Delivery system with force sensor for leadless cardiac device

Information

  • Patent Grant
  • 10350423
  • Patent Number
    10,350,423
  • Date Filed
    Thursday, February 2, 2017
    8 years ago
  • Date Issued
    Tuesday, July 16, 2019
    5 years ago
Abstract
A device configured to deliver and deploy an implantable medical device (IMD) includes a handle assembly and a shaft extending distally therefrom. A device containment housing configured to accommodate the IMD is coupled to the distal region of the shaft. At least one of the shaft and device containment housing includes a compressible region that is configured to compress by an amount that is related to an applied force. The device may include a first position indicator and a second position indicator. An applied force causes the compressible region to compress by an amount that is related to the applied force, causing a change in distance between the first position indicator and the second position indicator and thus providing an indication of the applied force.
Description
TECHNICAL FIELD

The present disclosure pertains to medical devices, and methods for manufacturing and/or using medical devices. More particularly, the present disclosure pertains to leadless devices and methods, such as leadless pacing devices and methods, and delivery devices and methods for such leadless devices.


BACKGROUND

A wide variety of medical devices have been developed for medical use, for example, cardiac use. Some of these devices include catheters, leads, pacemakers, and the like, and delivery devices and/or systems used for delivering such devices. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices, delivery systems, and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices and delivery devices as well as alternative methods for manufacturing and using medical devices and delivery devices.


SUMMARY

This disclosure provides design, material, manufacturing method, and use alternatives for medical devices, including delivery devices.


An example delivery and deployment device may include a handle assembly and a shaft extending distally from the handle assembly. A distal containment housing may be coupled to a distal region of the shaft and extend distally therefrom. The distal containment housing may be configured to accommodate an Implantable Medical Device (IMD) therein. The IMD may be a leadless pacemaker, a lead, a neurostimulation device, a sensor or any other suitable IMD. At least one of the shaft and distal containment housing may include a compressible region that is configured to compress by an amount that is related to an applied force. The example delivery and deployment device may include a first position indicator and a second position indicator, wherein at least part of the compressible region is situated between the first position indicator and the second position indicator. An applied force causes the compressible region to compress by an amount that is related to the applied force, which causes a change in distance between the first position indicator and the second position indicator, which provides an indication of the applied force.


In some cases, the distal containment housing may include the compressible region.


In some cases, the compressible region may be configured to shorten in length in response to the applied force. In some cases, there are more than one compressible region.


In some cases, the first position indicator comprises a first radiopaque marker band and the second position indicator comprises a second radiopaque marker band, and the change in distance between the first position indicator and the second position indicator is visible via fluoroscopy.


In some cases, the first position indicator comprises a first electrode and the second position indicator comprises a second electrode, and the change in distance between the first electrode and the second electrode is indicated via a change in impedance between the first electrode and the second electrode. In some cases, the first electrode may include a ring electrode. Alternatively or additionally, the first electrode may include one or more of a plurality of electrodes that are disposed radially about a distal end of the distal containment housing and alignable with each of a plurality of talons of the IMD. In some cases, the second electrode may comprises a ring electrode or any other suitable electrode.


In some cases, the delivery and deployment device may further include a force sensor arranged and configured to provide an indication of a force applied to the IMD during implantation. In some cases, the delivery and deployment device may include a force sensor arranged and configured to provide an indication of an applied force to an IMD during a tug test after deployment of the IMD.


A second example IMD implantation device may include a handle assembly and a shaft extending distally from the handle assembly. A distal containment housing that is configured to accommodate the IMD therein may be coupled to a distal region of the shaft and extend distally therefrom. A deployment member may extend through the shaft and may be configured to apply a distal deployment force to the IMD in order to move the IMD from the distal containment housing to deploy the IMD in the patient's heart. The second example IMD implantation device may further include a first force detector for detecting a measure related to a force applied by the device containment housing against the patient's heart during deployment of the IMD and a second force detector for detecting a measure related to a applied by the deployment member to the IMD during deployment of the IMD.


In some cases, the deployment member may be a push tube, and the IMD implantation device may include a tether extending distally through the push tube and coupled to the IMD. The tether may be configured to be used to retrieve the IMD back into the distal containment housing if an alternate deployment location is desired.


In some cases, the IMD implantation device may further include a plurality of electrodes that are disposed radially about a distal end of the distal containment housing and alignable with each of a plurality of talons of the IMD.


In some cases, the first force detector may include a compressible region that is configured to compresses by an amount that is related to the force applied by the device containment housing against the patient's heart during deployment of the IMD.


In some cases, the first force detector may include a first electrode and a second electrode, wherein at least part of the compressible region is between the first electrode and the second electrode.


In some cases, the first force detector may include a strain sensor and/or the second force detector may include a strain sensor.


Another example IMD implantation device may include a shaft including a distal region and a distal containment housing that is configured to accommodate the IMD therein. The distal containment housing may be coupled to the distal region of the shaft and extend distally therefrom. A deployment member may extend through the shaft and may be configured to apply a distal deployment force to the IMD in order to move the IMD from the distal containment housing to deploy the IMD in the patient's heart. A plurality of electrodes may be disposed radially about a distal end of the distal containment housing and may be alignable with each of a plurality of talons of the IMD. One or more force detectors may detect a measure related to a force applied by the distal containment housing against the patient's heart during deployment of the IMD.


In some cases, the force detector may include a compressible region that is configured to compresses by an amount that is related to the force applied by the distal containment housing against the patient's heart during deployment of the IMD. In some cases, the force detector may include a first electrode and a second electrode, wherein at least part of the compressible region is between the first electrode and the second electrode.


The above summary of some illustrative embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify some of these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings, in which:



FIG. 1 is a plan view of an example leadless pacing device implanted within a heart;



FIG. 2 is a side view of an example implantable leadless cardiac pacing device;



FIG. 3 is a cross-sectional view of the implantable leadless cardiac pacing device of FIG. 2;



FIG. 4 is a plan view of an example delivery device for an implantable leadless cardiac pacing device;



FIG. 5 is a partial cross-sectional side view of the distal portion of the delivery device of FIG. 4;



FIG. 6 is a top view of the handle of the illustrative delivery device of FIG. 4;



FIG. 7 is a bottom view of the handle of the illustrative delivery device of FIG. 4;



FIG. 8 is a cross-section view of the handle of the illustrative delivery device of FIG. 4 taken at line 8-8 in FIG. 6;



FIG. 9 is a perspective view of the handle of the illustrative delivery device of FIG. 4 with portions removed;



FIGS. 10A-10E are schematic views illustrating the use of the illustrative delivery device to deploy an implantable leadless cardiac pacing device;



FIGS. 11A-11B are schematic views illustrating a telescoping feature of the illustrative delivery device;



FIG. 12 is a schematic view of an illustrative delivery device;



FIG. 13 is an end-view of the delivery device of FIG. 12, illustrating an implantable device in the device containment housing;



FIGS. 14A-14C are schematic views of the distal portion of the delivery device of FIG. 12;



FIGS. 15A-C are schematic views of the distal portion of the delivery device of FIG. 12;



FIGS. 16A-C are schematic views showing the distal portion of the delivery device of FIG. 12 contacting tissue;



FIG. 17 is a schematic view of the distal portion of the delivery device of FIG. 12;



FIG. 18 is a schematic view of the distal portion of the delivery device of FIG. 12;



FIG. 19 is a schematic view of the distal portion of the delivery device of FIG. 12; and



FIG. 20 is a schematic view of the distal portion of the delivery device of FIG. 12.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DETAILED DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.


The following detailed description should be read with reference to the drawings in which similar structures in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.


Cardiac pacemakers provide electrical stimulation to heart tissue to cause the heart to contract and thus pump blood through the vascular system. Conventional pacemakers may include an electrical lead that extends from a pulse generator implanted subcutaneously or sub-muscularly to an electrode positioned adjacent the inside or outside wall of the cardiac chamber. As an alternative to conventional pacemakers, self-contained or leadless cardiac pacemakers have been proposed. Leadless cardiac pacemakers are small capsules that may, for example, be fixed to an intracardiac implant site in a cardiac chamber. In some cases, the small capsule may include bipolar pacing/sensing electrodes, a power source (e.g. a battery), and associated electrical circuitry for controlling the pacing/sensing electrodes, and thus may provide electrical stimulation to heart tissue and/or sense a physiological condition. The capsule may be delivered to the heart using a delivery device which may be advanced through a femoral vein, into the inferior vena cava, into the right atrium, through the tricuspid valve, and into the right ventricle. Accordingly, it may be desirable to provide delivery devices which facilitate advancement through the vasculature.



FIG. 1 illustrates an example implantable leadless cardiac pacing device 10 (e.g., a leadless pacemaker) implanted in a chamber of a heart H, such as the right ventricle RV. A side view of the illustrative implantable medical device (IMD) 10 is shown in FIG. 2 and a cross-sectional view of the illustrative IMD 10, taken at line 3-3 in FIG. 2, is illustrated in FIG. 3. The implantable device 10 may include a shell or housing 12 having a proximal end 14 and a distal end 16. In some instances, the IMD 10 may include a first electrode 20 positioned adjacent to the distal end 16 of the housing 12 and a second electrode 22 positioned adjacent to the proximal end 14 of the housing 12. In some cases, the housing 12 may include a conductive material and may be insulated at least a portion of its length. A section along the proximal end 14 may be free of insulation so as to define the second electrode 22. The electrodes 20, 22 may be sensing and/or pacing electrodes to provide electro-therapy and/or sensing capabilities. The first electrode 20 may be configured to be positioned against the cardiac tissue of the heart H or may otherwise contact the cardiac tissue of the heart H while the second electrode 22 may be spaced away from the first electrode 20, and thus spaced away from the cardiac tissue.


The IMD 10 may include a pulse generator (e.g., electrical circuitry) and a power source (e.g., a battery) within the housing 12 to provide electrical signals to the electrodes 20, 22 and thus control the pacing/sensing electrodes 20, 22. In some cases, electrical communication between the pulse generator and the electrodes 20, 22 may provide electrical stimulation to heart tissue and/or sense a physiological condition.


The IMD 10 may include a fixation mechanism 24 proximate the distal end 16 of the housing 12 configured to attach the IMD 10 to a tissue wall of the heart H, or otherwise anchor the IMD 10 to the anatomy of the patient. As shown in FIG. 1, in some instances, the fixation mechanism 24 may include one or more, or a plurality of hooks or tines 26 anchored into the cardiac tissue of the heart H to attach the IMD 10 to a tissue wall. In other cases, the fixation mechanism 24 may include one or more, or a plurality of passive tines, configured to entangle with trabeculae within the chamber of the heart H and/or a helical fixation anchor configured to be screwed into a tissue wall to anchor the IMD 10 to the heart H.


