The present invention relates to medical devices. More particularly, the invention relates to a delivery system for implantation of an intraluminal medical device in a body vessel.
Minimally invasive techniques and instruments for placement of intraluminal medical devices have been developed over recent years and are frequently used to deliver an intraluminal medical device to a desired point of treatment and deploy the intraluminal medical device at the point of treatment. In these techniques, a delivery system is used to carry the intraluminal medical device through a body vessel and to the point of treatment. Once the point of treatment is reached, the intraluminal medical device is deployed from the delivery system. The delivery system is subsequently withdrawn from the point of treatment and, ultimately, the body vessel. A wide variety of treatment devices that utilize minimally invasive technology have been developed and include stents, stent grafts, occlusion devices, infusion catheters, prosthetic valves, and the like.
Some intraluminal medical devices include a component that requires pre-treatment processing by a care provider or other personnel. For example, some prosthetic venous valves include a graft member that requires hydration prior to implantation. The hydration can be accomplished while the device is still in the delivery system. Also, some intraluminal medical devices, such as prosthetic valves, include a functional mechanism which is sensitive to positioning in the body vessel. For example, prosthetic venous valves may include a valve orifice that is desirably positioned within a body vessel in a particular orientation. For these devices, it can be important to achieve a desired positioning of the medical device within a delivery system during manufacturing.
Accordingly, there is a need for a delivery system which facilitates visual inspection of an intraluminal medical device within the delivery system.
The invention provides delivery systems for delivering an intraluminal medical device to a point of treatment in a body vessel. Delivery systems according to the invention facilitate inspection of the intraluminal medical device placed within the delivery system.
In one embodiment, a delivery system according to the invention comprises an elongate tubular member having a distal end adapted for insertion into a body vessel. At least a portion of the tubular member is formed of a transparent material or a translucent material. The delivery system also includes a dilator having a distal end adapted for insertion into the body vessel. The dilator is disposed in the tubular member and extends substantially coaxially with the tubular member. An intraluminal medical device is disposed radially between the tubular member and the dilator. At least a portion of the intraluminal medical device is viewable through the portion of the tubular member formed of the transparent material or the translucent material.
In another embodiment, a delivery system according to the invention comprises an elongate tubular member having a distal end adapted for insertion into a body vessel. At least a portion of the tubular member is formed of a transparent material. The delivery system also includes a dilator disposed in the tubular member and extending substantially coaxially with the tubular member. The dilator has a lumen formed therein adapted to receive a guide wire. An intraluminal medical device is disposed radially between the tubular member and the dilator and has at least a portion thereof viewable through the portion of the tubular member formed of the transparent material. The tubular member includes at least one marker adjacent the distal end thereof.
In another embodiment, a delivery system according to the invention comprises an elongate tubular member having a distal end adapted for insertion into a body vessel. At least a portion of the tubular member is formed of a translucent material. The delivery system also includes a dilator disposed in the tubular member and extending substantially coaxially with the tubular member. The dilator has a lumen formed therein adapted to receive a guide wire. An intraluminal medical device is disposed radially between the tubular member and the dilator and has at least a portion thereof viewable through the portion of the tubular member formed of the translucent material. The tubular member includes at least one marker adjacent the distal end thereof.
In another embodiment, a delivery system according to the invention comprises an elongate tubular member having a distal end adapted for insertion into a body vessel. At least a portion of the tubular member is formed of a transparent material or a translucent material. The delivery system also includes a dilator disposed in the tubular member and extending substantially coaxially with the tubular member. The dilator has a lumen formed therein adapted to receive a guide wire. An intraluminal medical device is disposed radially between the tubular member and the dilator and has at least a portion thereof viewable through the portion of the tubular member formed of the transparent material or the translucent material. The tubular member includes at least one marker on the portion of the tubular member formed of the transparent material or the translucent material. The marker can facilitate a positioning of the intraluminal medical device within the body vessel.
The invention also provides methods of producing a delivery system.
