Delivery systems and methods for left ventricular pacing

Information

  • Patent Grant
  • 12296177
  • Patent Number
    12,296,177
  • Date Filed
    Friday, December 20, 2019
    6 years ago
  • Date Issued
    Tuesday, May 13, 2025
    9 months ago
Abstract
A method of delivering a pacing lead may include locating a potential implantation site adjacent to or within the triangle of Koch region of a patient's heart. The method may include advancing a pacing lead to the potential implantation site. The pacing lead has an elongate body and a fixation element coupled to a distal portion and attachable to the right-atrial endocardium adjacent to or within the triangle of Koch region. The method may include implanting the pacing lead at the potential implantation site to or sense electrical activity of the left ventricle in the basal and/or septal region of the left ventricular myocardium of the patient's heart. The pacing lead may include a lumen configured to receive a guide wire. A sheath of a delivery system used to deliver the pacing lead may include two or more curves to facilitate implanting the pacing lead at the implantation site.
Description

The present technology is generally related to medical device methods and systems, such as methods and systems for implantable medical device implantation and use.


The cardiac conduction system includes the sinus atrial (SA) node, the atrioventricular (AV) node, the bundle of His, bundle branches and Purkinje fibers. A heartbeat is initiated in the SA node, which may be described as the natural “pacemaker” of the heart. An electrical impulse arising from the SA node causes the atrial myocardium to contract. The electrical impulse, or electrical pulse or signal, is conducted to the ventricles via the AV node which inherently delays the conduction to allow the atria to stop contracting before the ventricles begin contracting thereby providing proper AV synchrony. The electrical impulse is conducted from the AV node to the ventricular myocardium via the bundle of His, bundle branches, and Purkinje fibers.


Patients with a conduction system abnormality, such as poor AV node conduction or poor SA node function, may receive an implantable medical device (IMD), such as a pacemaker, to restore a more normal heart rhythm and AV synchrony. Some types of IMDs, such as cardiac pacemakers, implantable cardioverter defibrillators (ICDs), or cardiac resynchronization therapy (CRT) devices, provide therapeutic electrical stimulation to a heart of a patient via electrodes on one or more implantable endocardial, epicardial, or coronary venous leads that are positioned in or adjacent to the heart. The therapeutic electrical stimulation may be delivered to the heart in the form of pulses or shocks for pacing, cardioversion, or defibrillation. In some cases, an IMD may sense intrinsic depolarizations of the heart, and control the delivery of therapeutic stimulation to the heart based on the sensing.


Delivery of therapeutic electrical stimulation to the heart can be useful in addressing cardiac conditions such as ventricular dyssynchrony that may occur in patients. Ventricular dyssynchrony may be described as a lack of synchrony or a difference in the timing of contractions in the right and left ventricles of the heart. Significant differences in the timing of contractions can reduce cardiac efficiency. CRT, delivered by an IMD to the heart, may enhance cardiac output by resynchronizing the electromechanical activity of the ventricles of the heart. CRT may include “triple-chamber pacing” when pacing the right atrium, right ventricle, and left ventricle.


Cardiac arrhythmias may be treated by delivering electrical shock therapy for cardioverting or defibrillating the heart in addition to cardiac pacing, for example, from an ICD, which may sense a patient's heart rhythm and classify the rhythm according to an arrhythmia detection scheme in order to detect episodes of tachycardia or fibrillation. Arrhythmias detected may include ventricular tachycardia (VT), fast ventricular tachycardia (FVT), ventricular fibrillation (VF), atrial tachycardia (AT) and atrial fibrillation (AT). Anti-tachycardia pacing (ATP) can be used to treat ventricular tachycardia (VT) to terminate substantially many monomorphic fast rhythms.


Dual chamber medical devices are available that include a transvenous atrial lead carrying electrodes that may be placed in the right atrium and a transvenous ventricular lead carrying electrodes that may be placed in the right ventricle via the right atrium. The dual chamber medical device itself is generally implanted in a subcutaneous pocket, and the transvenous leads are tunneled to the subcutaneous pocket. A dual chamber medical device may sense atrial electrical signals and ventricular electrical signals and can provide both atrial pacing and ventricular pacing as needed to promote a normal heart rhythm and AV synchrony. Some dual chamber medical devices can treat both atrial and ventricular arrhythmias.


Intracardiac medical devices, such as a leadless pacemaker, have been introduced or proposed for implantation entirely within a patient's heart, eliminating the need for transvenous leads. A leadless pacemaker may include one or more electrodes on its outer housing to deliver therapeutic electrical signals and/or sense intrinsic depolarizations of the heart. Intracardiac medical devices may provide cardiac therapy functionality, such as sensing and pacing, within a single-chamber of the patient's heart. Single-chamber intracardiac devices may also treat either atrial or ventricular arrhythmias or fibrillation. Some leadless pacemakers are not intracardiac and may be positioned outside of the heart and, in some examples, may be anchored to a wall of the heart via a fixation mechanism.


In some patients, single-chamber devices may adequately address the patient's needs. In other patients, single-chamber sensing and therapy may not fully address cardiac conduction disease or abnormalities in all patients, for example, those with some forms of AV dyssynchrony or tachycardia. Dual chamber sensing and/or pacing functions, in addition to ICD functionality in some cases, may be used to restore more normal heart rhythms.


SUMMARY

The techniques of this disclosure generally relate to methods and systems for delivering an implantable medical device for left ventricular pacing, for example, to an implantation site adjacent to or within the triangle of Koch region of a patient's heart. In some embodiments, the implantation site may be accessed using the coronary sinus system of the patient's heart. A delivery system may include a sheath having two or more curves to facilitate delivering a pacing lead to an implantation site. The pacing lead may include a lumen, which may be appropriately sized to receive a guidewire. The pacing lead may also include a fixation element to attach to cardiac tissue. In particular, the pacing lead may be configured to attach to an implantation site in the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of the patient's heart.


In one aspect, the present disclosure provides a method of delivering a pacing lead including: locating a potential implantation site adjacent to or within the triangle of Koch region in the right atrium of a patient's heart. The method also includes advancing a pacing lead to the potential implantation site. The pacing lead includes an elongate body extending from a proximal portion to a distal portion and a fixation element coupled to the distal portion and attachable to the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of the patient's heart. The method also includes implanting the pacing lead at the potential implantation site to deliver cardiac therapy to or sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart.


In another aspect, the present disclosure provides a pacing lead delivery system including: a sheath having an elongate body defining a lumen extending between a proximal portion and a distal portion; a guide wire at least partially disposable in the lumen of the sheath; a needle-tipped dilator configured to advance over the guide wire and to engage tissue in a potential implantation site; and a pacing lead having an elongate body extending from a proximal portion to a distal portion and a fixation element coupled to the distal portion and attachable to an implantation site in the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of a patient's heart to deliver cardiac therapy to or sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart.


In another aspect, the present disclosure provides, a pacing lead including an elongate body defining a lumen extending from a proximal portion to a distal portion configured to receive a guide wire; and a left-ventricular electrode coupled to the elongate body implantable from tissue adjacent to or within the triangle of Koch region of the right atrium through the right-atrial endocardium to deliver cardiac therapy to or sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of a patient's heart.


In another aspect, the present disclosure provides a pacing lead delivery system including a sheath having an elongate body defining a lumen extending between a proximal portion and a distal portion; a guide wire at least partially disposable in the lumen of the sheath and configured to engage tissue in a potential implantation site; and a pacing lead having an elongate body extending from a proximal portion to a distal portion and a fixation element coupled to the distal portion and attachable to an implantation site in the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of a patient's heart to or sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart.


The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a conceptual diagram of an illustrative cardiac therapy system including an intracardiac medical device implanted in a patient's heart and a separate medical device positioned outside of the patient's heart for use with, e.g., the illustrative methods of FIGS. 29-34.



FIGS. 2-4 are conceptual diagrams of illustrative cardiac therapy systems including medical devices including leads with electrodes implanted in a patient's heart for use with, e.g., the illustrative methods of FIGS. 29-34.



FIG. 5 is an enlarged conceptual diagram of the intracardiac medical device of FIG. 1 and anatomical structures of the patient's heart.



FIG. 6 is a conceptual diagram of a map of a patient's heart in a standard 17 segment view of the left ventricle showing various electrode implantation locations for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and FIGS. 16-28.



FIG. 7 is a perspective view of an intracardiac medical device having a distal fixation and electrode assembly that includes a distal housing-based electrode implemented as a ring electrode for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and FIGS. 16-28.



FIG. 8 is a block diagram of illustrative circuitry that may be enclosed within the housing of the medical devices of FIGS. 1-4 and FIGS. 16-28, for example, to provide the functionality and therapy described herein.



FIG. 9 is a perspective view of another illustrative intracardiac medical device for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and FIGS. 16-28.



FIG. 10 is a flowchart of an illustrative method of detecting atrial activity using an atrial motion detector for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and FIGS. 16-28.



FIG. 11 is a flowchart of an illustrative method of detecting heart sounds to represent physiological response information for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and FIGS. 16-28.



FIG. 12 is a flowchart of an illustrative method of detecting bioimpedance to represent physiological response information for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and FIGS. 16-28.



FIG. 13 is a diagram of an illustrative system including electrode apparatus, display apparatus, and computing apparatus for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and FIGS. 16-28.



FIGS. 14-15 are diagrams of illustrative external electrode apparatus for measuring torso-surface potentials for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and FIGS. 16-28.



FIGS. 16-25 are illustrations showing various configurations of a pacing lead delivery system for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and methods of FIGS. 29-34.



FIG. 26 is an illustration of a right anterior oblique cutaway view of the patient's heart and the illustrative pacing lead delivery system of FIGS. 16-25.



FIG. 27 is an illustration of an overhead cutaway view the patient's heart and the illustrative pacing lead delivery system of FIGS. 16-25 in the same position as shown in FIG. 26.



FIG. 28 is an illustration of the patient's heart showing a target implantation zone for use with, e.g., the illustrative systems and devices of FIGS. 1-4 and the illustrative pacing lead delivery system of FIGS. 16-25.



FIG. 29 is a flow diagram of a method of using, e.g., the illustrative systems and devices of FIGS. 1-4 and the illustrative pacing lead delivery system of FIGS. 16-28.



FIG. 30 is a flow diagram of one example of a method for locating a potential implantation site for use with, e.g., the illustrative method of FIG. 29.



FIG. 31 is a flow diagram of a further example of a method for locating a potential implantation site for use with, e.g., the illustrative method of FIG. 29.



FIG. 32 is a flow diagram of one example of a method for preparing an implantation site for use with, e.g., the illustrative method of FIG. 29.



FIG. 33 is a flow diagram of another example of a method for preparing an implantation site for use with, e.g., the illustrative method of FIG. 29.



FIG. 34 is a flow diagram of a further example of a method for preparing an implantation site for use with, e.g., the illustrative method of FIG. 29.





DETAILED DESCRIPTION

The techniques of this disclosure generally relate to delivering implantable medical devices to provide cardiac therapy using the cardiac conduction system or left ventricular myocardium. In particular, the delivery systems and techniques may be used to implant implantable medical devices through the right atrium to the left ventricle (e.g., ventricle-from-atrium, or VfA) from the triangle of Koch region or the coronary sinus. In some embodiments, various techniques described herein may be applied to His bundle or bundle branch pacing applications that use the cardiac conduction system. Various non-limiting examples of cardiac therapy include single chamber or multiple chamber pacing (e.g., dual or triple chamber pacing), atrioventricular synchronous pacing, asynchronous pacing, triggered pacing, cardiac resynchronization pacing, or tachycardia-related therapy. Although reference is made herein to implantable medical devices, such as a pacemaker or ICD, the methods and processes may be used with any medical devices, systems, or methods related to a patient's heart. Various other applications will become apparent to one of skill in the art having the benefit of the present disclosure.


It may be beneficial to provide an implantable medical device delivery system and technique to locate an electrode for sensing or pacing the left ventricular myocardium or the cardiac conduction system. It may also be beneficial to provide a delivery system and technique to deliver an implantable medical device adjacent to or within the triangle of Koch region at an appropriate angle for left ventricular pacing, for example, using the endocardium and/or the cardiac conduction system.


As used herein, the term “capture” generally refers to obtaining information or data, for example, related to imaging. The term “capture” in the context of pacing (e.g., effective capture of the heart from pacing) refers to determining whether a desired response is sensed in response to stimuli, such as sensing desirable electrical activity in response to electrical pulses delivered to a portion of the heart.


As used herein, the term “effective” generally refers to meeting conditions that would be sufficient to a person of ordinary skill in the art for performing a particular function. For example, effective pacing of the left ventricle may result in capture of the left ventricle when electrical or mechanical activity of the left ventricle is sensed and determined to provide cardiac therapy as desired.


The present disclosure provides a technique for delivering an implantable medical device for left ventricular pacing, for example, to an implantation site adjacent to or within the triangle of Koch region of a patient's heart. In some embodiments, the implantation site may be accessed using the coronary sinus system of the patient's heart. In particular, the delivery systems and techniques may be used to deliver a pacing lead to an implantation site. Delivery systems may include a sheath having two or more curves to facilitate delivering the pacing lead to an implantation site. The pacing lead may include a lumen, which may be appropriately sized to receive a guidewire. The pacing lead may also include a fixation element to attach to cardiac tissue. In particular, the pacing lead may be configured to attach to an implantation site in the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of the patient's heart.


In some embodiments, the tissue-piercing electrode may be implanted in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart from the triangle of Koch region of the right atrium through the right-atrial endocardium and central fibrous body. In a leadless implantable medical device, the tissue-piercing electrode may leadlessly extend from a distal end region of a housing of the device, and the right-atrial electrode may be leadlessly coupled to the housing (e.g., part of or positioned on the exterior of the housing). The right-atrial motion detector may be within the implantable medical device. In a leaded implantable medical device, one or more of the electrodes may be coupled to the housing using an implantable lead. When the device is implanted, the electrodes may be used to sense electrical activity in one or more atria and/or ventricles of a patient's heart. The motion detector may be used to sense mechanical activity in one or more atria and/or ventricles of the patient's heart. In particular, the activity of the right atrium and the left ventricle may be monitored and, optionally, the activity of the right ventricle may be monitored. The electrodes may be used to deliver cardiac therapy, such as single-chamber pacing for atrial fibrillation, atrioventricular synchronous pacing for bradycardia, asynchronous pacing, triggered pacing, cardiac resynchronization pacing for ventricular dyssynchrony, anti-tachycardia pacing, or shock therapy. Shock therapy may be initiated by the implantable medical device. A separate medical device, such as an extravascular ICD, which may also be implanted, may be in operative communication with the implantable medical device and may deliver an electrical shock in response to a trigger, such as a signaling pulse (e.g., triggering, signaling, or distinctive electrical pulse) provided by the device.


In general, electrical or mechanical activity may be sensed, determined, acquired, or monitored using various techniques available to one having ordinary skill in the art who has the benefit of the present disclosure. As used herein, the term “monitoring” generally refers to sensing, acquiring, or receiving data or information that may be used, for example, being processed or stored.


The present disclosure also provides a technique to deliver and implant a medical device, for example, in the triangle of Koch region in the right atrium. Various devices may be used to identify the general location of the triangle of Koch region, which may be described as an implantation site. A flexible lead, or another probe, may be advanced to the potential implantation site and used to identify a precise location for implantation of a medical device, such as an electrode, leadlet, lead, or intracardiac device. In particular, the techniques of the present disclosure may be used to implant a device to provide synchronous pacing to patients with dyssynchrony, as well as provide dual chamber pacing for bradycardia patients with moderate heart failure.



FIGS. 1-4 show examples of various cardiac therapy systems that may be implanted using, for example, the methods shown in FIGS. 29-34 to deliver a medical device to an implantation site. In these views, the left ventricle (LV) is positioned generally behind the right ventricle (RV).


Although the present disclosure describes leadless and leaded implantable medical devices, reference is first made to FIG. 1, which shows a conceptual diagram of a cardiac therapy system 2 including an intracardiac medical device 10 that may be configured for single or dual chamber therapy and implanted in a patient's heart 8. In some embodiments, the device 10 may be configured for single-chamber pacing and may, for example, switch between single-chamber and multiple-chamber pacing (e.g., dual- or triple-chamber pacing). As used herein, “intracardiac” refers to a device configured to be implanted entirely within a patient's heart, for example, to provide cardiac therapy. The device 10 is shown implanted in the right atrium (RA) of the patient's heart 8 in a target implant region 4. The device 10 may include one or more fixation members 20 that anchor a distal end of the device against the atrial endocardium in a target implant region 4. The target implant region 4 may lie between the His bundle 5 (or bundle of His) and the coronary sinus 3 and may be adjacent the tricuspid valve 6. The device 10 may be described as a ventricle-from-atrium (VfA) device, which may sense or provide therapy to one or both ventricles (e.g., right ventricle, left ventricle, or both ventricles, depending on the circumstances) while being generally disposed in the right atrium. In particular, the device 10 may include a tissue-piercing electrode that may be implanted in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart from the triangle of Koch region of the right atrium through the right-atrial endocardium and central fibrous body.


The device 10 may be described as a leadless implantable medical device. As used herein, “leadless” refers to a device being free of a lead extending out of the patient's heart 8. In other words, a leadless device may have a lead that does not extend from outside of the patient's heart to the inside of the patient's heart. Some leadless devices may be introduced through a vein, but once implanted, the device is free of, or may not include, any transvenous lead and may be configured to provide cardiac therapy without using any transvenous lead. Further, a leadless VfA device, in particular, does not use a lead to operably connect to an electrode in the ventricle when a housing of the device is positioned in the atrium. Additionally, a leadless electrode may be coupled to the housing of the medical device without using a lead between the electrode and the housing.


The device 10 may include a dart electrode assembly 12 defining, or having, a straight shaft extending from the distal end region of device 10. The dart electrode assembly 12 may be placed, or at least configured to be placed, through the atrial myocardium and the central fibrous body and into the ventricular myocardium 14, or along the ventricular septum, without perforating entirely through the ventricular endocardial or epicardial surfaces. The dart electrode assembly 12 may carry, or include, an electrode at the distal end region of the shaft such that the electrode may be positioned within the ventricular myocardium for sensing ventricular signals and delivering ventricular pulses (e.g., to depolarize the left ventricle to initiate a contraction of the left ventricle). In some examples, the electrode at the distal end region of the shaft is a cathode electrode provided for use in a bipolar electrode pair for pacing and sensing. While the implant region 4 as illustrated may enable one or more electrodes of the dart electrode assembly 12 to be positioned in the ventricular myocardium, it is recognized that a device having the aspects disclosed herein may be implanted at other locations for multiple chamber pacing (e.g., dual- or triple-chamber pacing), single-chamber pacing with multiple chamber sensing, single-chamber pacing and/or sensing, or other clinical therapy and applications as appropriate.


It is to be understood that although device 10 is described herein as including a single dart electrode assembly, the device 10 may include more than one dart electrode assembly placed, or configured to be placed, through the atrial myocardium and the central fibrous body, and into the ventricular myocardium 14, or along the ventricular septum, without perforating entirely through the ventricular endocardial or epicardial surfaces. Additionally, each dart electrode assembly may carry, or include, more than a single electrode at the distal end region, or along other regions (e.g., proximal or central regions), of the shaft.


The cardiac therapy system 2 may also include a separate medical device 50 (depicted diagrammatically in FIG. 1), which may be positioned outside the patient's heart 8 (e.g., subcutaneously) and may be operably coupled to the patient's heart 8 to deliver cardiac therapy thereto. In one example, separate medical device 50 may be an extravascular ICD. In some embodiments, an extravascular ICD may include a defibrillation lead including, or carrying, a defibrillation electrode. A therapy vector may exist between the defibrillation electrode on the defibrillation lead and a housing electrode of the ICD. Further, one or more electrodes of the ICD may also be used for sensing electrical signals related to the patient's heart 8. The ICD may be configured to deliver shock therapy including one or more defibrillation or cardioversion shocks. For example, if an arrhythmia is sensed, the ICD may send a pulse via the electrical lead wires to shock the heart and restore its normal rhythm. In some examples, the ICD may deliver shock therapy without placing electrical lead wires within the heart or attaching electrical wires directly to the heart (subcutaneous ICDs). Examples of extravascular, subcutaneous ICDs that may be used with the system 2 described herein may be described in U.S. Pat. No. 9,278,229 (Reinke et al.), issued 8 Mar. 2016, which is incorporated herein by reference in its entirety.


In the case of shock therapy (e.g., defibrillation shocks provided by the defibrillation electrode of the defibrillation lead), the separate medical device 50 (e.g., extravascular ICD) may include a control circuit that uses a therapy delivery circuit to generate defibrillation shocks having any of a number of waveform properties, including leading-edge voltage, tilt, delivered energy, pulse phases, and the like. The therapy delivery circuit may, for instance, generate monophasic, biphasic, or multiphasic waveforms. Additionally, the therapy delivery circuit may generate defibrillation waveforms having different amounts of energy. For example, the therapy delivery circuit may generate defibrillation waveforms that deliver a total of between approximately 60-80 Joules (J) of energy for subcutaneous defibrillation.


The separate medical device 50 may further include a sensing circuit. The sensing circuit may be configured to obtain electrical signals sensed via one or more combinations of electrodes and to process the obtained signals. The components of the sensing circuit may include analog components, digital components, or a combination thereof. The sensing circuit may, for example, include one or more sense amplifiers, filters, rectifiers, threshold detectors, analog-to-digital converters (ADCs), or the like. The sensing circuit may convert the sensed signals to digital form and provide the digital signals to the control circuit for processing and/or analysis. For example, the sensing circuit may amplify signals from sensing electrodes and may convert the amplified signals to multi-bit digital signals by an ADC, and then provide the digital signals to the control circuit. In one or more embodiments, the sensing circuit may also compare processed signals to a threshold to detect the existence of atrial or ventricular depolarizations (e.g., P- or R-waves) and indicate the existence of the atrial depolarization (e.g., P-waves) or ventricular depolarizations (e.g., R-waves) to the control circuit.


