, at least a portion of the alumina contained within the particle should be present on the surface of the particle so that the alumina is available for adsorbing the functional compound.


In one particular embodiment of the present invention, the particle can contain a core material coated with alumina. The alumina can form a continuous coating over the particle or a discontinuous coating. The core material can be, for instance, an inorganic oxide, such as silica. For example, in one embodiment, sols can be used that contain silica nanoparticles that have an alumina surface coating. Such sols are currently commercially available, for instance, from Nissan Chemical America of Houston, Tex. The silica is coated with alumina to provide stability to the sols over certain pH ranges. In fact, alumina coated silica sols may have greater stability in some applications of the present invention in comparison to alumina sols.


As described above, any suitable functional compound containing one of the above moieties, a tautomer thereof, or a functional equivalent thereof may be used in accordance with the present invention. Examples of functional compounds include pharmaceuticals, and xenobiotics. Xenobiotics is a general term used to describe any chemical interacting with an organism that does not occur in the normal metabolic pathways of that organism. Other functional compounds can include UV absorbers, odor control agents, fragrances, therapeutic agents, nutriceutical agents, anti-viral agents, anti-microbial agents, and the like. One example of a therapeutic agent that may be used in the present invention is hydrocortisone. Examples of nutriceutical agents include ascorbic acid and aspartame. In one particular embodiment, the functional compound may be tetracycline, which is a known antibacterial agent.


In still another embodiment of the present invention, the functional compound can be a colorant, such as dye. Particular examples of dyes that may be used in accordance with the present invention are discussed in greater detail below.


Once any of the above-mentioned functional compounds are bound to alumina, the alumina acts as a delivery vehicle for delivering the functional compound to a desired location. Once bound to the alumina, the functional compounds may be easier to handle, may be more stable, or may have other improved properties depending upon the application. Further, the resulting alumina structure can be incorporated into various other mediums. For instance, the alumina structure can be incorporated into liquid vehicles, can be formed into capsules, can be combined with gels, pastes, other solid materials, and the like.


The particles formed according to the present invention containing alumina and the functional compound can be present in various forms, shapes, and sizes depending upon the desired result. For instance, the particles can be of any shape, for example, a sphere, a crystal, a rod, a disk, a tube, or a string of particles. The size of the particle can also vary dramatically. For instance, in one embodiment, the particles can have an average dimension of less than about 1 mm, particularly less than about 500 microns, and more particularly less than about 100 microns. In other embodiments, however, even smaller sizes may be desired. For instance, the particles can have an average diameter of less than about 1,000 nm, and particularly less than about 500 nm. As used herein, the average dimension of a particle refers to the average length, width, height, or diameter of a particle.


As described above, the particles of the present invention include a surface layer that contains one or more functional compounds. The coating on the particle can be continuous or discontinuous. The particle itself is amorphous.


In one particular embodiment, the present invention is directed to a delivery system for dyes. In particular, it has been discovered that the use of alumina as described above provides various advantages and benefits when attempting to apply a dye to a substrate. For instance, it has been discovered that the alumina delivery system can provide a means to make permanent prints onto substrates having negatively charged surfaces, such as substrates containing thermoplastic polymers as well as natural fibers. The ink becomes affixed to the substrate at relatively low cost and low complexity without the use of chemical binders and without the use of a pre-treatment or post-treatment process on the substrate.


For example, once a dye is adsorbed onto alumina in accordance with the present invention, for many applications, the resulting particle has a positive charge. Thus, the particle can be affixed to negatively charged surfaces through coulombic attraction. Depending upon the charge difference between the particles and the substrate, the dye may exhibit permanent properties such as wash fastness by being resilient to water and detergents. For example, generally wash fastness can be obtained if the charge difference between the substrate and the particle is greater than about 42 mV.


In general, any dye containing a carbonyl-hydroxy moiety, a hydroxy-hydroxy moiety, a carbonyl-carbonyl moiety, a vinylalagous amide moiety, a tautomer thereof, or a functional equivalent thereof as described above may be used in the process of the present invention. Various examples of dyes that may be adsorbed onto alumina are as follows. It should be understood, however, that the below list is not exhaustive and is not intended as limiting the invention.


Dyes Containing the Anthraquinone (5) Chromophore



embedded image


Numbers indicate the substitution positions of the anthraquinone structure. This table indicates dye substituents that occur at positions 1, 4, 5, or 8 on the anthraquinone structure. In other words, this table shows the presence of groups that form alumina bonding moieties 1 through 5.


















Substituent at
Other groups




position
present



Name
1 or 4 or 5 or 8
include









CI Acid Black 48
NH2
SO3Na



CI Acid Blue 25
NH2
SO3Na



CI Acid Blue 40
NH2
SO3Na



CI Acid Blue 41
NH2
SO3Na



CI Acid Blue 45
OH, NH2
SO3Na



CI Acid Blue 129
NH2
SO3Na



CI Acid Green 25
NHAr
SO3Na



CI Acid Green 27
NHAr
SO3Na



CI Acid Green 41
OH, NHAr
SO3Na



CI Mordant Red 11
OH



(Alizarin)



CI Mordant Black 13
OH, NHAr
SO3Na



(Alizarin Blue Black B)



Alizarin Complexone
OH



(Aldrich 12,765-5)



CI Mordant Red 3
OH
SO3Na



(Alizarin Red S)



CI Natural Red 4
OH
COOH



(Carminic Acid)



CI Disperse Blue 1
NH2



CI Disperse Blue 3
NH(alkyl)



CI Disperse Blue 14
NHCH3



Emodin
OH



(6-methyl-1,3,8-trihydroxy



anthraquinone)



Nuclear Fast Red
OH, NH2
SO3Na



(Heliofast Rubine BBL)



CI Natural Red 16
OH



(Purpurin)



CI Natural Red 8
OH



Quinalizarin
OH



Quinizarin
OH



CI Reactive Blue 2
NH2, NHAr
SO3Na



Solvent Green 3
NHAr










Dyes Containing Salicylate, or 3-hydroxy-2-naphthoic Acid Moieties

Dyes containing salicylate (6, R═OH), Salicamide (6, R═NH2, NHAr, NHAlk), or BON acid (3-hydroxy-2-naphthoic acid) (7, R═OH) or a nitrogenous BON acid derivative (7, R═NH2, NHAr, NHAlk) moiety as shown below may also be used in accordance with the present invention. These dyes often fall into the Colour Index Mordant application class.


















embedded image




embedded image
















Substantive
Chromo-


Colorant
Group
phore





Aluminon (tri ammonium salt)
Salicylate
TPM


(Aurintricarboxylic acid)


(CI Mordant Violet 39 is the trisodium salt)