One method according to the invention comprises the steps of forming a tubular member having at least a portion thereof which is translucent or transparent. A dilator is caused to be substantially disposed in the tubular member. An intraluminal medical device is inserted at a distal end of the tubular member radially between the tubular member and the dilator with at least a portion thereof viewable through the translucent and transparent portion of the tubular member.
The following detailed description and appended drawings describe and illustrate various exemplary embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner.
The delivery system 10 includes a dilator 20 disposed within the tubular member 12. As used herein, the term “dilator” refers to an elongate member capable of being disposed within a lumen of a sheath, such as tubular member 12. The dilator 20 has a tapered distal end 19, which is insertable in the body vessel 30 and a proximal end 21. An expandable intraluminal medical device 22 is disposed around a portion of the dilator 20 adjacent the distal end 19. The intraluminal medical device 22 may be any suitable intraluminal medical device, examples of which include a stent, a prosthetic valve, a filter, and the like. Further, the intraluminal medical device 22 can be a self-expandable device or a device that requires an input of force for expansion, such as a balloon-expandable device.
In the illustrated embodiment, a circumferential marker or radiopacifier 28 is formed at each end of the transparent section T of the tubular member 12. As used herein, the term “circumferential” refers to a marker that extends along at least a portion of a circumference of the tubular member. The term includes, but does not require, a marker that extends along the entire circumference of the member. Similar to the longitudinal marker 26, the circumferential marker 28 can be formed of any conventional radiopacifier material such as barium sulfate, bismuth salts, bismuth subcarbonate, tungsten, or tungsten powder, for example. The radiopacifier material used to form the circumferential marker 28 may be detectable by fluoroscopy and X-ray, for example. Also similar to the longitudinal marker 26, the circumferential marker 28 can be formed in, with, or on the tubular member 12. It is understood that a single circumferential marker 28 may be used at either end of the transparent section T or elsewhere on the tubular member 12, as desired.
As best shown in
It is understood that more or fewer longitudinal markers can be used as desired with intraluminal medical devices 22 having different configurations than that illustrated to facilitate observing the orientation thereof. Also, it is understood that markers having different configurations than those illustrated, such as helical and spot markers, for example, can be used. The various markers can be used for determining the axial location of the intraluminal medical device 22 in respect of the desired area of treatment within the body of the patient. A rotational orientation of the intraluminal medical device can also be determined using the markers. For example, a prosthetic valve can be disposed in the delivery system and oriented so that markers are disposed adjacent two sides of a valve orifice. Therefore, after insertion in the body vessel 30, confirmation of the rotational orientation of the valve orifice can be determined. This can be understood by observing
In
The delivery device 100 includes a dilator 110 disposed within the tubular member 102. The dilator 110 has a tapered distal end 112, which is insertable in a body vessel, and a proximal end 114. An expandable intraluminal medical device 116 is disposed around a portion of the dilator 110 adjacent the distal end 112. The intraluminal medical device 116 may be any suitable intraluminal medical device, examples of which include a stent, a prosthetic valve, a filter, and the like.
A lumen 118 is formed by the dilator 110 and runs the entire length of the dilator 110. The lumen 118 is adapted to receive a guidewire or other insertable member therein like that discussed for the embodiment shown in
Markers or radiopacifiers can be formed in, with, or on the tubular member 102 in similar fashion as described above for other embodiments of the invention. The markers can be formed at any point on the tubular member 102 and in any configuration as desired to function as described for the embodiments discussed above, and can be formed of any conventional radiopacifier material such as barium sulfate, bismuth salts, bismuth subcarbonate, tungsten, or tungsten powder, for example. The radiopacifier material used to form the markers may be detectable by fluoroscopy and X-ray, for example.
Both delivery systems 10, 100 can be used in the same manner. Therefore, an exemplary use of the delivery system 10 will be disclosed. It is understood, however, that the delivery system 100 can be similarly used, as can all delivery systems according to the invention. In use, the delivery system 10 delivers the intraluminal medical device 22 to a desired location within the body vessel 30. To deliver the intraluminal medical device 22, the guidewire 25 is placed in the body vessel 30 of the patient by navigating a distal end of the guidewire 25 to a point just beyond the desired area of treatment. A proximal end of the guidewire 25 is left outside the body of the patient.
