There is provided a delivery system, in particular to a non-combustible aerosol delivery system and to components of said aerosol delivery system. Methods of generating and delivering an aerosol using the non-combustible aerosol delivery system and components disclosed herein are also provided.
Non-combustible aerosol delivery systems which generate an aerosol for inhalation by a user are known in the art. Such systems typically comprise an aerosol generator which is capable of converting an aerosolizable material into an aerosol. In some instances, the aerosol generated is a condensation aerosol whereby an aerosolizable material is first vaporized and then allowed to condense into an aerosol. In other instances, the aerosol generated is an aerosol which results from the atomization of the aerosolizable material. Such atomization may be brought about mechanically, e.g. by subjecting the aerosolizable material to vibrations so as to form small particles of material that are entrained in airflow. Alternatively, such atomization may be brought about electrostatically, or in other ways, such as by using pressure etc.
Since such aerosol delivery systems are intended to generate an aerosol which is to be inhaled by a user, consideration should be given to the characteristics of the aerosol produced. These characteristics can include the size of the particles of the aerosol, the total amount of the aerosol produced, etc.
Where the aerosol delivery system is used to simulate a smoking experience, e.g. as an e-cigarette or similar product, control of these various characteristics is especially important since the user may expect a specific sensorial experience to result from the use of the system.
It would be desirable to provide aerosol delivery systems which have improved control of these characteristics.
In a first aspect, there is provided an article for use with an electrically operated non-combustible aerosol delivery system, the article comprising a generally planar aerosol generating component suspended within an aerosol generating chamber, the aerosol generating component having a portion configured to vaporize aerosolizable material at a higher rate than other portions of the aerosol generating component, wherein said chamber has an air inlet and one or more air outlets which define a flow path there between, the flow path being arranged to track said portion of the aerosol generating component configured to vaporize aerosolizable material at a higher rate than other portions of the aerosol generating component.
The air inlet(s) and air outlet(s) may be aligned to form an imaginary axis substantially parallel to the plane of the aerosol generating component, the axis defining the flow path.
The different rates of vaporization may correspond with portions having greater and lesser propensity for the flow of electrical current.
The portions having greater and lesser propensity for the flow of electrical current may have different densities.
The portions having a greater rate of vaporization may have a density of up to 300% of the density of the portions having a lesser rate of vaporization.
The portions having a greater rate of vaporization may have a density of up to 250% of the density of the portions having a lesser rate of vaporization.
The portions having a greater rate of vaporization may have a density of up to 200% of the density of the portions having a lesser rate of vaporization.
The aerosol generating component may comprise one or more apertures or more slots.
The one or more slots may originate from the periphery of the aerosol generating component.
The portions having a greater rates of vaporization may be disposed, relative to the longitudinal axis of the aerosol generating component, inwardly of the portions having a lesser rate of vaporization.
The aerosol generating component may be rectangular and the portions having greater rates of vaporization may be disposed, relative to the longitudinal axis of the aerosol generating component, on opposing sides of the aerosol generating component.
There may be a single air inlet into the aerosol generating chamber.
The air inlet may be bisected by the aerosol generating component.
The air inlet may have an aperture width corresponding to or less than the width of the portion of aerosol generating component having a greater propensity for electrical current flow.
The air inlet may have an aperture width of less than 1.5 mm.
The one or more air inlets may be configured such that air entering the chamber is preferentially distributed away from the surface of the aerosol generating component.
The air inlets and/or air outlets may form apertures having a cross-sectional shape selected from circular, semi-circular, triangular, square, rectangular and/or polygonal.
The air inlet and air outlet may be aligned substantially parallel to the plane of the aerosol generating component.
The article may comprise a reservoir for aerosolizable material. The reservoir may extend annularly around the aerosol generating chamber. An external wall of the aerosol generating chamber may form an internal wall of the reservoir. The reservoir may comprise aerosolizable material.
The aerosol generating component may be formed from a woven or weave structure, mesh structure, fabric structure, open-pored fiber structure, open-pored sintered structure, open-pored foam or open-pored deposition structure.
There is also provided a non-combustible aerosol provision system, comprising the article as defined herein and a device comprising a power source and a control unit.
Various embodiments will now be described in detail by way of example only with reference to the accompanying drawings in which:
Aspects and features of certain examples and embodiments are discussed/described herein. Some aspects and features of certain examples and embodiments may be implemented conventionally and these are not discussed/described in detail in the interests of brevity. It will thus be appreciated that aspects and features of apparatus and methods discussed herein which are not described in detail may be implemented in accordance with any conventional techniques for implementing such aspects and features.
As described above, the present disclosure relates to (but is not limited to) non-combustible aerosol provision systems and devices that release compounds from an aerosol-generating material (or aerosolizable material) without combusting the aerosol-generating material. Examples of such systems include electronic cigarettes, tobacco heating systems, and hybrid systems (which generate aerosol using a combination of aerosol-generating materials). In some examples, the non-combustible aerosol provision system is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system (END), although it is noted that the presence of nicotine in the aerosol-generating material is not a requirement. In some examples, the non-combustible aerosol provision system is an aerosol-generating material heating system, also known as a heat-not-burn system. An example of such a system is a tobacco heating system. In some examples, the non-combustible aerosol provision system is a hybrid system to generate aerosol using a combination of aerosol-generating materials, one or a plurality of which may be heated. Each of the aerosol-generating materials may be, for example, in the form of a solid, liquid or gel and may or may not contain nicotine. In some examples, the hybrid system comprises a liquid or gel aerosol-generating material and a solid aerosol-generating material. The solid aerosol-generating material may comprise, for example, tobacco or a non-tobacco product.
Throughout the following description the terms “e-cigarette” and “electronic cigarette” may sometimes be used; however, it will be appreciated these terms may be used interchangeably with non-combustible aerosol (vapor) provision system or device as explained above.
In some examples, the present disclosure relates to consumables for holding aerosol-generating material, and which are configured to be used with non-combustible aerosol provision devices. These consumables are sometimes referred to as articles herein.
The non-combustible aerosol provision system typically comprises a device part and a consumable/article part. The device part typically comprises a power source and a controller. The power source is typically an electric power source.
In some examples, the non-combustible aerosol provision system may comprise an area for receiving the consumable, an aerosol generator, an aerosol generation area (which may be within the consumable/article), a housing, a mouthpiece, a filter and/or an aerosol-modifying agent.
In some examples, the consumable/article for use with the non-combustible aerosol provision device may comprise aerosol-generating material, an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generator, an aerosol generation area, a housing, a wrapper, a filter, a mouthpiece, and/or an aerosol-modifying agent.
The systems described herein typically generate an inhalable aerosol by vaporization of an aerosol generating material. The aerosol generating material may comprise one or more active constituents, one or more flavors, one or more aerosol-former materials, and/or one or more other functional materials.
The aerosol-generating material may, for example, be in the form of a solid, liquid or gel which may or may not contain an active substance and/or flavorants. In some examples, the aerosol-generating material may comprise an “amorphous solid”, which may alternatively be referred to as a “monolithic solid” (i.e. non-fibrous). In some examples, the amorphous solid may be a dried gel. The amorphous solid is a solid material that may retain some fluid, such as liquid, within it. In some examples, the aerosol-generating material may for example comprise from about 50 wt %, 60 wt % or 70 wt % of amorphous solid, to about 90 wt %, 95 wt % or 100 wt % of amorphous solid.