The IMD 10 may include a docking member 30 proximate the proximal end 14 of the housing 12 configured to facilitate delivery and/or retrieval of the IMD 10. For example, the docking member 30 may extend from the proximal end 14 of the housing 12 along a longitudinal axis of the housing 12. The docking member 30 may include a head portion 32 and a neck portion 34 extending between the housing 12 and the head portion 32. The head portion 32 may be an enlarged portion relative to the neck portion 34. For example, the head portion 32 may have a radial dimension from the longitudinal axis of the IMD 10 which is greater than a radial dimension of the neck portion 34 from the longitudinal axis of the IMD 10. The docking member 30 may further include a tether retention structure 36 extending from the head portion 32. The tether retention structure 36 may define an opening 38 configured to receive a tether or other anchoring mechanism therethrough. While the retention structure 36 is shown as having a generally “U-shaped” configuration, the retention structure 36 may take any shape which provides an enclosed perimeter surrounding the opening 38 such that a tether may be securably and releasably passed (e.g. looped) through the opening 38. The retention structure 36 may extend though the head portion 32, along the neck portion 34, and to or into the proximal end 14 of the housing 12, as is shown more clearly in FIG. 3. The docking member 30 may be configured to facilitate delivery of the IMD 10 to the intracardiac site and/or retrieval of the IMD 10 from the intracardiac site. Other docking members 30 are contemplated.


In some cases, the IMD 10 may be delivered to the heart H using a delivery device which may be advanced through a femoral vein, into the inferior vena cava, into the right atrium, through the tricuspid valve, and into the right ventricle. Accordingly, it will be appreciated that the delivery device may need to be navigated through relatively tortuous anatomy to deliver the IMD 10 to a suitable location. The target region for the delivery of the IMD 10 may be a portion of the right ventricle, for example, a portion of the right ventricle near the apex of the heart. The target region may also include other regions of the heart (e.g., right atrium, left atrium, or left ventricle), blood vessels, or other suitable targets. It may be desirable to provide the delivery system with certain features that may allow for easier or better control for navigation or delivery purposes.



FIG. 4 is a plan view of an illustrative delivery device 100, such as a catheter, that may be used to deliver the IMD 10. The delivery device 100 may include an outer tubular member 102 having a proximal section 104 and a distal section 106. An intermediate tubular member 110 may be longitudinally slidably disposed within a lumen 150 of the outer tubular member 102 (see e.g. FIG. 5). An inner tubular member 116 may be longitudinally slidably disposed within a lumen 152 of the intermediate tubular member 110 (see e.g. FIG. 5). A distal holding section, or device containment housing 108 may be attached to a distal end portion 114 of the intermediate tubular member 110, as illustrated in FIG. 5. The delivery device 100 may also include a handle assembly 120 positioned adjacent to the proximal section 104 of the outer tubular member 102. In some instances, the outer tubular member 102 may include at least a section thereof that has an outer diameter D2 that is less than the outer diameter D1 of at least a portion of the device containment housing 108 (see e.g. FIG. 5).


The handle assembly 120 may include a first or distal hub portion 126 attached to, such as fixedly attached to, the proximal end section 104 of the outer tubular member 102, a second or intermediate hub portion 128 attached to, such as fixedly attached to, a proximal end section of the intermediate tubular member 110, and a third or proximal hub portion 130 attached to, such as fixedly attached to, a proximal end section of the inner tubular member 116 (see e.g. FIG. 5). The first hub portion 126, second hub portion 128, and third hub portion 130 may be positioned in a generally telescoping arrangement and longitudinally slidable relative to each other. As will be discussed in more detail below, each of the first hub portion 126, the second hub portion 128, and the third hub portion 130 may be longitudinally slidable and rotatable relative to each other such that the outer tubular member 102, intermediate tubular member 110, and inner tubular member 116 may be individually actuated. In some instances, it may be desirable to move the outer tubular member 102, intermediate tubular member 110 and inner tubular member 116 simultaneously. The handle assembly 120 may include a multi-stage deployment mechanism or a first locking mechanism 134 to releasably couple the second hub portion 128 to the third hub portion 130 to prevent relative longitudinal movement therebetween, and thus prevent relative longitudinal movement between the intermediate tubular member 110 and the inner tubular member 116, as will be discussed in more detail below. The handle assembly 120 may also include a second locking mechanism 132 to releasably couple the first hub portion 126 to the second hub portion 128 to prevent relative longitudinal movement therebetween, and thus prevent relative longitudinal movement between the outer tubular member 102 and the intermediate tubular member 110, as will be discussed in more detail below.


The device containment housing 108 may be configured to receive the IMD 10 therein. For example, referring to FIG. 5, which illustrates a cross-sectional view of a distal portion of the delivery device 100, the device containment housing 108 may define a cavity 142 for slidably receiving the IMD 10, and may include a distal opening 144 for slidable insertion and/or extraction of the IMD 10 into and/or out of the cavity 142. The device containment housing 108 may include a body portion 138 and a distal tip portion 140 that may be, for example, configured to be atraumatic to anatomy, such as a bumper tip. For example, as the catheter is navigated through the anatomy, the distal tip may come into contact with anatomy. Additionally, when the catheter is used to deliver the implantable device 10, the tip 140 of the delivery device 100 will likely come into contact with tissue adjacent the target site (e.g. cardiac tissue of the heart). In some cases, as will be discussed with respect to subsequent Figures, the device containment housing 108 or the outer tubular member 102 proximate the device containment housing 108 may be configured to provide, for example, an indication of the force being applied to the distal tip portion 140 by virtue of the distal tip portion 140 being urged into contact with tissue such as a wall of the heart H.


In some cases, a hard distal tip formed of the material of the outer tubular member 102 and/or intermediate tubular member 110 may injure a vessel wall or cardiac tissue. As such, it may be desirable to provide the delivery device 100 with a softer distal tip 140 that can be introduced into the anatomy and come into contact with anatomy adjacent the target cite without causing unnecessary trauma. In some cases, the distal tip 140 may be made of a material that is softer than the body portion 138 of the device containment housing 108. In some cases, the distal tip 140 may include a material that has a durometer that is less than the durometer of the material of the body portion 138. In some particular embodiments, the durometer of the material used in the distal tip 140 may be in the range of about 5 D to about 70 D, or for example, in the range of about 25 D to about 65 D. Additionally, the distal tip 140 may include a shape or structure that may make it less traumatic to tissue. For example, the distal tip 140 may have a distal surface, such as a tissue contacting surface, that is that is rounded or includes a curvature configured to be more atraumatic to tissue.


In some instances, all or a portion of the device containment housing 108 may include an inner surface that may be configured to resist getting caught on the fixation mechanism 24, such as the one or more, or a plurality of hooks or tines 26 on the implantable device 10. For example, the device containment housing 108 may include an inner layer or coating of harder or more lubricious material that resists force applied by the fixation mechanism 24 onto the inner surface of the device containment housing 108. For example, the device containment housing 108 may include a multi-layered structure, and an inner layer may be made of a material that is harder than an outer layer.


The inner tubular member 116 may be disposed (e.g., slidably disposed) within a lumen 152 of the intermediate tubular member 110. The inner tubular member 116 may be engaged by a user near or at the third hub portion 130, and extend through a lumen 152 of the intermediate tubular member 110 and into the device containment housing 108. A distal portion 118 of the inner tubular member 116 may be capable of engaging the IMD 10, and the inner tubular member 116 may be used to “push” the IMD 10 out from device containment housing 108 so as to deploy and anchor the IMD 10 within a target region (e.g., a region of the heart such as the right ventricle). The inner tubular member 116 may have a lumen 154 extending from the proximal end 117 to a distal portion 118 thereof. A tether 112 or other retaining feature may be used to releasably secure the IMD 10 to the delivery device 100. In some instances, the tether 112 may be a single or unitary length of material that may extend from a proximal end 117 of the lumen 154, out through the distal portion 118, through the opening 38 of the IMD 10 and return to the proximal end 117 of the inner tubular member 116 through the lumen 154 such that both ends of the tether 112 are positioned adjacent to the third hub portion 130. In some instances, as will be discussed in more detail below, the ends of the tether 112 may be secured within a locking feature in the third hub portion 130.


In order to more specifically place or steer the delivery device 100 to a position adjacent to the intended target, the delivery device 100 may be configured to be deflectable or articulable or steerable. Referring to FIG. 4, for example, the outer tubular member 102 and/or intermediate tubular member 110 may include one or more articulation or deflection mechanism(s) that may allow for the delivery device 100, or portions thereof, to be deflected, articulated, steered and/or controlled in a desired manner. For example, the outer tubular member 102 may include at least a portion thereof that can be selectively bent and/or deflected in a desired or predetermined direction. This may, for example, allow a user to orient the delivery device 100 such that the device containment housing 108 is in a desirable position or orientation for navigation or delivery of the IMD 10 to a target location. The outer tubular member 102 may be deflected, for example, along a deflection region.


A wide variety of deflection mechanisms may be used. In some example embodiments, deflection may be effected by one or more actuation members, such as pull wire(s) extending between a distal portion of the outer tubular member 102 and an actuation mechanism 122 near the proximal end of the outer tubular member 102. As such, the one or more pull wires may extend both proximally and distally of the desired deflection or bending region or point. This allows a user to actuate (e.g., “pull”) one or more of the pull wires to apply a compression and/or deflection force to at least a portion of the outer tubular member 102 and thereby deflect or bend the outer tubular member 102 in a desired manner. In addition, in some cases the one or more wires may be stiff enough so that they can also be used to provide a pushing and/or tensioning force on the outer tubular member 102, for example, to “push” or “straighten” the shaft into a desired position or orientation.


In some embodiments, the actuation member takes the form of a continuous wire that is looped through or otherwise coupled to a distal end region of the outer tubular member 102 so as to define a pair of wire sections. Other embodiments are contemplated, however, including embodiments where the actuation member includes one or a plurality of individual wires that are attached, for example, to a metal or metal alloy ring adjacent the distal end region of the outer tubular member 102.


The actuation mechanism 122 may include a desired mechanism that may allow for applying tension (i.e. pulling force), or compression (i.e. pushing force), or both, on the actuation member(s). In some embodiments, the actuation mechanism 122 may include an external rotatable member 124 connected to and rotatable about the longitudinal axis of the handle assembly 120. The rotatable member 124 may threadingly engage an internal member that is attached to the proximal end of the actuation member(s) or pull wires. When the external rotatable member 124 is rotated in a first rotational direction, the internal member translates in a first longitudinal direction, thereby applying tension to the pull wire(s), which applies compression force to the shaft, so as to deflect the outer tubular member 102 from an initial position to a deflected position. When the external rotatable member 124 is rotated in a second rotational direction, the internal member translates in a second longitudinal direction, thereby reducing and/or releasing the tension on the pull wire(s), and allowing the outer tubular member 102 to relax back toward the initial position. Additionally, in some cases, as mentioned above, where the one or more wires may be stiff enough, rotation of the rotatable member 124 in the second rotational direction such that the internal member translates in a second longitudinal direction may apply compression to the wire(s), such that the wire(s) may apply tension to the outer tubular member 102 and “push” the outer tubular member 102 back toward an initial position, and possibly into additional positions beyond the initial position.