CI Mordant Blue 29
Salicylate
TPM


CI Mordant Blue 3
Salicylate
TPM


(Chromoxane Cyanine R)
BON acid
Azo


Calconcarboxylic acid


3-hydroxy-4-(2-hydroxy-4-sulfo-1-naphthyl-


azo)-2-naphthalenecarboxylic acid


CI Mordant Orange 1
Salicylate
Azo


(Alizarin Yellow R)


CI Mordant Orange 6
Salicylate
Azo


(Chrome Orange GR)


CI Mordant Orange 10
Salicylate
Azo


CI Mordant Yellow 7
Salicylate
Azo


CI Mordant Yellow 10
Salicylate
Azo


CI Mordant Yellow 12
Salicylate
Azo


CI Mordant Green 31
BON Acid
Azo


(Naphtho Chrome Green)


CI Azoic Coupling Component 2
Arylamido
N/A


(Naphthol AS)
BON acid


CI Azoic Coupling Component 45
Arylamido
N/A


(Naphthol AS B1)
BON acid


3-hydroxy-2-naphthoic acid (BON Acid)
BON Acid
N/A


Xylidyl Blue 1
Aryl amido
Azo



BON acid









Dyes Based Upon Chromotropic Acid

Dyes based upon Chromotropic acid 8 are also substantive to alumina. Azo dyes are formed when chromotropic acid is reacted with a diazonium salt. Azo coupling occurs at positions 2 and/or 7.














embedded image














Colorant







CI Acid Red 176



(Chromotrope 2B)



CI Acid Red 29



(Chromotrope 2R)



Plasmocorinth B



Sulfonazo III



(3,6-Bis(2-sulfophenylazo)-4,5-dihydroxy-2,7-naphthalene disulfonic



acid sodium salt)



2-(4-sulfophenylazo)-1,8-dihydroxy-3,6-naphthalenedisulfonic acid










Dyes Containing Acetoacetanilide

Dyes containing acetoacetanilide moieties 9 also contain the correct geometry to bond to alumina. Azo dyes couple to acetoacetanilide beta to the two carboxyl groups. An example is CI Acid Yellow 99, 10. Acetoacetanilide will adsorb onto the surface of alumina.




embedded image


Naphthoquinone Colorants

Naphthoquinone (11) type Structures are also useful for forming complexes with the surface of alumina:




embedded image


CI Natural Black 1 (Hematoxylin) is another example of a dye that contains quinoid groups and is substantive to alumina.


Aluminum Dyes; Dyes Known to be Useful for Staining Anodized Aluminum

There are several dyes that are know to be useful for the coloration of anodized aluminum, including CI Mordant Red 7 (Eriochrome Red B), 12. It is believed that the geometry of the five membered pyrazolone ring oxygen atom brings it into the correct position with the beta-naphthol group for complexation with alumina. Thus, the following structure can be considered a functional equivalent to a carbonyl-hydroxy moiety. The structure also contains an iminalogous amide moiety, which is functionally equivalent to a vinalogous amide.




embedded image


Aluminum Lake Forming Dyes

Certain anionic dyes may be precipitated using certain metal ions to form an insoluble colored compounds know as Lake Pigments. For example, Erythrosine (Tetraiodofluorescein) forms an insoluble salt with aluminum ions. The salt is known as CI Pigment Red 172.


CI Pigment Blue 36 is the aluminum lake of indigo disulfonate (FD+C Blue 1):




embedded image


In addition to a dye as described above, in some embodiments, it may be desirable to bond other functional compounds or additives to the alumina. For instance, additives that assist in the dyeing process or that stabilize the dye may also be bonded to the alumina if the additive contains a moiety as described above. Such functional additives that may be used include charge carriers, thermal oxidation stabilizers, crosslinking agents, plasticizers, a charge control additive, a flow control additive, a filler, a surfactant, a chelating agent, a colorant stabilizer, or a combination thereof.


Various methods can be utilized to construct dye particles in accordance with the present invention that contain a dye adsorbed onto alumina. For instance, in some applications, the alumina and the dye containing a reactive moiety can be combined and reacted in an aqueous solution.


In some embodiments, however, the dye may be difficult to dissolve in water. In this embodiment, the dye can first be dissolved in a minimum quantity of a solvent. The solvent can be, for instance, acetone, ethanol or a similar liquid that is miscible with water. After the dye is combined with the solvent, if desired, a surfactant can be added in an amount greater than about 0% to about 50% by weight of dye solids added. In general, the amount of surfactant added to the solvent should be minimized. One suitable surfactant that can be used, for instance, is SURFYNOL 440 surfactant sold by Air Products and Chemicals, Inc. located in Allentown, Pa.


With rapid stirring, the dissolved dye solution can then be added to a dilute aqueous suspension that contains particles comprising alumina. Although not critical, better results may be achieved if the aqueous suspension is slightly heated.


After constant stirring for a sufficient amount of time, the dye disperses by precipitation throughout the mixture and slowly dissolves into the water. Once dissolved into the water, the dye can be adsorbed by the alumina contained in the particles.


Once the dye is adsorbed onto the alumina, the resulting particles can be used to formulate a suitable colorant composition for use in various processes, such as in a suitable printing process.


The colorant composition may comprise an aqueous or non-aqueous medium, although an aqueous medium is useful for applications which employ liquid printing mediums. The colorant compositions of the present invention contain particles, as well as, desirable colorant stabilizers and additives. For example, the colorant composition may contain the above-described particles in combination with any of the following additives: a second colorant; a colorant stabilizer, such as a porphine; a molecular includant; a pre-polymer; and any additional components as described above.


The present invention encompasses recording mediums such as ink jet inks comprising the nanoparticles disclosed herein. Inks used in ink jet printers are described in U.S. Pat. No. 5,681,380, assigned to Kimberly-Clark Worldwide, Inc., which is incorporated herein by reference in its entirety. Ink jet inks will usually contain water as the principal solvent, preferably deionized water in a range of between about 20 to about 95 percent by weight, various co-solvents in an amount of between about 0.5 and about 20 percent by weight, and the particles of the present invention.


Various co-solvents may also be included in the ink formulation. Examples of such co-solvents include a lactam such as N-methyl pyrrolidone. However, other examples of optional co-solvents include N-methylacetamide, N-methylmorpholine-N-oxide, N,N-dimethylacetamide, N-methyl formamide, propyleneglycolmonomethylether, tetramethylene sulfone, and tripropyleneglycolmonomethylether. Still other solvents which may be used include propylene glycol and triethanolamine (TEA). If an acetamide-based cosolvent is also included in the formulation it is typically present at about 5 percent by weight, within a range of between about 1.0-12 percent by weight.