The term “active substance” as used herein may relate to a physiologically active material, which is a material intended to achieve or enhance a physiological response. The active substance may for example be selected from nutraceuticals, nootropics, psychoactives. The active substance may be naturally occurring or synthetically obtained. The active substance may comprise for example nicotine, caffeine, taurine, theine, vitamins such as B6 or B12 or C, melatonin, cannabinoids, or constituents, derivatives, or combinations thereof. The active substance may comprise one or more constituents, derivatives or extracts of tobacco, cannabis or another botanical.
The aerosol-generating material may comprise one or more constituents capable of forming an aerosol, i.e., aerosol-former materials. In some examples, the aerosol-former material may comprise one or more of glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate.
The one or more other functional materials may comprise one or more of pH regulators, coloring agents, preservatives, binders, fillers, stabilizers, and/or antioxidants.
As used herein, the term “component” is used to refer to a part, section, unit, module, assembly or similar of an electronic cigarette or similar device that incorporates several smaller parts or elements, possibly within an exterior housing or wall. An electronic cigarette may be formed or built from one or more such components, and the components may be removably or separably connectable to one another, or may be permanently joined together during manufacture to define the whole electronic cigarette. The present disclosure is applicable to (but not limited to) systems comprising two components separably connectable to one another and configured, for example, as a consumable/article component capable of holding an aerosol generating material (also referred to herein as a cartridge, cartomizer or consumable), and a device/control unit having a battery for providing electrical power to operate an element for generating vapor from the aerosol generating material.
The cartridge assembly 30 includes a reservoir 3 containing an aerosolizable material comprising a liquid formulation from which an aerosol is to be generated, for example containing nicotine. As an example, the aerosolizable material may comprise around 1 to 3% nicotine and 50% glycerol, with the remainder comprising roughly equal measures of water and propylene glycol, and possibly also comprising other components, such as flavorings. The reservoir 3 has the form of a storage tank, being a container or receptacle in which aerosolizable material can be stored such that the aerosolizable material is free to move and flow within the confines of the tank. Alternatively, the reservoir 3 may contain a quantity of absorbent material such as cotton wadding or glass fiber which holds the aerosolizable material within a porous structure. The reservoir 3 may be sealed after filling during manufacture so as to be disposable after the aerosolizable material is consumed, or may have an inlet port or other opening through which new aerosolizable material can be added. The cartridge assembly 30 also comprises an aerosol generating component 4 located externally of the reservoir 3 for generating the aerosol by vaporization of the aerosolizable material. In many devices, the aerosol generating component 4 may be a heating element (heater) which is heated by the passage of electrical current (via resistive or inductive heating) to raise the temperature of the aerosolizable material until it evaporates. A liquid conduit arrangement such as a wick or other porous element (not shown) may be provided to deliver aerosolizable material from the reservoir 3 to the aerosol generating component 4. The wick has one or more parts located inside the reservoir 3 so as to be able to absorb aerosolizable material and transfer it by wicking or capillary action to other parts of the wick that are in contact with the aerosol generating component 4. This aerosolizable material is thereby vaporized, to be replaced by new aerosolizable material transferred to the aerosol generating component 4 by the wick.
A heater and wick combination, or other arrangement of parts that perform the same functions, is sometimes referred to as an atomizer or atomizer assembly, and the reservoir with its aerosolizable material plus the atomizer may be collectively referred to as an aerosol source. Various designs are possible, in which the parts may be differently arranged compared to the schematic representation of
Arrangements of this latter type, where the functions of the vapor generation and wicking are combined in a single element, are discussed further below. In some cases, the conduit for delivering liquid for vapor generation may be formed at least in part from one or more slots, tubes or channels between the reservoir and the aerosol generating component which are narrow enough to support capillary action to draw source liquid out of the reservoir and deliver it for vaporization. In general, an atomizer can be considered to be an aerosol generating component able to generate vapor from aerosolizable material delivered to it, and a liquid conduit (pathway) able to deliver or transport liquid from a reservoir or similar liquid source to the aerosol generating component by a capillary force.
Typically, the aerosol generating component is located within an aerosol generating chamber that forms part of an airflow channel through the electronic cigarette/system. Vapor produced by the aerosol generating component is driven off into this volume, and as air passes through the volume, flowing over and around the vapor generating element, it collects the vapor whereby it condenses to form the required aerosol. The volume can be designated as an aerosol generating chamber.
Returning to
The power component 20 includes a cell or battery 5 (referred to herein after as a battery, and which may be re-chargeable) to provide power for electrical components of the e-cigarette 10, in particular the aerosol generating component 4. Additionally, there is a printed circuit board 28 and/or other electronics or circuitry for generally controlling the e-cigarette 10. The control electronics/circuitry connect the aerosol generating component 4 to the battery 5 when vapor is required, for example in response to a signal from an air pressure sensor or air flow sensor (not shown) that detects an inhalation on the e-cigarette 10 during which air enters through one or more air inlets 26 in the wall of the power component 20 to flow along the airflow channel (not shown). When the aerosol generating component 4 receives power from the battery 5, the aerosol generating component 4 vaporizes aerosolizable material delivered from the reservoir 3 to generate the aerosol, and this is then inhaled by a user through the opening in the mouthpiece 35. The aerosol is carried from the aerosol source to the mouthpiece 35 along the airflow channel (not shown) that connects the air inlet 26 to the aerosol source to the air outlet when a user inhales on the mouthpiece 35. An airflow path through e-cigarette 10 is hence defined, between the air inlet(s) (which may or may not be in the power component 20) to the atomizer and on to the air outlet at the mouthpiece 35. In use, the air flow direction along this airflow path is from the air inlet 26 to the air outlet, so that the atomizer can be described as lying downstream of the air inlet 26 and upstream of the air outlet.
In this particular example, the power section 20 and the cartridge assembly 30 are separate parts detachable from one another by application of opposing forces in a direction parallel to the longitudinal axis, as indicated by the solid arrows in
As mentioned, a type of aerosol generating component, such as a heating element, that may be utilized in an atomizing portion of an electronic cigarette (a part configured to generate vapor from a source liquid) combines the functions of heating and liquid delivery, by being both electrically conductive (resistive) and porous. As used herein, the phrase “electrically conductive (resistive)” refers to components which have the capacity to generate heat in response to the flow of electrical current therein. Such flow could be imparted by via so-called resistive heating or induction heating. An example of a suitable material for this is an electrically conductive material such as a metal or metal alloy formed into a sheet-like form, i.e. a planar shape with a thickness many times smaller than its length or breadth. Examples in this regard may be a mesh, web, grill and the like. The mesh may be formed from metal wires or fibers which are woven together, or alternatively aggregated into a non-woven structure. For example, fibers may be aggregated by sintering, in which heat and/or pressure are applied to a collection of metal fibers to compact them into a single porous mass.
These structures can give appropriately sized voids and interstices between the metal fibers to provide a capillary force for wicking liquid. Thus, these structures can also be considered to be porous since they provide for the uptake and distribution of liquid. Moreover, due to the presence of voids and interstices between the metal fibers, it is possible for air to permeate through said structures. Also, the metal is electrically conductive and therefore suitable for resistive heating, whereby electrical current flowing through a material with electrical resistance generates heat. Structures of this type are not limited to metals, however; other conductive materials may be formed into fibers and made into mesh, grill or web structures. Examples include ceramic materials, which may or may not be doped with substances intended to tailor the physical properties of the mesh.