The one or more articulation and/or deflection mechanism(s) may also entail the outer tubular member 102 including structure and/or material that may provide for the desired degree and/or location of the deflection when the compressive or tensile forces are applied. For example, the outer tubular member 102 may include one or more sections that include structure and/or material configured to allow the shaft to bend and/or deflect in a certain way when a certain predetermined compressive and/or tensile force is applied. For example, the shaft may include one or more sections that are more flexible than other sections, thereby defining a bending or articulating region or location. Some such regions may include a number of varying or changing flexibility characteristics that may define certain bending shapes when predetermined forces are applied. Such characteristics may be achieved through the selection of materials or structure for different sections of the outer tubular member 102.


In other embodiments, other articulation and/or deflection mechanism(s) are contemplated. For example, all or a portion of the delivery device 100, such as the outer tubular member 102, may be made of a shape memory material, such as a shape memory polymer and/or a shape memory metal. Such materials, when stimulated by an actuation mechanism, such as a change in temperature or the application of an electrical current, may change or move from a first shape to a second shape. As such, these material and mechanism may be used to deflect or bend the outer tubular member 102 in a desired manner. Other suitable deflection mechanism(s) that are able to deflect the delivery device 100 may also be used. Such alternative mechanisms may be applied to all other embodiments shown and/or discussed herein, and others, as appropriate.


Furthermore, the outer tubular member 102 may include one or more predefined or fixed curved portion(s) along the length thereof. In some cases, such curved sections may be configured to fit with particular anatomies or be configured for better navigation or delivery of the IMD 10. Additionally, or alternatively, some such curved sections may be configured to allow the outer tubular member 102 to be predisposed to be bent and/or deflected in a certain direction or configuration when compression and/or tension forces are applied thereto. In some cases, the outer tubular member 102 may be a laser cut metallic tubing, a braid reinforced polymeric tubing, or other flexible tubular structure as desired.


Returning again to FIG. 5, the device containment housing 108 may be affixed to a distal end portion 114 of the intermediate tubular member 110. The device containment housing 108 may include a hub portion 136 and a tubular body portion 138. In some instances, the hub portion 136 may be formed from a metal or metal alloy while the body portion 138 may be formed from a polymeric material, although this is not required. In some instances, a proximal region 143 of the body portion 138 may be heat bonded to a distal end portion 137 of the hub portion 136, or otherwise affixed. The hub portion 136 may include a tapered intermediate region 145 disposed between a proximal end portion 139 and the distal end portion 137.


In some cases, the outer tubular member 102 may include a metal ring or tip adjacent the distal end 103 thereof for attaching one or more pull wires thereto. In some cases, the outer tubular member 102 may further include a lubricious liner, such as, but not limited to a polytetrafluoroethylene (PTFE) liner. The proximal end portion 139 of the hub portion 136 may extend proximally into the lumen 150 of the outer tubular member 102. In some instances, an outer surface of the proximal end portion 139 may form an interference fit with an inner surface of the outer tubular member 102. In some cases, the outer surface of the proximal end portion 139 and the inner surface of the outer tubular member 102 may be coupled in a tapered engagement. For example, the distal end 103 of the outer tubular member 102 may flare radially outwards in the distal direction and/or the proximal end portion 139 may taper radially inward in the proximal direction. The two angled surfaces may engage as the proximal end portion 139 is proximally retracted within the outer tubular member 102. Other coupling arrangements may be used as desired.


In some cases, as the outer tubular member 102 is bent to navigate the IMD 10 to the desired location, the proximal end portion 139 may advance distally and disengage from the inner surface of the outer tubular member 102 creating a kink point or weakened region adjacent to the bonding region 146. Proximally retracting the intermediate tubular member 110 to bring the intermediate region 145 into contact with the outer tubular member 102 at contact point 148 and/or bringing the proximal end portion 139 into the outer tubular member 102 and fixing the intermediate tubular member 110 in this configuration may help prevent migration of the device containment housing 108 during navigation of the delivery device 100 to the desired location. Such a configuration may also place the intermediate tubular member 110 in tension while the device containment housing 108 applies a compression force on the outer tubular member 102, as will be discussed in more detail below. As discussed above, a locking mechanism 132 in the handle assembly 120 may be utilized to releasably maintain the outer tubular member 102 and the intermediate tubular member 110 in a desired orientation.



FIG. 6 illustrates a top view of the handle assembly 120 of the delivery device 100. FIG. 7 illustrates a bottom view of the handle assembly, approximately 180° from the view shown in FIG. 6. The handle assembly 120 may include one or more ports 158, 160, 162 for delivering fluids, such as, but not limited to, a contrast and/or flushing fluid to the cavity 142 of the device containment housing 108. The flush ports 158, 160, 162 may be in fluid communication with the lumens 150, 152, 154 of the outer, intermediate or inner tubular members 102, 110, 116, as desired. For example, the flush port 158 may be in fluid communication with the lumen 150 of the outer tubular member 102, the flush port 160 may be in fluid communication with the lumen 152 of the intermediate tubular member 110, and the flush port 162 may be in fluid communication with the lumen 154 of the inner tubular member 116.


The handle assembly 120 may further include a tether lock 164. The tether lock 164 may be actuatable between a locked and an unlocked configuration to maintain the tether 112 in a desired orientation. The ends of the tether 112 may affixed to, secured to, or otherwise engage a tether cap 166 positioned at a proximal end of the third hub portion 130. The tether cap 166 may be removably secured to the third hub portion 130 to allow a clinician access to the ends of the tether 112. When the tether lock 164 is in the locked configuration, the tether cap 166 may not be removed from the third hub portion 130. When the tether lock 164 is in the unlocked configuration, the tether cap 166 may be removed and the ends of the tether 112 may be actuated. For example, once the IMD 10 has been implanted and its location verified, the tether 112 may be removed from the tether retention feature 36 of the IMD 10 by pulling on one of the ends until the opposite end has passed through the opening 38 such that the IMD 10 is free from the tether 112.


In some instances, the handle assembly 120 may also include visual markings, such as, but not limited to the markings illustrated at 170, 172, 174. These markings 170, 172, 174 may provide visual instructions or indications to the clinician. For example, the marking shown at 170 may be positioned proximate the rotatable member 124 of the actuation mechanism 122 to indicate that the rotatable member 124 controls deflection of the outer tubular member 102 and/or to indicate which direction the distal section 106 will deflect when the rotatable member 124 of the actuation mechanism 122 is rotated in a given direction. The markings shown at 172 may provide an indication of whether the second locking mechanism 132 is in the unlocked and/or locked configuration. Similarly, the markings shown at 174 may provide an indication of whether the tether lock 164 is in the unlocked and/or locked configuration.



FIG. 8 illustrates a cross-sectional view of the handle assembly 120 of the delivery device. As discussed above, the handle assembly 120 may include a first hub portion 126 attached to the proximal end section 104 of the outer tubular member 102, a second hub portion 128 attached to a proximal end section of the intermediate tubular member 110, and a third hub portion 130 attached to a proximal end section of the inner tubular member 116. Each of the first hub portion 126, the second hub portion 128, and the third hub portion 130 may be slidable and rotatable relative to each other such that the outer tubular member 102, intermediate tubular member 110, and inner tubular member 116 may be individually longitudinally actuated.


The inner tubular member 116 may extend distally from a proximal end 117. The proximal end 117 of the inner tubular member 116 may be positioned within or adjacent to the tether lock 164. The tether lock 164 may include a port 162 which may be in fluid communication with a lumen 154 of the inner tubular member 116. The lumen 154 may extend from the proximal end 117 to the distal portion 118 for delivering fluids, such as, but not limited to, a contrast and/or flushing fluid to the cavity 142 of the device containment housing 108. In some instances, the inner tubular member 116 may be coupled or affixed to the third hub portion 130 adjacent the proximal end 117 of the inner tubular member 116, although this is not required. In some cases, the inner tubular member 116 may be affixed to the third hub portion 130 at any longitudinal location desired. In some instances, a tether, such as tether 112, for securing the IMD 10 to the distal portion 118 of the inner tubular member 116 may be disposed within the lumen 154 and may exit the delivery device 100 through or adjacent to tether cap 166, although this is not required.


The intermediate tubular member 110 may extend distally from a proximal end 111. The proximal end 111 of the intermediate tubular member 110 may be positioned within the second hub portion 128. The intermediate tubular member 110 may include a lumen 152 extending from the proximal end 111 to a distal end of the intermediate tubular member 110. The inner tubular member 116 may be slidably disposed within the lumen 152 of the intermediate tubular member 110. In some instances, the intermediate tubular member 110 may be coupled or affixed to the second hub portion 128 adjacent the proximal end 111 of the intermediate tubular member 110, although this is not required. In some cases, the intermediate tubular member 110 may be affixed to the second hub portion 128 at any longitudinal location desired.


The outer tubular member 102 may extend distally from a proximal end 105. The proximal end 105 of the outer tubular member 102 may be positioned within the first hub portion 126. The outer tubular member 102 may include a lumen 150 extending from the proximal end 105 to a distal end 103 of the outer tubular member 102. The intermediate tubular member 110 may be longitudinally slidably disposed within the lumen 150 of the outer tubular member 102. In some instances, the outer tubular member 102 may be coupled or affixed to the first hub portion 126 adjacent the proximal end 105 of the outer tubular member 102, although this is not required. In some cases, the outer tubular member 102 may be affixed to the first hub portion 126 at any longitudinal location desired.


In some instances, the first hub portion 126 may include a retaining ring 182 positioned adjacent to a proximal end of the first hub portion 126. In some instances, the retaining ring 182 may be rotatable about a longitudinal axis of the handle assembly 120. In some cases, the retaining ring 182 may include locking features configured to engage with other locking features of the locking mechanism 132. When the retaining ring 182 engages other features of the locking mechanism 132, longitudinal movement of the first hub portion 126 and the second hub portion 128 relative to one another may be prevented. Rotating the retaining ring 182 may disengage the retaining ring 182 from the other features of the locking mechanism 132. This may allow for longitudinal movement of the first hub portion 126 and the second hub portion 128 relative to one another, as will be described in more detail below. While the second locking mechanism 132 is described as a rotating retaining ring 182, other locking mechanisms capable of releasably securing first hub portion 126 and the second hub portion 128, and thus the outer tubular member 102 and the intermediate tubular member 110, may be used.


In some instances, the first locking mechanism 134 may include a depressible button 131. The depressible button 131 may include a first outwardly protruding portion 133 configured to engage a region of the third hub portion 130 and a second inwardly protruding portion 135 configured to engage a region of the second hub portion 128. For example, the second protruding portion 135 may be disposed in and engage a groove or recess 178 formed in the second hub portion 128. The engagement of the first locking mechanism 134 may prevent or reduce relative movement of the second hub portion 128 and the third hub portion 130 when the first locking mechanism 134 is not actively actuated (e.g. depressed) by a clinician. A downward force 186 may be applied to the button 131. The force 186 may cause the first protruding portion 133 to lower and/or disengage from a surface of the third hub portion 130 and the second protruding portion 135 to raise and/or disengage from a surface of the second hub portion 128. This may allow the third hub portion 130 to be moved longitudinally (e.g., proximally and/or distally), as shown at 184, along a longitudinal axis of the handle assembly 120 relative to the second hub portion 128, as will be discussed in more detail below. Longitudinal actuation of the third hub portion 130 relative to the second hub portion 128 may result in a corresponding longitudinal actuation of the inner tubular member (and hence the IMD 10) relative to the intermediate tubular member 110 and the device containment housing 108. Such actuation may be used to incrementally deploy the IMD 10. FIG. 8 illustrates the second protruding portion 135 disposed in the middle of the recess 178. However, in some cases, during advancement of the delivery device 100 to the desired treatment location, the second protruding portion 135 may be positioned at the proximal end of the recess 178 to ensure the IMD 10 is fully disposed in the device containment housing 108. This is just an example. While the first locking mechanism 134 is described as a depressible button 131, in some cases other locking mechanisms capable of releasably securing the second hub portion 128 and the third hub portion 130, and thus the intermediate tubular member 110 and the inner tubular member 116, may be used.