The device 10 and the separate medical device 50 may cooperate to provide cardiac therapy to the patient's heart 8. For example, the device 10 and the separate medical device 50 may be used to detect tachycardia, monitor tachycardia, and/or provide tachycardia-related therapy. For example, the device 10 may communicate with the separate medical device 50 wirelessly to trigger shock therapy using the separate medical device 50. As used herein, “wirelessly” refers to an operative coupling or connection without using a metal conductor between the device 10 and the separate medical device 50. In one example, wireless communication may use a distinctive, signaling, or triggering electrical-pulse provided by the device 10 that conducts through the patient's tissue and is detectable by the separate medical device 50. In another example, wireless communication may use a communication interface (e.g., an antenna) of the device 10 to provide electromagnetic radiation that propagates through patient's tissue and is detectable, for example, using a communication interface (e.g., an antenna) of the separate medical device 50.


With reference to FIG. 2, a cardiac therapy system 402 may include a leaded medical device 408 including one, or a single, implantable lead 410 having a tissue-piercing electrode assembly 12 coupled to a distal end region of the lead and implanted inside the patient's heart 8. The housing 420 of the leaded medical device 408 may be implanted and positioned outside of the patient's heart 8 and be configured to calibrate pacing therapy and/or deliver pacing therapy. The lead 410 may include a right-atrial electrode, and the device 408 may operate as a dual-channel capable device (e.g., pacing and/or sensing in both the right atrium and left ventricle). In some embodiments, the lead 410 may not include a right-atrial electrode. In other words, the leaded medical device 408 may be a single channel device, which may be used for asynchronous, triggered, or another type of single-channel pacing. The leaded medical device 408, using the lead 410, may sense activity or deliver pacing to the left ventricle (LV) when the tissue-piercing electrode assembly 12 is implanted, for example, in the same or similar manner as described with respect to FIG. 1.


With reference to FIG. 3, a cardiac therapy system 404 may include a leaded medical device 418 similar to the leaded medical device 408 of FIG. 2, except that the device 418 includes two implantable leads 410, 412. In particular, the implantable lead 412 may include an electrode (e.g., a right-atrial electrode) coupled to a distal end region of the lead 412 and may be implanted in a different location than lead 410. In some embodiments, lead 412 is implanted in a different region of the right atrium. In some embodiments, each lead 410, 412 may contribute one channel of a dual-channel device 418. For example, lead 410 may sense activity or deliver pacing to the left ventricle (LV) when the tissue-piercing electrode of the tissue-piercing electrode assembly 12 is implanted, for example, in the same or similar manner as described with respect to FIG. 1, and lead 412 may sense activity or deliver pacing to the right atrium (RA).


With reference to FIG. 4, a cardiac therapy system 406 may include a leaded medical device 428 similar to the leaded medical device 418 of FIG. 3 except that device 428 includes three implantable leads 410, 412, 414. In particular, implantable lead 414 may include an electrode (e.g., a right ventricular electrode) coupled to a distal end region of the lead 414 and may be implanted in a different location than leads 410, 412. As illustrated, implantable lead 414 extends from the right atrium (RA) to the right ventricle (RV) through tricuspid valve 6. In some embodiments, lead 414 is implanted in a region of the right ventricle. In some embodiments, each lead 410, 412, 414 may contribute one channel to a multi-channel device 428. For example, lead 410 may sense activity or deliver pacing to the left ventricle (LV) when the tissue-piercing electrode assembly 12 is implanted, for example, in the same or similar manner as described with respect to FIG. 1, lead 412 may sense activity from the delivery of pacing to the RA, and lead 414 may sense activity or deliver pacing to the RV.


In some embodiments, a pacing delay between the RV electrode on lead 414 to pace the RV and the LV electrode on lead 410 to pace the LV (e.g., RV-LV pacing delay, or more generally, VV pacing delay) may be calibrated or optimized, for example, using a separate medical device, such as an electrode apparatus (e.g., ECG belt). Various methods may be used to calibrate or optimize the VV delay. In some embodiments, the medical device 428 may be used to test pacing at a plurality of different VV delays. For example, the RV may be paced ahead of the LV by about 80, 60, 40, and 20 milliseconds (ms) and the LV may be paced ahead of the RV by about 80, 60, 40, and 20 ms, as well as simultaneous RV-LV pacing (e.g., about 0 ms VV pacing delay). The medical device 428 may then be configured, for example, automatically, to select a VV pacing delay that, when used for pacing, corresponds to a minimal electrical dyssynchrony measured using the electrode apparatus. The test pacing at different VV pacing delays may be performed using a particular AV delay, such as a nominal AV delay set by the medical device 428 or at a predetermined optimal AV delay based on patient characteristics.



FIG. 5 is an enlarged conceptual diagram of the intracardiac medical device 10 of FIG. 1 and anatomical structures of the patient's heart 8. In particular, the device 10 is configured to sense electrical activity and/or deliver pacing therapy. The intracardiac device 10 may include a housing 30. The housing 30 may define a hermetically-sealed internal cavity in which internal components of the device 10 reside, such as a sensing circuit, therapy delivery circuit, control circuit, memory, telemetry circuit, other optional sensors, and a power source as generally described in conjunction with FIG. 8. The housing 30 may be formed from an electrically conductive material including titanium or titanium alloy, stainless steel, MP35N (a non-magnetic nickel-cobalt-chromium-molybdenum alloy), platinum alloy, or other bio-compatible metal or metal alloy. In other examples, the housing 30 may be formed from a non-conductive material including ceramic, glass, sapphire, silicone, polyurethane, epoxy, acetyl co-polymer plastics, polyether ether ketone (PEEK), a liquid crystal polymer, or other biocompatible polymer.


In at least one embodiment, the housing 30 may be described as extending between a distal end region 32 and a proximal end region 34 in a generally cylindrical shape to facilitate catheter delivery. In other embodiments, the housing 30 may be prismatic or any other shape to perform the functionality and utility described herein. The housing 30 may include a delivery tool interface member 26, e.g., at the proximal end region 34, for engaging with a delivery tool during implantation of the device 10.


All or a portion of the housing 30 may function as an electrode during cardiac therapy, for example, in sensing and/or pacing. In the example shown, the housing-based electrode 24 is shown to circumscribe a proximal portion (e.g., closer to the proximal end region 34 than the distal end region 32) of the housing 30. When the housing 30 is formed from an electrically conductive material, such as a titanium alloy or other examples listed above, portions of the housing 30 may be electrically insulated by a non-conductive material, such as a coating of parylene, polyurethane, silicone, epoxy, or other biocompatible polymer, leaving one or more discrete areas of conductive material exposed to define the proximal housing-based electrode 24. When the housing 30 is formed from a non-conductive material, such as a ceramic, glass or polymer material, an electrically conductive coating or layer, such as a titanium, platinum, stainless steel, or alloys thereof, may be applied to one or more discrete areas of the housing 30 to form the proximal housing-based electrode 24. In other examples, the proximal housing-based electrode 24 may be a component, such as a ring electrode, that is mounted or assembled onto the housing 30. The proximal housing-based electrode 24 may be electrically coupled to internal circuitry of the device 10, e.g., via the electrically-conductive housing 30 or an electrical conductor when the housing 30 is a non-conductive material.


In the example shown, the proximal housing-based electrode 24 is located nearer to the housing proximal end region 34 than the housing distal end region 32 and is therefore referred to as a “proximal housing-based electrode” 24. In other examples, however, the housing-based electrode 24 may be located at other positions along the housing 30, e.g., more distal relative to the position shown.


At the distal end region 32, the device 10 may include a distal fixation and electrode assembly 36, which may include one or more fixation members 20 and one or more dart electrode assemblies 12 of equal or unequal length. In one example, a single dart electrode assembly 12 includes a shaft 40 extending distally away from the housing distal end region 32 and one or more electrode elements, such as a tip electrode 42 at or near the free, distal end region of the shaft 40. The tip electrode 42 may have a conical or hemispherical distal tip with a relatively narrow tip-diameter (e.g., less than about 1 millimeter (mm)) for penetrating into and through tissue layers without using a sharpened tip or needle-like tip having sharpened or beveled edges.


The shaft 40 of the dart electrode assembly 12 may be a normally straight member and may be rigid. In other embodiments, the shaft 40 may be described as being relatively stiff but still possessing limited flexibility in lateral directions. Further, the shaft 40 may be non-rigid to allow some lateral flexing with heart motion. However, in a relaxed state, when not subjected to any external forces, the shaft 40 may maintain a straight position as shown to hold the tip electrode 42 spaced apart from the housing distal end region 32 at least by the height 47 of the shaft 40. In other words, the dart electrode assembly 12 may be described as resilient.


The dart electrode assembly 12 may be configured to pierce through one or more tissue layers to position the tip electrode 42 within a desired tissue layer, e.g., the ventricular myocardium. As such, the height 47, or length, of the shaft 40 may correspond to the expected pacing site depth, and the shaft 40 may have a relatively high compressive strength along its longitudinal axis to resist bending in a lateral or radial direction when pressed against the implant region 4. If a second dart electrode assembly 12 is employed, its length may be unequal to the expected pacing site depth and may be configured to act as an indifferent electrode for delivering of pacing energy to the tissue. A longitudinal axial force may be applied against the tip electrode 42, e.g., by applying a longitudinal pushing force to the proximal end region 34 of the housing 30, to advance the dart electrode assembly 12 into the tissue within the target implant region. The shaft 40 may be described as longitudinally non-compressive and/or elastically deformable in lateral or radial directions when subjected to lateral or radial forces to allow temporary flexing, e.g., with tissue motion, but may return to its normally straight position when lateral forces diminish. When the shaft 40 is not exposed to any external force, or to only a force along its longitudinal central axis, the shaft 40 may retain a straight, linear position as shown.


The one or more fixation members 20 may be described as one or more “tines” having a normally curved position. The tines may be held in a distally extended position within a delivery tool. The distal tips of tines may penetrate the heart tissue to a limited depth before elastically curving back proximally into the normally curved position (shown) upon release from the delivery tool. Further, the fixation members 20 may include one or more aspects described in, for example, U.S. Pat. No. 9,675,579 (Grubac et al.), issued 13 Jun. 2017, and U.S. Pat. No. 9,119,959 (Rys et al.), issued 1 Sep. 2015, each of which is incorporated herein by reference in its entirety.


In some examples, the distal fixation and electrode assembly 36 includes a distal housing-based electrode 22. In the case of using the device 10 as a pacemaker for multiple chamber pacing (e.g., dual- or triple-chamber pacing) and sensing, the tip electrode 42 may be used as a cathode electrode paired with the proximal housing-based electrode 24 serving as a return anode electrode. Alternatively, the distal housing-based electrode 22 may serve as a return anode electrode paired with tip electrode 42 for sensing ventricular signals and delivering ventricular pacing pulses. In other examples, the distal housing-based electrode 22 may be a cathode electrode for sensing atrial signals and delivering pacing pulses to the atrial myocardium in the target implant region 4. When the distal housing-based electrode 22 serves as an atrial cathode electrode, the proximal housing-based electrode 24 may serve as the return anode paired with the tip electrode 42 for ventricular pacing and sensing and as the return anode paired with the distal housing-based electrode 22 for atrial pacing and sensing.


As shown in this illustration, the target implant region 4 in some pacing applications is along the atrial endocardium 18, generally inferior to the AV node 15 and the His bundle 5. The dart electrode assembly 12 may at least partially define the height 47, or length, of the shaft 40 for penetrating through the atrial endocardium 18 in the target implant region 4, through the central fibrous body 16, and into the ventricular myocardium 14 without perforating through the ventricular endocardial surface 17. When the height 47, or length, of the dart electrode assembly 12 is fully advanced into the target implant region 4, the tip electrode 42 may rest within the ventricular myocardium 14, and the distal housing-based electrode 22 may be positioned in intimate contact with or close proximity to the atrial endocardium 18. The dart electrode assembly 12 may have a total combined height 47, or length, of the tip electrode 42 and the shaft 40 from about 3 mm to about 8 mm in various examples. The diameter of the shaft 40 may be less than about 2 mm, and may be about 1 mm or less, or even about 0.6 mm or less.


The device 10 may include an acoustic or motion detector 11 within the housing 30. The acoustic or motion detector 11 may be operably coupled to one or more a control circuit 80 (FIG. 8), a sensing circuit 86 (FIG. 8), or therapy delivery circuit 84 (FIG. 8). In some embodiments, the acoustic or motion detector 11 may be used with methods 600, 650, or 800 as shown in FIGS. 10-12. The acoustic or motion detector 11 may be used to monitor mechanical activity, such as atrial mechanical activity (e.g., an atrial contraction) and/or ventricular mechanical activity (e.g., a ventricular contraction). In some embodiments, the acoustic or motion detector 11 may be used to detect right-atrial mechanical activity. A non-limiting example of an acoustic or motion detector 11 includes an accelerometer or microphone. In some embodiments, the mechanical activity detected by the acoustic or motion detector 11 may be used to supplement or replace electrical activity detected by one or more of the electrodes of the device 10. For example, the acoustic or motion detector 11 may be used in addition to, or as an alternative to, the proximal housing-based electrode 24.


The acoustic or motion detector 11 may also be used for rate response detection or to provide a rate-responsive 1 MB. Various techniques related to rate response may be described in U.S. Pat. No. 5,154,170 (Bennett et al.), issued Oct. 13, 1992, entitled “Optimization for rate responsive cardiac pacemaker,” and U.S. Pat. No. 5,562,711 (Yerich et al.), issued Oct. 8, 1996, entitled “Method and apparatus for rate-responsive cardiac pacing,” each of which is incorporated herein by reference in its entirety.


In various embodiments, acoustic or motion detector 11 (or motion sensor) may be used as an HS sensor and may be implemented as a microphone or a 1-, 2- or 3-axis accelerometer. In one embodiment, the acoustical sensor is implemented as a piezoelectric crystal mounted within an implantable medical device housing and responsive to the mechanical motion associated with heart sounds. The piezoelectric crystal may be a dedicated HS sensor or may be used for multiple functions. In the illustrative embodiment shown, the acoustical sensor is embodied as a piezoelectric crystal that is also used to generate a patient alert signal in the form of a perceptible vibration of the IMD housing. Upon detecting an alert condition, control circuit 80 may cause patient alert control circuitry to generate an alert signal by activating the piezoelectric crystal.


The control circuit may be used to control whether the piezoelectric crystal is used in a “listening mode” to sense HS signals by HS sensing circuitry or in an “output mode” to generate a patient alert. During patient alert generation, HS sensing circuitry may be temporarily decoupled from the HS sensor by control circuitry.


Examples of other embodiments of acoustical sensors that may be adapted for implementation with the techniques of the present disclosure may be described generally in U.S. Pat. No. 4,546,777 (Groch, et al.), U.S. Pat. No. 6,869,404 (Schulhauser, et al.), U.S. Pat. No. 5,554,177 (Kieval, et al.), and U.S. Pat. No. 7,035,684 (Lee, et al.), each of which is incorporated herein by reference in its entirety.


Various types of acoustical sensors may be used. The acoustical sensor may be any implantable or external sensor responsive to one or more of the heart sounds generated as described in the foregoing and thereby produces an analog electrical signal correlated in time and amplitude to the heart sounds. The analog signal may be then be processed, which may include digital conversion, by the HS sensing module to obtain HS parameters, such as amplitudes or relative time intervals, as derived by HS sensing module or control circuit 80. The acoustical sensor and HS sensing module may be incorporated in an IMD capable of delivering CRT or another cardiac therapy being optimized or may be implemented in a separate device having wired or wireless communication with IMD or an external programmer or computer used during a pace-parameter optimization procedure as described herein.



FIG. 6 is a two-dimensional (2D) ventricular map 300 of a patient's heart (e.g., a top-down view) showing the left ventricle 320 in a standard 17 segment view and the right ventricle 322. The map 300 includes a plurality of areas 326 corresponding to different regions of a human heart. As illustrated, the areas 326 are numerically labeled 1-17 (e.g., which correspond to 17 segments of the left ventricle of a human heart). Areas 326 of the map 300 may include basal anterior area 1, basal anteroseptal area 2, basal inferoseptal area 3, basal inferior area 4, basal inferolateral area 5, basal anterolateral area 6, mid-anterior area 7, mid-anteroseptal area 8, mid-inferoseptal area 9, mid-inferior area 10, mid-inferolateral area 11, mid-anterolateral area 12, apical anterior area 13, apical septal area 14, apical inferior area 15, apical lateral area 16, and apex area 17. The inferoseptal and anteroseptal areas of the right ventricle 322 are also illustrated, as well as the right bundle branch (RBB) and left bundle branch (LBB).


In some embodiments, any of the tissue-piercing electrodes of the present disclosure may be implanted in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart. In particular, the tissue-piercing electrode may be implanted from the triangle of Koch region of the right atrium through the right-atrial endocardium and central fibrous body.


Once implanted, the tissue-piercing electrode may be positioned in the target implant region 4 (FIGS. 1-5), such as the basal region, septal region, or basal-septal region of the left ventricular myocardium. With reference to map 300, the basal region includes one or more of the basal anterior area 1, basal anteroseptal area 2, basal inferoseptal area 3, basal inferior area 4, mid-anterior area 7, mid-anteroseptal area 8, mid-inferoseptal area 9, and mid-inferior area 10. With reference to map 300, the septal region includes one or more of the basal anteroseptal area 2, basal anteroseptal area 3, mid-anteroseptal area 8, mid-inferoseptal area 9, and apical septal area 14.


In some embodiments, the tissue-piercing electrode may be positioned in the basal septal region of the left ventricular myocardium when implanted. The basal septal region may include one or more of the basal anteroseptal area 2, basal inferoseptal area 3, mid-anteroseptal area 8, and mid-inferoseptal area 9.


In some embodiments, the tissue-piercing electrode may be positioned in the inferior/posterior basal septal region of the left ventricular myocardium when implanted. In some cases, the inferior/posterior basal septal region may be described as the high inferior/posterior basal septal region. In some embodiments, the tissue-piercing electrode may be positioned in the posterior superior process of the left ventricle. In some embodiments, the tissue-piercing electrode may be positioned in the high inferior/posterior basal septal region of the left ventricular myocardium when implanted. The inferior/posterior basal septal region of the left ventricular myocardium may include a portion of one or more of the basal inferoseptal area 3 and mid-inferoseptal area 9 (e.g., the basal inferoseptal area only, the mid-inferoseptal area only, or both the basal inferoseptal area and the mid-inferoseptal area). For example, the inferior/posterior basal septal region may include region 324 illustrated generally as a dashed-line boundary. As shown, the dashed line boundary represents an approximation of where the inferior/posterior basal septal region is located, which may take a somewhat different shape or size depending on the particular application.



FIG. 7 is a three-dimensional perspective view of the device 10 capable of calibrating pacing therapy and/or delivering pacing therapy. As shown, the distal fixation and electrode assembly 36 includes the distal housing-based electrode 22 implemented as a ring electrode. The distal housing-based electrode 22 may be positioned in intimate contact with or operative proximity to atrial tissue when fixation member tines 20a, 20b, and 20c of the fixation members 20, engage with the atrial tissue. The tines 20a, 20b, and 20c, which may be elastically deformable, may be extended distally during delivery of device 10 to the implant site. For example, the tines 20a, 20b, and 20c may pierce the atrial endocardial surface as the device 10 is advanced out of the delivery tool and flex back into their normally curved position (as shown) when no longer constrained within the delivery tool. As the tines 20a, 20b, and 20c curve back into their normal position, the fixation member 20 may pull the distal fixation member and electrode assembly 36 toward the atrial endocardial surface. As the distal fixation member and electrode assembly 36 is pulled toward the atrial endocardium, the tip electrode 42 may be advanced through the atrial myocardium and the central fibrous body and into the ventricular myocardium. The distal housing-based electrode 22 may then be positioned against the atrial endocardial surface.


The distal housing-based electrode 22 may include a ring formed of an electrically conductive material, such as titanium, platinum, iridium, or alloys thereof. The distal housing-based electrode 22 may be a single, continuous ring electrode. In other examples, portions of the ring may be coated with an electrically insulating coating, e.g., parylene, polyurethane, silicone, epoxy, or another insulating coating, to reduce the electrically conductive surface area of the ring electrode. For instance, one or more sectors of the ring may be coated to separate two or more electrically conductive exposed surface areas of the distal housing-based electrode 22. Reducing the electrically conductive surface area of the distal housing-based electrode 22, e.g., by covering portions of the electrically conductive ring with an insulating coating, may increase the electrical impedance of the distal housing-based electrode 22, and thereby, reduce the current delivered during a pacing pulse that captures the myocardium, e.g., the atrial myocardial tissue. A lower current drain may conserve the power source, e.g., one or more rechargeable or non-rechargeable batteries, of the device 10.


As described above, the distal housing-based electrode 22 may be configured as an atrial cathode electrode for delivering pacing pulses to the atrial tissue at the implant site in combination with the proximal housing-based electrode 24 as the return anode. The electrodes 22 and 24 may be used to sense atrial P-waves for use in controlling atrial pacing pulses (delivered in the absence of a sensed P-wave) and for controlling atrial-synchronized ventricular pacing pulses delivered using the tip electrode 42 as a cathode and the proximal housing-based electrode 24 as the return anode. In other examples, the distal housing-based electrode 22 may be used as a return anode in conjunction with the cathode tip electrode 42 for ventricular pacing and sensing.