Optionally, one or more humectants in an amount between about 0.5 and 20 percent by weight may be included in the ink formula. Additional humectants for optional use in the formulation include, but are not limited to, ethylene glycol, diethylene glycol, glycerine, and polyethylene glycol 200, 400, and 600, propane 1,3 diol, other glycols, a propyleneglycolmonomethyl ether, such as Dowanol PM (Gallade Chemical Inc., Santa Ana, Calif.), polyhydric alcohols, or combinations thereof.


Other additives may also be included to improve ink performance, such as a chelating agent to sequester metal ions that could become involved in chemical reactions that could spoil the ink over time, for example for use with metal complex dyes, a corrosion inhibitor to help protect metal components of the printer or ink delivery system, a biocide or biostat to control unwanted bacterial, fungal, or yeast growth in the ink, and a surfactant to adjust the ink surface tension. However, the use of a surfactant may be dependent on the type of printhead to be used. If a surfactant is included, it is typically present in an amount of between about 0.1 to about 1.0 percent by weight. If a corrosion inhibitor is included, it is typically present in an amount between about 0.1 and about 1.0 percent by weight. If a biocide or biostat is included, it is typically present in an amount between about 0.1 and about 0.5 percent by weight.


If a biocide or biostat is added to the ink formulation, it may be exemplified by Proxel GXL (Zeneca Corporation, Wilmington, Del.). Other examples include Bioban DXN (Angus Chemical Company, Buffalo Grove, Ill.). If a corrosion inhibitor is added to the formulation, it may be exemplified by Cobratec (PMC Specialty Group Distributing of Cincinnati, Ohio). Alternate corrosion inhibitors include sodium nitrite, triethanolamine phosphate, and n-acyl sarcosine. Still other examples include benzotriazole (Aldrich Chemical Company, Milwaukee, Wis.). If a surfactant is included in the formulation, it is typically a nonionic surfactant exemplified by Surfynol 504 (Air Products and Chemicals, Inc., Allentown, Pa.). Still other examples include Surfynol 465, and Dynol 6.04 also available from Air Products. If a chelating agent is included in the formulation it may be exemplified by an ethylene diaminetetraacetic acid (EDTA). Other additives such as pH stabilizers/buffers, (such as citric acid and acetic acid as well as alkali metal salts derived therefrom), viscosity modifiers, and defoaming agents such as Surfynol DF-65, may also be included in the formulation, depending on the product application.


Depending upon how the colorant composition is formulated, the composition can be used in various printing processes. For instance, in addition to ink jet printing and other non-impact printers, the colorant composition can be used in screen printing processes, offset lithographic processes, flexographic printing processes, rotogravure printing processes, and the like. In some of the above printing processes, a thickener may need to be added to the colorant composition. The thickener can be, for instance, an alginate.


The recording medium or colorant composition of the present invention may be applied to any substrate to impart a color to the substrate. The substrate to which the composition is applied may include, but is not limited to, paper, wood, a wood product or composite, woven fabrics, non-woven fabrics, textiles, films, plastics, glass, metal, human skin, animal skin, leather and the like. In one aspect, the colorant composition or recording medium may be applied to textile articles such as clothing.


In one particular embodiment, a colorant composition containing particles of the present invention may be applied to a substrate having a negative surface charge. As described above, the alumina contained in the particles of the present invention retain a positive charge even after adsorption of a dye. Consequently, the particles remain affixed to negatively charged surfaces. In fact, wash durability of the colorant composition may occur if there is a substantial amount of charge difference between the substrate and the particles of the present invention.


In view of the above, colorant compositions made according to the present invention are particularly well suited to being applied to natural and synthetic substrates that have a negative surface charge. For instance, naturally occurring materials that generally contain a negative surface charge include cotton fibers, cellulose fibers, and substrates made therefrom. Such substrates include all types of fabrics, garments and apparel, paper products, and the like.


In addition to the above natural materials, in one particular embodiment, colorant compositions made according to the present invention have been found to be well suited to being applied to substrates made from synthetic polymers, such as thermoplastic polymers. Such substrates can include, for instance, woven and non-woven materials made from a polyolefin polymer such as polypropylene or polyethylene, polyester, and the like. In the past, various problems have been experienced in trying to affix dyes to these types of materials. Consequently, either complicated dye structures have been used or dyes and or pigments have been applied in conjunction with chemical binders. The particles of the present invention, however, can permanently affix to these materials without the use of chemical binders or complex chemical constructions.


Although not needed, in some embodiments it may be desirable to pre-treat or post-treat the polymer substrates which may further serve to affix the dyes to the materials. For instance, substrates made from synthetic polymers can undergo a pretreatment process for increasing the negative surface charge. For example, such pretreatment processes include subjecting the substrate to a corona treatment or to an electret treatment. An electret treatment, for instance, is disclosed in U.S. Pat. No. 5,964,926 to Cohen, which is incorporated herein by reference in its entirety. Such pretreatments have been found not only to increase the negative surface charge of polymeric materials, but also assist in wetting out the polymer and enhancing surface adhesion between the polymer and the particles of the present invention.


In addition to pretreatment processes, substrates contacted with the particles of the present invention can also undergo various post treatment processes which further serve to affix the particles to the substrate. For example, in one embodiment, the treated substrate can be subjected to radio frequency radiation or to microwave radiation. Alumina is known to adsorb radio frequency radiation and microwave radiation causing the particles to heat. Once heated, it is believed that the particles become further embedded into the polymeric substrate. Further, the particles can be heated without also heating the substrate to higher than desired temperatures.


The present invention may be better understood with respect to the following examples.


EXAMPLE 1

Aluminasol 200 (Nissan Chemical America) was diluted with DI water to give a 2% Aluminasol 200 suspension. Meanwhile, carminic acid (0.02 g) was suspended in DI water (1 g). Carminic acid includes hydroxy-carbonyl moieties and can be represented as follows:




embedded image


The zeta potential of alumina particles in the Aluminasol was monitored as carminic acid was dripped into the measurement cell. The zeta potential did not change as more carminic acid was added. A significant color shift was observed as the carminic acid (red/orange) was added to the Aluminasol (bluish magenta). The following zeta potential results were obtained:

















Zeta Potential









2% Aluminasol
56.70 mV



Aluminasol + 2 Drops Carminic
49.27 mV



Aluminasol + 5 drops carminic
56.68 mV



Aluminasol + 7 drops carminic
58.59 mV










As shown above, the positively charged alumina was capable of adsorbing carminic acid without going through a charge reversal step.


EXAMPLE 2

Aluminasol 200 (Nissan Chemical America, 2 g) was diluted with DI water (98 g) with good stirring. Carminic acid (Aldrich, #22,925-3) (0.5011 g) was suspended in DI water (23.7135 g) with good stirring. The carminic acid did not dissolve completely at this concentration, and so whenever portions were taken, they were taken while stirring vigorously so that suspended solids were also withdrawn. A hypodermic syringe was used to withdraw 1 ml of carminic acid suspension. This was added to the diluted Aluminasol 200 with good stirring. The suspension changed from a white to a bluish red.