FIG. 9 illustrates a partial perspective view of the handle assembly 120 with portions of the third hub portion 130 removed to more clearly illustrate features of the second hub portion 128. A proximal portion 127 of the second hub portion 128 may include a groove or recess 178 formed therein. The groove 178 may extend from a proximal end 179 to a distal end 181. In some embodiments, groove 178 may include a proximal portion 177 and a distal portion 183 which may be circumferentially offset from one another. A hard stop 180 may be provided at a region between the proximal end 179 and the distal end 181. The hard stop 180 may be a wall or other protrusion configured to engage the second protruding portion 135 of the first locking mechanism 134 such that in order to advance the second protruding portion 135 distally past the hard stop 180 from the proximal portion 177, the user rotates the third hub portion 130 to align the second protruding portion 135 with the distal portion 183 of the groove 178. This may allow the implantable device 10 to be incrementally deployed. During advancement of the delivery device 100 through the vasculature, the second protruding portion 135 may be disposed within the proximal portion 177 adjacent to the proximal end 179. As discussed above, the second protruding portion 135 may engage a surface of the second hub portion 128 to prevent and/or minimize relative movement of the second and third hub portions 128, 130 relative to one another.


The groove 178 may also include an angled region 198 between the proximal portion 177 and the distal portion 183 positioned generally opposite the hard stop 180. When the third hub portion 130 is proximally retracted from the distal end 181 to the proximal end 179, the angled region 198 may guide the second protruding portion 135 from the distal portion 183 of the groove 178 to the proximal portion 177 of the groove in a single fluid movement. For example, the third hub portion 130 may be proximally retracted from the distal end 181 to the proximal end 179 relative to the second hub portion 128 in a single proximal movement, if so desired, without prohibiting travel of the second protruding portion 135 from the distal portion 183 to the proximal portion 177.


A distal portion 129 of the second hub portion 128 may include a groove or recess 188 configured to receive a mating feature disposed on the first hub portion 126. This may allow the first hub portion 126 to be proximally retracted over the second hub portion 128, as will be discussed in more detail below. The proximal and distal portions 127, 129 of the second hub portion 128 may be separated by a gripping region 176 configured to provide a region for the clinician to hold.


Referring now to FIGS. 10A-10E, a method for deploying an IMD 10 using the illustrative delivery device 100 will now be described. The delivery device 100 may be introduced into the vasculature through the femoral vein through a previously introduced guide catheter. This is just an example. The delivery device 100 may be introduced through any desired location and with or without the use of a guide catheter as desired. The delivery device 100 may be advanced through the vasculature to the desired treatment location, which, in the case of a leadless cardiac pacing device, may be a chamber of the heart. The clinician may use the actuation mechanism 122 may to deflect the distal section 106 of the outer tubular member 102 in a desired manner to facilitate advancement of the delivery device 100. During advancement of the delivery device 100, the handle assembly 120 may be in a fully extended configuration, as shown in FIG. 10A. In such a configuration, the third hub portion 130 may be at its proximal-most location relative to the second hub portion 128 and the first hub portion 126 may be at its distal-most location relative to the second hub portion 128. When the handle assembly 120 is in its fully extending configuration, the inner tubular member 116, intermediate tubular member 110, and the outer tubular member 102 may be oriented in the manner illustrated in FIG. 5. The delivery device 100 can be imaged using known techniques to ensure accurate placement of the IMD 10.


Once the distal tip portion 140 of the device containment housing 108 has been positioned adjacent to the cardiac tissue where the IMD 10 is desired, deployment of the IMD 10 can begin. The first stage of deploying the IMD 10 may enable activation of the fixation mechanism 24. To initiate the first stage of deployment, the clinician may stabilize the first hub portion 126 relative to the patient and depress the button 131 of the first locking mechanism 134. The clinician may then slide the third hub portion 130 distally, as shown at 190, until the first locking mechanism 134 engages the hard stop 180 provided in the second hub portion 128 resulting in the handle assembly 120 configuration shown in FIG. 10B. Distal actuation of the third hub portion 130 may also move the inner tubular member 116 distally by the same distance. As the inner tubular member 116 advances distally, the distal portion 118 may “push” against the proximal end 14 of the implantable device 10. As the IMD 10 is pushed distally, the hooks 26 engage the heart tissue as shown in FIG. 10C. The IMD 10 may be distally advanced out of the device containment housing 108 to deploy the hooks or tines 26 from the device containment housing 108 to engage the hooks or tines 26 in the heart tissue while the proximal portion of the IMD 10 remains within the device containment housing 108. In some instances, the IMD 10 may be advanced distally in the range of 1 to 5 millimeters, although this is merely illustrative. This may allow the IMD 10 to be deployed while minimizing the amount of pressure applied to the heart wall. Further, the first locking mechanism 134 may prevent accidental or unintentional deployment of the IMD 10 as the button 131 must be actuated while advancing the third hub portion 130.


Referring briefly to FIGS. 11A and 11B, in some instances, it may be desirable to advance the device containment housing 108 and the intermediate tubular member 110 without advancing the outer tubular member 102 (i.e., telescoping the intermediate tubular member 110). For example, this may facilitate advancement of the delivery device 100 within the heart or maintain the position of the device containment housing 108 once it is placed again the heart wall. To distally advance or telescope the intermediate tubular member 110 relative to the outer tubular member 102, the second locking mechanism 132 may be actuated to “unlock” the first hub portion 126 and the second hub portion 128. As described above, a rotating retaining ring 182 may be rotated, as shown at 194, to move the second locking mechanism 132 from a locked to an unlocked configuration. Once the first locking mechanism has been unlocked, the clinician may distally advance 196 the second and third hub portions 128, 130 together to distally advance the device containment housing 108 as far as desired and/or needed. The actuation of the second and third hub portions 128, 130 may simultaneously move the intermediate tubular member 110 and the inner tubular member 116 as well. This may be done during advancement of the delivery device 100 through the vasculature, before initiating the first stage of deploying the IMD 10, and/or after the first stage of deploying the IMD 10 has been completed, as desired or needed.


After the first stage of deployment of the IMD 10, in which the tines or hooks 26 have been deployed from the device containment housing 108 into engagement with the heart wall, the tether 112 may be used to perform a tug test to determine if the IMD 10 is sufficiently engaged with the heart wall. In other words, the fixation of the IMD 10 (e.g. how well the hooks 26 are secured to the heart tissue) may be tested by gently tugging on the ends of the tether 112. If it is determined that the IMD 10 is sufficiently engaged with the heart wall, then the user may proceed to the second stage of deployment of the IMD 10 in which the remainder of the IMD 10 is expelled from the device containment housing 108. Otherwise, if the tug test fails and it is determined that the IMD 10 is not sufficiently engaged with the heart wall, the user may use the tether to pull (retract) the IMD 10, including the tines or hooks 26, back into the device containment housing 108 to release the implantable device 10 from the heart wall. The IMD 10 may then be repositioned and the first stage of deployment repeated.


Returning to FIG. 10B, the second stage of deploying the IMD 10 may proximally retract the device containment housing 108, and thus the intermediate tubular member 110, relative to the inner tubular member 116 to fully deploy the IMD 10. Once the clinician has determined that the position of the IMD 10 is satisfactory and the fixation mechanism 24 is securely engaged with the heart tissue, the intermediate tubular member 110, including the device containment housing 108, of the delivery device 100 can be proximally retracted. To initiate the second stage of the deployment, the clinician may first rotate the third hub portion 130, as shown at 192, such that the button 131 is aligned with the distal portion 183 of the groove 178. The clinician may then stabilize the third hub portion 130 relative to the patient and proximally retract the first and second hub portions 126, 128. It should be noted that while it is possible to distally actuate the third hub portion 130 at this point, this may cause additional and unnecessary forces to be applied to the heart wall. Further, such distal movement of the third hub portion 130 may move the inner tubular member 116 (and hence the implantable device 10) distally rather than proximally retracting the intermediate tubular member 110 and/or the outer tubular member 102. The first and second hub portions 126, 128 may be proximally retracted until the first locking mechanism 134 engages the distal end 181 of the groove 178, resulting in the handle assembly 120 configuration shown in FIG. 10D. Such actuation of the first and second hub portions 126, 128 may fully deploy the implantable device 10 such that the IMD 10 is exterior of the device containment housing 108 and engaged with the heart wall, as shown in FIG. 10E.


As can be seen in FIG. 10E, the IMD 10 may still be affixed to the delivery device 100 through the tether 112. Once the clinician has verified the position of the IMD 10, the fixation of the IMD 10 and/or the electrical performance of the IMD 10, the tether 112 may be removed. In some instances, fixation of the IMD 10 (e.g. how well the hooks 26 are secured to the heart tissue) may be tested by gently tugging on the ends of the tether 112. The tether 112 may be removed by unlocking the tether lock 164, removing the tether cap 166, cutting the tether 112 at some location along its length, and pulling on one of the ends until the opposite end has passed through the opening 38 of the IMD 10 such that the IMD 10 is free from the tether 112. In some instances, the tether 112 may be affixed to a portion of the tether cap 166 (e.g. creating a loop) such that the tether 112 must be cut to allow the IMD 10 to be freed from the tether 112.


In using the delivery device 100 to deliver the IMD 10, it may be beneficial to be able to verify that the distal end of the delivery device 100 is in adequate contact with the tissue prior to deploying the IMD 10. It will be appreciated that if there is not sufficient tissue contact, fixation of the IMD 10 may be negatively impacted. Further, in some cases application of excessive force may cause the distal end of the delivery device 100 to damage or even perforate the tissue against which the delivery device 100 is engaged. FIG. 12 provides a schematic illustration of a delivery and deployment device 200 which may, as will be appreciated, be considered as an example of the delivery device 100.


In broadest terms, as illustrated in FIG. 12, the delivery and deployment device 200 includes a device containment housing 202 that is located at a distal end 204 of a shaft 206. A handle assembly 208 may be located at a proximal end 210 of the shaft 206. In some cases, the device containment housing 202 may be considered as representing the device containment housing 108 discussed with respect to the previous Figures. In some cases, the shaft 206 may be considered as representing the outer tubular member 102 discussed above and may include one or more inner tubular members (not visible in this schematic view). In some instances, the handle assembly 208 may be considered as representing and/or including one or more of the distal hub portion 126, the intermediate hub portion 128 and the proximal hub portion 130. The device containment housing 202 has a distal end 212 and a proximal end 214. In some cases, the distal end 212 of the device containment housing 202 may be open, and the device containment housing 202 may define a void 216 therein that may be configured to accommodate an implantable medical device (such as but not limited to the IMD 10).