The delivery system 10 is provided with the intraluminal medical device 22 disposed therein. Prior to insertion of the delivery system 10 into the body vessel, certain procedures may be accomplished and facilitated using the transparent or translucent portion of the tubular member 12. For example, the intraluminal medical device 22 can be inspected prior to its use. Additionally, certain intraluminal medical devices may include a component that requires pre-treatment processing by a care provider. Some prosthetic valves having leaflets or graft members, for example, may require hydration prior to implanting in the body vessel 30. The hydration can be accomplished in the tubular member 12 while the device is still in the delivery system 10. Hydration of the intraluminal medical device 22 can be verified by examining the intraluminal medical device 22 through the transparent or translucent portion T of the tubular member 12. The care provider can also inspect the delivery system 10 for undesirable air bubbles and the like through the transparent or translucent portion T. Other pre-insertion procedures facilitated by the transparent or translucent portion T of the tubular member 12 can be conducted as desired.
When it is desired to insert the delivery system 10 in the body vessel 30, the proximal end of the guidewire 25 is inserted into the lumen 24 of the dilator 20 at the distal end 19. The distal end 19 of the dilator 20 is caused to enter the body vessel 30 along the guidewire 25 and to be moved to the desired area of treatment. Progress through the body vessel 30 of the distal end 19 of the dilator 20 and the distal end 14 of the tubular member 12 can be tracked using the fluoroscopy source 32. The markers 26, 26′, 28 are visible in conjunction with the fluoroscopy source 32, thus facilitating the tracking of the distal ends 19, 14. An axial and rotational orientation of the intraluminal medical device 22 can be monitored within the body vessel 30 using the fluoroscopy source 32. Thus, a desired axial and rotational alignment of the intraluminal medical device 22 can be achieved by observing and recording the orientation of the intraluminal medical device 22 with respect to the longitudinal markers 26 outside of the patient's body, then causing a desired alignment to occur in the body vessel 30 using the fluoroscopy source 32.
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.
This application claims priority to U.S. Provisional Application Ser. No. 60/568,775 filed on May 6, 2004. The entire disclosure of which is hereby incorporated into this disclosure in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3978863 | Fettel et al. | Sep 1976 | A |
5234411 | Vaillancourt | Aug 1993 | A |
5415634 | Glynn et al. | May 1995 | A |
5486193 | Bourne et al. | Jan 1996 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5810847 | Laufer et al. | Sep 1998 | A |
5817100 | Igaki | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5902247 | Coe et al. | May 1999 | A |
5911452 | Yan | Jun 1999 | A |
5968052 | Sullivan, III et al. | Oct 1999 | A |
6093194 | Mikus et al. | Jul 2000 | A |
6221081 | Mikus et al. | Apr 2001 | B1 |
6287315 | Wijeratne et al. | Sep 2001 | B1 |
6413269 | Bui et al. | Jul 2002 | B1 |
6475168 | Pugsley et al. | Nov 2002 | B1 |
6554848 | Boylan et al. | Apr 2003 | B2 |
6726712 | Raeder-Devens et al. | Apr 2004 | B1 |
6796976 | Chin et al. | Sep 2004 | B1 |
6942688 | Bartholf et al. | Sep 2005 | B2 |
20010010017 | Letac et al. | Jul 2001 | A1 |
20010034549 | Bartholf et al. | Oct 2001 | A1 |
20010049549 | Boylan et al. | Dec 2001 | A1 |
20020193863 | Rourke et al. | Dec 2002 | A1 |
20030050686 | Raeder-Devens et al. | Mar 2003 | A1 |
20030055492 | Shaolian et al. | Mar 2003 | A1 |
20030199963 | Tower et al. | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
1 016 422 | Jul 2000 | EP |
1016422 | Jul 2000 | EP |
WO0222053 | Mar 2002 | WO |
WO 0222053 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050283178 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
60568775 | May 2004 | US |