The Zeta potential was monitored after addition to check for changes as follows:

















Zeta Potential









Initial (2% Aluminasol)
+55.70 mV



2 min after carminic acid addition
+45.08 mV



5 min after carminic acid addition
+45.68 mV











This mixture was allowed to stir overnight. The next morning, all dye had dissolved, and no dye crystals were observed.


EXAMPLE 3

In this example, in addition to carminic acid, CI Acid Blue 25 and CI Acid Blue 45 were bonded to alumina in accordance with the present invention. CI Acid Blue 25 and CI Acid Blue 45 have the following structures:




embedded image


0.2008 g CI Acid Blue 25 (Aldrich) was added to 19.7735 g DI water and stirred to give a suspension, which was stirred for 30 minutes. 1 ml of this was added to a mixture containing 2 g Aluminasol and 98 g DI water. Mixture stirred overnight to ensure that all dye had dissolved.




embedded image


0.2507 g of CI Acid Blue 45 (Aldrich) was suspended in 20.1751 g DI water with stirring for 30 minutes. 1 ml (syringe) was added to a mixture of 2 g Aluminasol and 98 g of DI water to give a blue complex. Mixture stirred overnight to ensure that all dye dissolved.


In the following sample, a high concentration of Aluminasol 200 was combined with carminic acid. Specifically, 0.111 g glacial acetic acid (Fischer, ACS plus reagent grade) was diluted with 29.795 g DI water. This was added to 49.941 g of Aluminasol 200, slowly with good stirring. This mixture was stirred for 20 mins, at which point, 4 ml (measured using a syringe) of a suspension of carminic acid in DI water (0.5011 g carminic acid in 23.7135 g water) was added at once, with good stirring. Mixture stirred overnight.


A fourth sample was then constructed containing the same ingredients (carminic acid) in the same amounts as listed in Example 2 above.


All mixtures appeared to be homogeneous in that upon standing for three hours, no sludge settled out, and no dark dye crystals were observed. Zeta potentials and particle size analysis were conducted using a Brookhaven Instrument PALS Zeta potential analyzer for all the samples except the sample containing CI Acid Blue 25. The following results were obtained:


















Half



Zeta
Mean
Distribution


System
Potential
Diameter
Width







 2% Aluminasol/Acid Blue 45
+40.69 mV
333.5 nm
 94.7 nm


 2% Aluminasol/Carminic Acid
+45.14 mV
300.6 nm
139.5 nm


50% Aluminasol/Carminic Acid
+43.73 mV
347.3 nm
181.6 nm









The above three solutions were then subjected to a dialysis test to demonstrate that the dye was adsorbed onto the alumina surfaces. Specifically, the three solutions were dialyzed against 3% glacial acetic acid using Sigma Dialysis Tubing (Cellulose, 12,000 mw cut off, Sigma D-0655. Tubing was soaked in DI water for two hours prior to use to remove glycerine, and to make the tubing flexible.) As a control, a small amount of carminic acid was added to a dialysis tubing and placed in a bath containing 3% acetic acid. Within 2 hours, carminic acid had traversed the cellulose membrane and had colored the 3% acetic acid solution. No color was observed from the aluminasol mixtures, suggesting, along with the color change, that the colorant was strongly sorbed by the particles. The next morning, the 50% aluminasol/carminic acid solution had colored the water bluish red. However, it is believed that the bag had ruptured. Also, a very faint, almost indiscernible blue coloration was noticed in the dialysis solution of the aluminasol acid blue 45 dialysis, suggesting that this colorant did not as strongly adsorb into the alumina.


EXAMPLE 4

The following tests were conducted to demonstrate the washfastness of the particles of the present invention on cotton.


The three compositions prepared in Example 3 above containing 2% aluminasol/Acid Blue 45; 2% aluminasol/carminic acid, and 50% aluminasol/carminic acid were spotted onto cotton poplin fabric (0.01198 g/cm2, from Yuhan-Kimberly, uncoated) and dried overnight at 60° C. As the aluminasol containing mixtures were dropped onto the cotton, it was observed that only the flooded area of the fabric took up color. Colorless water wicked out from around the spotted area suggesting that i) no unadsorbed dye was present in the mixture, and ii) the nanoparticles sorbed onto the cotton, and were immobilized.


A control sample was also prepared. In particular, a carminic acid solution was first formulated containing 0.5011 grams of carminic acid in 23.7135 grams of DI water. The carminic acid solution was dropped onto cotton poplin fabric using a pipette and allowed to dry overnight at 60° C.


Samples were washed by i) rinsing under a hot running tap, and then by stirring for 2 hours in 2 liters of water containing 1 g/liter Aerosol OT (dioctyl sodium sulfosuccinate surfactant obtained from Cytec Industries of West Patterson, N.J.) and 1 g/liter of sodium bicarbonate, with stirring (mechanical paddle stirrer). Samples were entered into the washing bath at 60° C., and the bath cooled over two hours to 30° C. The fabric was rinsed in cold water, then dried in the air at ambient.


The Carminic acid of the control sample rinsed out of the cotton. Almost all of the dye/Aluminasol complex remained as a bluish-red stain.


EXAMPLE 5

The following tests were conducted to demonstrate the washfastness of particles made according to the present invention on a polypropylene non-woven spunbond fabric. The spunbond fabric tested had a basis weight of 2 osy.


Polypropylene spunbond was smeared with i) carminic acid, ii) the concentrated 50% Aluminasol/carminic acid complex suspension prepared in Example 3 and iii) the 2% Aluminasol/carminic acid complex suspension prepared in Example 3. In all cases, the polypropylene was difficult to wet out with these materials, and so smearing was required using a rubber-gloved finger and the teat pipette used to apply the liquids. Once the material had been smeared on forcibly, the material showed little retraction. The samples were allowed to dry overnight at 60° C.


More polypropylene was smeared with the 50% Aluminasol/carminic acid complex. These samples were dried at 60° C. and then cut in half. Half of the samples were subjected to microwave radiation (Sharp carousel domestic microwave oven, model #R-410 CK, output 1100 Watt) for a range of times. (10 seconds, 20 seconds, 28 seconds)


All polypropylene samples were washed using the same procedure as for the cotton in Example 4 above. The following results were obtained:

  • i) Carminic acid of the control sample rinsed out of the PP.
  • ii) Some, but not all of the aluminasol/carminic acid inks were retained on the polypropylene. The nature of the washing out was not a general fading of the area. However, there appeared to be a loss of all material from certain areas, but not others. In other words, it looked as though the ink had not wet out the polypropylene.
  • iii) Considerably more aluminasol/carminic acid was retained on samples that were microwaved prior to washing. It is thought that the microwave treatment may have heated the colored particles, allowing them to embed in the polypropylene. Microwaving for longer time did not considerably improve the washfastness of the prints.