In some cases, the device containment housing 202 includes a first position indicator 218 that is located at or near the distal end 212 of the device containment housing 202. In some cases, the device containment housing 202 includes a second position indicator 220 that is located proximally of the first position indicator 218. In some embodiments, a compressible region 222 may be located at least partially between the first position indicator 218 and the second position indicator 220. In some instances, the compressible region 222 may be entirely located between the first position indicator 218 and the second position indicator 220. In some cases, the compressible region 222 may not be entirely located between the first position indicator 218 and the second position indicator 220 and may, for example, extend proximally beyond the second position indicator 220. When a force having an axial component is applied to the distal end 212 of the device containment housing 202, such as when the device containment housing 202 contacts cardiac or other tissue, the compressible region 222 may compress by an amount that is proportional or otherwise related to the applied force. As a result of the compression, a distance between the first position indicator 218 and the second position indicator 220 may change. The amount that the distance between the first position indicator 218 and the second position indicator 220 changes may be proportional or otherwise related to the applied force.


In some cases, the first position indicator 218 and the second position indicator 220 may be configured to be visible via an imaging process such as fluoroscopy, particularly as in some cases implantable devices such as the IMD 10 may be guided to the intended destination under fluoroscopy. For example, in some cases, the first position indicator 218 may be a first radiopaque marker band and the second position indicator 220 may be a second radiopaque marker band. By watching a distance between the first position indicator 218 and the second position indicator 220 change during deployment, the person advancing the delivery and deployment device 200 may be able to determine if they are applying sufficient force while not applying excessive force.


In some instances, the first position indicator 218 may be a first electrode and the second position indicator 220 may be a second electrode. In some cases, the first position indicator 218 and/or the second position indicator 220 may each independently be ring electrodes. It will be appreciated that as the distance between the first position indicator 218 and the second position indicator 220 changes, an impedance value between the first position indicator 218 and the second position indicator may change. Accordingly, the changing impedance value may be used to ascertain how much force has been applied to the distal end 212 of the device containment housing 202. In some cases, the device containment housing 202 may include a third electrode 224. While the third electrode 224 is schematically illustrated as being located at the proximal end 214 of the device containment housing 202, it will be appreciated that in some cases the third electrode 224 may be located elsewhere on the device containment housing 202, be located on the shaft 206, or be absent. In some cases, when the a sufficient amount of force is applied, a first audible and/or tactile feedback may be provided to the user, and if too much force is applied, a second audible and/or tactile feedback may be provided to the user.


In some cases, the first position indicator 218 may not be a single electrode such as a ring electrode, but may instead be a plurality of electrodes. FIG. 13 is a schematic end view looking from the distal end and into the device containment housing 202. FIG. 13 shows an implantable medical device (IMD) 230 disposed within the void 216 defined by the device containment housing 202. The IMD 230 may, for example, be considered as being representative of the IMD 10. As illustrated, the example IMD 230 includes a total of four anchoring talons 232, 234, 236 and 238, although in some cases the IMD 230 may have more than four anchoring talons or in some instances may have fewer than four anchoring talons, or may have a different fixation mechanism altogether.


In some cases, the device containment housing 202 may include a first electrode 240 that may be at least substantially aligned with the anchoring talon 232, a second electrode 242 that may be at least substantially aligned with the anchoring talon 234, a third electrode 244 that may be at least substantially aligned with the anchoring talon 236, and/or a fourth electrode 246 that may be at least substantially aligned with the anchoring talon 238. It will be appreciated that one or more of the electrodes 240, 242, 244, 246 may be used as the first position indicator 218, in combination with another electrode functioning as the second position indicator 220, to provide an indication of the force being applied to the distal end 212 of the device containment housing 202 as a result of the distal end 212 of the device containment housing 202 contacting tissue such as cardiac tissue.


It will be appreciated that in many cases, tissue such as cardiac tissue does not present a simple, planar surface. It may be useful to be able to determine which portion or portions of the distal end 212 of the device containment housing 202 may be in good tissue contact as this may provide an indication of how well one or more individual talons 232, 234, 236 and 238 may fixate within the tissue. As the talons 232, 234, 236 and 238 exit the device containment housing during deployment, it can be desirable to have the distal end 212 of the device containment housing 202 at each of the talons in contact with the cardiac tissue so that each of the talons 232, 234, 236 and 238 advance into the cardiac tissue (see FIG. 5) before curling back to fix the IMD to the heart (see FIG. 10C).


In some cases, the electrodes 240, 242, 244, 246 may individually be utilized, sometimes in combination with another electrode such as the electrode forming the second position indicator 220 or perhaps the third electrode 224, to determine if the aforementioned electrode 240, 242, 244, 246 is in contact with tissue, which may give an indication of whether the corresponding talon 232, 234, 236, 238 might be well-positioned to engage tissue when the IMD 230 is subsequently deployed. If not, a different location may be investigated, or the device containment housing 202 may be rotated before checking again. It is best to have all four talons 232, 234, 236, 238 properly engage tissue.



FIGS. 14A-14C provide a closer view of the illustrative device containment housing 202. FIG. 14A represents a starting point with respect to the first position indicator 218 and the second position indicator 220, such as may occur prior to the distal end 212 of the device containment housing 202 contacting tissue such as cardiac tissue. In FIG. 14A, there is a distance 250 between the first position indicator 218 and the second position indicator 220. Moving to FIG. 14B, there is a distance 252 between the first position indicator 218 and the second position indicator 220. In some cases, there may, for example, be a linear relationship between a forced applied to the distal end 212 of the device containment housing 108, which may provide an easily recognized relationship between the applied force and the corresponding change in distance between the distance 250 and the distance 252. In some cases, there may be a non-linear relationship between applied force and a change in distance between the first position indicator 218 and the second position indicator 220. In such cases, there may be a calibration step during manufacturing, for example, to determine the non-linear relationship.


It will be appreciated that the distance 252 is less than the distance 250 and the distance 252 is greater than zero. In some cases, the distance 252 may, for example, correspond to a desired compression of the compressible region 222, thereby indicating an appropriate amount of force being applied by virtue of the distal end 212 of the device containment housing 202 contacting tissue such as cardiac tissue. FIG. 14C illustrates what may happen if too much force has been applied. In FIG. 14C, the second position indicator 220 has moved much closer to the first position indicator 218 and may actually be in contact with the first position indicator 218 and/or the compressible region 222 has reached its fully compressed state. In the example of FIG. 14C, there is no visible distance between the first position indicator 218 and the second position indicator 220. It is contemplated that the compressible region 222 may be designed such that when the second position indicator 220 is in the intermediate state shown in FIG. 14B, an adequate yet safe force is being applied by the device containment housing to the contacting tissue.


In some embodiments, the first position indicator 218 and the second position indicator 220 may not be disposed on the device containment housing 202, as shown in FIGS. 14A-C, but may instead be located on the shaft 206, at or near the distal end 204 of the shaft 206. FIGS. 15A-15C illustrate a changing distance between a first position indicator 318 and the second position indicator 320 when both are disposed on the shaft 206. FIG. 15A represents a starting point with respect to the first position indicator 518 and the second position indicator 520, such as may occur prior to the distal end 212 of the device containment housing 202 contacting tissue such as cardiac tissue. In FIG. 15A, there is a distance 350 between the first position indicator 318 and the second position indicator 320. Moving to FIG. 15B, there is a distance 352 between the first position indicator 318 and the second position indicator 320. It will be appreciated that the distance 352 is less than the distance 350 and the distance 352 is greater than zero. In some cases, the distance 352 may, for example, correspond to a desired compression of the compressible region 322, thereby indicating an appropriate amount of force being applied by virtue of the distal end 212 of the device containment housing 202 contacting tissue such as cardiac tissue. FIG. 15C illustrates what may happen if too much force has been applied. In FIG. 15C, the second position indicator 320 has moved much closer to the first position indicator 318 and may actually be in contact with the first position indicator 318 and/or the compressible region 322 has reached its fully compressed state. In FIG. 15C, there is no visible distance between the first position indicator 318 and the second position indicator 320. It is contemplated that the compressible region 322 may be designed such that when the second position indicator 320 is in the intermediate state shown in FIG. 15B, an adequate yet safe force is being applied by the device containment housing to the contacting tissue.


It will be appreciated that there are multiple ways as to how the compressible region 222, 322 may compress in response to an applied force. FIG. 16A illustrates the device containment housing 202 in position against tissue 360. In some cases, the tissue 360 may be cardiac tissue such as a ventricular wall, but this is not required. This represents a starting point, much like that shown in FIG. 14A, in which essentially no force has been applied to the device containment housing 202, as indicated by the distance 250 between the first position indicator 218 and the second position indicator 220. FIGS. 16B and 16C provide enlarged views of the device containment housing 202, showing several illustrative but non-limiting examples of how the compressible region 222 may compress during use. In FIG. 16B, the compressible region 222 forms an accordion region 362 in which the side wall of the device containment housing 202 forms an undulating wave form. In FIG. 16C, the compressible region 222 forms a bulged or billowed region 364 in which the side wall of the device containment housing 202 distends outwardly as a result of an applied force. In either case, the relative change in distance between the first position indicator 218 and the second position indicator 220 may provide an indication of how much force is being applied. In some cases, the compressible region 222 may include a spring sometimes incorporated into a weave, may include a compressible material, and/or may otherwise be constructed to provide a predictable and appropriate compression force versus compression distance profile. The compressible region 222 may be considered a force sensor.


In some cases, the delivery and deployment device 200 (or the delivery device 100) may include one or more force sensors that may, for example, provide an indication of a force being applied to the IMD 10 during deployment of the IMD 10. In some cases, for example, one or more force sensors that provide an indication of forces (compressive or tensile) applied to the IMD 10 during or after deployment of the IMD 10 may be used in addition to the previously described first and second position indicators that indicate forces applied to the device containment housing 108. In some cases, one or more force sensors that provide an indication of forces (compressive or tensile) applied to the IMD 10 during or after deployment of the IMD 10 may be used instead of measuring or otherwise indicating forces applied to the device containment housing 108. For example, in some instances, it is contemplated that the IMD 10 may be implanted using an implantation structure lacking the device containment housing 108.


In some cases, the delivery and deployment device 200 (or the delivery device 100) may include one or more force sensors that may, for example, provide an indication of a tensile force being applied to the IMD 10 during a post-deployment tug test. FIGS. 17-19 are similar to FIG. 5 but provide illustrative but non-limiting examples of where such force sensors may be disposed within or near the device containment housing 108.