FIG. 8 is a block diagram of circuitry that may be enclosed within the housing 30 (FIG. 7) to provide the functions of calibrating pacing therapy and/or delivering pacing therapy, using the device 10 according to one example or within the housings of any other medical devices described herein (e.g., device 408 of FIG. 2, device 418 of FIG. 3, device 428 of FIG. 4, or device 710 of FIG. 9). The separate medical device 50 (FIGS. 1-4) may include some or all the same components, which may be configured in a similar manner. The electronic circuitry enclosed within housing 30 may include software, firmware, and hardware that cooperatively monitor atrial and ventricular electrical cardiac signals, determine when a cardiac therapy is necessary, and/or deliver electrical pulses to the patient's heart according to programmed therapy mode and pulse control parameters. The electronic circuitry may include a control circuit 80 (e.g., including processing circuitry), a memory 82, a therapy delivery circuit 84, a sensing circuit 86, and/or a telemetry circuit 88. In some examples, the device 10 includes one or more sensors 90 for producing a signal that is correlated to a physiological function, state, or condition of the patient, such as a patient activity sensor, for use in determining a need for pacing therapy and/or controlling a pacing rate. For example, one sensor 90 may include an inertial measurement unit (e.g., accelerometer) to measure motion.


The power source 98 may provide power to the circuitry of the device 10 including each of the components 80, 82, 84, 86, 88, 90 as needed. The power source 98 may include one or more energy storage devices, such as one or more rechargeable or non-rechargeable batteries. The connections (not shown) between the power source 98 and each of the components, such as sensors 80, 82, 84, 86, 88, 90, may be understood from the general block diagram illustrated to one of ordinary skill in the art. For example, the power source 98 may be coupled to one or more charging circuits included in the therapy delivery circuit 84 for providing the power used to charge holding capacitors included in the therapy delivery circuit 84 that are discharged at appropriate times under the control of the control circuit 80 for delivering pacing pulses, e.g., according to a dual chamber pacing mode such as DDI(R). The power source 98 may also be coupled to components of the sensing circuit 86, such as sense amplifiers, analog-to-digital converters, switching circuitry, etc., sensors 90, the telemetry circuit 88, and the memory 82 to provide power to the various circuits.


The functional blocks shown represent functionality included in the device 10 and may include any discrete and/or integrated electronic circuit components that implement analog, and/or digital circuits capable of producing the functions attributed to the medical device 10 herein. The various components may include processing circuitry, such as an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group), and memory that execute one or more software or firmware programs, a combinational logic circuit, state machine, or other suitable components or combinations of components that provide the described functionality. The particular form of software, hardware, and/or firmware employed to implement the functionality disclosed herein will be determined primarily by the particular system architecture employed in the medical device and by the particular detection and therapy delivery methodologies employed by the medical device.


The memory 82 may include any volatile, non-volatile, magnetic, or electrical non-transitory computer-readable storage media, such as random-access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, or any other memory device. Furthermore, the memory 82 may include a non-transitory computer-readable media storing instructions that, when executed by one or more processing circuits, cause the control circuit 80 and/or other processing circuitry to calibrate pacing therapy and/or perform a single, dual, or triple-chamber calibrated pacing therapy (e.g., single or multiple chamber pacing), or other cardiac therapy functions (e.g., sensing or delivering therapy), attributed to the device 10. The non-transitory computer-readable media storing the instructions may include any of the media listed above.


The control circuit 80 may communicate, e.g., via a data bus, with the therapy delivery circuit 84 and the sensing circuit 86 for sensing cardiac electrical signals and controlling delivery of cardiac electrical stimulation therapies in response to sensed cardiac events, e.g., P-waves and R-waves, or the absence thereof. The tip electrode 42, the distal housing-based electrode 22, and the proximal housing-based electrode 24 may be electrically coupled to the therapy delivery circuit 84 for delivering electrical stimulation pulses to the patient's heart and to the sensing circuit 86 and for sensing cardiac electrical signals.


The sensing circuit 86 may include an atrial (A) sensing channel 87 and a ventricular (V) sensing channel 89. The distal housing-based electrode 22 and the proximal housing-based electrode 24 may be coupled to the atrial sensing channel 87 for sensing atrial signals, e.g., P-waves attendant to the depolarization of the atrial myocardium. In examples that include two or more selectable distal housing-based electrodes, the sensing circuit 86 may include switching circuitry for selectively coupling one or more of the available distal housing-based electrodes to cardiac event detection circuitry included in the atrial sensing channel 87. Switching circuitry may include a switch array, switch matrix, multiplexer, or any other type of switching device suitable to selectively couple components of the sensing circuit 86 to selected electrodes. The tip electrode 42 and the proximal housing-based electrode 24 may be coupled to the ventricular sensing channel 89 for sensing ventricular signals, e.g., R-waves attendant to the depolarization of the ventricular myocardium.


Each of the atrial sensing channel 87 and the ventricular sensing channel 89 may include cardiac event detection circuitry for detecting P-waves and R-waves, respectively, from the cardiac electrical signals received by the respective sensing channels. The cardiac event detection circuitry included in each of the channels 87 and 89 may be configured to amplify, filter, digitize, and rectify the cardiac electrical signal received from the selected electrodes to improve the signal quality for detecting cardiac electrical events. The cardiac event detection circuitry within each channel 87 and 89 may include one or more sense amplifiers, filters, rectifiers, threshold detectors, comparators, analog-to-digital converters (ADCs), timers, or other analog or digital components. A cardiac event sensing threshold, e.g., a P-wave sensing threshold and an R-wave sensing threshold, may be automatically adjusted by each respective sensing channel 87 and 89 under the control of the control circuit 80, e.g., based on timing intervals and sensing threshold values determined by the control circuit 80, stored in the memory 82, and/or controlled by hardware, firmware, and/or software of the control circuit 80 and/or the sensing circuit 86.


Upon detecting a cardiac electrical event based on a sensing threshold crossing, the sensing circuit 86 may produce a sensed event signal that is passed to the control circuit 80. For example, the atrial sensing channel 87 may produce a P-wave sensed event signal in response to a P-wave sensing threshold crossing. The ventricular sensing channel 89 may produce an R-wave sensed event signal in response to an R-wave sensing threshold crossing. The sensed event signals may be used by the control circuit 80 for setting pacing escape interval timers that control the basic time intervals used for scheduling cardiac pacing pulses. A sensed event signal may trigger or inhibit a pacing pulse depending on the particular programmed pacing mode. For example, a P-wave sensed event signal received from the atrial sensing channel 87 may cause the control circuit 80 to inhibit a scheduled atrial pacing pulse and schedule a ventricular pacing pulse at a programmed atrioventricular (AV) pacing interval. If an R-wave is sensed before the AV pacing interval expires, the ventricular pacing pulse may be inhibited. If the AV pacing interval expires before the control circuit 80 receives an R-wave sensed event signal from the ventricular sensing channel 89, the control circuit 80 may use the therapy delivery circuit 84 to deliver the scheduled ventricular pacing pulse synchronized to the sensed P-wave.


In some examples, the device 10 may be configured to deliver a variety of pacing therapies including bradycardia pacing, cardiac resynchronization therapy, post-shock pacing, and/or tachycardia-related therapy, such as ATP, among others. For example, the device 10 may be configured to detect non-sinus tachycardia and deliver ATP. The control circuit 80 may determine cardiac event time intervals, e.g., P-P intervals between consecutive P-wave sensed event signals received from the atrial sensing channel 87, R-R intervals between consecutive R-wave sensed event signals received from the ventricular sensing channel 89, and P-R and/or R-P intervals received between P-wave sensed event signals and R-wave sensed event signals. These intervals may be compared to tachycardia detection intervals for detecting non-sinus tachycardia. Tachycardia may be detected in a given heart chamber based on a threshold number of tachycardia detection intervals being detected.


The therapy delivery circuit 84 may include atrial pacing circuit 83 and ventricular pacing circuit 85. Each pacing circuit 83, 85 may include charging circuitry, one or more charge storage devices such as one or more low voltage holding capacitors, an output capacitor, and/or switching circuitry that controls when the holding capacitor(s) are charged and discharged across the output capacitor to deliver a pacing pulse to the pacing electrode vector coupled to respective pacing circuits 83, 85. The tip electrode 42 and the proximal housing-based electrode 24 may be coupled to the ventricular pacing circuit 85 as a bipolar cathode and anode pair for delivering ventricular pacing pulses, e.g., upon expiration of an AV or VV pacing interval set by the control circuit 80 for providing atrial-synchronized ventricular pacing and a basic lower ventricular pacing rate.


The atrial pacing circuit 83 may be coupled to the distal housing-based electrode 22 and the proximal housing-based electrode 24 to deliver atrial pacing pulses. The control circuit 80 may set one or more atrial pacing intervals according to a programmed lower pacing rate or a temporary lower rate set according to a rate-responsive sensor-indicated pacing rate. Atrial pacing circuit may be controlled to deliver an atrial pacing pulse if the atrial pacing interval expires before a P-wave sensed event signal is received from the atrial sensing channel 87. The control circuit 80 starts an AV pacing interval in response to a delivered atrial pacing pulse to provide synchronized multiple chamber pacing (e.g., dual- or triple-chamber pacing).


Charging of a holding capacitor of the atrial or ventricular pacing circuit 83, 85 to a programmed pacing voltage amplitude and discharging of the capacitor for a programmed pacing pulse width may be performed by the therapy delivery circuit 84 according to control signals received from the control circuit 80. For example, a pace timing circuit included in the control circuit 80 may include programmable digital counters set by a microprocessor of the control circuit 80 for controlling the basic pacing time intervals associated with various single-chamber or multiple-chamber pacing (e.g., dual- or triple-chamber pacing) modes or anti-tachycardia pacing sequences. The microprocessor of the control circuit 80 may also set the amplitude, pulse width, polarity, or other characteristics of the cardiac pacing pulses, which may be based on programmed values stored in the memory 82.


The device 10 may include other sensors 90 for sensing signals from the patient for use in determining a need for and/or controlling electrical stimulation therapies delivered by the therapy delivery circuit 84. In some examples, a sensor indicative of a need for increased cardiac output may include a patient activity sensor, such as an accelerometer. An increase in the metabolic demand of the patient due to increased activity as indicated by the patient activity sensor may be determined by the control circuit 80 for use in determining a sensor-indicated pacing rate.


Control parameters utilized by the control circuit 80 for sensing cardiac events and controlling pacing therapy delivery may be programmed into the memory 82 via the telemetry circuit 88, which may also be described as a communication interface. The telemetry circuit 88 includes a transceiver and antenna for communicating with an external device, such as a programmer or home monitor, using radio frequency communication or other communication protocols. The control circuit 80 may use the telemetry circuit 88 to receive downlink telemetry from and send uplink telemetry to the external device. In some cases, the telemetry circuit 88 may be used to transmit and receive communication signals to/from another medical device implanted in the patient.



FIG. 9 is a three-dimensional perspective view of another leadless intracardiac medical device 710 that may be configured for calibrating pacing therapy and/or delivering pacing therapy for single or multiple chamber cardiac therapy (e.g., dual- or triple-chamber cardiac therapy) according to another example. The device 710 may include a housing 730 having an outer sidewall 735, shown as a cylindrical outer sidewall, extending from a housing distal end region 732 to a housing proximal end region 734. The housing 730 may enclose electronic circuitry configured to perform single- or multiple-chamber cardiac therapy, including atrial and ventricular cardiac electrical signal sensing and pacing the atrial and ventricular chambers. The delivery tool interface member 726 is shown on the housing proximal end region 734.


A distal fixation and electrode assembly 736 may be coupled to the housing distal end region 732. The distal fixation and electrode assembly 736 may include an electrically insulative distal member 772 coupled to the housing distal end region 732. The tissue-piercing electrode assembly 712 extends away from the housing distal end region 732, and multiple non-tissue piercing electrodes 722 may be coupled directly to the insulative distal member 772. The tissue-piercing electrode assembly 712 extends in a longitudinal direction away from the housing distal end region 732 and may be coaxial with the longitudinal center axis 731 of the housing 730.


The distal tissue-piercing electrode assembly 712 may include an electrically insulated shaft 740 and a tip electrode 742 (e.g., tissue-piercing electrode). In some examples, the tissue-piercing electrode assembly 712 is an active fixation member including a helical shaft 740 and a distal cathode tip electrode 742. The helical shaft 740 may extend from a shaft distal end region 743 to a shaft proximal end region 741, which may be directly coupled to the insulative distal member 772. The helical shaft 740 may be coated with an electrically insulating material, e.g., parylene or other examples listed herein, to avoid sensing or stimulation of cardiac tissue along the shaft length. The tip electrode 742 is at the shaft distal end region 743 and may serve as a cathode electrode for delivering ventricular pacing pulses and sensing ventricular electrical signals using the proximal housing-based electrode 724 as a return anode when the tip electrode 742 is advanced into ventricular tissue. The proximal housing-based electrode 724 may be a ring electrode circumscribing the housing 730 and may be defined by an uninsulated portion of the longitudinal sidewall 735. Other portions of the housing 730 not serving as an electrode may be coated with an electrically insulating material as described above in conjunction with FIG. 7.


Using two or more tissue-piercing electrodes (e.g., of any type) penetrating into the LV myocardium may be used for more localized pacing capture and may mitigate ventricular pacing spikes affecting capturing atrial tissue. In some embodiments, multiple tissue-piercing electrodes may include two or more dart-type electrode assemblies (e.g., electrode assembly 12 of FIG. 7), a helical-type electrode (e.g., electrode assembly 712) Non-limiting examples of multiple tissue-piercing electrodes include two dart electrode assemblies, a helix electrode with a dart electrode assembly extending therethrough (e.g., through the center), or dual intertwined helixes. Multiple tissue-piercing electrodes may also be used for bipolar or multi-polar pacing.


In some embodiments, one or more tissue-piercing electrodes (e.g., of any type) that penetrate into the LV myocardium may be a multi-polar tissue-piercing electrode. A multi-polar tissue-piercing electrode may include one or more electrically active and electrically separate elements, which may enable bipolar or multi-polar pacing from one or more tissue-piercing electrodes.


Multiple non-tissue piercing electrodes 722 may be provided along a periphery of the insulative distal member 772, peripheral to the tissue-piercing electrode assembly 712. The insulative distal member 772 may define a distal-facing surface 738 of the device 710 and a circumferential surface 739 that circumscribes the device 710 adjacent to the housing longitudinal sidewall 735. Non-tissue piercing electrodes 722 may be formed of an electrically conductive material, such as titanium, platinum, iridium, or alloys thereof. In the illustrated embodiment, six non-tissue piercing electrodes 722 are spaced apart radially at equal distances along the outer periphery of insulative distal member 772. However, two or more non-tissue piercing electrodes 722 may be provided.


Non-tissue piercing electrodes 722 may be discrete components each retained within a respective recess 774 in the insulative member 772 sized and shaped to mate with the non-tissue piercing electrode 722. In other examples, the non-tissue piercing electrodes 722 may each be an uninsulated, exposed portion of a unitary member mounted within or on the insulative distal member 772. Intervening portions of the unitary member not functioning as an electrode may be insulated by the insulative distal member 772 or, if exposed to the surrounding environment, may be coated with an electrically insulating coating, e.g., parylene, polyurethane, silicone, epoxy, or another insulating coating.


When the tissue-piercing electrode assembly 712 is advanced into cardiac tissue, at least one non-tissue piercing electrode 722 may be positioned against, in intimate contact with, or in operative proximity to, a cardiac tissue surface for delivering pulses and/or sensing cardiac electrical signals produced by the patient's heart. For example, non-tissue piercing electrodes 722 may be positioned in contact with right-atrial endocardial tissue for pacing and sensing in the atrium when the tissue-piercing electrode assembly 712 is advanced into the atrial tissue and through the central fibrous body until the distal tip electrode 742 is positioned in direct contact with ventricular tissue, e.g., ventricular myocardium and/or a portion of the ventricular conduction system.


Non-tissue piercing electrodes 722 may be coupled to the therapy delivery circuit 84 and the sensing circuit 86 (see FIG. 8) enclosed by the housing 730 to function collectively as a cathode electrode for delivering atrial pacing pulses and for sensing atrial electrical signals, e.g., P-waves, in combination with the proximal housing-based electrode 724 as a return anode. Switching circuitry included in the sensing circuit 86 may be activated under the control of the control circuit 80 to couple one or more of the non-tissue piercing electrodes to the atrial sensing channel 87. Distal, non-tissue piercing electrodes 722 may be electrically isolated from each other so that each individual one of the electrodes 722 may be individually selected by switching circuitry included in the therapy delivery circuit 84 to serve alone or in a combination of two or more of the electrodes 722 as an atrial cathode electrode. Switching circuitry included in the therapy delivery circuit 84 may be activated under the control of the control circuit 80 to couple one or more of the non-tissue piercing electrodes 722 to the atrial pacing circuit 83. Two or more of the non-tissue piercing electrodes 722 may be selected at a time to operate as a multi-point atrial cathode electrode.


Certain non-tissue piercing electrodes 722 selected for atrial pacing and/or atrial sensing may be selected based on atrial capture threshold tests, electrode impedance, P-wave signal strength in the cardiac electrical signal, or other factors. For example, a single one or any combination of two or more individual non-tissue piercing electrodes 722 functioning as a cathode electrode that provides an optimal combination of a low pacing capture threshold amplitude and relatively high electrode impedance may be selected to achieve reliable atrial pacing using minimal current drain from the power source 98.


In some instances, the distal-facing surface 738 may uniformly contact the atrial endocardial surface when the tissue-piercing electrode assembly 712 anchors the housing 730 at the implant site. In that case, all the electrodes 722 may be selected together to form the atrial cathode. Alternatively, every other one of the electrodes 722 may be selected together to form a multi-point atrial cathode having a higher electrical impedance that is still uniformly distributed along the distal-facing surface 738. Alternatively, a subset of one or more electrodes 722 along one side of the insulative distal member 772 may be selected to provide pacing at a desired site that achieves the lowest pacing capture threshold due to the relative location of the electrodes 722 to the atrial tissue being paced.


In other instances, the distal-facing surface 738 may be oriented at an angle relative to the adjacent endocardial surface depending on the positioning and orientation at which the tissue-piercing electrode assembly 712 enters the cardiac tissue. In this situation, one or more of the non-tissue piercing electrodes 722 may be positioned in contact with the adjacent endocardial tissue closer than other non-tissue piercing electrodes 722, which may be angled away from the endocardial surface. By providing multiple non-tissue piercing electrodes along the periphery of the insulative distal member 772, the angle of the tissue-piercing electrode assembly 712 and the housing distal end region 732 relative to the cardiac surface, e.g., the right-atrial endocardial surface, may not be required to be substantially parallel. Anatomical and positional differences may cause the distal-facing surface 738 to be angled or oblique to the endocardial surface, however, multiple non-tissue piercing electrodes 722 distributed along the periphery of the insulative distal member 772 increase the likelihood of good contact between one or more electrodes 722 and the adjacent cardiac tissue to promote acceptable pacing thresholds and reliable cardiac event sensing using at least a subset of multiple electrodes 722. Contact or fixation circumferentially along the entire periphery of the insulative distal member 772 may not be required.


The non-tissue piercing electrodes 722 are shown to each include a first portion 722a extending along the distal-facing surface 738 and a second portion 722b extending along the circumferential surface 739. The first portion 722a and the second portion 722b may be continuous, exposed surfaces such that the active electrode surface wraps around a peripheral edge 776 of the insulative distal member 772 that joins the distal facing surface 738 and the circumferential surface 739. The non-tissue piercing electrodes 722 may include one or more of the electrodes 722 along the distal-facing surface 738, one or more electrodes along the circumferential surface 739, one or more electrodes each extending along both of the distal-facing surface 738 and the circumferential surface 739, or any combination thereof. The exposed surface of each of the non-tissue piercing electrodes 722 may be flush with respective distal-facing surfaces 738 and/or circumferential surfaces. In other examples, each of the non-tissue piercing electrodes 722 may have a raised surface that protrudes from the insulative distal member 772. Any raised surface of the electrodes 722, however, may define a smooth or rounded, non-tissue piercing surface.


The distal fixation and electrode assembly 736 may seal the distal end region of the housing 730 and may provide a foundation on which the electrodes 722 are mounted. The electrodes 722 may be referred to as housing-based electrodes. The electrodes 722 may not be carried by a shaft or other extension that extends the active electrode portion away from the housing 730, like the distal tip electrode 742 residing at the distal tip of the helical shaft 740 extending away from the housing 730. Other examples of non-tissue piercing electrodes presented herein that are coupled to a distal-facing surface and/or a circumferential surface of an insulative distal member include the distal housing-based ring electrode 22 (FIG. 7), the distal housing-based ring electrode extending circumferentially around the assembly 36 (FIG. 7), button electrodes, other housing-based electrodes, and other circumferential ring electrodes. Any non-tissue piercing electrodes directly coupled to a distal insulative member, peripherally to a central tissue-piercing electrode, may be provided to function individually, collectively, or in any combination as a cathode electrode for delivering pacing pulses to adjacent cardiac tissue. When a ring electrode, such as the distal ring electrode 22 and/or a circumferential ring electrode, is provided, portions of the ring electrode may be electrically insulated by a coating to provide multiple distributed non-tissue piercing electrodes along the distal-facing surface and/or the circumferential surface of the insulative distal member.


The non-tissue piercing electrodes 722 and other examples listed above are expected to provide more reliable and effective atrial pacing and sensing than a tissue-piercing electrode provided along the distal fixation and electrode assembly 736. The atrial chamber walls are relatively thin compared to ventricular chamber walls. A tissue-piercing atrial cathode electrode may extend too deep within the atrial tissue leading to inadvertent sustained or intermittent capture of ventricular tissue. A tissue-piercing atrial cathode electrode may lead to interference with sensing atrial signals due to ventricular signals having a larger signal strength in the cardiac electrical signal received via tissue-piercing atrial cathode electrodes that are closer in physical proximity to the ventricular tissue. The tissue-piercing electrode assembly 712 may be securely anchored into ventricular tissue for stabilizing the implant position of the device 710 and providing reasonable certainty that the tip electrode 742 is sensing and pacing in ventricular tissue while the non-tissue piercing electrodes 722 are reliably pacing and sensing in the atrium. When the device 710 is implanted in the target implant region 4, e.g., as shown in FIG. 1 the ventricular septum, the tip electrode 742 may reach left ventricular tissue for pacing of the left ventricle while the non-tissue piercing electrodes 722 provide pacing and sensing in the right atrium. The tissue-piercing electrode assembly 712 may be in the range of about 4 to about 8 mm in length from the distal-facing surface 738 to reach left ventricular tissue. In some instances, the device 710 may achieve four-chamber pacing by delivering atrial pacing pulses from the atrial pacing circuit 83 via the non-tissue piercing electrodes 722 in the target implant region 4 to achieve bi-atrial (right and left atrial) capture and by delivering ventricular pacing pulses from the ventricular pacing circuit 85 via the tip electrode 742 advanced into ventricular tissue from the target implant region 4 to achieve biventricular (right and left ventricular) capture.