A planar sheet-like porous aerosol generating component of this kind can be arranged within an electronic cigarette such that it lies within the aerosol generating chamber forming part of an airflow channel. The aerosol generating component may be oriented within the chamber such that air flow though the chamber may flow in a surface direction, i.e. substantially parallel to the plane of the generally planar sheet-like aerosol generating component. An example of such a configuration can be found in WO2010/045670 and WO2010/045671, the contents of which are incorporated herein in their entirety by reference. Air can thence flow over both sides of the heating element, and gather vapor. Aerosol generation is thereby made very effective. In alternative examples, the aerosol generating component may be oriented within the chamber such that air flow though the chamber may flow in a direction which is substantially transverse to the surface direction, i.e. substantially orthogonally to the plane of the generally planar sheet-like aerosol generating component. An example of such a configuration can be found in WO2018/211252, the contents of which are incorporated herein in its entirety by reference.
The aerosol generating component may have any one of the following structures: a woven or weave structure, mesh structure, fabric structure, open-pored fiber structure, open-pored sintered structure, open-pored foam or open-pored deposition structure. Said structures are suitable in particular for providing a aerosol generating component with a high degree of porosity. A high degree of porosity may ensure that the heat produced by the aerosol generating component is predominately used for evaporating the liquid and high efficiency can be obtained. A porosity of greater than 50% may be envisaged with said structures. In one embodiment, the porosity of the aerosol generating component is 50% or greater, 60% or greater, 70% or greater. The open-pored fiber structure can consist, for example, of a non-woven fabric which can be arbitrarily compacted, and can additionally be sintered in order to improve the cohesion. The open-pored sintered structure can consist, for example, of a granular, fibrous or flocculent sintered composite produced by a film casting process. The open-pored deposition structure can be produced, for example, by a CVD process, PVD process or by flame spraying. Open-pored foams are in principle commercially available and are also obtainable in a thin, fine-pored design.
In one embodiment, the aerosol generating component has at least two layers, wherein the layers contain at least one of the following structures: a plate, foil, paper, mesh, woven structure, fabric, open-pored fiber structure, open-pored sintered structure, open-pored foam or open-pored deposition structure. For example, the aerosol generating component can be formed by an electric heating resistor consisting of a metal foil combined with a structure comprising a capillary structure. Where the aerosol generating component is considered to be formed from a single layer, such a layer may be formed from a metal wire fabric, or from a non-woven metal fiber fabric. Individual layers are advantageously but not necessarily connected to one another by a heat treatment, such as sintering or welding. For example, the aerosol generating component can be designed as a sintered composite consisting of a stainless steel foil and one or more layers of a stainless steel wire fabric (material, for example AISI 304 or AISI 316). Alternatively the aerosol generating component can be designed as a sintered composite consisting of at least two layers of a stainless steel wire fabric. The layers may be connected to one another by spot welding or resistance welding. Individual layers may also be connected to one another mechanically. For instance, a double-layer wire fabric could be produced just by folding a single layer. Instead of stainless steel, use may also be made, by way of example, of heating conductor alloys-in particular NiCr alloys and CrFeAl alloys (“Kanthal”) which have an even higher specific electric resistance than stainless steel. The material connection between the layers is obtained by the heat treatment, as a result of which the layers maintain contact with one another-even under adverse conditions, for example during heating by the aerosol generating component and resultantly induced thermal expansions. Alternatively, the aerosol generating component may be formed from sintering a plurality of individual fibers together. This, the aerosol generating component can be comprised of sintered fibers, such as sintered metal fibers.
The aerosol generating component may comprise, for example, an electrically conductive thin layer of electrically resistive material, such as platinum, nickel, molybdenum, tungsten or tantalum, said thin layer being applied to a surface of the vaporizer by a PVD or CVD process, or any other suitable process. In this case, the aerosol generating component may comprise an electrically insulating material, for example of ceramic. Examples of suitable electrically resistive material include stainless steels, such as AISI 304 or AISI 316, and heating conductor alloys-in particular NiCr alloys and CrFeAl alloys (“Kanthal”), such as DIN material number 2,4658, 2,4867, 2,4869, 2,4872, 1,4843, 1,4860, 1,4725, 1,4765 and 1,4767.
As described above, the aerosol generating component may be formed from a sintered metal fiber material and may be in the form of a sheet. Material of this sort can be thought of a mesh or irregular grid, and is created by sintering together a randomly aligned arrangement or array of spaced apart metal fibers or strands. A single layer of fibers might be used, or several layers, for example up to five layers. As an example, the metal fibers may have a diameter of 8 to 12 μm, arranged to give a sheet of thickness 0.16 mm, and spaced to produce a material density of from 100 g/m2 to 1500 g/m2, such as from 150 g/m2 to 1000 g/m2, 200 g/m2 to 500 g/m2, or 200 to 250 g/m2, and a porosity of 84%. The sheet thickness may also range from 0.1 mm to 0.2 mm, such as 0.1 mm to 0.15 mm. Specific thicknesses include 0.10 mm, 0.11 mm, 0.12 mm, 0.13 mm, 0.14 mm, 0.15 mm or 0.1 mm. Generally, the aerosol generating component has a uniform thickness. However, it will be appreciated from the discussion below that the thickness of the aerosol generating component may also vary. This may be due, for example, to some parts of the aerosol generating component having undergone compression. Different fiber diameters and thicknesses may be selected to vary the porosity of the aerosol generating component. For example, the aerosol generating component may have a porosity of 66% or greater, or 70% or greater, or 75% or greater, or 80% or greater or 85% or greater, or 86% or greater.
The aerosol generating component may form a generally flat structure, comprising first and second surfaces. The generally flat structure may take the form of any two dimensional shape, for example, circular, semi-circular, triangular, square, rectangular and/or polygonal. Generally, the aerosol generating component has a uniform thickness.
A width and/or length of the aerosol generating component may be from about 1 mm to about 50 mm. For example, the width and/or length of the vaporizer may be from 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm or 10 mm. The width may generally be smaller than the length of the aerosol generating component.
Where the aerosol generating component is formed from an electrically resistive material, electrical current is permitted to flow through the aerosol generating component so as to generate heat (so called Joule heating). In this regard, the electrical resistance of the aerosol generating component can be selected appropriately. For example, the aerosol generating component may have an electrical resistance of 2 ohms or less, such as 1.8 ohms or less, such as 1.7 ohms or less, such as 1.6 ohms or less, such as 1.5 ohms or less, such as 1.4 ohms or less, such as 1.3 ohms or less, such as 1.2 ohms or less, such as 1.1 ohms or less, such as 1.0 ohm or less, such as 0.9 ohms or less, such as 0.8 ohms or less, such as 0.7 ohms or less, such as 0.6 ohms or less, such as 0.5 ohms or less. The parameters of the aerosol generating component, such as material, thickness, width, length, porosity etc. can be selected so as to provide the desired resistance. In this regard, a relatively lower resistance will facilitate higher power draw from the power source, which can be advantageous in producing a high rate of aerosolization. On the other hand, the resistance should not be so low so as to prejudice the integrity of the aerosol generator. For example, the resistance may not be lower than 0.5 ohms.
Planar aerosol generating components, such as heating elements, suitable for use in systems, devices and articles disclosed herein may be formed by stamping or cutting (such as laser cutting) the required shape from a larger sheet of porous material. This may include stamping out, cutting away or otherwise removing material to create openings in the aerosol generating component. These openings can influence both the ability for air to pass through the aerosol generating component and the propensity for electrical current to flow in certain areas.