EXAMPLE 6

In this example, instead of using an alumina sol, a sol containing silica particles that had an alumina surface coating were used. The surface coated silica suspension was obtained from Nissan Chemical America of Houston, Tex. The suspension is sold under the trade name SNOWTEX-AK.


50 ml of 20% wt/wt suspension of SNOWTEX-AK (Nissan Chemical America, Houston, Tex.) was stirred at ambient temperature while 0.2 grams of carminic acid dye (Aldrich Chemical Company, Milwaukee, Wis.) was added. Stirring was continued overnight and resulted in a dramatic color change from blood red to blue/purple.


The physical parameters of the nanoparticles are:


















SNOWTEX-AK
Size: 62 nm and Zeta Potential: +36 mV.



SNOWTEX-AK
Size: 83 nm and Zeta Potential: +35 mV.



with carminic acid










The bond formation of the aluminum-dye complex did not result in a change in zeta potential.


The above “ink” solution was applied to 4″×4″ pieces of untreated cotton fabric and allowed to air-dry. A similar control sample was constructed using only carminic acid. The dried fabrics were then subjected to a washing cycle in 2 liters of water containing Ajax liquid detergent and sodium bicarbonate at 60° C. for 2 hours. The fabric samples were then air-dried. The SNOWTEX-AK/carminic acid sample did not loose any color after the washing cycle. In contrast, the control sample (a sample stained with 0.2 g Carminic Acid in 50 ml water, dried under the same conditions) lost all of the color upon washing under the same conditions.


EXAMPLE 7

The following example demonstrates the application of the present invention to other functional compounds as opposed to dyes.


Tetracycline is an antibacterial agent that contains a carbonyl-hydroxy function capable of bonding with alumina in accordance with the present invention. Tetracycline is a series of isomers of cyclomycin. Tetracycline contains as a principle component the following:




embedded image



4S-(4,4,5,6,12)-4-(dimethylamino)-1,4,4,5,5,6,11,12-octahydro-3,6,10,12,12-pentahydroxy-6-methyl-1, 11-dioxo-2-naphthacenecarboxamide.


The UV-visible absorbance spectrum of Tetracycline was measured using a UV-visible spectrophotometer (Perkin-Elmer UV-Visible spectrophotometer.) Tetracycline was found to absorb at 357 nm in water. When SNOWTEX AK suspension (as described in Example 6) was added to the tetracycline solution, a bathochromic shift occurred to give an absorbance of 365 nm, suggesting that the tetracycline had adsorbed onto the alumina surface of SNOWTEX AK particles.


These and other modifications and variations to the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention, which is more particularly set forth in the appended claims. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention so further described in such appended claims.