FIG. 10 shows an illustrative method 600 of detecting atrial activity, for example, using the acoustic or motion detector 11 of FIG. 5, which may be used to represent physiological response information. In particular, method 600 may include detecting an atrial contraction based on analysis of a motion signal (e.g., provided by the motion detector 11) that may be performed by an IMD implanted in the patient's heart. In some embodiments, the motion signal may be provided by an IMD implanted within a ventricle, such as the right ventricle, of the patient's heart. The method 600 may include beginning an atrial contraction detection delay period upon identification of a ventricular activation event 630. The method 600 may include beginning an atrial contraction detection window upon expiration of the atrial contraction delay period 632. The method 600 may include analyzing the motion signal within the atrial contraction detection window.


The method 600 may include filtering the motion signal within the atrial contraction detection window, rectifying the filtered signal, and generating a derivative signal of the filtered and rectified motion signal 634 within the atrial contraction detection window. The method 600 may include determining whether an amplitude of the derivative signal within the atrial contraction detection window exceeds a threshold 636. In response to determining that the amplitude of the derivative signal within the atrial contraction detection window exceeds the threshold (YES of 636), the method 600 may proceed to detecting atrial contraction 638. Otherwise (NO of 636), the method 600 may return to filtering, rectifying, and generating a derivative signal 634. Various techniques for using a motion detector that provides a motion signal may be described in U.S. Pat. No. 9,399,140 (Cho et al.), issued Jul. 26, 2016, entitled “Atrial contraction detection by a ventricular leadless pacing device for atrio-synchronous ventricular pacing,” which is incorporated herein by reference in its entirety.


As will be described with respect to FIG. 11, heart sounds (HS) may be detected and used to represent physiological response information. described herein, the amplitudes and/or relative time intervals of one or more of the S1 through S4 heart sounds can be useful in optimizing a patient's hemodynamic response to CRT or other cardiac therapies that include cardiac pacing and/or neural stimulation for achieving hemodynamic benefit. The first heart sound, S1, corresponds to the start of ventricular systole. Ventricular systole begins when an action potential conducts through the atrioventricular node (AV node) and quickly depolarizes the ventricular myocardium. This event is distinguished by the QRS complex on the ECG. As the ventricles contract, the pressure in the ventricles begins to rise, causing abrupt closure of the mitral and tricuspid valves between the ventricles and atria as ventricular pressure exceeds atrial pressure. This valve closure may generate S1. S1 generally has a duration of about 150 ms and a frequency on the order of about 20 to 250 Hz. The amplitude of S1 may provide a surrogate measurement of LV contractility. Thus, an increase in S1 amplitude positively may correlate with an improvement in LV contractility. Other measures, like the pre-ejection period measured from the onset of QRS to S1, may also be used as a surrogate of myocardial contractility index. Separation of the closure of the mitral and tricuspid valves due to ventricular dyssynchrony can be observed as separate M1 and T1 peaks in the S1 signal. Merging of the M1 (mitral valve closure sound) and the T1 (tricuspid valve closure sound) can be used as an indication of improved ventricular synchrony.


Generally, left ventricular pressure (LVP) rises dramatically following the QRS complex of the ECG and closure of the mitral valve and continues to build during ventricular systole until the aortic and pulmonary valves open, ejecting blood into the aorta and pulmonary artery. Ventricular contraction typically continues to cause blood pressure to rise in the ventricles and the aorta and pulmonary artery during the ejection phase. As the contraction diminishes, blood pressure decreases until the aortic and pulmonary valves close.


The second heart sound, S2, may be generated by the closure of the aortic and pulmonary valves, near the end of ventricular systole and start of ventricular diastole. S2 may, therefore, be correlated to diastolic pressure in the aorta and the pulmonary artery. S2 generally has a duration of about 120 ms and a frequency on the order of 25 to 350 Hz. The time interval between S1 and S2, i.e., S1-S2 time interval may represent the systolic time interval (STI) corresponding to the ventricular isovolumic contraction (pre-ejection) and ejection phase of the cardiac cycle. This S1-S2 time interval may provide a surrogate measurement for stroke volume. Furthermore, the ratio of the pre-ejection period (Q-S1) to S1-S2 time may be used as an index of myocardial contractility.


The third heart sound, S3, is associated with early, passive diastolic filling of the ventricles, and the fourth heart sound, S4, may be associated with late, active filling of the ventricles due to atrial contraction. The third sound is generally difficult to hear in a normal patient using a stethoscope, and the fourth sound is generally not heard in a normal patient. Presence of the third and fourth heart sounds during an examination using a stethoscope may indicate a pathological condition. The S3 and S4 heart sounds may be used in optimizing pace parameters as they relate to the diastolic function of the heart. Generally, these sounds would be minimized or disappear when an optimal pace parameter is identified. Other aspects of the S1 through S4 heart sounds and timing thereof that may be useful in cardiac pace-parameter optimization as known to one having ordinary skill in the art.



FIG. 11 is a flowchart 800 of a method for using heart sounds to optimize pace control parameters according to one embodiment. Methods of the present disclosure may include one or more blocks shown in flowchart 800. Other examples of using heart sounds to optimize cardiac therapy are described generally in U.S. Pat. No. 9,643,0134, granted May 9, 2017, entitled “System and method for pacing parameter optimization using heart sounds,” which is incorporated herein by reference in its entirety.


A pace-parameter optimization method may be initiated at block 802. The optimization process may be initiated in response to a user command received via an external programmer. At a time of initial IMD implantation or during office follow-up visits, or during a remote patient monitoring session, a user may initiate an HS-base optimization procedure using an external programmer or networked computer. Additionally, or alternatively, the process shown by flowchart 800 may be an automated process started periodically or in response to sensing a need for therapy delivery or therapy adjustment based on a sensed physiological signal, which may include sensed HS signals.


At block 804 a pace control parameter to be optimized is selected. A control parameter may be a timing-related parameter, such as an AV interval or VV interval. Pacing vector is another control parameter that may be selected at block 804 for optimization. For example, when a multi-polar lead is used, such as a coronary sinus lead, multiple bipolar or unipolar pacing vectors may be selected for pacing in a given heart chamber. The pacing site associated with a particular pacing vector may have a significant effect on the hemodynamic benefit of pacing therapy. As such, pacing vector is one pace control parameter that may be optimized using methods described herein.


A pacing sequence is initiated at block 806 using an initial parameter setting for the test parameter selected at block 804. In one embodiment, the AV interval is being optimized, and ventricular pacing is delivered at an initial AV interval setting. It is understood that an initial AV interval setting may be selected at block 806 by first measuring an intrinsic AV interval in a patient having intact AV conduction, i.e., no AV block. An initial AV interval may be a default pacing interval, the last programmed AV interval, or a minimum or maximum AV interval to be tested. Alternatively, if the VV interval is selected for optimization, an intrinsic inter-ventricular conduction time may be measured first and paced VV intervals may be iteratively adjusted beginning at a VV interval longer, shorter, or approximately equal to the intrinsic VV conduction time.


An iterative process for adjusting the selected test parameter to at least two different settings is performed. The parameter may be adjusted to different settings in any desired order, e.g., increasing, decreasing, random, etc. For example, during adjustment of AV interval, an initial AV interval may be set to just longer than or approximately equal to a measured intrinsic AV conduction time then iteratively decreased down to a minimum AV interval test setting. During pacing using each pace parameter setting, HS signals are acquired at block 808. The iterative process advances to the next test parameter setting at block 812 until all test parameter settings have been applied, as determined at block 810, and HS signals have been recorded for each setting.


HS signals may be acquired for multiple cardiac cycles to enable ensemble averaging or averaging of HS parameter measurements taken from individual cardiac cycles. It is understood that amplification, filtering, rectification, noise cancellation techniques or other signal processing steps may be used for improving the signal-to-noise ratio of the HS signals and these steps may be different for each of the heart sounds being acquired, which may include any or all types of heart sounds.


At least one HS parameter measurement is determined from the recorded HS signals for each test parameter setting at block 814. The IMD processor or an external processor, e.g., included in a programmer, or a combination of both may perform the HS signal analysis described herein. In one embodiment, S1 and S2 are recorded and HS parameters are measured using the S1 and S2 signals at block 814. For example, the amplitude of S1, the V-S2 interval (where the V event may be a V pace or a sensed R-wave), and the S1-S2 interval are measured. The presence of S3 and/or S4 may additionally be noted, or measurements of these signals may be made for determining related parameters. HS signal parameters are determined for at least two different test parameter settings, e.g., at least two different AV intervals, two or more different VV intervals, or two or more different pacing vectors.


At block 818, a trend for each HS parameter determined at block 810 as a function of the pace parameter test settings is determined. In one embodiment, a trend for each of the V-S2 interval, S1 amplitude, and S1-S2 interval is determined. Other embodiments may include determining separation of the M1 and T1 sounds during the S1 signal. Based on the trends of the HS parameter(s) with respect to the varied pace control parameter, an optimal pace parameter setting may be identified automatically by the processor at block 820. Additionally, or alternatively, the HS trends are reported and displayed at block 822 on an external device such as a programmer or at a remote networked computer.


If the pace parameter being tested is, for example, pacing site or pacing vector when a multipolar electrode is positioned along a heart chamber, such as a quadripolar lead along LV, a pacing site or vector may be selected based on maximizing an HS-based surrogate for ventricular contractility. In one embodiment, the amplitude of S1 is used as a surrogate for ventricular contractility, and a pacing site or vector associated with a maximum S1 is identified at block 820 as the optimal pacing vector setting.


Determining the trend of each HS parameter at block 818 may include determining whether the V-S2 interval trend presents a sudden slope change, e.g., from a substantially flat trend to a decreasing trend. An AV interval associated with a sudden change in the V-S2 interval trend may be identified as an optimal AV interval setting. The optimal AV interval may be further identified based on other HS trends, for example, a maximum S1 amplitude and/or a maximum S1-S2 interval.


In some embodiments, an automatically-identified optimal pace parameter setting may also be automatically programmed in the IMD at block 824. In other embodiments, the clinician or user reviews the reported HS data and recommended pace parameter setting(s) and may accept a recommended setting or select another setting based on the HS data.


HS sensing module, or circuitry, may be operably coupled to the control circuit 80 (FIG. 8) and be configured to receive analog signals from an HS sensor for sensing one or more of these heart sounds. For example, the HS sensing module may include one or more “channels” configured to particularly sense a specific heart sound based on frequency, duration, and timing of the heart sounds. For example, ECG/EGM sensing circuitry may be used by the control circuit 80 to set HS sensing windows used by HS sensing module for sensing the heart sounds. HS sensing module may include one or more sense amplifiers, filters, and rectifiers for optimizing a signal to noise ratio of heart sound signals. Separate and unique amplification and filtering properties may be provided for sensing each of the S1 through S4 sounds to improve signal quality as needed.


Bioimpedance, or intracardiac impedance, may be measured and used to represent physiological response information. For example, any of the IMDs described herein may measure an intracardiac impedance signal by injecting a current and measuring a voltage between electrodes of an electrode vector configuration (e.g., selected electrodes). For example, the IMD may measure an impedance signal by injecting a current (e.g., a non-pacing threshold current) between a first electrode (e.g., RV electrode) and an electrode located in the RV proximate the tricuspid valve and measuring a voltage between the first and second electrodes. Another vector that may be used is from the LV electrode to the RV electrode. One will recognize that other vector pair configurations may be used for stimulation and measurement. Impedance can be measured between any set of electrodes that encompass the tissue or cardiac chamber of interest. Thus, one can inject current and measure voltage to calculate the impedance on the same two electrodes (a bipolar configuration) or inject current and measure the voltage on two separate pairs of electrodes (e.g., one pair for current injection and one pair for voltage sense), hence, a quadripolar configuration. For a quadripolar electrode configuration, the current injection and voltage sense electrodes may be in line with each other (or closely parallel to) and the voltage sense electrodes may be within the current sense field. For example, if one injected current between the SVC coil electrode and the RV tip electrode, voltage sensing may be between the RV coil electrode and RV ring electrode. In such embodiments, a VfA lead may be used for the LV cardiac therapy or sensing. The impedance vectors can be configured to encompass a particular anatomical area of interest, such as the atrium or ventricles.


The illustrative methods and/or devices described herein may monitor one or more electrode vector configurations. Further, multiple impedance vectors may be measured concurrently and/or periodically relative to another. In at least one embodiment, the illustrative methods and/or devices may use impedance waveforms to acquire selection data (e.g., to find applicable fiducial points, to allow extraction of measurements from such waveforms, etc.) for optimizing CRT.


As used herein, the term “impedance signal” is not limited to a raw impedance signal. It should be implied that raw impedance signals may be processed, normalized, and/or filtered (e.g., to remove artifacts, noise, static, electromagnetic interference (EMI), and/or extraneous signals) to provide the impedance signal. Further, the term “impedance signal” may include various mathematical derivatives thereof including real and imaginary portions of the impedance signal, a conductance signal based on the impedance (i.e., the reciprocal or inverse of impedance), etc. In other words, the term “impedance signal” may be understood to include conductance signals, i.e., signals that are the reciprocal of the impedance signal.


In one or more embodiments of the methods and/or devices described herein, various patient physiological parameters (e.g., intracardiac impedance, heart sounds, cardiac cycle intervals such as R-R interval, etc.) may be monitored for use in acquiring selection data to optimize CRT (e.g., set AV and/or VV delay, optimize cardiac contractility, for example, by using and/or measuring impedance first derivative dZ/dt, select pacing site, select pacing vector, lead placement, or assess pacing capture from both the electrical and mechanical points of view (e.g., electrical capture may not mean mechanical capture, and the heart sounds and impedance may assist in assessing whether the electrical stimulus captures the heart or not by looking at the mechanical information from the heart sounds and impedance), select an effective electrode vector configuration for pacing, etc.). For example, intracardiac impedance signals between two or more electrodes may be monitored for use in providing such optimization.



FIG. 12 shows one example of a method 850 for acquiring selection data for one of the device parameter options (e.g., one of the selectable device parameters that may be used to optimize CRT, such as a potential AV delay that may be an optimal parameter). Other examples of using heart sounds to optimize cardiac therapy are described generally in U.S. Pat. No. 9,707,399, granted Jul. 18, 2017, entitled “Cardiac resynchronization therapy optimization based on intracardiac impedance and heart sounds,” which is incorporated herein by reference in its entirety.


As shown, pacing therapy is delivered using one of the plurality of device options (block 852) (e.g., the plurality of device parameter options may be selected, determined and/or calculated AV delays, such as percentages of intrinsic AV delay, for example, 40% of intrinsic AV delay, 50% of intrinsic AV delay, 60% of intrinsic AV delay, 70% of intrinsic AV delay, 80% of intrinsic AV delay, etc.). For the device parameter option used to pace (block 852), selection data is acquired at each of a plurality of electrode vector configurations (e.g., intracardiac impedance is monitored over a plurality of cardiac cycles, and selection data is extracted using such impedance signal). As indicated by the decision block 854, if selection data has not been acquired from all desired electrode vector configurations, then the loop of acquiring selection data (e.g., the loop illustrated by blocks 858, 860, 862, and 864) is repeated. If selection data has been acquired from all desired electrode vector configurations, then another different device parameter option is used to deliver therapy (block 856) and the method 850 of FIG. 12 is repeated (e.g., for the different device parameter option) until selection data has been acquired for all the different device parameter options (e.g., selection data being collected at each of a plurality of electrode vector configurations for each of the different device parameter options).


As shown in the repeated loop of acquiring selection data for each of the desired electrode vector configurations (e.g., blocks 858, 860, 862, and 864), one of the plurality of electrode vector configurations is selected for use in acquiring selection data (block 858). Temporal fiducial points associated with at least a part of a systolic portion of at least one cardiac cycle and/or temporal fiducial points associated with at least a part of a diastolic portion of at least one cardiac cycle for the selected electrode vector configuration are acquired (block 860) (e.g., such as with use of heart sounds, analysis of impedance signal minimum and maximums, application of algorithms based on physiological parameters such as R-R intervals, etc.). For example, temporal fiducial points associated with the systolic and/or diastolic portions of the cardiac cycle may be acquired, temporal fiducial points associated with one or more defined segments within systolic and/or diastolic portions of the cardiac cycle may be acquired, and/or temporal fiducial points within or associated with one or more points and/or portions of a systolic and/or diastolic portion of the cardiac cycle may be acquired. Yet further, for example, temporal fiducial points associated with just the systolic portion or just the diastolic portion of the cardiac cycle may be acquired, temporal fiducial points associated with one or more defined segments within just the systolic portion or just the diastolic portion of the cardiac cycle may be acquired, and/or temporal fiducial points within or associated with one or more points and/or portions of just the systolic portion or just the diastolic portion of the cardiac cycle may be acquired. In other words, fiducial points may be acquired that are associated with either both the systolic and diastolic portions of the cardiac cycle or associated with just one of such portions of the cardiac cycle. Further, for example, such fiducial points may be representative or indicative of a measurement window and/or time period (e.g., interval, point, etc.) at or during which intracardiac impedance may be measured for use in an analysis as described herein.


In about the same timeframe (e.g., about simultaneously with the acquired fiducial points), an intracardiac impedance signal is acquired at the selected electrode vector configuration (block 862). With the acquired fiducial points and the acquired intracardiac impedance signal, measurements from the impedance signal are extracted based on the temporal fiducial points (block 864) (e.g., integral of the impedance signal in a measurement window defined between fiducial points, maximum slope of impedance signal in a measurement window defined between fiducial points, time between the fiducial points, maximum impedance at a fiducial point, etc.). One or more of such measurements may be comparable to desired values for such measurements allowing for a determination of whether the measurement may indicate that the device parameter option may be an effective device parameter for optimizing therapy (e.g., a scoring algorithm may be used to determine if a device parameter option may be an optimal parameter based on whether a plurality of such measurements meet certain criteria or thresholds).


The measurement data for each of the device parameter options (e.g., obtained such as described in FIG. 12) is determined for at least one cardiac cycle. In one or more embodiments, such measurement data is acquired for a plurality of cardiac cycles. The cardiac cycles during which measurement data is acquired may be any suitable cardiac cycle. In one or more embodiments, the selected cardiac cycles during which measurement data is acquired is based on the respiratory cycle. In at least one embodiment, the measurement data is acquired during cardiac cycles occurring at the end of a respiratory cycle (e.g., proximate the end of expiration).



FIG. 13 depicts an illustrative system 100 including electrode apparatus 110, display apparatus 130, and computing apparatus 140. The electrode apparatus 110 as shown includes a plurality of electrodes incorporated, or included, within a band wrapped around the chest, or torso, of a patient 120. The electrode apparatus 110 is operatively coupled to the computing apparatus 140 (e.g., through one or wired electrical connections, wirelessly, etc.) to provide electrical signals from each of the electrodes to the computing apparatus 140 for analysis, evaluation, etc. Illustrative electrode apparatus may be described in U.S. Pat. No. 9,320,446 entitled “Bioelectric Sensor Device and Methods” and issued on Apr. 26, 2016, which is incorporated herein by reference in its entirety. Further, illustrative electrode apparatus 110 will be described in more detail in reference to FIGS. 14-15.


Although not described herein, the illustrative system 100 may further include imaging apparatus. The imaging apparatus may be any type of imaging apparatus configured to image, or provide images of, at least a portion of the patient in a noninvasive manner. For example, the imaging apparatus may not use any components or parts that may be located within the patient to provide images of the patient except noninvasive tools such as contrast solution. It is to be understood that the illustrative systems, methods, and interfaces described herein may further use imaging apparatus to provide noninvasive assistance to a user (e.g., a physician) to calibrate and/or deliver a VfA pacing therapy, to locate and position a device to deliver VfA cardiac pacing therapy, and/or to locate or select a pacing electrode or pacing vector proximate the patient's heart for ventricle from atrium pacing therapy in conjunction with the evaluation of ventricle from atrium pacing therapy.


For example, the illustrative systems, methods, and interfaces may provide image-guided navigation that may be used to navigate leads including leadless devices, electrodes, leadless electrodes, wireless electrodes, catheters, etc., within the patient's body while also providing noninvasive cardiac therapy evaluation including determining whether a ventricle from atrium (VfA) paced setting is optimal or determining whether one or more selected parameters are optimal, such as selected location information (e.g., location information for the electrodes to target a particular location in the left ventricle). Illustrative systems and methods that use imaging apparatus and/or electrode apparatus may be described in U.S. Patent Publication No. 2014/0371832 filed on Jun. 12, 2013, and entitled “Implantable Electrode Location Selection,” U.S. Patent Publication No. 2014/0371833 filed on Jun. 12, 2013, and entitled “Implantable Electrode Location Selection,” U.S. Patent Publication No. 2014/0323892 filed on Mar. 27, 2014 and entitled “Systems, Methods, and Interfaces for Identifying Effective Electrodes,” U.S. Patent Publication No. 2014/0323882 filed on Mar. 27, 2014 and entitled “Systems, Methods, and Interfaces for Identifying Optical-Electrical Vectors,” each of which is incorporated herein by reference in its entirety.