In FIG. 17, a force sensor 370 may be seen attached or otherwise disposed on the distal portion 118 of the inner tubular member 116 which, as discussed, may be used to engage and push the IMD 10 out of the device containment housing 108 during deployment of the IMD 10. FIG. 18 is similar, but illustrates a force sensor 372 that is attached to or otherwise disposed on the inner tubular member 116. The force sensors 370 and 372 may be any desired type of force sensor that may provide a signal representative of the force being applied to the IMD 10. FIG. 19 provides an illustrative but non-limiting example of a force sensor 374 that may be attached to, or form a portion of, the tether 112. The force sensor 374 may, for example, be a strain gauge and thus may provide an indication of the force applied to the IMD 10 via the tether 112 during a tug test after deployment, such as that illustrated in FIG. 10E. In some cases, the strain gauge may be a fiber optic or piezo type strain sensor.



FIG. 20 provides an example of a force sensor 376 that may be disposed within the device containment housing 108. In some cases, the force sensor 376 may be a pressure sensor, and may provide an indication of whether fluid that may be pumped into the device containment housing 108 remains in the device containment housing, indicating a good contact between the tip 140 of the device containment housing 108 and the adjoining tissue, or if the fluid has leaked out, indicating poor contact. In some cases, the force sensor 376 may be positioned elsewhere along a fluid path to the device containment housing 108 and could even be disposed within the handle assembly 120.


In other instances, force sensor 376 may be a strain sensor or the like attached to or incorporated into the device containment housing wall. Such strain sensor may sense the axial, compressive and/or bending strain in the wall of the device containment housing, which will be related to the force applied to the cardiac tissue via the device containment housing. In some cases, the strain sensor may be a fiber optic or piezo type sensor. It will be appreciated that while not illustrated, the force sensors 370, 372, 374, 376 may include additional structure for communicating force values to an outside display, for example.


While the force sensors 370, 372, 374, 376 are illustrated in separate Figures, it will be appreciated that in some cases a delivery device may utilize two or more of the force sensors 370, 372, 374, 376 in combination. For example, a delivery device may include the force sensor 370 or the force sensor 372 in combination with the force sensor 374. A delivery device may, for example, include the force sensor 370 or the force sensor 374 in combination with the force sensor 376. A delivery device may include the force sensor 374 and the force sensor 376.


The materials that can be used for the various components of the delivery devices, such as delivery device 100 (and/or other delivery structures disclosed herein) and the various members disclosed herein may include those commonly associated with medical devices. For simplicity purposes, the following discussion makes reference to the delivery device 100 and the delivery and deployment device 200 and components thereof. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other similar delivery systems and/or components of delivery systems or devices disclosed herein.


The delivery device 100 and/or the deployment and delivery device 200, or components thereof, may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the polymer can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.


Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.


In at least some embodiments, portions or all of the delivery device 100 and/or the deployment and delivery device 200, or components thereof, may be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of the delivery device 100 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of the delivery device 100 and/or the deployment and delivery device 200, or components thereof, to achieve the same result.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The disclosure's scope is, of course, defined in the language in which the appended claims are expressed.

Claims
  • 1. A delivery and deployment device configured to deliver an implantable medical device (IMD) to a chamber of a patient's heart and deploy the IMD therein, the delivery and deployment device comprising: a handle assembly;a shaft extending distally from the handle assembly, the shaft including a distal region;a device containment housing coupled to the distal region of the shaft and extending distally therefrom, the device containment housing configured to accommodate the IMD therein;at least one of the shaft and the device containment housing including a compressible region, wherein: when the shaft includes the compressible region, the compressible region comprises a portion of a wall of the shaft that compresses by an amount that is related to an applied force; andwhen the device containment housing includes the compressible region, the compressible region comprises a portion of a wall of the device containment housing that compresses by an amount that is related to an applied force;a first position indicator and a second position indicator, wherein at least part of the compressible region is situated between the first position indicator and the second position indicator; andwherein a force applied to the device containment housing causes the compressible region to compress by an amount that is related to the applied force, which causes a change in distance between the first position indicator and the second position indicator, which provides an indication of the applied force.
  • 2. The delivery and deployment device of claim 1, wherein the compressible region comprises a portion of the device containment housing.
  • 3. The delivery and deployment device of claim 1, wherein the compressible region is configured to shorten in length in response to the applied force.
  • 4. The delivery and deployment device of claim 1, wherein the first position indicator comprises a first radiopaque marker band and the second position indicator comprises a second radiopaque marker band, and the change in distance between the first position indicator and the second position indicator is visible via fluoroscopy.
  • 5. The delivery and deployment device of claim 1, wherein the first position indicator comprises a first electrode and the second position indicator comprises a second electrode, and the change in distance between the first electrode and the second electrode is indicated via a change in impedance between the first electrode and the second electrode.
  • 6. The delivery and deployment device of claim 5, wherein the first electrode comprises a ring electrode.
  • 7. The delivery and deployment device of claim 5, wherein the first electrode comprises one of a plurality of electrodes that are disposed radially about a distal end of the device containment housing and alignable with each of a plurality of talons of the IMD.
  • 8. The delivery and deployment device of claim 5, wherein the second electrode comprises a ring electrode.
  • 9. The delivery and deployment device of claim 1, further comprising a force sensor arranged and configured to provide an indication of a force applied to the IMD during implantation.
  • 10. The delivery and deployment device of claim 1, further comprising a force sensor arranged and configured to provide an indication of a force applied to an IMD during a tug test after deployment of the IMD.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/291,330 filed on Feb. 4, 2016, the disclosure of which is incorporated herein by reference.