Claims
  • 1. An article of manufacture comprising: a nonwoven material having a receiving surface containing negative charges, wherein the nonwoven material comprises polyolefin fibers; anda plurality of positively charged particles bonded to the receiving surface of the nonwoven material through coulombic attraction, the particles containing silica coated with alumina, at least a portion of the alumina being present on a surface of the particles, and wherein a functional compound is bonded to the alumina on the surface of the particle, the functional compound prior to bonding with the alumina containing a moiety comprising:
  • 2. An article as defined in claim 1, wherein the functional compound comprises a colorant, a UV absorber, a pharmaceutical, an odor control agent, a fragrance, a therapeutic agent, a nutriceutical agent, an anti-bacterial agent, an anti-microbial agent, an anti-viral agent, a xenobiotic, or combinations thereof.
  • 3. An article as defined in claim 1, wherein the particle containing alumina bonded to the functional compound has an average dimension of less than 1 mm.
  • 4. An article as defined in claim 1, wherein the particle containing alumina bonded to the functional compound has an average dimension of less than 1,000 nm.
  • 5. An article as defined in claim 1, wherein the functional compound comprises hydrocortisone, ascorbic acid, or aspartame.
  • 6. An article as defined in claim 1, wherein the functional compound comprises tetracycline.
  • 7. An article as defined in claim 1, wherein the particle containing alumina bonded to the functional compound has a zeta potential of at least 20 mV.
  • 8. An article as defined in claim 1, wherein the plurality of particles are contained within a liquid vehicle when applied to the nonwoven material.
  • 9. An article as defined in claim 1, wherein the functional compound comprises a dye.
  • 10. An article as defined in claim 1, wherein the nonwoven material is subjected to a corona treatment prior to bonding with the plurality of positively charges particles.
  • 11. An article as defined in claim 1, wherein the nonwoven material is subjected to an electret treatment prior to bonding with the plurality of positively charges particles.
  • 12. An article as defined in claim 1, wherein the article has been exposed to microwave radiation or radio frequency radiation after the nonwoven material and the plurality of charged particles have been bonded together.
  • 13. An article as defined in claim 9, wherein the dye contains an anthraquinone chromophore.
  • 14. An article as defined in claim 9, wherein the dye contains salicylate or 3-hydroxy-2-naphthoic acid moieties.
  • 15. An article as defined in claim 9, wherein the dye is based on chromotropic acid.
  • 16. An article as defined in claim 9, wherein the dye contains an acetoacetanilide.
  • 17. An article as defined in claim 9, wherein the dye contains a naphthoquinone.
  • 18. An article as defined in claim 9, wherein the dye contains the moiety:
  • 19. An article as defined in claim 9, wherein the dye contains the moiety:
  • 20. An article as defined in claim 9, wherein the dye contains the moiety:
  • 21. An article as defined in claim 9, wherein the plurality of particles have an average dimension of less than 1,000 nm.
  • 22. An article as defined in claim 1, wherein the receiving surface of the nonwoven material and the particles have a surface charge difference of at least 42 mV.
  • 23. An article as defined in claim 1, wherein the receiving surface of the nonwoven material and the particles have a surface charge difference of at least 42 mV.
  • 24. An article of manufacture comprising: a nonwoven spunbond fabric having a receiving surface containing negative charges, wherein the spunbond fabric comprises polyolefin fibers; anda plurality of positively charged particles bonded to the receiving surface of the spunbond web through coulombic attraction, the particles containing silica coated with alumina, at least a portion of the alumina being present on a surface of the particles, and wherein a functional compound is bonded to the alumina on the surface of the particle, the functional compound prior to bonding with the alumina containing a moiety comprising:
  • 25. An article as defined in claim 24, wherein the particle comprises a core material coated with alumina.
  • 26. An article as defined in claim 25, wherein the core material comprises silica.
  • 27. An article as defined in claim 24, wherein the functional compound comprises a colorant, a UV absorber, a pharmaceutical, an odor control agent, a fragrance, a therapeutic agent, a nutriceutical agent, an anti-bacterial agent, an anti-microbial agent, an anti-viral agent, a xenobiotic, or combinations thereof.
  • 28. An article as defined in claim 24, wherein the particle containing alumina bonded to the functional compound has an average dimension of less than 1 mm.
  • 29. An article as defined in claim 24, wherein the particle containing alumina bonded to the functional compound has an average dimension of less than 1,000 nm.
  • 30. An article as defined in claim 24, wherein the functional compound comprises hydrocortisone, ascorbic acid, or aspartame.
  • 31. An article as defined in claim 24, wherein the functional compound comprises tetracycline.
  • 32. An article as defined in claim 24, wherein the particle containing alumina bonded to the functional compound has a zeta potential of at least 20 mV.
  • 33. An article as defined in claim 24, wherein the plurality of particles are contained within a liquid vehicle when applied to the spunbond fabric.
  • 34. An article as defined in claim 24, wherein the functional compound comprises a dye.
  • 35. An article as defined in claim 34, wherein the dye contains an anthraquinone chromophore.
  • 36. An article as defined in claim 34, wherein the dye contains salicylate or 3-hydroxy-2-naphthoic acid moieties.
  • 37. An article as defined in claim 34, wherein the dye is based on chromotropic acid.
  • 38. An article as defined in claim 34, wherein the dye contains an acetoacetanilide.
  • 39. An article as defined in claim 34, wherein the dye contains a naphthoquinone.
  • 40. An article as defined in claim 34, wherein the dye contains the moiety:
  • 41. An article as defined in claim 34, wherein the dye contains the moiety:
  • 42. An article as defined in claim 34, wherein the dye contains the moiety:
  • 43. An article as defined in claim 24, wherein the plurality of particles have an average dimension of less than 1,000 nm.
  • 44. An article as defined in claim 24, wherein the receiving surface of the spunbond fabric and the particles have a surface charge difference of at least 42 mV.
  • 45. An article as defined in claim 24, wherein the receiving surface of the spunbond fabric and the particles have a surface charge difference of at least 42 mV.
US Referenced Citations (310)
Number Name Date Kind
2015864 Müller et al. Oct 1935 A
2593146 Howard Apr 1952 A
3266973 Crowley Aug 1966 A
3381688 Satas May 1968 A
3507269 Berry Apr 1970 A
3615478 Hoshino et al. Oct 1971 A
3794497 Pratt et al. Feb 1974 A
3919437 Brown et al. Nov 1975 A
3960494 Verma et al. Jun 1976 A
4038046 Supkis Jul 1977 A
4041203 Brock et al. Aug 1977 A
4172781 Walk et al. Oct 1979 A
4297233 Gualandi Oct 1981 A
RE30797 Davis Nov 1981 E
RE30803 Davis Nov 1981 E
4313820 Farha, Jr. et al. Feb 1982 A
4325735 Ohta et al. Apr 1982 A
4336027 Tussing Jun 1982 A
4375448 Appel et al. Mar 1983 A
4407960 Tratnyek Oct 1983 A
4469746 Weisman et al. Sep 1984 A
4488969 Hou Dec 1984 A
4494278 Kroyer et al. Jan 1985 A
4494629 Raeburn Jan 1985 A
4517308 Ehlenz et al. May 1985 A
4522203 Mays Jun 1985 A
4525410 Hagiwara et al. Jun 1985 A
4585484 Haruta et al. Apr 1986 A
4640810 Laursen et al. Feb 1987 A
4643801 Johnson Feb 1987 A
4701218 Barker et al. Oct 1987 A
4725415 Kidd Feb 1988 A
4726844 Greenwood Feb 1988 A
4734324 Hill Mar 1988 A
4767459 Greenwood et al. Aug 1988 A
4775585 Hagiwara Oct 1988 A
4780448 Broecker et al. Oct 1988 A
4783220 Gamble et al. Nov 1988 A
4812492 Eckes et al. Mar 1989 A
4818464 Lau Apr 1989 A
4823404 Morell et al. Apr 1989 A
4823803 Nakamura Apr 1989 A
4836851 Pawlowski et al. Jun 1989 A
4957553 Koike et al. Sep 1990 A
4963189 Hindagolla Oct 1990 A
4978615 Aoyama et al. Dec 1990 A
4988505 Watanabe et al. Jan 1991 A
5000746 Meiss Mar 1991 A
5006862 Adamic Apr 1991 A
5017227 Koike et al. May 1991 A
5034058 Akiyama et al. Jul 1991 A
5062893 Adamic et al. Nov 1991 A
5064694 Gee Nov 1991 A
5067980 Koike et al. Nov 1991 A
5069719 Ono Dec 1991 A
5091004 Tabayashi et al. Feb 1992 A
5092926 Owatari Mar 1992 A
5098474 Pawlowski et al. Mar 1992 A
5100470 Hindagolla et al. Mar 1992 A
5108739 Kurihara et al. Apr 1992 A
5122418 Nakane et al. Jun 1992 A
5133803 Moffatt Jul 1992 A
5145518 Winnik et al. Sep 1992 A
5145727 Potts et al. Sep 1992 A
5151128 Fukushima et al. Sep 1992 A
5156675 Breton et al. Oct 1992 A
5160535 Cooke et al. Nov 1992 A
5169706 Collier, IV et al. Dec 1992 A
5178931 Perkins et al. Jan 1993 A
5183656 Uesaka et al. Feb 1993 A
5188885 Timmons et al. Feb 1993 A
5190581 Fukushima et al. Mar 1993 A
5203912 Greenwood et al. Apr 1993 A
5204111 Handjani et al. Apr 1993 A
5204429 Kaminsky et al. Apr 1993 A
5209998 Kavassalis et al. May 1993 A
5220346 Carriera et al. Jun 1993 A
5221332 Kohlmeier Jun 1993 A
5223026 Schwartz, Jr. Jun 1993 A
5226957 Wickramanayake et al. Jul 1993 A
5230732 You et al. Jul 1993 A
5245117 Withers et al. Sep 1993 A
5258065 Fujisawa Nov 1993 A
5269840 Morris et al. Dec 1993 A
5274025 Stockle et al. Dec 1993 A
5300365 Ogale Apr 1994 A
5302195 Helbrecht et al. Apr 1994 A
5314855 Thorpe et al. May 1994 A
5340929 Ono et al. Aug 1994 A
5342876 Abe et al. Aug 1994 A
5344872 Debord et al. Sep 1994 A
5366947 Müller et al. Nov 1994 A
5370730 Gregory et al. Dec 1994 A
5382283 Yui et al. Jan 1995 A
5397667 Law et al. Mar 1995 A
5407442 Karapasha Apr 1995 A
5420090 Spencer et al. May 1995 A
5427844 Murai et al. Jun 1995 A
5431723 Bermes et al. Jul 1995 A
5439514 Kashiwazaki et al. Aug 1995 A
5441561 Chujo et al. Aug 1995 A
5451450 Erderly et al. Sep 1995 A
5472775 Obijeski et al. Dec 1995 A
5480636 Maruo et al. Jan 1996 A
5484475 Breton et al. Jan 1996 A
5486356 Yim Jan 1996 A
5487938 Spencer et al. Jan 1996 A
5512095 Sens et al. Apr 1996 A
5527171 Soerensen Jun 1996 A
5531817 Shields et al. Jul 1996 A
5538548 Yamazaki Jul 1996 A
5539124 Etherton et al. Jul 1996 A
5540916 Parks Jul 1996 A
5554775 Krishnamurti et al. Sep 1996 A
5565022 Wickramanayake Oct 1996 A
5580655 El-Shall et al. Dec 1996 A
5591797 Barthel et al. Jan 1997 A
5605566 Yui et al. Feb 1997 A
5616315 Masterman et al. Apr 1997 A
5626654 Breton et al. May 1997 A
5626655 Pawlowski et al. May 1997 A
5633109 Jennings et al. May 1997 A
5656072 Kato et al. Aug 1997 A
5661197 Villiger et al. Aug 1997 A
5663224 Emmons et al. Sep 1997 A
5667572 Taniguch et al. Sep 1997 A
5679138 Bishop et al. Oct 1997 A
5679724 Sacripante et al. Oct 1997 A
5681380 Nohr et al. Oct 1997 A
5684063 Patel et al. Nov 1997 A
5693126 Ito Dec 1997 A
5695868 McCormack Dec 1997 A
5725643 Higashiyama Mar 1998 A
5733272 Brunner et al. Mar 1998 A
5747003 Mohnot et al. May 1998 A
5749951 Yoshiike et al. May 1998 A
5753026 Kuntz et al. May 1998 A
5756561 Wang et al. May 1998 A
5769931 Wang et al. Jun 1998 A
5777639 Kageyama et al. Jul 1998 A
5785745 Lauw et al. Jul 1998 A
5788749 Breton et al. Aug 1998 A
5788753 Pawlowski et al. Aug 1998 A
5795985 Hüsler et al. Aug 1998 A
5810917 Yamazaki et al. Sep 1998 A
5814685 Satake et al. Sep 1998 A
5817300 Cook et al. Oct 1998 A
5833744 Breton et al. Nov 1998 A
5837352 English et al. Nov 1998 A
5843509 Calvo Salve et al. Dec 1998 A
5852073 Villiger et al. Dec 1998 A
5855660 Bujard et al. Jan 1999 A
5858503 Everhart et al. Jan 1999 A
5861144 Peterson et al. Jan 1999 A
5868823 Yamazaki et al. Feb 1999 A
5871872 Matijevic et al. Feb 1999 A
5874067 Lucas et al. Feb 1999 A
5879439 Nagai et al. Mar 1999 A
5880176 Kamoto et al. Mar 1999 A
5882391 Gregory et al. Mar 1999 A
5882392 Gregory et al. Mar 1999 A
5882638 Dodd et al. Mar 1999 A
5885599 Peterson et al. Mar 1999 A
5888286 Gregory et al. Mar 1999 A
5891230 Gregory et al. Apr 1999 A
5891232 Moffatt et al. Apr 1999 A
5891934 Moffatt et al. Apr 1999 A
5897541 Uitenbroek et al. Apr 1999 A
5911816 Gore Jun 1999 A
5916596 Desai et al. Jun 1999 A
5928416 Gundlach et al. Jul 1999 A
5928419 Uemura et al. Jul 1999 A
5935309 Moffatt et al. Aug 1999 A
5935310 Engel et al. Aug 1999 A
5942027 Ikai et al. Aug 1999 A