Illustrative imaging apparatus may be configured to capture x-ray images and/or any other alternative imaging modality. For example, the imaging apparatus may be configured to capture images, or image data, using isocentric fluoroscopy, bi-plane fluoroscopy, ultrasound, computed tomography (CT), multi-slice computed tomography (MSCT), magnetic resonance imaging (MRI), high frequency ultrasound (HIFU), optical coherence tomography (OCT), intravascular ultrasound (IVUS), two-dimensional (2D) ultrasound, three dimensional (3D) ultrasound, four-dimensional (4D) ultrasound, intraoperative CT, intraoperative MRI, etc. Further, it is to be understood that the imaging apparatus may be configured to capture a plurality of consecutive images (e.g., continuously) to provide video frame data. In other words, a plurality of images taken over time using the imaging apparatus may provide video frame, or motion picture, data. Additionally, the images may also be obtained and displayed in two, three, or four dimensions. In more advanced forms, four-dimensional surface rendering of the heart or other regions of the body may also be achieved by incorporating heart data or other soft tissue data from a map or from pre-operative image data captured by MRI, CT, or echocardiography modalities. Image datasets from hybrid modalities, such as positron emission tomography (PET) combined with CT, or single photon emission computer tomography (SPECT) combined with CT, could also provide functional image data superimposed onto anatomical data, e.g., to be used to navigate treatment apparatus proximate target locations (e.g., such as locations within the left ventricle, including a selected location within the high posterior basal and/or septal area of the left ventricular cavity) within the heart or other areas of interest.


Systems and/or imaging apparatus that may be used in conjunction with the illustrative systems and method described herein are described in U.S. Pat. App. Pub. No. 2005/0008210 to Evron et al. published on Jan. 13, 2005, U.S. Pat. App. Pub. No. 2006/0074285 to Zarkh et al. published on Apr. 6, 2006, U.S. Pat. App. Pub. No. 2011/0112398 to Zarkh et al. published on May 12, 2011, U.S. Pat. App. Pub. No. 2013/0116739 to Brada et al. published on May 9, 2013, U.S. Pat. No. 6,980,675 to Evron et al. issued on Dec. 27, 2005, U.S. Pat. No. 7,286,866 to Okerlund et al. issued on Oct. 23, 2007, U.S. Pat. No. 7,308,297 to Reddy et al. issued on Dec. 11, 2011, U.S. Pat. No. 7,308,299 to Burrell et al. issued on Dec. 11, 2011, U.S. Pat. No. 7,321,677 to Evron et al. issued on Jan. 22, 2008, U.S. Pat. No. 7,346,381 to Okerlund et al. issued on Mar. 18, 2008, U.S. Pat. No. 7,454,248 to Burrell et al. issued on Nov. 18, 2008, U.S. Pat. No. 7,499,743 to Vass et al. issued on Mar. 3, 2009, U.S. Pat. No. 7,565,190 to Okerlund et al. issued on Jul. 21, 2009, U.S. Pat. No. 7,587,074 to Zarkh et al. issued on Sep. 8, 2009, U.S. Pat. No. 7,599,730 to Hunter et al. issued on Oct. 6, 2009, U.S. Pat. No. 7,613,500 to Vass et al. issued on Nov. 3, 2009, U.S. Pat. No. 7,742,629 to Zarkh et al. issued on Jun. 22, 2010, U.S. Pat. No. 7,747,047 to Okerlund et al. issued on Jun. 29, 2010, U.S. Pat. No. 7,778,685 to Evron et al. issued on Aug. 17, 2010, U.S. Pat. No. 7,778,686 to Vass et al. issued on Aug. 17, 2010, U.S. Pat. No. 7,813,785 to Okerlund et al. issued on Oct. 12, 2010, U.S. Pat. No. 7,996,063 to Vass et al. issued on Aug. 9, 2011, U.S. Pat. No. 8,060,185 to Hunter et al. issued on Nov. 15, 2011, and U.S. Pat. No. 8,401,616 to Verard et al. issued on Mar. 19, 2013, each of which is incorporated herein by reference in its entirety.


The display apparatus 130 and the computing apparatus 140 may be configured to display and analyze data such as, e.g., electrical signals (e.g., electrocardiogram data), cardiac information representative of one or more of mechanical cardiac functionality and electrical cardiac functionality (e.g., mechanical cardiac functionality only, electrical cardiac functionality only, or both mechanical cardiac functionality and electrical cardiac functionality), etc. Cardiac information may include, e.g., electrical heterogeneity information or electrical dyssynchrony information, surrogate electrical activation information or data, etc. that is generated using electrical signals gathered, monitored, or collected, using the electrode apparatus 110. In at least one embodiment, the computing apparatus 140 may be a server, a personal computer, or a tablet computer. The computing apparatus 140 may be configured to receive input from input apparatus 142 and transmit output to the display apparatus 130. Further, the computing apparatus 140 may include data storage that may allow for access to processing programs or routines and/or one or more other types of data, e.g., for calibrating and/or delivering pacing therapy for driving a graphical user interface configured to noninvasively assist a user in targeting placement of a pacing device, and/or for evaluating pacing therapy at that location (e.g., the location of an implantable electrode used for pacing, the location of pacing therapy delivered by a particular pacing vector, etc.).


The computing apparatus 140 may be operatively coupled to the input apparatus 142 and the display apparatus 130 to, e.g., transmit data to and from each of the input apparatus 142 and the display apparatus 130. For example, the computing apparatus 140 may be electrically coupled to each of the input apparatus 142 and the display apparatus 130 using, e.g., analog electrical connections, digital electrical connections, wireless connections, bus-based connections, network-based connections, internet-based connections, etc. As described further herein, a user may provide input to the input apparatus 142 to manipulate, or modify, one or more graphical depictions displayed on the display apparatus 130 and to view and/or select one or more pieces of information related to the cardiac therapy.


Although as depicted the input apparatus 142 is a keyboard, it is to be understood that the input apparatus 142 may include any apparatus capable of providing input to the computing apparatus 140 for performing the functionality, methods, and/or logic described herein. For example, the input apparatus 142 may include a mouse, a trackball, a touchscreen (e.g., capacitive touchscreen, a resistive touchscreen, a multi-touch touchscreen, etc.), etc. Likewise, the display apparatus 130 may include any apparatus capable of displaying information to a user, such as a graphical user interface 132 including cardiac information, textual instructions, graphical depictions of electrical activation information, graphical depictions of anatomy of a human heart, images or graphical depictions of the patient's heart, graphical depictions of a leadless pacing device used to calibrate and/or deliver pacing therapy, graphical depictions of a leadless pacing device being positioned or placed to provide VfA pacing therapy, graphical depictions of locations of one or more electrodes, graphical depictions of a human torso, images or graphical depictions of the patient's torso, graphical depictions or actual images of implanted electrodes and/or leads, etc. Further, the display apparatus 130 may include a liquid crystal display, an organic light-emitting diode screen, a touchscreen, a cathode ray tube display, etc.


The processing programs or routines stored and/or executed by the computing apparatus 140 may include programs or routines for computational mathematics, matrix mathematics, dispersion determinations (e.g., standard deviations, variances, ranges, interquartile ranges, mean absolute differences, average absolute deviations, etc.), filtering algorithms, maximum value determinations, minimum value determinations, threshold determinations, moving windowing algorithms, decomposition algorithms, compression algorithms (e.g., data compression algorithms), calibration algorithms, image construction algorithms, signal processing algorithms (e.g., various filtering algorithms, Fourier transforms, fast Fourier transforms, etc.), standardization algorithms, comparison algorithms, vector mathematics, or any other processing required to implement one or more illustrative methods and/or processes described herein. Data stored and/or used by the computing apparatus 140 may include, for example, electrical signal/waveform data from the electrode apparatus 110, dispersions signals, windowed dispersions signals, parts or portions of various signals, electrical activation times from the electrode apparatus 110, graphics (e.g., graphical elements, icons, buttons, windows, dialogs, pull-down menus, graphic areas, graphic regions, 3D graphics, etc.), graphical user interfaces, results from one or more processing programs or routines employed according to the disclosure herein (e.g., electrical signals, cardiac information, etc.), or any other data that may be necessary for carrying out the one and/or more processes or methods described herein.


In one or more embodiments, the illustrative systems, methods, and interfaces may be implemented using one or more computer programs executed on programmable computers, such as computers that include, for example, processing capabilities, data storage (e.g., volatile or non-volatile memory and/or storage elements), input devices, and output devices. Program code and/or logic described herein may be applied to input data to perform the functionality described herein and generate desired output information. The output information may be applied as input to one or more other devices and/or methods as described herein or as would be applied in a known fashion.


The one or more programs used to implement the systems, methods, and/or interfaces described herein may be provided using any programmable language, e.g., a high-level procedural and/or object orientated programming language that is suitable for communicating with a computer system. Any such programs may, for example, be stored on any suitable device, e.g., a storage media, that is readable by a general or special purpose program running on a computer system (e.g., including processing apparatus) for configuring and operating the computer system when the suitable device is read for performing the procedures described herein. In other words, at least in one embodiment, the illustrative systems, methods, and/or interfaces may be implemented using a computer readable storage medium, configured with a computer program, where the storage medium so configured causes the computer to operate in a specific and predefined manner to perform functions described herein. Further, in at least one embodiment, the illustrative systems, methods, and/or interfaces may be described as being implemented by logic (e.g., object code) encoded in one or more non-transitory media that includes code for execution and, when executed by a processor, is operable to perform operations such as the methods, processes, and/or functionality described herein.


The computing apparatus 140 may be, for example, any fixed or mobile computer system (e.g., a controller, a microcontroller, a personal computer, minicomputer, tablet computer, etc.) and may be generally described as including processing circuitry. The exact configuration of the computing apparatus 140 is not limiting, and essentially any device capable of providing suitable computing capabilities and control capabilities (e.g., graphics processing, etc.) may be used. As described herein, a digital file may be any medium (e.g., volatile or non-volatile memory, a CD-ROM, a punch card, magnetic recordable medium such as a disk or tape, etc.) containing digital bits (e.g., encoded in binary, trinary, etc.) that may be readable and/or writeable by computing apparatus 140 described herein. Also, as described herein, a file in user-readable format may be any representation of data (e.g., ASCII text, binary numbers, hexadecimal numbers, decimal numbers, graphically, etc.) presentable on any medium (e.g., paper, a display, etc.) readable and/or understandable by a user.


In view of the above, it will be readily apparent that the functionality as described in one or more embodiments according to the present disclosure may be implemented in any manner as would be known to one skilled in the art. As such, the computer language, the computer system, or any other software/hardware which is to be used to implement the processes described herein shall not be limiting on the scope of the systems, processes, or programs (e.g., the functionality provided by such systems, processes, or programs) described herein.


Electrical activation times of the patient's heart may be useful to evaluate a patient's cardiac condition and/or to calibrate, deliver, or evaluate ventricle from atrium (VfA) cardiac therapy to be or being delivered to a patient. Surrogate electrical activation information or data of one or more regions of a patient's heart may be monitored, or determined, using electrode apparatus 110 as shown in FIGS. 13-15. The illustrative electrode apparatus 110 may be configured to measure body-surface potentials of a patient 120 and, more particularly, torso-surface potentials of a patient 120.


As shown in FIG. 14, the illustrative electrode apparatus 110 may include a set, or array, of electrodes 112, a strap 113, and interface/amplifier circuitry 116. In at least one embodiment, a portion of the set of electrodes may be used wherein the portion corresponds to a particular location on the patient's heart. The electrodes 112 may be attached, or coupled, to the strap 113, and the strap 113 may be configured to be wrapped around the torso of a patient 120 such that the electrodes 112 surround the patient's heart. As further illustrated, the electrodes 112 may be positioned around the circumference of a patient 120, including the posterior, lateral, posterolateral, anterolateral, and anterior locations of the torso of a patient 120.


Further, the electrodes 112 may be electrically connected to interface/amplifier circuitry 116 via wired connection 118. The interface/amplifier circuitry 116 may be configured to amplify the signals from the electrodes 112 and provide the signals to the computing apparatus 140. Other illustrative systems may use a wireless connection to transmit the signals sensed by electrodes 112 to the interface/amplifier circuitry 116 and, in turn, the computing apparatus 140, e.g., as channels of data. For example, the interface/amplifier circuitry 116 may be electrically coupled to each of the computing apparatus 140 and the display apparatus 130 using, e.g., analog electrical connections, digital electrical connections, wireless connections, bus-based connections, network-based connections, internet-based connections, etc.


Although in the example of FIG. 14 the electrode apparatus 110 includes a strap 113, in other examples any of a variety of mechanisms, e.g., tape or adhesives, may be employed to aid in the spacing and placement of electrodes 112. In some examples, the strap 113 may include an elastic band, strip of tape, or cloth. In other examples, the electrodes 112 may be placed individually on the torso of a patient 120. Further, in other examples, electrodes 112 (e.g., arranged in an array) may be part of, or located within, patches, vests, and/or other manners of securing the electrodes 112 to the torso of the patient 120.


The electrodes 112 may be configured to surround the heart of the patient 120 and record, or monitor, the electrical signals associated with the depolarization and repolarization of the heart after the signals have propagated through the torso of a patient 120. Each of the electrodes 112 may be used in a unipolar configuration to sense the torso-surface potentials that reflect the cardiac signals. The interface/amplifier circuitry 116 may also be coupled to a return or indifferent electrode (not shown) that may be used in combination with each electrode 112 for unipolar sensing. In some examples, there may be about 12 to about 50 electrodes 112 spatially distributed around the torso of the patient. Other configurations may have more or fewer electrodes 112.


The computing apparatus 140 may record and analyze the electrical activity (e.g., torso-surface potential signals) sensed by electrodes 112 and amplified/conditioned by the interface/amplifier circuitry 116. The computing apparatus 140 may be configured to analyze the signals from the electrodes 112 to provide as anterior and posterior electrode signals and surrogate cardiac electrical activation times, e.g., representative of actual, or local, electrical activation times of one or more regions of the patient's heart as will be further described herein. The computing apparatus 140 may be configured to analyze the signals from the electrodes 112 to provide as anterior-septal electrode signals and surrogate cardiac electrical activation times, e.g., representative of actual, or local, electrical activation times of one or more anterior-septal regions of the patient's heart, as will be further described herein, e.g., for use in calibrating, delivering, and/or evaluating VfA pacing therapy. Further, the electrical signals measured at the left anterior surface location of a patient's torso may be representative, or surrogates, of electrical signals of the left anterior left ventricle region of the patient's heart, electrical signals measured at the left lateral surface location of a patient's torso may be representative, or surrogates, of electrical signals of the left lateral left ventricle region of the patient's heart, electrical signals measured at the left posterolateral surface location of a patient's torso may be representative, or surrogates, of electrical signals of the posterolateral left ventricle region of the patient's heart, and electrical signals measured at the posterior surface location of a patient's torso may be representative, or surrogates, of electrical signals of the posterior left ventricle region of the patient's heart. In one or more embodiments, measurement of activation times can be performed by measuring the period of time between an onset of cardiac depolarization (e.g., onset of QRS complex) and an appropriate fiducial point such as, e.g., a peak value, a minimum value, a minimum slope, a maximum slope, a zero crossing, a threshold crossing, etc.


Additionally, the computing apparatus 140 may be configured to provide graphical user interfaces depicting the surrogate electrical activation times obtained using the electrode apparatus 110. Illustrative systems, methods, and/or interfaces may noninvasively use the electrical information collected using the electrode apparatus 110 to evaluate a patient's cardiac condition and/or to calibrate, deliver, or evaluate VfA pacing therapy to be or being delivered to the patient.



FIG. 15 illustrates another illustrative electrode apparatus 110 that includes a plurality of electrodes 112 configured to surround the heart of the patient 120 and record, or monitor, the electrical signals associated with the depolarization and repolarization of the heart after the signals have propagated through the torso of the patient 120. The electrode apparatus 110 may include a vest 114 upon which the plurality of electrodes 112 may be attached, or to which the electrodes 112 may be coupled. In at least one embodiment, the plurality, or array, of electrodes 112 may be used to collect electrical information such as, e.g., surrogate electrical activation times.


Similar to the electrode apparatus 110 of FIG. 14, the electrode apparatus 110 of FIG. 13 may include interface/amplifier circuitry 116 electrically coupled to each of the electrodes 112 through a wired connection 118 and be configured to transmit signals from the electrodes 112 to computing apparatus 140. As illustrated, the electrodes 112 may be distributed over the torso of a patient 120, including, for example, the anterior, lateral, posterolateral, anterolateral, and posterior surfaces of the torso of the patient 120.


The vest 114 may be formed of fabric with the electrodes 112 attached to the fabric. The vest 114 may be configured to maintain the position and spacing of electrodes 112 on the torso of the patient 120. Further, the vest 114 may be marked to assist in determining the location of the electrodes 112 on the surface of the torso of the patient 120. In one or more embodiments, the vest 114 may include about 17 or more anterior electrodes positionable proximate the anterior torso of the patient, and about 39 or more posterior electrodes positionable proximate the anterior torso of the patient. In some examples, there may be about 25 electrodes 112 to about 256 electrodes 112 distributed around the torso of the patient 120, though other configurations may have more or fewer electrodes 112.


As described herein, the electrode apparatus 110 may be configured to measure electrical information (e.g., electrical signals) representing different regions of a patient's heart. For example, activation times of different regions of a patient's heart can be approximated from surface electrocardiogram (ECG) activation times measured using surface electrodes in proximity to surface areas corresponding to the different regions of the patient's heart. In at least one example, activation times of the anterior-septal region of a patient's heart can be approximated from surface ECG activation times measured using surface electrodes in proximity to surface areas corresponding to the anterior-septal region of the patient's heart. That is, a portion of the set of electrodes 112, and not the entire set, can be used to generate activation times corresponding to a particular location of the patient's heart that the portion of the set of electrodes corresponds to.


The illustrative systems, methods, and interfaces may be used to provide noninvasive assistance to a user in the evaluation of a patient's cardiac health or status, and/or the evaluation of cardiac therapy such as ventricle from atrium (VfA) pacing therapy by use of the electrode apparatus 110 (e.g., cardiac therapy being presently-delivered to a patient during implantation or after implantation). Further, the illustrative systems, methods, and interfaces may be used to assist a user in the configuration, or calibration, of the cardiac therapy, such as VfA pacing therapy, to be or being delivered to a patient.


VfA pacing can be described as providing a synchronized homogeneous activation of ventricles of the heart. As an example, patients with atrial-ventricular (AV) block or prolonged AV timings that can lead to heart failure who have otherwise intact (e.g., normal) QRS can benefit from VfA pacing therapy. In addition, as an example, VfA pacing may provide beneficial activation for heart failure patients with intrinsic ventricular conduction disorders. Further, proper placement of VfA pacing can provide optimal activation of the ventricles for such patients. Further, left ventricular (LV) resynchronization for heart failure patients with left bundle branch block (LBBB) may find that VfA pacing enables easier access to left ventricular endocardium without exposing the leadless device or lead to the endocardial blood pool. At the same time, in that example, this can help engage part of the conduction system to potentially correct LBBB and effectively resynchronize the patient.


Electrical activity may be monitored using a plurality of external electrodes, such as electrodes 112 of FIGS. 13-15. The electrical activity can be monitored by a plurality of electrodes during VfA pacing therapy or in the absence of VfA pacing therapy. The monitored electrical activity can be used to evaluate VfA pacing therapy to a patient. The electrical activity monitored using the ECG belt described can be used to evaluate at least one paced setting of the VfA pacing therapy on the heart. As an example, a paced setting can be any one parameter or a combination of parameters including, but not limited to, electrode position, pacing polarity, pacing output, pacing pulse width, timing at which VfA pacing is delivered relative to atrial (A) timing, pacing rate, etc. Further, as an example, the location of the leadless device or a pacing lead can include a location in the left ventricle, accessed through the right atrium within, or in close proximity to, the high posterior basal and/or septal (HPBS) area of the left ventricular cavity. Moreover, pacing in, or in close proximity to, the HPBS area can be selective (e.g., involving stimulation of a particular area of the HPBS alone) or non-selective (e.g., combined pacing at the location of the HPBS and other atrial and/or ventricular septum areas).


Further, body-surface isochronal maps of ventricular activation can be constructed using the monitored electrical activity during VfA pacing therapy or in the absence of VfA pacing therapy. The monitored electrical activity and/or the map of ventricular activation can be used to generate electrical heterogeneity information (EHI). The electrical heterogeneity information can include determining metrics of electrical heterogeneity. The metrics of electrical heterogeneity can include a metric of standard deviation of activation times (SDAT) of electrodes on a left side of a torso of the patient and/or a metric of mean left ventricular activation time (LVAT) of electrodes on the left side of the torso of the patient. A metric of LVAT may be determined from electrodes on both the anterior and posterior surfaces, which are more proximal to the left ventricle. The metrics of electrical heterogeneity information can include a metric of mean right ventricular activation time (RVAT) of electrodes on the right side of the torso of the patient. A metric of RVAT may be determined from electrodes on both the anterior and posterior surfaces which are more proximal to the right ventricle. The metrics of electrical heterogeneity can include a metric of mean total activation time (mTAT) taken from a plurality of electrode signals from both sides of the torso of the patient, or it may include other metrics (e.g., standard deviation, interquartile deviations, a difference between a latest activation time and earliest activation time) reflecting a range or dispersion of activation times on a plurality of electrodes located on the right side of the patient torso or left side of the patient torso, or combining both right and left sides of the patient torso. The metrics of electrical heterogeneity information can include a metric of anterior-septal activation times (ASAT) of electrodes on the torso in close proximity to the anterior-septal portion of the heart.


Electrical heterogeneity information (EHI) may be generated during delivery of VfA pacing therapy at one or more VfA paced settings. The electrical heterogeneity information can be generated using metrics of electrical heterogeneity. As an example, the metrics of electrical heterogeneity can include one or more of an SDAT, an LVAT, an RVAT, an mTAT, and an ASAT. In at least one embodiment, only ASAT may be determined and further used, and/or ASAT may be more heavily weighted than other values.