US Referenced Citations (1419)
Number Name Date Kind
2959056 Max et al. Nov 1960 A
3835864 Rasor et al. Sep 1974 A
3943936 Rasor et al. Mar 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
RE30366 Rasor et al. Aug 1980 E
4243045 Maas Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4274423 Mizuno et al. Jun 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4440173 Hudziak et al. Apr 1984 A
4469091 Slanetz, Jr. Sep 1984 A
4476868 Thompson Oct 1984 A
4522208 Buffet Jun 1985 A
4537200 Widrow Aug 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4593702 Kepski et al. Jun 1986 A
4593955 Leiber Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4776338 Lekholm et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4858610 Callaghan et al. Aug 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole Dec 1989 A
4928688 Mower May 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grevious et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5170784 Ramon et al. Dec 1992 A
5179945 Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5255679 Imran Oct 1993 A
5259387 DePinto Nov 1993 A
5269326 Verner Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5341807 Nardella Aug 1994 A
5342408 deCoriolis et al. Aug 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5396887 Imran Mar 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5423808 Edwards et al. Jun 1995 A
5447529 Marchlinski et al. Sep 1995 A
5456691 Snell Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5514171 Hoegnelid May 1996 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5562721 Marchlinski et al. Oct 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5620466 Haefner et al. Apr 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5673704 Marchlinski et al. Oct 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5697925 Taylor Dec 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5718701 Shai et al. Feb 1998 A
5720770 Nappholz et al. Feb 1998 A
5728154 Crossett et al. Mar 1998 A
5733281 Nardella Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grevious et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5791350 Morton Aug 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5807265 Itoigawa et al. Sep 1998 A
5814089 Stokes et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Rostami et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5836990 Li Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5843075 Taylor Dec 1998 A
5855592 McGee et al. Jan 1999 A
5855593 Olson et al. Jan 1999 A
5868737 Taylor et al. Feb 1999 A
5873894 Vandegriff et al. Feb 1999 A
5891184 Lee et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras, Jr. et al. Aug 1999 A
5944022 Nardella et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5971980 Sherman Oct 1999 A
5978713 Prutchi et al. Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6013074 Taylor Jan 2000 A
6016445 Baura Jan 2000 A
6019729 Itoigawa et al. Feb 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6039731 Taylor et al. Mar 2000 A
6041250 DePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6050267 Nardella et al. Apr 2000 A
6055454 Heemels Apr 2000 A
6063078 Wittkampf May 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6113592 Taylor Sep 2000 A
6113593 Tu et al. Sep 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6141581 Colson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6217573 Webster Apr 2001 B1
6217574 Webster Apr 2001 B1
6221011 Bardy Apr 2001 B1
6221023 Matsuba et al. Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6256534 Dahl Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6264653 Falwell Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272371 Shlomo Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6304776 Muntermann Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6322558 Taylor et al. Nov 2001 B1
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6391024 Sun et al. May 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6423057 He et al. Jul 2002 B1
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6436059 Zanelli Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6546270 Goldin et al. Apr 2003 B1
6551302 Rosinko et al. Apr 2003 B1
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6569160 Goldin et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6645145 Dreschel et al. Nov 2003 B1
6647292 Bardy et al. Nov 2003 B1
6650920 Schaldach et al. Nov 2003 B2
6666844 Igo et al. Dec 2003 B1
6666862 Jain et al. Dec 2003 B2
6669686 Singh Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6695808 Tom Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6712778 Jeffcoat et al. Mar 2004 B1
6714806 Iaizzo et al. Mar 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6730079 Lovewell May 2004 B2
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6800986 Yamauchi Oct 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6824521 Rich et al. Nov 2004 B2
6837886 Collins et al. Jan 2005 B2
6847844 Sun et al. Jan 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6915149 Ben-Haim Jul 2005 B2
6922592 Thompson et al. Jul 2005 B2
6926670 Rich et al. Aug 2005 B2
6931282 Esler Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6955675 Jain Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6964661 Rioux et al. Nov 2005 B2
6978176 Lattouf Dec 2005 B2
6985773 Arx et al. Jan 2006 B2
6990375 Kloss et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7001383 Keidar Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7060031 Webb et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7072703 Zhang et al. Jul 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211062 Kwon May 2007 B2
7211063 Tom May 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7306593 Keidar et al. Dec 2007 B2
7310556 Bulkes Dec 2007 B2
7319905 Morgan et al. Jan 2008 B1
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7433739 Salys et al. Oct 2008 B1
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7520858 Ofek et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536218 Govari et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7584002 Burnes et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7591816 Wang et al. Sep 2009 B2
7606621 Bnsken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7616991 Mann et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7637867 Zdeblick Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7668596 Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7702392 Echt et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7722601 Wham et al. May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Arx et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7819870 Thao Oct 2010 B2
7823467 Taya et al. Nov 2010 B2
7840281 Kveen et al. Nov 2010 B2
7842031 Abboud et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848787 Osadchy Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848822 Zhang et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7883508 Thao et al. Feb 2011 B2
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7894885 Bartal et al. Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7914525 Abboud et al. Mar 2011 B2
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hübinette May 2011 B2
7948148 Porat et al. May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7955326 Paul et al. Jun 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7976541 McGee et al. Jul 2011 B2
7979136 Young et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
7984659 Fujimoto et al. Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8000807 Morris et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8012150 Wham et al. Sep 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8021361 Paul et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8034049 Odom et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8046079 Bange et al. Oct 2011 B2
8046080 Arx et al. Oct 2011 B2
8048063 Aeby et al. Nov 2011 B2
8048069 Skwarek et al. Nov 2011 B2
8050297 DelMain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8052621 Wallace et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8055350 Roberts Nov 2011 B2
8060212 Rios et al. Nov 2011 B1
8065018 Haubrich et al. Nov 2011 B2
8073542 Doerr Dec 2011 B2
8075498 Leo et al. Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8080008 Wham et al. Dec 2011 B2
8083691 Goldenberg et al. Dec 2011 B2
8092397 Wallace et al. Jan 2012 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103338 Harlev et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8118809 Paul et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8150521 Crowley et al. Apr 2012 B2
8152802 Podhajsky et al. Apr 2012 B2
8157789 Leo et al. Apr 2012 B2
8157848 Zhang et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160690 Wilfley et al. Apr 2012 B2
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8162932 Podhajsky et al. Apr 2012 B2
8162935 Paul et al. Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8167875 Podhajsky et al. May 2012 B2
8175715 Cox May 2012 B1
8180451 Hickman et al. May 2012 B2
8182433 Leo et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8206385 Stangenes et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8211100 Podhajsky et al. Jul 2012 B2
8211102 Paul et al. Jul 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8226580 Govari et al. Jul 2012 B2
8226648 Paul et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8262578 Bharmi et al. Sep 2012 B1
8262652 Podhajsky Sep 2012 B2
8265745 Hauck et al. Sep 2012 B2
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8267926 Paul et al. Sep 2012 B2
8267929 Wham et al. Sep 2012 B2
8277441 Porat et al. Oct 2012 B2
8280521 Haubrich et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8286510 Meiss et al. Oct 2012 B2
8290578 Schneider Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8292882 Danek et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298224 Danek et al. Oct 2012 B2
8298227 Leo et al. Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8312779 Meiss et al. Nov 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8316725 Wade Nov 2012 B2
8317783 Cao et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8327715 Bradley et al. Dec 2012 B2
8332036 Hastings et al. Dec 2012 B2
8333103 Bonyak et al. Dec 2012 B2
8333759 Podhajsky Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8347738 Tung et al. Jan 2013 B2
8352025 Jacobson Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8357152 Govari et al. Jan 2013 B2
8359082 Selkee Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369921 Tegg et al. Feb 2013 B2
8369922 Paul et al. Feb 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8372019 Goldenberg et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8374819 Govari et al. Feb 2013 B2
8380276 Schultz Feb 2013 B2
8380320 Spital Feb 2013 B2
8382689 Sliwa et al. Feb 2013 B2
8386051 Rys Feb 2013 B2
8388556 Wallace et al. Mar 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8403925 Miller et al. Mar 2013 B2
8406866 Deno et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8412317 Mazar Apr 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8417355 Zhang et al. Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8435232 Aeby et al. May 2013 B2
8437832 Govari et al. May 2013 B2
8444549 Viola et al. May 2013 B2
8447412 Molin et al. May 2013 B2
8449535 Deno et al. May 2013 B2
8452413 Young et al. May 2013 B2
8454589 Deno et al. Jun 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8460285 Wang et al. Jun 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8480669 Pappone et al. Jul 2013 B2
8486061 Podhajsky Jul 2013 B2
8489184 Wilfley et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8500731 Byrd et al. Aug 2013 B2
8504132 Friedman et al. Aug 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8521262 Webler Aug 2013 B2
8521462 Govari et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527068 Ostroff Sep 2013 B2
8529476 Govari Sep 2013 B2
8532738 Zino Sep 2013 B2
8532746 Gelbart et al. Sep 2013 B2
8532790 Griswold Sep 2013 B2
8535308 Govari et al. Sep 2013 B2
8535340 Allen Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund et al. Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8545408 Sliwa et al. Oct 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matos Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8567265 Aeby et al. Oct 2013 B2
8568404 Brannan Oct 2013 B2
8571647 Harlev et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8577447 Tegg et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8602642 Klewer Dec 2013 B2
8603084 Fish et al. Dec 2013 B2
8603085 Jimenez Dec 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8617152 Werneth et al. Dec 2013 B2
8622935 Leo Jan 2014 B1
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8628473 Sliwa et al. Jan 2014 B2
8631713 Fujimoto et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bornzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639335 Peichel et al. Jan 2014 B2
8641705 Leo et al. Feb 2014 B2
8644934 Hastings et al. Feb 2014 B2
8644950 Hauck Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8663214 Weinberg et al. Mar 2014 B2
8668686 Govari et al. Mar 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8672936 Thao et al. Mar 2014 B2
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8679109 Paul et al. Mar 2014 B2
8696656 Abboud et al. Apr 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bornzin et al. Apr 2014 B2
8702688 Melsky Apr 2014 B2
8702690 Paul et al. Apr 2014 B2
8705599 Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725233 Nagano et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8728077 Paul et al. May 2014 B2
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8747314 Stahmann et al. Jun 2014 B2
8755860 Paul et al. Jun 2014 B2
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Corndorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903500 Smith et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bornzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9155882 Grubac et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9248300 Rys et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashvili et al. Mar 2016 B1
9302115 Molin et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Régnier et al. Sep 2016 B2
9457193 Klimovitch et al. Oct 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishier et al. Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9533163 Klimovitch et al. Jan 2017 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9636511 Carney et al. May 2017 B2
9669223 Auricchio et al. Jun 2017 B2
9687654 Sheldon et al. Jun 2017 B2
9687655 Pertijs et al. Jun 2017 B2
9687659 Von Arx et al. Jun 2017 B2
9694186 Carney et al. Jul 2017 B2
9782594 Stahmann et al. Oct 2017 B2
9782601 Ludwig Oct 2017 B2
9789317 Greenhut et al. Oct 2017 B2
9789319 Sambelashvili Oct 2017 B2
9808617 Ostroff et al. Nov 2017 B2
9808628 Sheldon et al. Nov 2017 B2
9808631 Maile et al. Nov 2017 B2
9808632 Reinke et al. Nov 2017 B2
9808633 Bonner et al. Nov 2017 B2
9808637 Sharma et al. Nov 2017 B2
9855414 Marshall et al. Jan 2018 B2
9855430 Ghosh et al. Jan 2018 B2
9855435 Sahabi et al. Jan 2018 B2
9861815 Tran et al. Jan 2018 B2
20010034501 Tom Oct 2001 A1
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Erlinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030088278 Bardy et al. May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20040024435 Leckrone et al. Feb 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040087938 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040102830 Williams May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20040267303 Guenst Dec 2004 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050102003 Grabek et al. May 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050203410 Jenkins Sep 2005 A1
20050283208 Arx et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060200049 Leo et al. Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20060278248 Viswanathan Dec 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070060847 Leo et al. Mar 2007 A1
20070062546 Viswanathan et al. Mar 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jacobson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070181139 Hauck Aug 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080109054 Hastings et al. May 2008 A1
20080114256 Zhang May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080161786 Belhe et al. Jul 2008 A1
20080161796 Cao et al. Jul 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080243217 Wildon Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275465 Paul et al. Nov 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080300589 Paul et al. Dec 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080312521 Solomon Dec 2008 A1