The reservoir of aerosolizable material can take on any shape and in some examples forms an annular shape surrounding the aerosol generation chamber and divided therefrom by a wall. The heating element generally extends across the aerosol generation chamber and is supported in place by its edges passing through the dividing wall or resting in gaps in the wall. In this way, edge portions of the heating element can be positioned in contact with the reservoir interior and can collect liquid therefrom by capillary action. This liquid is then drawn into more central portions of the heating element. Electrical connections are provided on the heating element which enable the passage of electrical current, producing the required heating to vaporize the liquid held in the porous structure of the heating element. Vapor is delivered into the aerosol generation chamber for collection by the flow of air along the airflow channel. Alternatively, as mentioned above, the heating current may comprise eddy currents generated by electromagnetic induction, requiring an electromagnet to produce a rapidly alternating magnetic field penetrating the aerosol generating component.
The atomizer 160 comprises a first carrier component (first part) 101 and a second carrier component (second part) 102. These two components 101, 102 play a role in supporting a planar heating element 103, and in this regard may sometimes be referred to as providing a heating element cradle. Thus, the first and second components 101, 102 represented in
The upper and lower cradle components 101, 102 may be molded from a plastics material having a high glass fiber content (e.g. 50%) to provide improved rigidity and resistance to high temperatures, for example temperatures around 230 degrees centigrade. The respective upper and lower cradle components are broadly speaking of a generally semi-circular cross-section (although with variations in size and shape along their lengths as discussed further below). Each cradle component is provided with a recess 120 (only visible for lower cradle component 102 in
The first and second electrical contact elements 104, 105 may be formed of a sheet metal material, for example comprising copper strips formed into an appropriate shape having regard to the shape and configuration of the other elements of the apparatus in accordance with conventional manufacturing techniques, or may comprise conventional flexible wiring. Of course, in examples where electrical energy is inductively coupled to the heating element it will be understood that such contact elements are not required.
The planar heating element 103 is formed from a sintered metal fiber material and is generally in the form of a sheet. However, it will be appreciated that other porous conducting materials may equally be used. In this particular example the heating element 103 comprises a main portion 103A with electrical contact extensions 103B at each end for connecting to the respective electrical contact elements 104, 105. In this example, the main portion 103A of the heating element is generally rectangular with a longitudinal dimension (i.e. in a direction running between the electrical contact extensions 103B) of around 20 mm, and a width of around 8 mm.
In the example of
The different current/power densities at different locations on the heating element give areas of relatively high current density that become hotter than areas of relatively low current density. This provides the heating element with a range of different temperatures and increases temperature gradients, which can be desirable in the context of aerosol provision systems. This is because different components of a source liquid may aerosolize/vaporize at different temperatures, so providing a heating element with a range of temperatures can help simultaneously aerosolize a range of different components in the source liquid.
A process of assembling the components represented in
As can be seen in
An upper surface of the lower cradle component 102 comprises a plurality of locating pegs 110 which align with the slots in the heating element discussed above and corresponding locating holes in the upper cradle 101 (not shown in the figures). Although not essential, these locating pegs are for helping to align the upper cradle 101 with the lower cradle 102, and for helping to align the heating element 103 relative to the upper and lower cradles 102 when assembled.
Thus the assembled atomizer 160 is generally tubular with a central passageway forming an aerosol generation chamber defined by the respective recesses 120 in the upper and lower carrier components, providing an airflow path through the atomizer that will connect to an air inlet and an air outlet in a complete electronic cigarette. In use, the particular atomizer 160 of
When installed in an electronic cigarette, an atomizer may be arranged such that the longitudinal dimension of the heating element, corresponding to the direction of airflow through the atomizer from the upstream to downstream ends, is aligned parallel to the longitudinal axis of the electronic cigarette for an end-to-end device such as the
There will now be described an aspect of the present disclosure relating to the supply of aerosolizable material to the aerosol generating component. In particular, this aspect relates to an article for use with an electrically operated non-combustible aerosol delivery system, the article comprising a generally planar aerosol generating component suspended within an aerosol generating chamber, wherein the periphery of the aerosol generating component is coupled to one or more feed apertures such that liquid aerosolizable material may be fed directly to the majority of the periphery.
In this regard, liquid being “fed directly” means that liquid reaching the periphery does so from a location outwardly, e.g. radially outwardly, of the periphery, rather than reaching the periphery as a result of internal movement from another location within the aerosol generating component.
In this regard, it is also noted that reference is generally made to liquid aerosolizable material being fed to the aerosol generating component in the context of this aspect. This does not preclude the aerosolizable material being in another state, e.g. a gel, in another part of the system and being converted to liquid for delivery to the aerosol generating component.
In some embodiments, the aerosolizable material may be fed directly to substantially all of the periphery of the aerosol generating component. For example, the aerosolizable material may be fed directly to 80% or more of the periphery of the aerosol generating component. For example, the aerosolizable material may be fed directly to 90% or more of the periphery of the aerosol generating component. For example, the aerosolizable material may be fed directly to 95% or more of the periphery of the aerosol generating component. In some embodiments, the aerosolizable material may be fed directly to the entirety of the periphery of the aerosol generating component.
The ability to feed aerosolizable material around the periphery of the heating element 103a has implications for the design of the cradle sections, the coupling of electrical energy to the heating element, and also the aerosol generating chamber of the article. For example, electrical contact with the heating element may be effected through means other than the electrical contact extensions 103B, such as via electrical contacts embedded in the cradle sections as appropriate. Alternatively, where energy is inductively coupled to the heating element it will be understood that no electrical contacts are in fact required, and this is another advantage of configuring the aerosol generating component such that it is configured to be fed with aerosolizable material around its entire periphery.
Delivery of the aerosolizable material directly to the periphery of the aerosol generating component may be achieved in a number of ways. In some embodiments, the aerosolizable material is fed to the periphery of the aerosol generating component 103 in a plane which is parallel to the plane of the aerosol generating component. Such a feed arrangement is shown in
In some examples, the at least one feed aperture is a capillary gap. The capillary gap may be formed in a wall of the aerosol generating chamber. The capillary gap may extend around the aerosol generating chamber in a plane parallel to the plane of the aerosol generating component. In some examples, the capillary gap extends around at least 90% of the perimeter of the aerosol generating component. The capillary gap may extend intermittently around the aerosol generating chamber. Alternatively, the capillary gap may extend continuously around the aerosol generating chamber.
Capillary forming elements 170 and 180 can form part of the wall which defines the aerosol generating chamber, or can alternatively form part of a capillary frame which is located within the aerosol generating chamber. The capillary frame might take any shape conforming to the perimeter of the aerosol generating component. For example, where the aerosol generating component is circular, the frame may take the form of a torus extending around the perimeter of the aerosol generating component. For example, as shown in
In some examples where the air flow is across the surface of the aerosol generating component such that it has to by-pass the capillary frame, the frame may have a profile which influences the velocity of the airflow across it. For example, as shown in
In other examples, the at least one feed aperture is part of the wall of the aerosol generating chamber.