One or more paced settings associated with the VfA pacing therapy may be evaluated. A paced setting can include a plurality of pacing parameters. The plurality of pacing parameters can be optimal if the patient's cardiac condition improves, if the VfA pacing therapy is effectively capturing a desired portion of the left ventricle (e.g., the high posterior basal and/or septal area), and/or if a metric of electrical heterogeneity improves by a certain threshold compared to a baseline rhythm or therapy. In at least one embodiment, the determination of whether the paced setting is optimal can be based on at least one metric of electrical heterogeneity generated from electrical activity during VfA pacing (and also, in some embodiments, during native conduction, or in the absence of VfA pacing). The at least one metric can include one or more of an SDAT, an LVAT, an RVAT, an mTAT, and an ASAT.


Further, the plurality of pacing parameters can be optimal if a metric of electrical heterogeneity is greater than or less than a particular threshold, and/or if the location of the pacing therapy to excite the left ventricle causes a particular pattern of excitation of the muscle fibers in the heart. In addition, the plurality of pacing parameters can be optimal if a metric of electrical heterogeneity indicates a correction of a left bundle branch block (LBBB), and/or if a metric of electrical heterogeneity indicates a complete engagement of a Purkinje system, etc. As an example, a metric of electrical heterogeneity of an ASAT less than or equal to a threshold (e.g., a threshold of 30 ms) and an LVAT less than or equal to a threshold (e.g., a threshold of 30 ms) can indicate a correction of an LBBB, and thus, the paced setting is optimal. As an example, a metric of electrical heterogeneity of an RVAT less than or equal to a threshold (e.g., a threshold of 30 ms), an ASAT less than or equal to a threshold (e.g., a threshold of 30 ms), and an LVAT less than or equal to a threshold (e.g., a threshold of 30 ms) can indicate a complete engagement of the Purkinje system, and thus the paced setting is may be optimal.


The paced setting can be determined to be optimal in response to the VfA pacing therapy using the paced setting being acceptable, being beneficial, being indicative of complete engagement of patient's native cardiac conduction system, being indicative of correction of a ventricular conduction disorder (e.g., left bundle branch block), etc. A paced setting can include one or more of a pacing electrode position (including one or more of a depth, an angle, an amount of turn for a screw-based fixation mechanism, etc.), a voltage, a pulse width, an intensity, a pacing polarity, a pacing vector, a pacing waveform, a timing of the pacing delivered relative to an intrinsic or paced atrial event or relative to the intrinsic His bundle potential, and/or a pacing location, etc. A pacing vector can include any two or more pacing electrodes such as, e.g., a tip electrode to a can electrode, a tip electrode to a ring electrode etc., that are used to deliver the VfA pacing therapy, etc. The pacing location can refer to the location of any of the one or more pacing electrodes that are positioned using a lead, a leadless device, and/or any device or apparatus configured to deliver VfA.


A paced setting for VfA pacing therapy may be adjusted. In at least one embodiment, the paced setting can be adjusted in response to the paced setting being not optimal. In at least one embodiment, the paced setting can be adjusted in response to the paced setting being within an optimal range but in order to determine whether the paced setting can be at a position within the optimal range that is more beneficial, more useful, more functional, etc., for the VfA pacing therapy. The paced setting could be adjusted to find the most optimal metric of electrical heterogeneity.


In one or more embodiments, a determination of whether the paced setting is optimal can be based on a particular metric of electrical heterogeneity using an ECG belt. In at least one example, the paced setting can be adjusted at intervals that correlate with a change in the metric of electrical heterogeneity until the metric of electrical heterogeneity is at or proximate a particular metric value. For instance, the adjusting of the paced setting can cause the metric of electrical heterogeneity to approach a particular threshold metric of electrical heterogeneity and, as the metric approaches the particular threshold, the rate at which the paced setting is adjusted can be slowed down. Put another way, as the metric of electrical heterogeneity is further from the particular threshold metric, the paced setting can be adjusted more quickly and as the metric of electrical heterogeneity gets closer to the particular threshold metric, the paced setting can be adjusted more slowly until the metric of electrical heterogeneity is at the particular threshold metric.


Various techniques for utilizing an electrode apparatus having a plurality of external electrodes to monitor electrical activity from tissue of a patient that may be used with the devices, systems, and methods described herein are disclosed in U.S. patent application Ser. No. 15/934,517, filed 23 Mar. 2018, entitled “Evaluation of Ventricle from Atrium Pacing Therapy,” which is incorporated herein by reference in its entirety.


Locating an implantation site that is adjacent to or within the triangle of Koch region may be facilitated using various delivery systems and techniques of the present disclosure. Various delivery systems and techniques may be used to deliver a pacing lead including a tissue-piercing electrode to the implantation site adjacent to or within the triangle of Koch region. In particular, some delivery systems and techniques may be used to deliver a pacing lead to a target implantation zone in the coronary sinus (e.g., near the coronary sinus ostium) that is adjacent to the triangle of Koch region.


In some embodiments, pacing leads of the present disclosure that are delivered to the implantation site may have the same or similar structure and features as the leads shown in FIGS. 1-4. A pacing lead may include an elongate body defining a lumen extending from a proximal portion to a distal portion.


A left-ventricular (LV) electrode may be coupled to the elongate body, which is implantable from tissue adjacent to or within the triangle of Koch region of the right atrium (RA) through the right-atrial endocardium and central fibrous body. The LV electrode may be configured to deliver cardiac therapy to or sense electrical activity of the left ventricle in the basal and/or septal region of the left ventricular myocardium of a patient's heart. The LV electrode may be configured to pierce tissue in an implantation site adjacent to or within the triangle of Koch region of the right atrium of the patient's heart to secure the pacing lead to the implantation site.


A right-atrial (RA) electrode may also be coupled to the elongate body of the pacing lead proximal to the LV electrode and positionable within the RA. The RA electrode may be configured to deliver cardiac therapy to or sense electrical activity of the right atrium of the patient's heart.



FIGS. 16-25 show various configurations of a pacing lead delivery system 500. FIG. 16 shows a pacing lead delivery system 500 that may be used to deliver a pacing lead to an implantation site adjacent to or within the triangle of Koch region. As illustrated, the delivery system 500 may include a sheath 502 extending from a proximal portion 504 (e.g., proximal end portion) to a distal portion 506 (e.g., distal end portion). The sheath 502 may include an elongate body defining a lumen extending between the proximal portion 504 and the distal portion 506. The lumen of the sheath 502 may be configured to receive a guide wire. The lumen may be configured to receive guide wires of one or more sizes (e.g., one or more diameters).


The sheath 502 of the delivery system 500 may be deflectable, have a fixed curve, or be any combination of these. A deflectable sheath may be formed of any flexible or semi-rigid material that is suitable for use during implantation (e.g., biocompatible). A fixed curve sheath may be formed of any rigid or semi-rigid material that is suitable for use during implantation (e.g., biocompatible) such that one or more curve segments may be described as substantially fixed or unchanging.


The sheath 502 may define or include one, two, three, or more curve segments. In some embodiments, the sheath 502 has two or more curves or curve segments. In the illustrated embodiment, the sheath 502 of the delivery system 500 has a first curve segment 532 and a second curve segment 534. The first curve segment 532 may be used to reach the coronary sinus ostium or the triangle of Koch region from outside the patient's heart. The second curve segment 534 may be used to point, or orient, the distal portion 506 of the sheath 502 towards the membranous septum (e.g., septal wall) adjacent to the LV. For example, the second curve segment 534 may be used to point the distal end of the sheath 502 towards the triangle of Koch region or a region just inside the coronary sinus near the coronary sinus ostium (e.g., adjacent to the triangle of Koch region). In some embodiments, the first curve segment 532 may have a fixed curve, and the second curve segment 534 may have a fixed curve, which may telescope relative to the first curve segment.


The curve segments may be deflectable, fixed, or a combination of both. For example, the first curve segment 532 may have a fixed curve, and the second curve segment 534 may be deflectable. In some embodiments, a deflectable curve segment may be configured to telescope. For example, the first curve segment 532 (e.g., an outer sheath or catheter) may be a separate piece from the second curve segment 534 (e.g., an inner sheath or catheter), and the second curve segment may be configured to telescope, or be adjusted, within a lumen of the first curve segment 532. In some embodiments, the second curve segment 534 may be configured to be adjustable by rotating relative to the first curve segment 532, for example, up to 360 degrees.


The curve segments may have the same or different curvatures. For example, in some embodiments, the first curve segment 532 may define a first radius of curvature and the second curve segment 534 may define a second radius of curvature, which may be less than the first radius of curvature. In some embodiments, the first curve segment 532 may be aligned to a first plane, and the second curve segment 534 may be aligned to a second plane having a different orientation than the first plane. For example, the first plane may be orthogonal to the second plane. In some embodiments, the first curve segment 532 may be adjustable relative to the second curve segment 534 (e.g., rotatable or telescoping). In general, the curvatures of the sheath 502 may be defined based on the target implantation site.


Various other components of the pacing lead delivery system 500 may be the same or similar to aspects described in U.S. Pat. No. 6,132,456, issued Oct. 17, 2000, entitled “Arrangement for implanting an endocardial cardiac lead,” which is incorporated herein by reference in its entirety.



FIG. 17 shows a close up view of the distal portion 506 of the sheath 502 and the second curve segment 534 of the sheath. As illustrated, a needle-tipped dilator 508 extends, or protrudes, distally from the distal portion 506 of the sheath 502. The needle-tipped dilator 508 may extend at least partially through the lumen of the sheath 502. The needle-tipped dilator 508 may be configured to form an opening in tissue in a potential implantation site. In some embodiments, the needle-tipped dilator 508, or a portion of the needle-tipped dilator 508, may be electrically conductive (e.g., active). The needle-tipped dilator 508 may be used to engage tissue at a potential implantation site and may monitor or deliver electrical stimulation to a potential implantation site, which may facilitate determining whether the potential implantation site is acceptable.



FIGS. 18A-C show various configurations near the distal portion 506 of the sheath 502. FIG. 18A shows the needle-tipped dilator 508 extending distally out of the sheath 502. The needle-tipped dilator 508 may be configured to be received within the lumen of the sheath 502. A guide wire 510 may also be received within the lumen of the sheath 502 and optionally within a lumen of the needle-tipped dilator 508.


The needle-tipped dilator 508 may include a needle portion 512 and a dilator portion 514. In some embodiments, the needle-tipped dilator 508 may be formed of a single integral piece. In other embodiments, the needle portion 512 and the dilator portion 514 may be separately formed pieces that cooperatively function as a needle-tipped dilator. For example, the needle portion 512 may be received within a lumen of the dilator portion 514 and separable, or freely translatable, in a longitudinal direction (e.g., aligned to the length of the sheath when received). In some embodiments, the needle portion 512, the dilator portion 514, or both may be electrically conductive (e.g., active) or insulating (e.g., passive).


The needle-tipped dilator 508 may define, or include, a lumen extending from a proximal portion to a distal portion of the needle-tipped dilator. In some embodiments, the lumen of the needle-tipped dilator 508 may be configured to be advanced over a guide wire 510 or a guide wire 511. As illustrated, the diameter of guide wire 511 may be greater than the diameter of guide wire 510.



FIGS. 18B-C show a pacing lead 516 extending distally out of the sheath 502. The pacing lead 516 may be freely translatable in a longitudinal direction relative to the sheath 502, the guide wire 510, or both. At least the pacing lead 516 may be freely rotatable relative to the sheath 502, the guide wire 510, or both. In general, the pacing lead 516 may be guided by the guidewire 510 as shown in FIG. 18B to the implantation site, the lumen of the sheath 502 as shown in FIG. 18C, or both.


The pacing lead 516 may include an elongate body extending from a proximal portion to a distal portion. As illustrated, the pacing lead 516 may also include a fixation element 518 coupled to the distal portion of the pacing lead. The fixation element 518 may be configured to be attached to an implantation site in the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of a patient's heart. Any suitable fixation structure may be used for the fixation element 518. In the illustrated embodiment, the fixation element 518 is a helical attachment element.


In some embodiments, the fixation element 518 may also function as the LV electrode (e.g., tissue-piercing electrode having a helical shape). In other embodiments, the fixation element 518 may be separately formed from the LV electrode (e.g., if the LV electrode is a dart-type electrode). For example, the fixation element 518 may be disposed proximal to the LV electrode along the pacing lead 516.


Although not shown here, the pacing lead 516 may include an atrial electrode, such as a right-atrial (RA) electrode, a left-atrial (LA) electrode, or both. The RA electrode may be positioned adjacent to, or some distance proximal to, the fixation element 518, the LV electrode, or both. The RA electrode may be positioned on the pacing lead 516 such that the RA electrode is positioned adjacent in the RA when the LV electrode is implanted. The LA electrode may be positioned adjacent to, or some distance proximal to, the fixation element 518, the LV electrode, or both. The LA electrode may be positioned on the pacing lead 516 such that the LA electrode is positioned adjacent to the proximal part of the coronary sinus when the LV electrode is implanted. The RA electrode, the LA electrode, or both may be used to sense or pace the respective portions of the atrium of the patient's heart. In some embodiments, the RA electrode, LA electrode, or both may be used to provide timing and coordination information about atrial activity.


As shown in FIG. 18B, the pacing lead 516 may include a lumen extending through the elongate body. The lumen of the pacing lead 516 may be configured to receive the guide wire 510. In some embodiments, the lumen of the pacing lead 516 may not be able to accommodate the size, or diameter, of the guide wire 511, which may influence the implantation method selected.



FIG. 19 shows the distal portion 506 of the sheath 502 with the guide wire 511 received in and extending out of the lumen of the needle-tipped dilator 508. As shown, the needle-tipped dilator 508 received in and extending out of the lumen of the sheath 502.



FIG. 20 is an illustration of the distal portion 506 of the sheath 502 with the guide wire 510 received in and extending out of a lumen of the sheath 502. As illustrated, the diameter of the guide wire 511 (FIG. 19) is greater than the diameter of the guide wire 510.



FIGS. 21-25 show various configurations using the guide wire 510 (see FIG. 20) that may be used during a delivery procedure. FIG. 21 shows the distal portion 506 of the sheath 502 including the needle-tipped dilator 508 and the guide wire 510 in a position that may be used to advance toward a potential implantation site.



FIG. 22 shows the distal portion 506 of the sheath 502 with the guide wire 510 retracted, or drawn back, into the lumen of the needle-tipped dilator 508. This position may be used to test the potential implantation site using the needle portion 512. In some embodiments, the needle portion 512 may be inserted into the tissue to test the response to electrical pulses and/or to sense electrical activity at one or more depths within the tissue. If the implantation site is acceptable, the dilator portion 514, the guide wire 510, or both may be pushed further into the tissue to create a hole in the tissue, which may be used to receive the pacing lead. The guide wire 510 may be used, for example, when the guide wire is formed to be semi-rigid or rigid (e.g., stiff) such that the guide wire can be pushed into the tissue without requiring the needle-tipped dilator 508 to push into the tissue. In some embodiments, the guide wire 510 may be used instead of the needle-tipped dilator 508 for one or more functions described herein.



FIG. 23 shows a proximal portion 504 of the sheath 502 including the guide wire 510 and the needle-tipped dilator 508. As illustrated, the needle-tipped dilator 508 may be removed from sheath 502 and the guide wire 510 in a proximal direction, for example, after the potential implantation site is determined to be acceptable.



FIG. 24 shows the proximal portion 504 of the sheath 502 including the guide wire 510 and the pacing lead 516. As illustrated, the needle-tipped dilator 508 (FIG. 23) may be exchanged for the pacing lead 516. The guide wire 510 may be described as an exchange wire or an exchange-length wire, which may have sufficient length to facilitate such exchanges.


The guide wire 510 may remain at least partially disposed in the lumen of the sheath 502. In some embodiments, a distal end of the guide wire 510 may be positioned in a hole in the implantation site that was formed by the needle-tipped dilator 508. The pacing lead 516 may be advanced distally over the guide wire 510 toward the implantation site.


In another embodiment (not shown), the guide wire 510 may be removed in a proximal direction from the sheath 502 along with the needle-tipped dilator 508. The distal portion 506 of the sheath 502 may be positioned in a hole in the implantation site that was formed by the needle-tipped dilator 508. The pacing lead 516 may be advanced distally through the lumen of the sheath 502 to the implantation site.



FIG. 25 shows the distal portion 506 of the sheath 502 with the pacing lead 516 extending distally out of the lumen of the sheath and the guide wire 510 extending distally out of the lumen of the pacing lead. This position may be used to advance the pacing lead 516 to the implantation site.


Once the pacing lead 516 reaches the implantation site, the tissue at the site may be tested using the pacing lead (e.g., the LV electrode of the pacing lead). Testing the implantation site may include delivering electrical pulses (e.g., stimulation), sensing or monitoring electrical activity (e.g., intrinsic activity or the response to electrical pulses), or both. If the implantation site is acceptable, pacing lead 516 may be fixed to the implantation site, and the guide wire 510 may be retracted, along with the sheath 502.


Various methods may be used with the pacing lead delivery system 500 described in FIGS. 16-25 to implant the pacing lead adjacent to or within the triangle of Koch region. FIGS. 26-34 show various techniques that may be used for delivery.



FIGS. 26-27 show the pacing lead delivery system 500 advanced to an implantation site. FIG. 26 shows a right anterior oblique cutaway view of the patient's heart 8. FIG. 27 shows an overhead cutaway view. In some embodiments, the delivery system 500 may be configured to position the LV electrode of the pacing lead less than or equal to 3 centimeters (cm), 2 cm, 1 cm, or even 0.5 cm into the coronary sinus from the right atrium. The first curve segment 532 may be used to position the delivery system 500 near the triangle of Koch region, and the second curve segment 534 may be used to orient the distal portion into the implantation site adjacent to or within the triangle of Koch region. As illustrated, the implantation site is adjacent to the triangle of Koch region (e.g., in the coronary sinus 3 near the coronary sinus ostium).



FIG. 27 shows the pacing lead delivery system 500 relative to the aortic valve 540, the pulmonary valve 542, the right coronary artery 544, the tricuspid valve 6, the mitral valve 546, the coronary sinus 3, and the great coronary vein 548.



FIG. 28 shows a target implantation zone 550 that is adjacent to the triangle of Koch region in the coronary sinus near the coronary sinus ostium. The target implantation zone 550 is below the mitral valve 546 within the coronary sinus on the LV wall. The angle of implantation into the target implantation zone 550 may be selected to deliver the LV electrode of the pacing lead into the basal region, septal region, or basal-septal region of the left ventricular myocardium.



FIG. 29 shows a method 900 of using a pacing lead delivery system of the present disclosure, such as pacing lead delivery system 500 (FIGS. 16-28). The method 900 may include locating a potential implantation site 902. In some embodiments, the potential implantation site may be adjacent to or within the triangle of Koch region in the right atrium of a patient's heart. The method 900 may include advancing a pacing lead to the potential implantation site 904. The pacing lead may include an elongate body extending from a proximal portion to a distal portion and a fixation element coupled to the distal portion and attachable to the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of the patient's heart, for example, to deliver cardiac therapy to or sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart.


The method 900 may include implanting the pacing lead at the potential implantation site 906. In some embodiments, implanting the pacing lead may include implanting a left-ventricular electrode coupled to the distal portion of the pacing lead from tissue adjacent to or within the triangle of Koch region of the right atrium through the right-atrial endocardium and optionally the central fibrous body to deliver cardiac therapy to or sense electrical activity of the left ventricle in the basal and/or septal region of the left ventricular myocardium of the patient's heart. For example, when implanting through the coronary sinus, the right fibrous trigone and membranous septum may not be penetrated by the left-ventricular electrode. In some embodiments, the left-ventricular electrode may be described as being implanted from tissue adjacent to or within the triangle of Koch region of the right atrium through the right-atrial endocardium and the central fibrous skeleton. In some embodiments, implanting the pacing lead may include positioning a right-atrial electrode of the pacing lead proximal to the fixation element to deliver cardiac therapy to or sense electrical activity of the right atrium of the patient's heart.



FIG. 30 shows one example of the method for locating a potential implantation site 902. The method 902 may include inserting a guide wire into a lumen of a sheath 912. The method 902 may include advancing the guide wire and the sheath to the implantation site 914, for example, into the coronary sinus of the patient's heart to a region below the mitral valve near the coronary sinus ostium.


The method 902 may include advancing a needle-tipped dilator 916, for example, over the guide wire and through the lumen of the sheath to the coronary sinus. The method 902 may also include engaging tissue in the potential implantation site 918, for example, adjacent to or within the triangle of Koch region in the right atrium of the patient's heart with the needle-tipped dilator.


The method 902 may include testing the potential implantation site 920 that is adjacent to or within the triangle of Koch region in the right atrium of the patient's heart using the needle-tipped dilator. The method 902 may also include determining whether the potential implantation site is acceptable 922, for example, based on the testing using the needle-tipped dilator.



FIG. 31 shows a further example of a method for locating a potential implantation site 902. The method 902 may include determining if the site is acceptable 922. In response to the site being not acceptable, the method 902 may include withdrawing the needle-tipped dilator 926, for example, from tissue in the potential implantation site. The method 902 may also include locating a new potential implantation site 928, for example, adjacent to or within the triangle of Koch region in the right atrium of the patient's heart.


In response to the site being acceptable, the method 902 may include forming an opening in tissue 930, for example, in the potential implantation site using the needle-tipped dilator. The method 902 may also include preparing the implantation site for the pacing lead, for example, based on the size of the guide wire. For example, one implantation method 940 (FIG. 32) may be used for a guide wire having a larger diameter (e.g., 0.035 inches), whereas another implantation method 950 (FIG. 33) may be used for a guide wire having a smaller diameter (e.g., 0.014 inches).