20090012368 Banik Jan 2009 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090030477 Jarrard Jan 2009 A1
20090036941 Corbucci Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082755 Milijasevic et al. Mar 2009 A1
20090082827 Kveen Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090171343 Paul et al. Jul 2009 A1
20090171345 Miller et al. Jul 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090177111 Miller et al. Jul 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 Brooke Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090234367 Verma Sep 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090275827 Aiken et al. Nov 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100056871 Govari et al. Mar 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063478 Selkee Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100069733 Kastelein et al. Mar 2010 A1
20100094163 Deladi et al. Apr 2010 A1
20100094367 Sen Apr 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100168549 Pappone Jul 2010 A1
20100168557 Deno et al. Jul 2010 A1
20100168561 Anderson Jul 2010 A1
20100168620 Klimovitch et al. Jul 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100228247 Paul et al. Sep 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241117 Paul et al. Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100286690 Paul et al. Nov 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100292566 Nagano et al. Nov 2010 A1
20100298823 Cao et al. Nov 2010 A1
20100298826 Leo et al. Nov 2010 A1
20100305429 Shachar et al. Dec 2010 A1
20100312309 Harding Dec 2010 A1
20110022045 Cao et al. Jan 2011 A1
20110022113 Zdeblick et al. Jan 2011 A1
20110066147 He et al. Mar 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110087112 Leo et al. Apr 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137153 Govari et al. Jun 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110144524 Fish et al. Jun 2011 A1
20110144633 Govari Jun 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110144657 Fish et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152854 Govari et al. Jun 2011 A1
20110152856 Govari et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs et al. Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110190835 Brockway et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110270046 Paul et al. Nov 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20110307207 Govari et al. Dec 2011 A1
20110313280 Govari et al. Dec 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120029504 Afonso et al. Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120078138 Leo et al. Mar 2012 A1
20120078322 Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120089358 Ludwin et al. Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120108988 Ludwin et al. May 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120123276 Govari et al. May 2012 A1
20120123716 Clark May 2012 A1
20120136346 Condie et al. May 2012 A1
20120149966 Ludwin et al. Jun 2012 A1
20120149967 Ludwin et al. Jun 2012 A1
20120150075 Ludwin et al. Jun 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172867 Ryu et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120179068 Leo et al. Jul 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120209260 Lambert et al. Aug 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120265069 Sliwa et al. Oct 2012 A1
20120265070 Sliwa et al. Oct 2012 A1
20120265102 Leo et al. Oct 2012 A1
20120272518 Cui et al. Nov 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296381 Matos Nov 2012 A1
20120302882 Sliwa et al. Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20120323237 Paul et al. Dec 2012 A1
20130006137 Hauck et al. Jan 2013 A1
20130012151 Hankins Jan 2013 A1
20130023784 Schneider et al. Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053730 Kotlanka et al. Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060245 Grunewald et al. Mar 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085416 Mest Apr 2013 A1
20130085550 Polefko et al. Apr 2013 A1
20130096551 Govari et al. Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourget et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123775 Grunewald et al. May 2013 A1
20130123872 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131663 Govari et al. May 2013 A1
20130131669 Tegg et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130138006 Bornzin et al. May 2013 A1
20130138099 Paul et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130158436 Kocjancic et al. Jun 2013 A1
20130158477 Goldenberg et al. Jun 2013 A1
20130158538 Govari Jun 2013 A1
20130158548 Govari et al. Jun 2013 A1
20130172784 Kirschenman Jul 2013 A1
20130172868 Bonfeld Jul 2013 A1
20130172869 Bonfeld Jul 2013 A1
20130172875 Govari et al. Jul 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130190754 Paul et al. Jul 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130204142 Bertholds et al. Aug 2013 A1
20130204157 Clark et al. Aug 2013 A1
20130226169 Miller et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130248024 Dunn et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Waldhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130253503 Govari et al. Sep 2013 A1
20130261491 Paul et al. Oct 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282038 Dannaher et al. Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130283934 Bazargan et al. Oct 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130296840 Condie et al. Nov 2013 A1
20130296850 Olson Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140012344 Hastings et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140024970 Govari Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140035735 Zellers et al. Feb 2014 A1
20140039312 Rockweiller et al. Feb 2014 A1
20140039570 Carroll et al. Feb 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140051959 Gliner et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140081264 Fandrey et al. Mar 2014 A1
20140088588 Jarrard Mar 2014 A1
20140094688 Tegg et al. Apr 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100563 Govari et al. Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107430 Deno et al. Apr 2014 A1
20140107627 Blumenkranz et al. Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140121660 Hauck May 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140128935 Kumar et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172060 Bornzin et al. Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140379041 Foster Dec 2014 A1
20150025612 Haasl et al. Jan 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150088155 Stahmann et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150157861 Aghassian Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150190638 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann et al. Jul 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306378 Schmidt Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20160015322 Anderson et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishier et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213937 Reinke et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160228026 Jackson Aug 2016 A1
20160317825 Jacobson Nov 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20170014629 Ghosh et al. Jan 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
20170189681 Anderson Jul 2017 A1
20170281261 Shuros et al. Oct 2017 A1
20170281952 Shuros et al. Oct 2017 A1
20170281953 Min et al. Oct 2017 A1
20170281955 Maile et al. Oct 2017 A1
20170312531 Sawchuk Nov 2017 A1
Foreign Referenced Citations (97)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
1003904 Jan 1977 CA
202933393 May 2013 CN
0362611 Sep 1990 EP
503823 Sep 1992 EP
1702648 Sep 2006 EP
2187829 Sep 2010 EP
1904166 Jun 2011 EP
2425871 Apr 2012 EP
2433675 Jan 2013 EP
2441491 Jan 2013 EP
2612612 Jul 2013 EP
2452721 Nov 2013 EP
1948296 Jan 2014 EP
2662113 Jan 2014 EP
2700373 Feb 2014 EP
2719351 Apr 2014 EP
2471452 Dec 2014 EP
1962710 Aug 2015 EP
2662015 Apr 2016 EP
2760541 May 2016 EP
2833966 May 2016 EP
1997135906 May 1997 JP
1997149940 Jun 1997 JP
2000051373 Feb 2000 JP
2002502640 Jan 2002 JP
2004512105 Apr 2004 JP
2005508208 Mar 2005 JP
2005245215 Sep 2005 JP
2006064465 Mar 2006 JP
2008540040 Nov 2008 JP
5199867 Feb 2013 JP
9500202 Jan 1995 WO
9636134 Nov 1996 WO
9724981 Jul 1997 WO
9826840 Jun 1998 WO
9939767 Aug 1999 WO
2000078239 Dec 2000 WO
2002019906 Jun 2002 WO
0234330 Jan 2003 WO
2002024063 Feb 2003 WO
02098282 May 2003 WO
2005000206 Jan 2005 WO
2005011511 Feb 2005 WO
2005042089 May 2005 WO
2006065394 Jun 2006 WO
2006086435 Aug 2006 WO
2006109109 Oct 2006 WO
2006113659 Oct 2006 WO
2006124833 Nov 2006 WO
2007041540 Apr 2007 WO
2007067628 Jun 2007 WO
2007067939 Jun 2007 WO
2007067939 Jun 2007 WO
2007067940 Jun 2007 WO
2007067940 Jun 2007 WO
2007067941 Jun 2007 WO
2007067941 Jun 2007 WO
2007067943 Jun 2007 WO
2007067943 Jun 2007 WO
2007070361 Jun 2007 WO
2007070361 Jun 2007 WO
2007070919 Jun 2007 WO
2007075974 Jul 2007 WO
2007067938 Dec 2007 WO
2007067938 Dec 2007 WO
2007067937 Apr 2008 WO
2007067937 Apr 2008 WO
2008063195 May 2008 WO
2008083311 Oct 2008 WO
2008083311 Oct 2008 WO
2009006531 Jan 2009 WO
2009070837 Jun 2009 WO
2009085457 Jul 2009 WO
2010042461 Apr 2010 WO
2010132472 Nov 2010 WO
2011034925 Mar 2011 WO
2011062653 May 2011 WO
2011062681 May 2011 WO
2011044387 Jun 2011 WO
2011072221 Jun 2011 WO
2012054102 Apr 2012 WO
2012067682 May 2012 WO
2012082249 Jun 2012 WO
2012092275 Jul 2012 WO
2012142588 Oct 2012 WO
2012156914 Nov 2012 WO
2013043804 Mar 2013 WO
2013080038 Jun 2013 WO
2013098644 Jul 2013 WO
2013159940 Oct 2013 WO
2013162884 Oct 2013 WO
2013184787 Dec 2013 WO
2014089545 Jun 2014 WO
2014120769 Aug 2014 WO
Non-Patent Literature Citations (43)
Entry
US 8,180,431 B2, 05/2012, Govari et al. (withdrawn)
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
International Search Report and Written Opinion for Application No. PCT/US2017/016212, 32 pages, dated May 18, 2017.
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013.
Cao et al. “FEM Analysis of Predicting Electrode-Myocardium Contact From RF Cardiac Catheter Ablation System Impedance”, IEEE Transactions on Biomedical Engineering, vol. 49(6): 520-526 2002.
Cao et al., “Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation,” IEEE Trans Biomed Eng., vol. 49(3): 247-53, 2002.
Dello et al., “Simultaneous assessment of contact pressure and local electrical coupling index using robotic navigation,” J Intery Card Electrophysiol., 2014.
Deno et al., “Measurement of electrical coupling between cardiac ablation catheters and tissue,” IEEE Trans Biomed Eng., vol. 61(3): 765-74, 2014.
Di Biase et al., “Visual, tactile, and contact force feedback: which one is more important for catheter ablation? Results from an in vitro experimental study,”Heart Rhythm, vol. 11(3):506-13, 2014.
Eick et al., “The LETR-Principle: a novel method to assess electrode-tissue contact in radiofrequency ablation,” J Cardiovasc Electrophysiol., vol. 9(11): 1180-5, 1998.
Eick, “Factors Influencing Lesion Formation During Radiofrequency Catheter Ablation, ” Indian Pacing and Electrophysiology Journal, vol. 3(3): 117-128, 2003.
Everett et al., “Phase Angle Shift is a Better Determinant for Catheter Electrode Contact With Tissue Compared to a Catheter Sensed Electrogram,” Conf Proc IEEE Eng Med Biol Soc., 1733-6, 2008.
Fenelon et al., “Epicardial radiofrequency ablation of ventricular myocardium: factors affecting lesion formation and damage to adjacent structures,” J Interv Card Electrophysiol., vol. 15(1): 57-63, 2006.
Gerstenfeld, “Contact force-sensing catheters: evolution or revolution in catheter ablation technology,” Circ Arrhythm Electrophysiol. vol. 7(1): 5-6, 2014.
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Haines, “Determinants of Lesion Size During Radiofrequency Catheter Ablation: The Role of Electrode-Tissue Contact Pressure and Duration of Energy Delivery,” Journal of Cardiovascular Electrophysiology, vol. 2(6): 509-515, 1991.
Keane, “New catheter ablation techniques for the treatment of cardiac arrhythmias,” Card Electrophysiol Rev., vol. 6 (4): 341-8, 2002.
Ko et al., “New method for predicting efficiency of heating by measuring bioimpedance during radiofrequency catheter ablation in humans,” J Cardiovasc Electrophysiol. vol. 12(7):819-23, 2001.
Kuck et al., “A novel radiofrequency ablation catheter using contact force sensing: Toccata study,” Heart Rhythm. vol. 9(1):18-23, 2012.
Kumar et al. “Predictive value of impedance changes for real-time contact force measurements during catheter ablation of atrial arrhythmias in humans,” Heart Rhythm. vol. 10(7):962-9, 2013.
Makimoto et al., “n vivo contact force analysis and correlation with tissue impedance during left atrial mapping and catheter ablation of atrial fibrillation,” Circ Arrhythm Electrophysiol. vol. 7(1): 46-54, 2014.
Marijon et al., “Real-Time Contact Force Sensing for Pulmonary Vein Isolation in the Setting of Paroxysmal Atrial Fibrillation: Procedural and 1-Year Results,”J Cardiovasc Electrophysiol. 2013.
Martinek et al., “Clinical impact of an open-irrigated radiofrequency catheter with direct force measurement on atrial fibrillation ablation,” Pacing Clin Electrophysiol, vol. 35(11):1312-8, 2012.
Nakagawa et al., “Locations of high contact force during left atrial mapping in atrial fibrillation patients: electrogram amplitude and impedance are poor predictors of electrode-tissue contact force for ablation of atrial fibrillation,” Circ Arrhythm Electrophysiol, vol. 6(4): 746-53, 2013.
Nath et al., “Basic aspects of radiofrequency catheter ablation,” J Cardiovasc Electrophysiol., vol. 5(10): 863-76, 1994.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Jan. 29, 2016, 15 pages.
Petersen et al., “Can lesion size during radiofrequency ablation be predicted by the temperature rise to a low power test pulse in vitro,” Pacing Clin Electrophysiol., vol. 26(8): 1653-9, 2003.
Petersen et al., “Temperature-controlled radiofrequency ablation of cardiac tissue: an in vitro study of the impact of electrode orientation, electrode tissue contact pressure and external convective cooling,” J Interv Card Electrophysiol., vol. 3(3): 257-62, 1999.
Reichlin et al., “Initial Impedance Decrease as an Indicator of Good Catheter Contact: Insights From Radiofrequency Ablation With Force Sensing Catheters,” Heart Rhythm, vol. 11(2): 194-201, 2014.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineenng,vol. 60(8): 2067-2079, 2013.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
Squara et al., “Contact force and force-time integral in atrialradiofrequency ablation predict transmuralityof lesions,” Europace, vol. 16: 660-667, 2014.
Stabile et al., “Catheter-tissue contact force for pulmonary veins isolation: a pilot multicentre study on effect on procedure and fluoroscopy time,” vol. 16(3): 335-40, 2014.
Stagegaard et al., “Indication of the radiofrequency induced lesion size bypre-ablation measurements,” Europace. vol. 7(6):525-34, 2005.
Thiagalingam et al., “Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter,” J Cardiovasc Electrophysiol., vol. 21(7): 806-11, 2010.
Tsai et al., “Dependence of Apparent Resistance of Four-Electrode Probes on Insertion Depth,” IEEE Transactions on Biomedical Engineering, vol. 47(1): 41-48, 2000.
Tsai et al., “Error Analysis of Tissue Resistivity Measurement,” IEEE Transactions on Biomedical Engineering, vol. 49 (5): 484-494, 2002.
Valk et al.,“Catheter ablation of right ventricular outflow tract tachycardia using contact force guidance,”Neth Heart J. 2014.
Wakili et al., “Impact of Real-Time Contact Force and Impedance Measurement in Pulmonary Vein Isolation Procedures for Treatment of Atrial Fibrillation,” Clin Res Cardiol, vol. 103(2): 97-106, 2014.
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
Weiss et al., “Radiofrequency catheter ablation using cooled electrodes: impact of irrigation flow rate and catheter contact pressure on lesion dimensions,”Pacing Clin Electrophysiol., vol. 25(4 Pt 1): 463-9, 2002.
Yokoyama et al., “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus,”Circ Arrhythm Electrophysiol., vol. 1(5):354-62, 2008.
Zheng et al., “Electrode Impedance: An Indicator of Electrode-Tissue Contact and Lesion Dimensions During Linear Ablation,” Journal of Interventional Cardiac Electrophysiology, vol. 4(4): 645-654, 2000.
Related Publications (1)
Number Date Country
20170224997 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
62291330 Feb 2016 US