It is also envisaged that the at least one feed aperture could be located outside of the plane of the aerosol generating component. For example, and as illustrated schematically in
It is also envisaged that the feed of aerosolizable material can be correlated to certain areas of the aerosol generating component. Thus, in another aspect of the present disclosure, the aerosol generating component is fluidly coupled to at least one component for transferring aerosolizable material to the aerosol generating component such that aerosolizable material is preferentially delivered to portions of the aerosol generating component configured to vaporize the aerosolizable material at a higher rate than other areas of the aerosol generating component. For example, aerosolizable material is preferentially fed to those areas of the aerosol generating component which are configured to dissipate higher energy during use, e.g. in the form of higher temperature. Such higher energy dissipation may result from more power being provided to a particular portion of the aerosol generating component. Such areas of greater power will have a propensity to convert the aerosolizable material to a vapor more rapidly than those areas with a lower power. Thus, and where for example aerosolization occurs via resistive heating, by matching the feeding of aerosolizable material to those areas with the greatest rate of vaporization, a more efficient system can be provided with less risk of overheating the aerosolizable material.
In some examples, the at least one component for transferring aerosolizable material is selected from a wick, a pump, or a capillary gap. In some examples, the portions of the aerosol generating configured to vaporize the aerosolizable material at a higher rate than other areas of the aerosol generating component, are areas which are configured to be heated to a higher temperature during use. An example of an aerosol generating component configured such that some areas/portions are configured to dissipate more energy during use compared to other areas/portions is an aerosol generating component having portions with a relatively greater propensity for flow of electrical current. When an electrical current is passed through such an aerosol generating component, current will preferentially flow through those portions having a high propensity for electrical current flow. This will lead to greater resistive heating in those areas compared to others and thus greater power dissipation due to P=I2R.
In some examples, the portions of greater and lesser propensity for current flow are generated by creating areas of extremely high resistance in the aerosol generating component. For example, the aerosol generating component can be provided with apertures or slots (as described above) which effectively serve to prevent current flow. If, for example, such apertures or slots extend from the perimeter of the aerosol generating component, electrical current will preferentially flow through more central regions of the aerosol generating component and those areas will be subject to greater resistive heating.
In some examples where the aerosol generating component has portions of greater and lesser rates of vaporization, this may result from the portions having different densities.
In some examples, the portions having greater and lesser propensity for the flow of electrical current are formed from different materials.
The particular shape of the portions having greater or lesser propensity for current flow (or indeed rate of vaporization in the broadest aspect) is not particularly limited and can be chosen based on other factors such as the configuration of the airflow through the aerosol generating chamber.
As has been explained above, in some examples it can be desirable to preferentially deliver aerosolizable material to said portions having a greater propensity for current flow. This can be achieved in a number of ways. For example, a component for transferring aerosolizable material can be configured to preferentially deliver aerosolizable material to the desired areas. In some examples, the component for transferring aerosolizable material comprises a wick (or a plurality of wicks) and the (or each) wick contacts the portions having a greater propensity for current flow. In this way, aerosolizable material can be delivered directly to those portions having a greater propensity for current flow rather than having to flow through the other areas of the aerosol generating component as is the case for the embodiment described in
Alternatively, if a pump or other mechanical means is used as the component for transferring aerosolizable material, the pump can be configured so as to deliver liquid at a faster rate to portions having a greater propensity for current flow (or indeed energy dissipation) than to other sections.
Alternatively, if a capillary gap is used as the component for transferring aerosolizable material, the capillary gap can be configured so as to have its edge located in proximity to the portions having a greater propensity for current flow. Thus, contrary to the embodiments of
Referring now to
It will be understood that this aspect of the present disclosure is not limited to aerosol generating components which are heated by electrical resistance heating, but also extends to other aerosol generating components having portions with respective greater and lesser rates of vaporization.
In this regard, the portions having a greater rate of vaporization may be disposed, relative to the longitudinal axis of the aerosol generating component, inwardly of the portions having a lesser rate of vaporization. The portions having a lesser rate of vaporization may be disposed at the periphery of the aerosol generating component.
Alternatively, the portions having a greater rate of vaporization may be disposed, relative to the longitudinal axis of the aerosol generating component, outwardly of the portions having a lesser rate of vaporization. The portions having a greater rate of vaporization may be disposed at the periphery of the aerosol generating component.
The boundary between the portions having greater and lesser rates of vaporization (propensity for the flow of electrical current) may be linear or non linear. In some examples the boundary is circular, elliptical, sinusoidal or polygonal.
It is further envisaged that the air inlet into the aerosol generating chamber is arranged so as to align with specific sections of the aerosol generating component. Thus, in another aspect of the present disclosure, there is provided an article for use with an electrically operated non-combustible aerosol delivery system, the article comprising a generally planar aerosol generating component suspended within an aerosol generating chamber, the aerosol generating component having a portion configured to vaporize aerosolizable material at a higher rate than other portions of the aerosol generating component, wherein said chamber has an air inlet and one or more air outlets defining a flow path there between, the flow path being arranged to track said portion of the aerosol generating component configured to vaporize aerosolizable material at a higher rate than other portions of the aerosol generating component.
For example, the air inlet and outlet are preferably arranged with respect to the aerosol generating component such that the flow path between the inlet and outlet is preferentially distributed over those portions of the aerosol generating component which are configured to vaporize aerosolizable material at a greater rate during use. For example, such portions may be configured to dissipate greater power during use and thus have the potential to reach a higher temperature during use (and thus which are configured to vaporize aerosolizable material at a higher rate). Such higher temperature areas will have a propensity to convert the aerosolizable material to a vapor more rapidly than those areas with a lower temperature. By preferentially arranging the flow path with those areas of the aerosol generating component with the greatest rate of vaporization, a more efficient system can be provided. In this regard, the flow path may be understood as the direct path between inlet and outlet in the sense of being the shortest linear path between then inlet and outlet, and thus may be referred to as the “direct flow path”. Reference to “arranged to track” means that the majority of the direct flow path is within the area to be tracked. For example, where the aerosol generating component and the inlet and outlet are positioned at respective longitudinal ends of the component so that the direct flow path between the inlet and outlet will extends parallel to the aerosol generating component, the direct flow path is arranged to travel directly above (or beneath) those portions of the aerosol generating component which are configured to vaporize aerosolizable material at a greater rate during use Thus, the one or more air inlets may be configured such that air entering the chamber is preferentially concentrated over those portions of the aerosol generating component with the greatest rate of vaporization. In some examples, more than 60% of the direct flow path is within the area to be tracked. In some examples, more than 65% of the direct flow path is within the area to be tracked. In some examples, more than 70% of the direct flow path is within the area to be tracked. In some examples, more than 80% of the direct flow path is within the area to be tracked. In some examples, more than 85% of the direct flow path is within the area to be tracked. In some examples, more than 90% of the direct flow path is within the area to be tracked.
Any of the above examples of aerosol generating components configured such that some areas/portions are configured to vaporize aerosolizable material faster than other areas, e.g. by reaching a higher temperature during use compared to other areas/portions, may be employed in the context of the present aspect. For example, an aerosol generating component having portions with a greater propensity for flow of electrical current may be used. As explained above, when an electrical current is passed through such an aerosol generating component, current will preferentially flow through those areas having a higher propensity for electrical current flow. This will lead to greater resistive heating in those areas compared to others.