FIG. 32 shows one example of a method for preparing an implantation site 940. The method 940 may include advancing the guide wire to the potential implantation site 942. The method 940 may also include advancing a sheath over the guide wire 944, for example, into an opening in tissue in the potential implantation site formed by a needle-tipped dilator. In some embodiments, the sheath may be advanced as far as possible into the opening.


The method 940 may include withdrawing the needle-tipped dilator 946, for example, through the lumen of the sheath. The guide wire may also be withdrawn through the lumen of the sheath. The method 940 may also include advancing the pacing lead to the potential implantation site 948, for example, while the pacing lead is at least partially disposed in the lumen of the sheath such that the sheath guides the pacing lead to the potential implantation site.



FIG. 33 shows another example of a method for preparing an implantation site 950. The method 950 may include advancing the guide wire into an opening in tissue in the implantation site 952, for example, formed by a needle-tipped dilator. The method 950 may also include withdrawing the needle-tipped dilator 954, for example, over the guide wire such that the pacing lead is guided to the implantation site by the guide wire.


The method 950 may include exchanging the needle-tipped dilator for the pacing lead 956. The method 950 may also include advancing the pacing lead 958, for example, over the guide wire to the implantation site.



FIG. 34 shows a further example of a method for preparing an implantation site 960, which may follow the method 940 or the method 950. The method 960 may include testing the implantation site using the pacing lead 962, for example, after the pacing lead has been guided to the implantation site by the sheath or the guide wire. The method 960 may also include determining whether the potential implantation site is acceptable 964, for example, based on the testing using the pacing lead.


Based on the determination, in response to the implantation site being not acceptable 966, the method 960 may include locating a new potential implantation site 968. The method 960 may return to testing with a needle-tipped dilator or the pacing lead.


In response to the implantation site being acceptable 966, the method 960 may include fixing the pacing lead in the implantation site 970. The sheath or guidewire may be removed after the pacing lead is implanted and deemed acceptable, and only the pacing lead may remain at the implantation site. In particular, an LV electrode may be positioned in the basal region, septal region, or basal-septal region of the left ventricular myocardium through a region adjacent to or within the triangle of Koch region.


In some embodiments, an imageable material (e.g., radiopaque material) may be used to form part or all of some components of the delivery system to guide the distal portion of the delivery system to an implantation site that is adjacent to or within the triangle of Koch region to position the LV electrode in the basal region, septal region, or basal-septal region of the left ventricular myocardium. For example, a distal portion of the sheath may be at least partially formed of an imageable material. Various examples of imageable materials and imageable components (e.g., imageable members) are described in U.S. patent application Ser. No. 16/227,774, filed Dec. 20, 2018, entitled “Implantable medical device delivery for cardiac therapy,” which is incorporated herein by reference in its entirety.


Illustrative Embodiments

While the present disclosure is not so limited, an appreciation of various aspects of the disclosure will be gained through a discussion of the illustrative embodiments provided below. Various modifications of the illustrative embodiments, as well as additional embodiments of the disclosure, will become apparent herein.


In illustrative embodiment A1, a method of delivering a pacing lead comprises locating a potential implantation site adjacent to or within the triangle of Koch region in the right atrium of a patient's heart; advancing a pacing lead to the potential implantation site, the pacing lead comprising an elongate body extending from a proximal portion to a distal portion and a fixation element coupled to the distal portion and attachable to the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of the patient's heart; and implanting the pacing lead at the potential implantation site to deliver cardiac therapy to and sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart.


In illustrative embodiment A2, a method comprises a method according to any A embodiment, further comprising implanting a left-ventricular electrode coupled to the distal portion of the pacing lead from tissue adjacent to or within the triangle of Koch region of the right atrium through the right-atrial endocardium and optionally the central fibrous body to deliver cardiac therapy to and sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart.


In illustrative embodiment A3, a method comprises a method according to any A embodiment, further comprising positioning an atrial electrode of the pacing lead adjacent to or proximal to the fixation element to deliver cardiac therapy to or sense electrical activity of the atrium of the patient's heart.


In illustrative embodiment A4, a method comprises a method according to any A embodiment, wherein locating the potential implantation site comprises: optionally inserting a guide wire into a lumen of a sheath; advancing the guide wire and the sheath into the coronary sinus of the patient's heart; advancing a needle-tipped dilator over the guide wire and through the lumen of the sheath to the coronary sinus; engaging tissue in the potential implantation site adjacent to or within the triangle of Koch region in the right atrium of the patient's heart with the needle-tipped dilator; testing the potential implantation site adjacent to or within the triangle of Koch region in the right atrium of the patient's heart using the needle-tipped dilator; and determining whether the potential implantation site is acceptable based on the testing using the needle-tipped dilator.


In illustrative embodiment A5, a method comprises a method according to embodiment A4, further comprising: withdrawing the needle-tipped dilator from tissue in the potential implantation site in response to determining that the potential implantation site is not acceptable; and optionally locating a new potential implantation site adjacent to or within the triangle of Koch region in the right atrium of the patient's heart.


In illustrative embodiment A6, a method comprises a method according to embodiment A4 or A5, further comprising forming an opening in tissue in the potential implantation site using the needle-tipped dilator in response to determining that the potential implantation site is acceptable.


In illustrative embodiment A7, a method comprises a method according to any A embodiment, further comprising preparing the potential implantation site for the pacing lead based on a size of a guide wire.


In illustrative embodiment A8, a method comprises a method according to embodiment A7, wherein preparing the potential implantation site for the pacing lead comprises: advancing the guide wire to the potential implantation site; advancing a sheath over the guide wire and into an opening in tissue in the potential implantation site formed by a needle-tipped dilator; and withdrawing the needle-tipped dilator and the guide wire through a lumen of the sheath, wherein the pacing lead is advanced to the potential implantation site while the pacing lead is at least partially disposed in the lumen of the sheath.


In illustrative embodiment A9, a method comprises a method according to embodiment A7, wherein preparing the potential implantation site for the pacing lead comprises: advancing the guide wire into an opening in tissue in the potential implantation site formed by a needle-tipped dilator; withdrawing the needle-tipped dilator over the guide wire; and exchanging the needle-tipped dilator with the pacing lead, wherein the pacing lead is advanced to the potential implantation site over the guide wire.


In illustrative embodiment A10, a method comprises a method according to any embodiment A4-A9, wherein the needle-tipped dilator comprises a dilator portion and a needle portion separable from the dilator portion.


In illustrative embodiment A11, a method comprises a method according to any A embodiment, further comprising: testing the potential implantation site using the pacing lead; determining whether the potential implantation site is acceptable based on the testing using the pacing lead; and fixing the pacing lead in the potential implantation site in response to determining that the potential implantation site is acceptable based on the testing using the pacing lead.


In illustrative embodiment B1, a pacing lead delivery system comprises a sheath comprising an elongate body defining a lumen extending between a proximal portion and a distal portion; a guide wire at least partially disposable in the lumen of the sheath; a needle-tipped dilator configured to advance over the guide wire and to engage tissue in a potential implantation site; and a pacing lead comprising an elongate body extending from a proximal portion to a distal portion and a fixation element coupled to the distal portion and attachable to an implantation site in the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of a patient's heart to deliver cardiac therapy to and sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart.


In illustrative embodiment B2, a system comprises a system of any B embodiment, wherein the elongate body defines a lumen extending between the proximal portion and the distal portion configured to receive the guide wire.


In illustrative embodiment B3, a system comprises a system of any B embodiment, wherein the fixation element of the pacing lead comprises a helical attachment element.


In illustrative embodiment B4, a system comprises a system of embodiment B3, wherein the pacing lead is freely rotatable relative to the sheath, the guide wire, or both.


In illustrative embodiment B5, a system comprises a system of any B embodiment, wherein the sheath comprises a fixed curve configured to extend to the implantation site adjacent to or within the triangle of Koch region in the right atrium of the patient's heart using the coronary sinus.


In illustrative embodiment B6, a system comprises a system of any B embodiment, wherein the sheath is deflectable and comprises a first curve segment and a second curve segment distal to the first curve segment configured to extend to the implantation site adjacent to or within the triangle of Koch region in the right atrium of the patient's heart through the coronary sinus.


In illustrative embodiment B7, a system comprises a system of embodiment B6, wherein the first curve segment has a first radius of curvature and the second curve segment has a second radius of curvature less than the first radius of curvature.


In illustrative embodiment B8, a system comprises a system of embodiment B6 or B7, wherein the first curve segment is aligned to a first plane and the second curve segment is aligned to a second plane having a different orientation than the first plane.


In illustrative embodiment B9, a system comprises the system of any embodiment B6-B8, wherein the first curve segment is adjustable relative to the second curve segment.


In illustrative embodiment B10, a system comprises a system according to any B embodiment, wherein the needle-tipped dilator or guide wire is configured to form an opening in tissue in the potential implantation site.


In illustrative embodiment B11, a system comprises a system according to embodiment B10, wherein the sheath is configured to be inserted into the opening in tissue formed by the needle-tipped dilator to guide the pacing lead to the potential implantation site.


In illustrative embodiment B12, a system comprises a system according to embodiment B10, wherein the guide wire is configured to be inserted into the opening in tissue formed by the needle-tipped dilator to guide advancement of the pacing lead to the potential implantation site.


In illustrative embodiment C1, a pacing lead comprises an elongate body defining a lumen extending from a proximal portion to a distal portion configured to receive a guide wire; and a left-ventricular electrode coupled to the elongate body implantable from tissue adjacent to or within the triangle of Koch region of the right atrium through the right-atrial endocardium to deliver cardiac therapy to and sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of a patient's heart.


In illustrative embodiment C2, a pacing lead comprises a pacing lead according to any C embodiment, further comprising an atrial electrode coupled to the elongate body proximal to the left-ventricular electrode and positionable within the atrium to deliver cardiac therapy to or sense electrical activity of the atrium of the patient's heart.


In illustrative embodiment C3, a pacing lead comprises a pacing lead according to any C embodiment, wherein the left-ventricular electrode is configured to pierce tissue in an implantation site adjacent to or within the triangle of Koch region of the right atrium of the patient's heart to secure the pacing lead to the left ventricular myocardium.


In illustrative embodiment C4, a pacing lead comprises a pacing lead according to any C embodiment, wherein the left-ventricular electrode comprises a helical attachment element.


In illustrative embodiment D1, a pacing lead delivery system comprises a sheath comprising an elongate body defining a lumen extending between a proximal portion and a distal portion; a guide wire at least partially disposable in the lumen of the sheath and configured to engage tissue in a potential implantation site; and a pacing lead comprising an elongate body extending from a proximal portion to a distal portion and a fixation element coupled to the distal portion and attachable to an implantation site in the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of a patient's heart to and sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart.


In illustrative embodiment D2, a system comprises a system according to any D embodiment, wherein the elongate body defines a lumen extending between the proximal portion and the distal portion configured to receive the guide wire.


Thus, various embodiments of DELIVERY SYSTEMS AND METHODS FOR LEFT VENTRICULAR PACING are disclosed. Although reference is made herein to the accompanying set of drawings that form part of this disclosure, one of at least ordinary skill in the art will appreciate that various adaptations and modifications of the embodiments described herein are within, or do not depart from, the scope of this disclosure. For example, aspects of the embodiments described herein may be combined in a variety of ways with each other. Therefore, it is to be understood that, within the scope of the appended claims, the claimed invention may be practiced other than as explicitly described herein.


It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. It should also be understood that, depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the techniques). In addition, while certain aspects of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a medical device.


In one or more examples, the described techniques may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include non-transitory computer-readable media, which corresponds to a tangible medium such as data storage media (e.g., RAM, ROM, EEPROM, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer).


Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor” as used herein may refer to any of the foregoing structure or any other physical structure suitable for implementation of the described techniques. Also, the techniques could be fully implemented in one or more circuits or logic elements. It will be understood that each block of the block diagrams and combinations of those blocks can be implemented by means for performing the illustrated function.


All references and publications cited herein are expressly incorporated herein by reference in their entirety for all purposes, except to the extent any aspect directly contradicts this disclosure.


All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.


Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims may be understood as being modified either by the term “exactly” or “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein or, for example, within typical ranges of experimental error.


The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range. Herein, the terms “up to” or “no greater than” a number (e.g., up to 50) includes the number (e.g., 50), and the term “no less than” a number (e.g., no less than 5) includes the number (e.g., 5).


The terms “coupled” or “connected” refer to elements being attached to each other either directly (in direct contact with each other) or indirectly (having one or more elements between and attaching the two elements). Either term may be modified by “operatively” and “operably,” which may be used interchangeably, to describe that the coupling or connection is configured to allow the components to interact to carry out at least some functionality.


Terms related to orientation, such as “proximal,” “distal,” “above,” and “below,” are used to describe relative positions of components and are not meant to limit the orientation of the embodiments contemplated. For example, an embodiment described as having a “top” and “bottom” also encompasses embodiments thereof rotated in various directions unless the content clearly dictates otherwise.


Reference to “one embodiment,” “an embodiment,” “certain embodiments,” or “some embodiments,” etc., means that a particular feature, configuration, composition, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of such phrases in various places throughout are not necessarily referring to the same embodiment of the disclosure. Furthermore, the particular features, configurations, compositions, or characteristics may be combined in any suitable manner in one or more embodiments.


The words “preferred” and “preferably” refer to embodiments of the disclosure that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful and is not intended to exclude other embodiments from the scope of the disclosure.


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


As used herein, “have,” “having,” “include,” “including,” “comprise,” “comprising” or the like are used in their open-ended sense, and generally mean “including, but not limited to.” It will be understood that “consisting essentially of,” “consisting of,” and the like are subsumed in “comprising,” and the like.


The term “and/or” means one or all of the listed elements or a combination of at least two of the listed elements.


The phrases “at least one of,” “comprises at least one of,” and “one or more of” followed by a list refers to any one of the items in the list and any combination of two or more items in the list.

Claims
  • 1. A pacing lead delivery system comprising: a sheath comprising an elongate body defining a lumen extending between a proximal portion and a distal portion;a guide wire at least partially disposable in the lumen of the sheath;a needle-tipped dilator configured to advance over the guide wire and to engage tissue in a potential implantation site; anda pacing lead comprising an elongate body extending from a proximal portion to a distal portion and a fixation element coupled to the distal portion and attachable to an implantation site in the right-atrial endocardium adjacent to or within the triangle of Koch region in the right atrium of a patient's heart to deliver cardiac therapy to and sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium of the patient's heart.
  • 2. The pacing lead delivery system according to claim 1, wherein the elongate body defines a lumen extending between the proximal portion and the distal portion configured to receive the guide wire.
  • 3. The pacing lead delivery system according to claim 1, wherein the fixation element of the pacing lead comprises a helical attachment element.
  • 4. The pacing lead delivery system according to claim 3, wherein the pacing lead is freely rotatable relative to the sheath, the guide wire, or both.
  • 5. The pacing lead delivery system according to claim 1, wherein the sheath comprises a fixed curve configured to extend to the implantation site adjacent to or within the triangle of Koch region in the right atrium of the patient's heart using the coronary sinus.
  • 6. The pacing lead delivery system according to claim 1, wherein the sheath is deflectable and comprises a first curve segment and a second curve segment distal to the first curve segment configured to extend to the implantation site adjacent to or within the triangle of Koch region in the right atrium of the patient's heart through the coronary sinus.
  • 7. The pacing lead delivery system according to claim 6, wherein the first curve segment has a first radius of curvature and the second curve segment has a second radius of curvature less than the first radius of curvature.
  • 8. The pacing lead delivery system according to claim 6, wherein the first curve segment is aligned to a first plane and the second curve segment is aligned to a second plane having a different orientation than the first plane.
  • 9. The pacing lead delivery system according to claim 6, wherein the first curve segment is adjustable relative to the second curve segment.
  • 10. The pacing lead delivery system according to claim 1, wherein the needle-tipped dilator or guide wire is configured to form an opening in tissue in the potential implantation site.
  • 11. The pacing lead delivery system according to claim 10, wherein the sheath is configured to be inserted into the opening in tissue formed by the needle-tipped dilator to guide the pacing lead to the potential implantation site.
  • 12. The pacing lead delivery system according to claim 10, wherein the guide wire is configured to be inserted into the opening in tissue formed by the needle-tipped dilator to guide advancement of the pacing lead to the potential implantation site.
Parent Case Info

The present application claims the benefit of U.S. Provisional Application Ser. No. 62/783,479, filed Dec. 21, 2018, which is incorporated by reference in its entirety.