5944883 Saibara et al. Aug 1999 A
5948155 Yui et al. Sep 1999 A
5948398 Hanamoto et al. Sep 1999 A
5948483 Kim et al. Sep 1999 A
5955515 Kimura et al. Sep 1999 A
5958998 Foucher et al. Sep 1999 A
5962566 Grandfils et al. Oct 1999 A
5964926 Cohen Oct 1999 A
5964930 Saibara et al. Oct 1999 A
5968244 Ueda et al. Oct 1999 A
5972389 Shell et al. Oct 1999 A
5973025 Nigam et al. Oct 1999 A
5973027 Howald et al. Oct 1999 A
5980623 Hiraoka et al. Nov 1999 A
5981623 McCain et al. Nov 1999 A
5989510 Abe et al. Nov 1999 A
5993527 Tochihara et al. Nov 1999 A
5993856 Ragavan et al. Nov 1999 A
5998222 Weimer Dec 1999 A
6004625 Oshima Dec 1999 A
6015454 Lacroix et al. Jan 2000 A
6015455 Yano et al. Jan 2000 A
6019827 Wickramanayake et al. Feb 2000 A
6024785 Morimoto Feb 2000 A
6024786 Gore Feb 2000 A
6025412 Sacripante et al. Feb 2000 A
6033463 Yui et al. Mar 2000 A
6034154 Kase et al. Mar 2000 A
6037391 Iida Mar 2000 A
6045606 Matzinger Apr 2000 A
6045900 Haffner et al. Apr 2000 A
6047413 Welchel et al. Apr 2000 A
6048390 Yano et al. Apr 2000 A
6051057 Yatake et al. Apr 2000 A
6060410 Gillberg-LaForce et al. May 2000 A
6073771 Pressley et al. Jun 2000 A
6075179 McCormack et al. Jun 2000 A
6090193 Nigam et al. Jul 2000 A
6096299 Guarracino et al. Aug 2000 A
6099627 Saibara et al. Aug 2000 A
6110266 Gonzalez-Blanco et al. Aug 2000 A
6111163 McCormack et al. Aug 2000 A
6113680 Aoyama et al. Sep 2000 A
6121365 Saibara et al. Sep 2000 A
6129786 Camara et al. Oct 2000 A
6140390 Bugner et al. Oct 2000 A
6147139 Shaw-Klein et al. Nov 2000 A
6149719 Houle Nov 2000 A
6153001 Suzucki et al. Nov 2000 A
6159649 Macholdt et al. Dec 2000 A
6165440 Esenaliev Dec 2000 A
6171382 Stübbe et al. Jan 2001 B1
6172173 Spencer et al. Jan 2001 B1
6177608 Weinstrauch Jan 2001 B1
6190814 Law et al. Feb 2001 B1
6193844 McLaughlin et al. Feb 2001 B1
6200555 Nishijima et al. Mar 2001 B1
6210625 Matsushita et al. Apr 2001 B1
6238767 McCormack et al. May 2001 B1
6254894 Denkewicz, Jr. et al. Jul 2001 B1
6264615 Diamond et al. Jul 2001 B1
6277346 Murasawa et al. Aug 2001 B1
6277489 Abbott et al. Aug 2001 B1
6277772 Gancet et al. Aug 2001 B1
6294222 Cohen et al. Sep 2001 B1
6299867 Aoyagi et al. Oct 2001 B1
6309736 McCormack et al. Oct 2001 B1
6344218 Dodd et al. Feb 2002 B1
6344272 Oldenburg et al. Feb 2002 B1
6358537 Hoshino et al. Mar 2002 B1
6358909 Ochomogo et al. Mar 2002 B1
6361780 Ley et al. Mar 2002 B1
6369290 Glaug et al. Apr 2002 B1
6376741 Guarracino et al. Apr 2002 B1
6410765 Wellinghoff et al. Jun 2002 B1
6425530 Coakley Jul 2002 B1
6428814 Boash et al. Aug 2002 B1
6432872 Tsushio et al. Aug 2002 B1
6460989 Yano et al. Oct 2002 B1
6467897 Wu et al. Oct 2002 B1
6475601 Sakaki et al. Nov 2002 B1
6479150 Liu et al. Nov 2002 B1
6486227 Nohr et al. Nov 2002 B2
6491790 Proverb et al. Dec 2002 B1
6498000 Murasawa et al. Dec 2002 B2
6517199 Tomioka et al. Feb 2003 B1
6531704 Yadav et al. Mar 2003 B2
6536890 Kato et al. Mar 2003 B1
6548264 Tan et al. Apr 2003 B1
6551457 Westman et al. Apr 2003 B2
6575383 Dobler et al. Jun 2003 B2
6578521 Raymond et al. Jun 2003 B2
6589562 Shefer et al. Jul 2003 B1
6607711 Pedersen Aug 2003 B2
6623848 Brehm et al. Sep 2003 B2
6638918 Davison et al. Oct 2003 B2
6639004 Falat et al. Oct 2003 B2
6645569 Cramer et al. Nov 2003 B2
6693071 Ghosh et al. Feb 2004 B2
6780896 MacDonald et al. Aug 2004 B2
7008979 Schottman et al. Mar 2006 B2
20010000889 Yadav et al. May 2001 A1
20010023338 Guarracino et al. Sep 2001 A1
20010031248 Hall-Puzio et al. Oct 2001 A1
20010056246 Rodriguez-Fernandez Dec 2001 A1
20020005145 Sherman Jan 2002 A1
20020066542 Jakob et al. Jun 2002 A1
20020091071 Fischer et al. Jul 2002 A1
20020106466 Hausmann et al. Aug 2002 A1
20020110686 Dugan Aug 2002 A1
20020128336 Kolb Sep 2002 A1
20020142937 Carter et al. Oct 2002 A1
20020149656 Nohr Oct 2002 A1
20020150678 Cramer et al. Oct 2002 A1
20020176982 Rohrbaugh et al. Nov 2002 A1
20020177621 Hanada Nov 2002 A1
20020182102 Fontenot et al. Dec 2002 A1
20030013369 Soane et al. Jan 2003 A1
20030021983 Nohr et al. Jan 2003 A1
20030050211 Hage et al. Mar 2003 A1
20030056648 Fornai et al. Mar 2003 A1
20030070782 Proverb et al. Apr 2003 A1
20030082237 Cha et al. May 2003 A1
20030099718 Burrell et al. May 2003 A1
20030100842 Rosenberg et al. May 2003 A1
20030147956 Shefer et al. Aug 2003 A1
20030147966 Franzen et al. Aug 2003 A1
20030181540 Quellet et al. Sep 2003 A1
20030203009 MacDonald Oct 2003 A1
20030235605 Lelah et al. Dec 2003 A1
20040033269 Hei et al. Feb 2004 A1
20040034157 Ghosh et al. Feb 2004 A1
20040043688 Soerens et al. Mar 2004 A1
20040120921 Quincy, III et al. Jun 2004 A1
20040122387 Long et al. Jun 2004 A1
Foreign Referenced Citations (68)
Number Date Country
0232141 Aug 1987 EP
0251783 Jan 1988 EP
0282287 Sep 1988 EP
0348978 Jan 1990 EP
0376448 Jul 1990 EP
0389015 Sep 1990 EP
0389015 Sep 1990 EP
0389023 Sep 1990 EP
0389023 Sep 1990 EP
0483500 May 1992 EP
0510619 Oct 1992 EP
0749295 Dec 1996 EP
0972563 Jan 2000 EP
1034800 Sep 2000 EP
1157672 Nov 2001 EP
1162172 Dec 2001 EP
1188854 Mar 2002 EP
1214878 Jun 2002 EP
1216675 Jun 2002 EP
1298071 Apr 2003 EP
1315526 Jun 2003 EP
1053788 Oct 2003 EP
55017157 May 1980 JP
62149322 Jul 1987 JP
3221142 Sep 1991 JP
WO 8902698 Apr 1989 WO
WO 9111977 Aug 1991 WO
WO 9112029 Aug 1991 WO
WO 9112030 Aug 1991 WO
WO 9619346 Jun 1996 WO
WO 9619346 Jun 1996 WO
WO 9725076 Jul 1997 WO
WO 9814524 Apr 1998 WO
WO 9820915 May 1998 WO
WO 9826808 Jun 1998 WO
WO 9826808 Jun 1998 WO
WO 9947252 Mar 1999 WO
WO 9947253 Mar 1999 WO
WO 9947252 Sep 1999 WO
WO 0003797 Jan 2000 WO
WO 0029036 Mar 2000 WO
WO 0029036 Mar 2000 WO
WO 00137764 Mar 2000 WO
WO 0059555 Oct 2000 WO
WO 0066090 Nov 2000 WO
WO 0076558 Dec 2000 WO
WO-0106054 Jan 2001 WO
WO 0106045 Jan 2001 WO
WO 0106054 Jan 2001 WO
WO 0202347 Jan 2002 WO
WO 0226272 Apr 2002 WO
WO 0249559 Jun 2002 WO
WO 02055115 Jul 2002 WO
WO 02062881 Aug 2002 WO
WO 02064877 Aug 2002 WO
WO 02064877 Aug 2002 WO
WO 02083297 Oct 2002 WO
WO 02084017 Oct 2002 WO
WO 02094329 Nov 2002 WO
WO 02095112 Nov 2002 WO
WO 03000979 Jan 2003 WO
WO 03025067 Mar 2003 WO
WO 03032959 Apr 2003 WO
WO 03051278 Jun 2003 WO
WO 03051278 Jun 2003 WO
WO 03088931 Oct 2003 WO
WO 03092885 Nov 2003 WO
WO 2004060378 Jul 2004 WO
Related Publications (1)
Number Date Country
20040120904 A1 Jun 2004 US