Referring in this regard to
Referring now to
Air inlet 201a may take a range of shapes, as described below. However, in some examples the largest lateral dimension Ad of the air inlet 201a is less than the width W of the aerosol generating component 300a. Moreover, the air inlet 201a is located in the aerosol generating chamber 200d such that it is generally positioned in alignment with the portion of the aerosol generating component configured to vaporize aerosolizable material at a higher rate than other portions of the aerosol generating component. In some examples, said portion having a higher rate of vaporization is located towards the center of the aerosol generating component. In some examples, said portion having a higher rate of vaporization 301 spans a lateral extent of the aerosol generating component as shown in
Turning to
It has also been surprisingly found that by configuring the position of the air inlet relative to the aerosol generating component, it is possible to influence the size of the particles formed in the aerosol generation chamber. Controlling the size of the particles is considered to be important in connection with aerosol delivery systems used as simulated cigarettes, such as e-cigarettes or related devices as described herein. This is because the user expects a certain sensorial experience to be associated with the use of such a system and this experience will be influenced by the size of the particles present in the aerosol. In this regard, relatively smaller particles may not be deposited greatly in the buccal cavity of the user and instead are deposited predominately further along the respiratory system. By contrast, relatively larger particles may be more likely to be deposited in the buccal cavity of the user and with relatively less deposition occurring further along the respiratory system.
Further, it has been surprisingly found that by configuring the position of the air inlet relative to the aerosol generating component, it is possible to influence the total amount of aerosol delivered by the system. Controlling the amount of aerosol delivered to the user is considered to be important in connection with aerosol delivery systems used as simulated cigarettes, such as e-cigarettes or related devices as described herein. This is because the user is able to perceive the amount of aerosol delivered per inhalation and associate a particular sensorial experience with that amount. For example, inhalations that are considered to have a relatively high amount of aerosol may be perceived by the user to provide a more fulsome mouthfeel. Additionally, for a given system and aerosolizable material, increasing the amount of aerosol per inhalation will result in an increase in the amount of active compounds delivered per inhalation. Moreover, increasing the total amount of aerosol delivered to the user per inhalation gives an indication of the efficiency of the system. Indeed, it has been surprisingly found that the position of the air inlet relative to the aerosol generating component can influence the amount of aerosol that is delivered from the system. For example, it has been found that it is possible to increase the amount of aerosol delivered by the system even though other parameters which might affect aerosol generation (such as type of aerosolizable material, power used to generate the aerosol) remain unchanged.
Referring now to
The one or more air inlets of the aerosol generating chamber may span opposing sides of the generally planar aerosol generating component. Alternatively, the one or more air inlets of the aerosol generating chamber may be solely located on one side of the aerosol generating component. Such a configuration may be particularly suitable whereby vapor is released from only one surface of the aerosol generating component.
The air inlets and/or air outlets may form apertures having a cross-sectional shape selected from circular, semi-circular, triangular, square, rectangular and/or polygonal. Exemplary aperture cross-sections may include slot, dumb-bell, hour-glass etc. Where the air inlet and/or air outlet is formed from a single aperture, and that aperture spans opposing sides of the aerosol generating component, the cross-sectional shape is selected so as to preferentially distribute air entering the chamber away from the surface of the aerosol generating component. For example, where the aperture cross-sections is a dumb-bell, the “neck” of the dumb-bell may be horizontally bisected by the aerosol generating component.
The relative orientation between the one or more air inlets and the aerosol generating component may be fixed. Alternatively, the orientation between the one or more air inlets and the aerosol generating component may be capable of being modified by the user. This may be achieved by moving either the aerosol generating component, the one or more air inlets or both. Likewise, the geometry of the one or more air inlets may be modified so as to alter their aperture cross-section. Likewise, where there are multiple air inlets, it may be possible to modify the extent to which air enters through one or more of the inlets. For example, one or more of the air inlets may be reduced in effective cross-sectional area (or closed completely) so as to change the distribution of air entering the chamber. This has the advantage of allowing the user control over the distribution of air entering the chamber and thus the particle size of the produced aerosol.
The precise width Ad of the air inlet may vary as described above, but it may be that the air inlet has an aperture width of less than 1.5 mm.
The one or more air inlets may be configured such that air entering the chamber is preferentially distributed away from the surface of the aerosol generating component.
The aerosol generating chamber may comprise more than one air inlet. For example, the chamber may comprise two, three, four, five, six or more inlets. The inlets may be evenly located on respective sides of the generally planar aerosol generating component, or may be unevenly located on respective sides of the generally planar aerosol generating component. Having air inlets spanning both sides of the aerosol generating component may be advantageous where vapor is produced from each surface of the aerosol generating component and thus delivery of air to the proximity of both surfaces serves to increase the aerosol delivered by the device.
In this regard, the relative number, geometry and location of air inlets may be selected so as to alter the proportion of air being delivered to one side or other of the generally planar aerosol generating component (noting always that air entering the chamber is preferentially distributed away from the surface of the aerosol generating component). For example, a plurality of air inlets having a relatively smaller aperture cross-sectional area may provide the same overall aperture size as a single aperture having a relatively larger cross-sectional area. Where the aerosol generating chamber comprises more than one air inlet, they may be symmetrically oriented with respect to the plane of the aerosol generating component. Alternatively, where the aerosol generating chamber comprises more than one air inlet, they may be asymmetrically oriented with respect to the plane of the aerosol generating component.
The article generally comprises one air outlet. However, the chamber may comprise more than one air outlet. For example, the aerosol generating chamber may comprise two, three, four, five, six or more outlets. It may be that the configuration of the outlets matches the configuration of the inlets. Alternatively, where there are multiple inlets, there may only be one outlet (or vice versa). At least a portion of the one or more air inlets may be linearly aligned with at least a portion of the one or more air outlets. This ensures that airflow through the chamber is preferentially linear and is not diverted to any significant extent through the chamber.
According to another aspect of the present disclosure, the dimensions of the aerosol generating chamber are configured such that the velocity of air flow through the chamber is in the range of 0.05 m/s to 25 m/s. For example, the velocity may be 0.05 m/s to 20 m/s, 0.05 m/s to 15 m/s, 0.05 m/s to 10 m/s, 0.05 m/s to 5 m/s, 0.05 m/s to 3 m/s, 0.05 m/s to 2 m/s, 0.05 m/s to 1.25 m/s or 0.05 m/s to 1 m/s.
In particular, the above velocities may be imparted to the airflow through the chamber when a certain pressure drop is applied across the air inlet and air outlet of the chamber. For example, the pressure drop may be in a range of from 5 mmWG to 120 mmWG, such as from 30 mmWG to 90 mmWG, 30 mmWG to 80 mmWG, 30 mmWG to 70 mmWG, 30 mmWG to 60 mmWG, 30 mmWG to 50 mmWG, or 30 mmWG to 45 mmWG. The above velocities may be achieved at specific pressure drops, such as 30 mmWG, 35 mmWG, 40 mmWG, 45 mmWG, 50 mmWG, 55 mmWG, 60 mmWG, 65 mmWG, 70 mmWG, 75 mmWG, 80 mmWG, 85 mmWG, 90 mmWG, 95 mmWG, or 100 mmWG. It has been found that by controlling the dimensions of the aerosol generating chamber such that the above velocity range is achieved, the particle size of an aerosol entrained in the airflow can be influenced positively.
In particular, there is provided an article for use with an electrically operated non-combustible aerosol delivery system, the article comprising an aerosol generating chamber having one or more air inlets and one or more outlets defining a flow path therebetween, and a generally planar aerosol generating component suspended within the aerosol generating chamber such that the flow path is substantially parallel to the plane of the aerosol generating component, wherein respective first and second faces of the aerosol generating component project towards corresponding first and second walls of the chamber, with each wall being distanced from its respective face such that the velocity of air across each face is in the range 0.05 m/s to 25 m/s.
It has been found that the velocity at which air flows through the aerosol generating chamber can influence the particle size of the aerosol produced. In particular, greater velocities have been found to be able to suppress the particle size growth of the aerosol. In some examples, the internal geometry of the aerosol generating chamber 200 is configured to provide for a velocity of air across each face of the aerosol generating component of between 0.05 m/s to 25 m/s. In order to achieved this, a pressure drop of from 5 mmWG to 120 mmWG may be applied across the air inlet and air outlet. One way of achieving this is to configure the distance between the inner walls 101b and 102b of the cradles, and the respective upper and lower faces of the aerosol generating component 103a′ and 103a″ appropriately. In this regard,
It has been found that by controlling the respective distances mentioned above, it is possible to reduce the particle size of an aerosol produced by the system. In particular, for a system using the same aerosol generating component, aerosolizable material and power output, reducing each of H1 and H2 from 2 mm to 1 mm resulted in a significant reduction in aerosol particle size.
According to another aspect of the present disclosure, it has been found possible to also optimise the aerosol generating component. In particular, in some examples the aerosol generating component comprises a capillary structure, wherein the capillarity of a first portion of the capillary structure varies relative to the capillarity of a second portion of the capillary structure. The first portion and the second portion may have different rates of vaporization of aerosolizable material. Thus, the capillarity of different portions of the capillary structure varies in accordance with the ability of the respective portion to effect vaporization of aerosolizable material.
As has been described above, aerosol generating components can be prepared whereby some portions of the aerosol generating component are able to effect vaporization of aerosolizable material at a greater rate than other areas. This might be due to the fact that some portions of the aerosol generating component are configured to dissipate more energy during use (for example, by virtue of such portions having a higher propensity for electrical current flow). By varying the capillarity of such portions dependent on the rate at which they are able to effect vaporization of aerosolizable material, it is possible to provide that those portions having a greater rate of vaporization are able to be fed with aerosolizable material in a more optimised manner.
In this regard, it will be understood that the capillarity of a particular capillary channel is a function of the cross-sectional dimensions of that channel. Assuming the channel to have a generally circular cross-section, a relatively smaller radius will lead to a relatively greater capillarity. In some examples, the capillarity of the portions able to effect vaporization of aerosolizable material at a greater rate is greater than the capillarity of the portions able to effect vaporization of aerosolizable material at a lesser rate. Thus, where C is capillarity, in some examples Cportions or greater rale or vaporization>Cportions on lesser rale of vaporization. Therefore, those portions which vaporize aerosolizable material more quickly have a correspondingly greater capillarity. In some examples, the average pore size of the portions able to effect vaporization of aerosolizable material at a greater rate is smaller than the average pore size of the portions able to effect vaporization of aerosolizable material at a lesser rate. Thus, there is also provided an aerosol generating component having a capillary structure, wherein the aerosol generating component has portions having different average pore sizes. Thus, one or more portions of the aerosol generating component may have an average pore size in the range of 5 μm to 30 μm, and one or more other portions may have an average pore size which is different and in the range of 20 μm to 40 μm. Average pore size may be determined in this regard using a digital microscope, for example a VHX-6000 series from Keyence. For example, for each particular portion of sample being tested, the digital microscope assesses the size of each pore in the portion by distinguishing between the respective pores and fibers (using the different contrast imaged for pore and fiber). The pore sizes are then averaged over the portion being measured.
In some examples where the aerosol generating component has areas of greater and lesser rates of vaporization, the portions may have different densities. For example, the portions having a greater rate of vaporization have a density of up to 300%, such as up to 250%, such as up to 250%, relative to the density of the portions having a lesser rate of vaporization. The difference in density is typically reflective of a difference in capillarity, with areas of greater density typically having greater capillarity. The variations in density may result from sections of the aerosol generating component being compressed relative to other sections. This compression leads to a greater density (and thus reduced average pore sizes and increased capillarity).
Accordingly, there is also provided a method for producing an aerosol generating component having a capillary structure, the method comprising the steps of providing an aerosol generating component having a capillary structure, and compressing the aerosol generating component in one or more portions to increase the density in those portions. Compressing may be carried out as is known to the skilled person, e.g. by using a stamp, roller or the like.
As described herein, the aerosol generating component may comprise one or more apertures which inhibit the flow of electrical current through therethrough. Variations in aperture shape, size and number are described throughout this document and such variations in aperture configuration can be applied to the present aspect. Similarly, the present disclosure describes how the aerosol generating component is configured to be fed with aerosolizable material. The various variations described with respect to transferring aerosolizable material to the aerosol generating component can be equally applied to this aspect.
In some examples, the portions having greater and lesser propensity for the flow of electrical current are formed from different materials. For example, portions may be formed from different materials selected from stainless steels, such as AISI 304 or AISI 316, and heating conductor alloys, in particular NiCr alloys and CrFeAl alloys. It is also envisaged that the number/geometry of the aperture/slot features of the aerosol generating components described herein may be varied so as to influence the airflow through the aerosol generating component and/or vaporization profile of the aerosol generating component.
Thus, according to another aspect of the present disclosure, there is provided an aerosol generating component which comprises a plurality of differently sized apertures. Any of the aspects described herein may comprise an aerosol generating component with a plurality of differently sized apertures. In some examples, one or more of the apertures may be slot shaped. It may also be possible for one or more of the slot widths and/or lengths to vary. Generally, the one or more slots extend inwardly from the periphery of the aerosol generating component. Apertures or slots extending inwardly from the periphery of the aerosol generating component may reach or extend past the midpoint of the aerosol generating component. Apertures or slots may extend from opposite peripheral edges of the aerosol generating component. In this regard, it is to be understand that “apertures” or “slots” does not include surface or structural pores that may be present as an inherent part of the aerosol generating component. Rather, the terms “apertures” or “slots” mean openings which extend continuously from one surface of the generally planar aerosol generating component to the opposite surface.
The slots may take a particular form, and an exemplary slot is shown in
In some embodiments, the number, size and shape of the apertures are distributed throughout the aerosol generating component so as to influence airflow in the aerosol generating chamber. For example, where airflow through the chamber is configured to pass through the aerosol generating component, the number, size and shape of the apertures can be selected so as to normalize airflow exiting the aerosol generating component. By “normalize” it is meant that airflow exiting the aerosol generating component is less turbulent than airflow approaching the aerosol generating component. For example, there is provided an article for use with an electrically operated non-combustible aerosol delivery system, the article comprising an aerosol generating chamber having one or more air inlets and one or more outlets defining a flow path therebetween, and a generally planar aerosol generating component suspended within the aerosol generating chamber such that the flow path is substantially transverse to the plane of the aerosol generating component, wherein the aerosol generating component comprises a plurality of differently sized apertures.
In another aspect of the present disclosure, it is envisaged that a temperature profile within the aerosol generating chamber varies from the one or more air inlets to the one or more air outlets. In particular, it is envisaged that during activation of the aerosol generating component a first temperature profile having a negative gradient is established along a portion of the flow path from inlet to outlet. It has been surprisingly found that when such a temperature profile having a negative gradient is established, particle size growth of the aerosol can be suppressed. Therefore, by controlling the gradient of the temperature profile, it is possible to control the particle size of the aerosol, which can be positive from a sensorial aspect.
Accordingly, there is provided an article for use with an electrically operated non-combustible aerosol delivery system, the article comprising a generally planar aerosol generating component suspended within an aerosol generating chamber, the chamber having one or more air inlets and one or more outlets defining a flow path therebetween, wherein during activation of the aerosol generating component a first temperature profile having a negative gradient is established along a portion of the flow path from inlet to outlet.
By “temperature profile with a negative gradient” it is meant that a temperature at an upstream location of the aerosol generating chamber is greater than a temperature at an corresponding downstream location of the aerosol generating chamber. Thus, the temperature is generally higher at an upstream end of the chamber than at a downstream end.
Typically, the aerosol generating component defines a longitudinal axis which extends along the flow path. In some examples, the negative temperature gradient is established along less than 50% of the flow path. In some examples, the negative temperature gradient is established along less than 20% of the flow path. In some examples, the negative temperature gradient is established along less than 5% of the flow path. In this regard, for a given starting temperature, limiting the extent to which the negative temperature gradient extends influences the rate at which the temperature drops within the chamber.
In some examples, the peak temperature is established in proximity to the one or more air inlet(s) of the aerosol generating chamber. For example, the peak temperature may be established within 20%, 15%, 10% or 5% from the opening of the air inlet(s) into the aerosol generating chamber. In this regard, the % proximity is based upon a linear pathway from the air inlet to the air outlet of the aerosol generating chamber.
Establishing a temperature profile with a negative gradient may be achieved in a number of ways. For example, it may be that an additional heater is located in proximity to the one or more air inlets such that incoming air is subjected to heating. As the airflow moves through the aerosol generating chamber it is subjected to relatively less heating than at an upstream location and subsequently cools thus establishing the negative temperature gradient. Other ways of establishing such a gradient will be apparent to the skilled person. It should be noted in this regard that under normal circumstances in prior art devices the airflow that has travelled past the heater will begin to cool and thus a negative temperature gradient will be established at some point in time over the total flow path. However, in the system described herein, the aerosol generating component is generally disposed parallel to the airflow through the device. This has the effect that incoming air is continually heated as it travels the length of the aerosol generating component. This is illustrated in
Other ways of establishing a negative temperature gradient within the chamber are also possible. For example, the aerosol generating component may be configured to dissipate greater energy, i.e. heat, at an upstream location relative to a downstream location. This might be achieved in a number of ways. For example, the aerosol generating component may be configured with a capillary structure at an upstream portion which has a capillarity inferior in terms of feed rate compared to a capillary structure at a corresponding downstream portion. This will result in aerosolizable material being fed less rapidly to the upstream portion. Since the presence of aerosolizable material effectively acts to moderate the temperature of the aerosol generating component during heating, where less aerosolizable material is being provided there will be a greater localised temperature. Alternatively, a similar effect can be achieved by configuring the aerosol generating component such that an upstream portion experiences relatively greater resistive heating than a corresponding downstream portion. In some examples, this is achieved by configuring an upstream portion of the aerosol generating component such that said portion has a higher resistance than a corresponding downstream portion. This higher resistance can, for example, be imparted to the portion by forming said portion of a material with a higher electrical resistance or by modifying the geometry of said portion. An example of the resistance being modified by modifying the geometry is shown in
In the specific example of
In some examples, the temperature gradient may be divided into two or more segments having different gradients of temperature change. Each segment may comprise one or more upstream/downstream portions as described above in the context of portions 135 to 139. Thus, a second or subsequent temperature profile may be established along a subsequent portion of the flow path. The second or subsequent temperature profile may have a positive, neutral or negative temperature gradient. Where it has a negative gradient, it may be smaller than the first temperature profile. Alternatively, the second or subsequent temperature profile may have a negative gradient which is greater than the first temperature profile. The second or subsequent temperature profile may extend for the remainder of the flow path to the air outlet.
In line with the above aspect, there is also envisaged an aerosol generating component for use with an electrically operated non-combustible aerosol delivery system, wherein the aerosol generating component defines a longitudinal-axis and is configured to be heated heterogeneously along its longitudinal axis. For example, during activation of the aerosol generating component a first temperature profile with a negative gradient is established along a portion of the longitudinal axis of the aerosol generating component. The negative gradient may be established along less than 50%, less than 20%, less than 15%, less than 10% or less than 5% of its longitudinal axis. Heterogeneous heating may be imparted to the aerosol generating component as described above, e.g. by varying the feeding of aerosolizable material to portions of the aerosol generating component, or by altering the flow of current through upstream/downstream portions/segments of the aerosol generating component as described above.
Due to the upstream/downstream configuration of the above mentioned portions 135 to 139, it is clear that the impact on temperature within the aerosol generating chamber will also take a corresponding upstream/downstream configuration. However, as described above in connection with the broader disclosure, the aerosol generating component may be one having portions of greater and lesser rates of vaporization configured in other ways which generally result in a lateral temperature gradient being established. Any of the embodiments described above with respect to the modulation of rates of vaporization of the aerosol generating component may be employed in the context of the present aspect.
The articles described herein may further comprise a mouthpiece which is in fluid communication with the one or more air outlets of the aerosol generating chamber.
The articles described herein may comprise an outer housing within which the aerosol generating chamber and aerosol generating component are located. However, it may be that the article is composed of just the aerosol generating chamber and aerosol generating component. Where such an outer housing is present, it may further accommodate the reservoir for aerosolizable material mentioned above. Such a housing may also accommodate the mouthpiece and any connectors required to ensure connection with an electrically operated aerosol delivery device (discussed further below). The outer housing may surround the aerosol generating chamber so as to form the above mentioned reservoir for aerosolizable material.
The articles described herein are typically for use with an electrically operated aerosol delivery system. For example, the electrically operated aerosol delivery system may comprise the article described herein and an electrically operated aerosol delivery device. The article and the device may be connected so as to form the electrically operated aerosol delivery system. In this regard, the electrically operated aerosol delivery device generally comprises a power source and a controller. Both the article and the electrically operated delivery device may comprise electrical connectors which mate with each other so as to facilitate current flow to the article. Alternatively, the device may include an inductor coil which is used to generate an alternating magnetic field which can be used to induce electrical current flow within the aerosol generating component of the article. The controller of the device operates to direct power from the power source to the article when instructed to do so by a user. For example, the device may include some form of user interface, e.g. a touch sensor, button or the like, which may be operated by the user when an aerosol is to be generated. Alternatively, or additionally, the controller may receive a signal from one or more sensors (located either on the device or article) following the detection that an aerosol is to be produced. In response to such a signal, the controller operates to direct power from the power source to the article. Such sensors include air flow sensors, pressure sensors etc.
Upon connection of the article and the electrically operated aerosol delivery device, an airflow path may be created which facilitates the passage of air from the external environment to the one or more air inlets described herein, through the aerosol generating chamber, through the one or more air outlets and through a mouthpiece of the article.
The various embodiments described herein are presented only to assist in understanding and teaching the claimed features. These embodiments are provided as a representative sample of embodiments only, and are not exhaustive and/or exclusive. It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects described herein are not to be considered limitations on the scope of the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilized and modifications may be made without departing from the scope of the claims. Various embodiments may suitably comprise, consist of, or consist essentially of, appropriate combinations of the disclosed elements, components, features, parts, steps, means, etc., other than those specifically described herein. In addition, this disclosure may include other inventions not presently claimed, but which may be claimed in future.
Number | Date | Country | Kind |
---|---|---|---|
2004731.2 | Mar 2020 | GB | national |
The present application is a National Phase entry of PCT Application No. PCT/GB2021/050753, filed Mar. 26, 2021, which claims priority from GB Application No. 2004731.2, filed Mar. 31, 2020, each of which is hereby fully incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2021/050753 | 3/26/2021 | WO |