US Referenced Citations (1371)
Number Name Date Kind
3835864 Rasor et al. Sep 1974 A
3865118 Bures Feb 1975 A
3943936 Rasor et al. Mar 1976 A
3949757 Sabel Apr 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
RE30366 Rasor et al. Aug 1980 E
4243045 Mass Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4280502 Baker, Jr. et al. Jul 1981 A
4289144 Gilman Sep 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4332259 McCorkle, Jr. Jun 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4374382 Markowitz et al. Feb 1983 A
4393883 Smyth et al. Jul 1983 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4479500 Smits Oct 1984 A
4522208 Buffet Jun 1985 A
4537200 Widrow Aug 1985 A
4546777 Groch et al. Oct 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4574814 Buffet Mar 1986 A
4593702 Kepski et al. Jun 1986 A
4593955 Leiber Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4776338 Lekholm et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4830006 Haluska et al. May 1989 A
4858610 Callaghan et al. Aug 1989 A
4865037 Chin et al. Sep 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole, Jr. Dec 1989 A
4928688 Mower May 1990 A
4953564 Berthelsen Sep 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5053004 Markel Oct 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5107850 Olive Apr 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grievous et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5154170 Bennett et al. Oct 1992 A
5170784 Ramon et al. Dec 1992 A
5174289 Cohen Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5255692 Neubauer et al. Oct 1993 A
5259387 dePinto Nov 1993 A
5269326 Verrier Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318594 Limousin et al. Jun 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5342408 Decoriolis et al. Aug 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5427119 Swartz Jun 1995 A
5456691 Snell Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5554177 Kieval et al. Sep 1996 A
5562711 Yerich et al. Oct 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5620466 Haefner et al. Apr 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5720770 Nappholz et al. Feb 1998 A
5728140 Salo et al. Mar 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5749909 Schroeppel et al. May 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grievous et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5814089 Stokes et al. Sep 1998 A
5817130 Cox et al. Oct 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Goyal et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5873894 Vandegriff et al. Feb 1999 A
5891184 Lee et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5928271 Hess et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6016445 Baura Jan 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6041250 dePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055454 Heemels Apr 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6132456 Sommer et al. Oct 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6256534 Dahl Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6393316 Gillberg et al. May 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6508771 Padmanabhan et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6544270 Zhang Apr 2003 B1
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6623518 Thompson et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6647292 Bardy et al. Nov 2003 B1
6666844 Igo et al. Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6754528 Bardy et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6847844 Sun et al. Jan 2005 B2
6869404 Schulhauser et al. Mar 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6871096 Hill Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6931286 Sigg et al. Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6941169 Pappu Sep 2005 B2
6957107 Rogers et al. Oct 2005 B2
6978176 Lattouf Dec 2005 B2
6980675 Evron et al. Dec 2005 B2
6985773 Von Arx et al. Jan 2006 B2
6990375 Kloss et al. Jan 2006 B2
6993389 Ding et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013176 Ding et al. Mar 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7031711 Brown et al. Apr 2006 B2
7031771 Brown et al. Apr 2006 B2
7035684 Lee et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7060031 Webb et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7181284 Burnes et al. Feb 2007 B2
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7231248 Kramer et al. Jun 2007 B2
7231253 Tidemand et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7286866 Okerlund et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7307321 Avanzino Dec 2007 B1
7308297 Reddy et al. Dec 2007 B2
7308299 Burrell et al. Dec 2007 B2
7310556 Bulkes Dec 2007 B2
7317950 Lee Jan 2008 B2
7319905 Morgan et al. Jan 2008 B1
7321677 Evron et al. Jan 2008 B2
7321798 Muhlenberg et al. Jan 2008 B2
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7346381 Okerlund et al. Mar 2008 B2
7346393 Spinelli et al. Mar 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7433739 Salys et al. Oct 2008 B1
7454248 Burrell et al. Nov 2008 B2
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7499743 Vass et al. Mar 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7546166 Michels et al. Jun 2009 B2
7558626 Corbucci Jul 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565190 Okerlund et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7584002 Burnes et al. Sep 2009 B2
7587074 Zarkh et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7599730 Hunter et al. Oct 2009 B2
7606621 Brisken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7613500 Vass et al. Nov 2009 B2
7616991 Mann et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630764 Ding et al. Dec 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7635541 Scott et al. Dec 2009 B2
7637867 Zdeblick Dec 2009 B2
7640057 Libbus et al. Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7657313 Rom Feb 2010 B2
7668596 Von Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7702392 Echt et al. Apr 2010 B2
7706879 Burnes et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Von Arx et al. Jun 2010 B2
7742629 Zarkh et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747047 Okerlund et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7778685 Evron et al. Aug 2010 B2
7778686 Vass et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7813785 Okerlund et al. Oct 2010 B2
7840281 Kveen et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7877144 Coles, Jr. et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881791 Sambelashvili et al. Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7894885 Bartal et al. Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894902 Rom Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7912544 Min et al. Mar 2011 B1
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930027 Prakash et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7941218 Sambelashvili et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hubinette May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7979136 Young et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996063 Vass et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8000807 Morris et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8002718 Buchholtz et al. Aug 2011 B2
8010191 Zhu et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8014861 Zhu et al. Sep 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8046065 Burnes et al. Oct 2011 B2
8046079 Bange et al. Oct 2011 B2
8046080 Von Arx et al. Oct 2011 B2
8050297 Delmain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8055350 Roberts Nov 2011 B2
8060185 Hunter et al. Nov 2011 B2
8060212 Rios et al. Nov 2011 B1
8065018 Haubrich et al. Nov 2011 B2
8068920 Gaudiani Nov 2011 B2
8073542 Doerr Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8105714 Schmidt et al. Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8145308 Sambelashvili et al. Mar 2012 B2
8150521 Crowley et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8175715 Cox May 2012 B1
8180428 Kaiser et al. May 2012 B2
8180451 Hickman et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204590 Sambelashvili et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8214041 Van Gelder et al. Jul 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8262578 Bharmi et al. Sep 2012 B1
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8280521 Haubrich et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8321014 Maskara et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8332036 Hastings et al. Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8352025 Jacobson Jan 2013 B2
8352027 Spinelli et al. Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8380320 Spital Feb 2013 B2
8383269 Scott et al. Feb 2013 B2
8386051 Rys Feb 2013 B2
8391964 Musley et al. Mar 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8401616 Verard et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8406899 Reddy et al. Mar 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428716 Mullen et al. Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8447412 Dal Molin et al. May 2013 B2
8452413 Young et al. May 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8467871 Maskara Jun 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8509916 Byrd et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8521268 Zhang et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matoes Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8594775 Ghosh et al. Nov 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8617082 Zhang et al. Dec 2013 B2
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bornzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639333 Stadler et al. Jan 2014 B2
8639335 Peichel et al. Jan 2014 B2
8644934 Hastings et al. Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8676314 Maskara et al. Mar 2014 B2
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bornzin et al. Apr 2014 B2
8705599 Dal Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8731642 Zarkh et al. May 2014 B2
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8747314 Stahmann et al. Jun 2014 B2
8750994 Ghosh et al. Jun 2014 B2
8750998 Ghosh et al. Jun 2014 B1
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768459 Ghosh et al. Jul 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Corndorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8861830 Brada et al. Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886307 Sambelashvili et al. Nov 2014 B2
8886311 Anderson et al. Nov 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bornzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8948883 Eggen et al. Feb 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9033996 West May 2015 B1
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9072872 Asleson et al. Jul 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9101281 Reinert et al. Aug 2015 B2
9119959 Rys et al. Sep 2015 B2
9155882 Grubac et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9248300 Rys et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashbili et al. Mar 2016 B1
9302115 Molin et al. Apr 2016 B2
9320446 Gillberg et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Regnier et al. Sep 2016 B2
9457193 Klimovitch et al. Oct 2016 B2
9474457 Ghosh et al. Oct 2016 B2
9486151 Ghosh et al. Nov 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9517336 Eggen et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishler et al. Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9533163 Klimovitch et al. Jan 2017 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9579500 Rys et al. Feb 2017 B2
9623234 Anderson Apr 2017 B2
9636511 Carney et al. May 2017 B2
9643014 Zhang et al. May 2017 B2
9675579 Rock et al. Jun 2017 B2
9707399 Zielinski et al. Jul 2017 B2
9724519 Demmer et al. Aug 2017 B2
9789319 Sambelashvili Oct 2017 B2
9808628 Sheldon et al. Nov 2017 B2
9808633 Bonner et al. Nov 2017 B2
9877789 Ghosh Jan 2018 B2
9924884 Ghosh et al. Mar 2018 B2
10004467 Lahm et al. Jun 2018 B2
10064567 Ghosh et al. Sep 2018 B2
10099050 Chen et al. Oct 2018 B2
10166396 Schrock et al. Jan 2019 B2
10251555 Ghosh et al. Apr 2019 B2
10406370 Makharinsky Sep 2019 B1
10456581 Liu et al. Oct 2019 B2
10850107 Li et al. Dec 2020 B2
10850108 Li et al. Dec 2020 B2
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020049476 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Erlinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030004549 Hill et al. Jan 2003 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030083560 Osypka May 2003 A1
20030088278 Bardy et al. May 2003 A1
20030092995 Thompson May 2003 A1
20030093104 Bonner et al. May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20040024435 Leckrone et al. Feb 2004 A1
20040064158 Klein et al. Apr 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040087938 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040102830 Williams May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040230283 Prinzen et al. Dec 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20040267303 Guenst Dec 2004 A1
20050008210 Evron et al. Jan 2005 A1
20050038477 Kramer et al. Feb 2005 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050102003 Grabek et al. May 2005 A1
20050137629 Dyjach et al. Jun 2005 A1
20050137671 Liu et al. Jun 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050203410 Jenkins Sep 2005 A1
20050277990 Ostroff et al. Dec 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060074285 Zarkh et al. Apr 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060161205 Mitrani et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060235478 Van Gelder et al. Oct 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070049975 Cates et al. Mar 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jaconson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070233216 Liu et al. Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20070299475 Levin et al. Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080103539 Stegemann et al. May 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080243217 Wildon Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269816 Prakash et al. Oct 2008 A1
20080269823 Burnes et al. Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080294229 Friedman et al. Nov 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090036941 Corbucci Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090099619 Lessmeier et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 Jason Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090234412 Sambelashvili Sep 2009 A1
20090234413 Sambelashvili et al. Sep 2009 A1
20090234414 Sambelashvili et al. Sep 2009 A1
20090234415 Sambelashvili et al. Sep 2009 A1
20090248103 Sambelashvili et al. Oct 2009 A1
20090259272 Reddy et al. Oct 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100016914 Mullen et al. Jan 2010 A1
20100023078 Dong et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100065871 Govari et al. Mar 2010 A1
20100094367 Sen Apr 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100152798 Sanghera et al. Jun 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100185250 Rom Jul 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198291 Sambelashvili et al. Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100218147 Ishikawa Aug 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100286541 Musley et al. Nov 2010 A1
20100286626 Petersen Nov 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100298841 Prinzen et al. Nov 2010 A1
20100312309 Harding Dec 2010 A1
20110022113 Ideblick et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110106202 Ding et al. May 2011 A1
20110112398 Zarkh et al. May 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110190835 Brockway et al. Aug 2011 A1
20110190841 Sambelashvili et al. Aug 2011 A1
20110196444 Prakash et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120035685 Saha et al. Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120089214 Kroll et al. Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109235 Sheldon et al. May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120232478 Haslinger Sep 2012 A1
20120232563 Williams et al. Sep 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20120263218 Dal Molin et al. Oct 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120277725 Kassab et al. Nov 2012 A1
20120283587 Gosh et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120284003 Gosh et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296228 Zhang et al. Nov 2012 A1
20120296381 Matos Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20130012151 Hankins Jan 2013 A1
20130013017 Mullen et al. Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053906 Ghosh et al. Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085550 Polefko et al. Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourg et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116739 Brada et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123872 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130131750 Stadler et al. May 2013 A1
20130131751 Stadler et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197599 Sambelashvili et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Walfhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268017 Zhang et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130138006 Bornzin et al. Nov 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140012344 Hastings et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140339570 Carroll et al. Feb 2014 A1
20140067036 Shuros Mar 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140114173 Bar-Tal et al. Apr 2014 A1
20140114372 Ghosh et al. Apr 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140128935 Kumar et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172060 Bornzin et al. Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140323882 Ghosh et al. Oct 2014 A1
20140323892 Ghosh et al. Oct 2014 A1
20140330208 Christie et al. Nov 2014 A1
20140330287 Thompson-Nauman et al. Nov 2014 A1
20140330326 Thompson-Nauman et al. Nov 2014 A1
20140358135 Sambelashvili et al. Dec 2014 A1
20140371832 Ghosh Dec 2014 A1
20140371833 Ghosh et al. Dec 2014 A1
20140379041 Foster Dec 2014 A1
20150025612 Haasl et al. Jan 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150088155 Foster et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150142070 Sambelashvili May 2015 A1
20150148697 Burnes et al. May 2015 A1
20150149096 Soykan May 2015 A1
20150157861 Aghassian Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150190638 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann et al. Jul 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150238768 Bornzin Aug 2015 A1
20150238769 Demmer et al. Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150305695 Lahm et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20150335894 Bornzin et al. Nov 2015 A1
20160015287 Anderson et al. Jan 2016 A1
20160015322 Anderson et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160045738 Ghosh et al. Feb 2016 A1
20160045744 Gillberg et al. Feb 2016 A1
20160051821 Sambelashvili et al. Feb 2016 A1
20160059002 Grubac et al. Mar 2016 A1
20160067486 Brown et al. Mar 2016 A1
20160067487 Demmer et al. Mar 2016 A1
20160067490 Carney et al. Mar 2016 A1
20160110856 Hoof et al. Apr 2016 A1
20160114161 Amblard et al. Apr 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishler et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160129239 Anderson May 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213937 Reinke et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160228026 Jackson Aug 2016 A1
20160310733 Sheldon et al. Oct 2016 A1
20160317825 Jacobson Nov 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20170014629 Ghosh et al. Jan 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
20170056670 Sheldon et al. Mar 2017 A1
20170182327 Liu Jun 2017 A1
20170189681 Anderson Jul 2017 A1
20170209689 Chen Jul 2017 A1
20170216575 Asleson et al. Aug 2017 A1
20170304624 Friedman et al. Oct 2017 A1
20170326369 Koop et al. Nov 2017 A1
20170340885 Sambelashvili Nov 2017 A1
20180008829 An et al. Jan 2018 A1
20180021567 An et al. Jan 2018 A1
20180021581 An et al. Jan 2018 A1
20180021582 An et al. Jan 2018 A1
20180050208 Shuros et al. Feb 2018 A1
20180078773 Thakur et al. Mar 2018 A1
20180078779 An et al. Mar 2018 A1
20180117324 Schilling et al. May 2018 A1
20180140848 Stahmann May 2018 A1
20180178007 Shuros et al. Jun 2018 A1
20180185653 Baru et al. Jul 2018 A1
20180212451 Schmidt et al. Jul 2018 A1
20180256904 Li et al. Sep 2018 A1
20180264262 Haasl et al. Sep 2018 A1
20180264272 Haasl et al. Sep 2018 A1
20180264273 Haasl et al. Sep 2018 A1
20180264274 Haasl et al. Sep 2018 A1
20180280686 Shuros et al. Oct 2018 A1
20180326215 Ghosh Nov 2018 A1
20190030346 Li Jan 2019 A1
20190038906 Koop et al. Feb 2019 A1
20190083779 Yang et al. Mar 2019 A1
20190083800 Yang et al. Mar 2019 A1
20190083801 Yang et al. Mar 2019 A1
20190192860 Ghosh et al. Jun 2019 A1
20190269926 Ghosh Sep 2019 A1
20210085986 Li et al. Mar 2021 A1
Foreign Referenced Citations (41)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
202933393 May 2013 CN
0362611 Apr 1990 EP
0459 239 Dec 1991 EP
0 728 497 Aug 1996 EP
1 541 191 Jun 2005 EP
1 702 648 Sep 2006 EP
1 904 166 Jun 2011 EP
2 452 721 May 2012 EP
2 471 452 Jul 2012 EP
2 662 113 Nov 2013 EP
1 703 944 Jul 2015 EP
2005245215 Sep 2005 JP
WO 9500202 Jan 1995 WO
WO 9636134 Nov 1996 WO
WO 9724981 Jul 1997 WO
WO 0222206 Mar 2002 WO
WO 03092800 Nov 2003 WO
2005000206 Jan 2005 WO
2005042089 May 2005 WO
2006086435 Aug 2006 WO
2006113659 Oct 2006 WO
2007073435 Jun 2007 WO
2007075974 Jul 2007 WO
2008058265 Jul 2008 WO
2009006531 Jan 2009 WO
2013080038 Jun 2013 WO
2013098644 Jul 2013 WO
2015081221 Jun 2015 WO
2016011042 Jan 2016 WO
2016077099 May 2016 WO
2016110856 Jul 2016 WO
2016171891 Oct 2016 WO
2017075193 May 2017 WO
2018009569 Jan 2018 WO
2018017226 Jan 2018 WO
2018017361 Jan 2018 WO
2018035343 Feb 2018 WO
2018081519 May 2018 WO
Non-Patent Literature Citations (236)
Entry
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
International Search Report and Written Opinion dated Apr. 2, 2020 from PCT Application No. PCT/2019/067858, 14 pages.
http://www.isrctn.com/ISRCTN47824547, public posting published Aug. 2019.
Abed et al., “Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation,” Heart Rhythm Society, Jan. 2013; 10(1):90-100.
Adragão et al., “Ablation of pulmonary vein foci for the treatment of atrial fibrillation; percutaneous electroanatomical guided approach,” Europace, Oct. 2002; 4(4):391-9.
Aliot et al., “Arrhythmia detection by dual-chamber implantable cardioverter defibrillators: A review of current algorithms,” Europace, Jul. 2004; 6(4):273-86.
Amirahmadi et al., “Ventricular Tachycardia Caused by Mesothelial Cyst,” Indian Pacing and Electrophysiology Journal, 2013; 13(1):43-44.
Ammirabile et al., “Pitx2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium,” Cardiovasc Res., Feb. 2012; 93(2):291-301.
Anfinsen, “Non-pharmacological Treatment of Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2002; 2(1):4-14.
Anné et al., “Ablation of post-surgical intra-atrial reentrant Tachycardia,” European Heart Journal, 2002; 23:169-1616.
Arenal et al., “Dominant frequency differences in atrial fibrillation patients with and without left ventricular systolic dysfunction,” Europace, Apr. 2009; 11(4):450-457.
Arriagada et al., “Predictors of arrhythmia recurrence in patients with lone atrial fibrillation,” Europace, Jan. 2008; 10(1):9-14.
Asirvatham et al., “Cardiac Anatomic Considerations in Pediatric Electrophysiology,” Indian Pacing and Electrophysiology Journal, Apr. 2008; 8(Suppl 1):S75-S91.
Asirvatham et al., “Intramyocardial Pacing and Sensing for the Enhancement of Cardiac Stimulation and Sensing Specificity,” Pacing Clin. Electrophysiol., Jun. 2007; 30(6):748-754.
Asirvatham et al., “Letter to the Editor,” J Cardiovasc Electrophysiol., Mar. 2010; 21(3): E77.
Balmer et al., “Long-term follow up of children with congenital complete atrioventricular block and the impact of pacemaker therapy,” Europace, Oct. 2002; 4(4):345-349.
Barold et al., “Conventional and biventricular pacing in patients with first-degree atrioventricular block,” Europace, Oct. 2012; 14(10):1414-9.
Barold et al., “The effect of hyperkalaemia on cardiac rhythm devices,” Europace, Apr. 2014; 16(4):467-76.
Bayrak et al., “Added value of transoesophageal echocardiography during transseptal puncture performed by inexperienced operators,” Europace, May 2012; 14(5):661-5.
Bergau et al., “Measurement of Left Atrial Pressure is a Good Predictor of Freedom From Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):181-93.
Bernstein et al., “The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group,” Pacing Clin Electrophysiol., Feb. 2002; 25(2):260-4.
Bito et al., “Early exercise training after myocardial infarction prevents contractile but not electrical remodeling or hypertrophy,” Cardiovascular Research, Apr. 2010; 86(1):72-81.
Bollmann et al., “Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications,” Europace, Nov. 2006; 8(11):911-926.
Bortone et al., “Evidence for an incomplete mitral isthmus block after failed ablation of a left postero-inferior concealed accessory pathway,” Europace, Jun. 2006; 8(6):434-7.
Boulos et al., “Electroanatomical mapping and radiofrequency ablation of an accessory pathway associated with a large aneurysm of the coronary sinus,” Europace, Nov. 2004; 6(6):608-12.
Brembilla-Perrot et al., “Incidence and prognostic significance of spontaneous and inducible antidromic tachycardia,” Europace, Jun. 2013; 15(6):871-876.
Buber et al., “Morphological features of the P-waves at surface electrocardiogram as surrogate to mechanical function of the left atrium following a successful modified maze procedure,” Europace, Apr. 2014; 16(4):578-86.
Burashnikov et al., “Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation,” Pacing Clin Electrophysiol., Mar. 2006; 29(3):290-5.
Burashnikov et al., “Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation,” Heart Rhythm, Jan. 2012; 9(1):125-31.
Calvo et al., “Efficacy of circumferential pulmonary vein ablation of atrial fibrillation in endurance athletes,” Europace, Jan. 2010; 12(1):30-6.
Can et al., ““Atrial torsades de pointes” Induced by Low-Energy Shock From Implantable-Cardioverter Defibrillator,” Indian Pacing and Electrophysiology Journal, Sep. 2013; 13(5):194-199.
Carroz et al., “Pseudo-pacemaker syndrome in a young woman with first-degree atrio-ventricular block,” Europace, Apr. 2010; 12(4):594-596.
Catanchin et al., “Wolff-Parkinson-White syndrome with an unroofed coronary sinus without persistent left superior vena cava treated with catheter cryoablation,” Indian Pacing and Electrophysiology Journal, Aug. 2008; 8(3):227-233.
Cazeau et al., “Cardiac resynchronization therapy,” Europace, Sep. 2004; 5 Suppl 1:S42-8.
Cerqueira et al., “Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association,” Circulation, Jan. 29, 2002; 105(4):539-42.
Chandra et al., “Evaluation of KCB-328, a new IKr blocking antiarrhythmic agent in pacing induced canine atrial fibrillation,” Europace, Sep. 2004; 6(5):384-91.
Chang et al., “Electrophysiological characteristics and catheter ablation in patients with paroxysmal supraventricular tachycardia and paroxysmal atrial fibrillation,” J Cardiovasc Electrophysiol., Apr. 2008; 19(4):367-73.
Charron et al., “A familial form of conduction defect related to a mutation in the PRKAG2 gene,” Europace, Aug. 2007; 9(8):597-600.
Chou et al., “Effects of SEA0400 on Arrhythmogenicity in a Langendorff-Perfused 1-Month Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., May 2013; 36(5):596-606.
Ciploetta et al., “Posterior Coronary Vein as the Substrate for an Epicardial Accessory Pathway,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13(4):142-7.
Climent et al., “Effects of endocardial microwave energy ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2005; 5(3): 233-43.
Comtois et al., “Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry,” Europace, Sep. 2005; 7 Suppl 2:10-20.
Crick et al., “Anatomy of the pig heart: comparisons with normal human cardiac structure,” J. Anat., 1998, 193:105-119.
Daoulah et al., “Unintended Harm and Benefit of the Implantable Defibrillator in an Unfortunate 19-Year-Old Male: Featuring a Sequence of Rare Life-threatening Complications of Cardiac Procedures,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13(4):151-6.
De Mattia et al., “Paroxysmal atrial fibrillation triggered by a monomorphic ventricular couplet in a patient with acute coronary syndrome,” Indian Pacing and Electrophysiology Journal, Jan. 2012; 12(1):19-23.
DeSimone et al., “New approach to cardiac resynchronization therapy: CRT without left ventricular lead,” Apr. 25, 2014, 2 pages.
De Sisti et al., “Electrophysiological determinants of atrial fibrillation in sinus node dysfunction despite atrial pacing,” Europace, Oct. 2000; 2(4):304-11.
De Voogt et al., “Electrical characteristics of low atrial septum pacing compared with right atrial appendage pacing,” Europace, Jan. 2005; 7(1):60-6.
De Voogt et al., “A technique of lead insertion for low atrial septal pacing,” Pacing Clin Electrophysiol., Jul. 2005; 28(7):639-46.
Dizon et al. “Real-time stroke vol. measurements for the optimization of cardiac resynchronization therapy parameters,” Europace, Sep. 2010; 12(9):1270-1274.
Duckett et al., “Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy,” Europace, Jan. 2012; 14(1):99-106.
Eksik et al., “Influence of atrioventricular nodal reentrant tachycardia ablation on right to left inter-atrial conduction,” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):279-88.
Fiala et al., “Left Atrial Voltage during Atrial Fibrillation in Paroxysmal and Persistent Atrial Fibrillation Patients,” PACE, May 2010; 33(5):541-548.
Fragakis et al., “Acute beta-adrenoceptor blockade improves efficacy of ibutilide in conversion of atrial fibrillation with a rapid ventricular rate,” Europace, Jan. 2009; 11(1):70-4.
Frogoudaki et al., “Pacing for adult patients with left atrial isomerism: efficacy and technical considerations,” Europace, Apr. 2003; 5(2):189-193.
Ganapathy et al., “Implantable Device to Monitor Cardiac Activity with Sternal Wires,” Pacing Clin. Electrophysiol., Dec. 2014; Epub Aug. 24, 2014; 37(12):1630-40.
Geddes, “Accuracy limitations of chronaxie values,” IEEE Trans Biomed Eng., Jan. 2004; 51(1):176-81.
Gertz et al., “The impact of mitral regurgitation on patients undergoing catheter ablation of atrial fibrillation,” Europace, Aug. 2011; 13(8):1127-32.
Girmatsion et al., “Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation,” Heart Rhythm, Dec. 2009; 6(12):1802-9.
Goette et al., “Acute atrial tachyarrhythmia induces angiotensin II type 1 receptor-mediated oxidative stress and microvascular flow abnormalities in the ventricles,” European Heart Journal, Jun. 2009; 30(11):1411-20.
Goette et al., “Electrophysiological effects of angiotensin II. Part I: signal transduction and basic electrophysiological mechanisms,” Europace, Feb. 2008; 10(2):238-41.
Gómez et al., “Nitric oxide inhibits Kv4.3 and human cardiac transient outward potassium current (Ito1),” Cardiovasc Res., Dec. 2008; 80(3):375-84.
Gros et al., “Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate,” Cardiovascular Research, Jan. 2010; 85(1):45-55.
Guenther et al., “Substernal Lead Implantation: a Novel Option to Manage OFT Failure in S-ICD patients,” Clinical Research Cardiology, Feb. 2015; Epub Oct. 2, 2014; 104(2):189-91.
Guillem et al., “Noninvasive mapping of human atrial fibrillation,” J Cardiovasc Electrophysiol., May 2009; 20(5):507-513.
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Hakacova et al., “Septal atrial pacing for the prevention of atrial fibrillation,” Europace, 2007; 9:1124-1128.
Hasan et al., “Safety, efficacy, and performance of implanted recycled cardiac rhythm management (CRM) devices in underprivileged patients,” Pacing Clin Electrophysiol., Jun. 2011; 34(6):653-8.
Hawkins, “Epicardial Wireless Pacemaker for Improved Left Ventricular Reynchronization (Conceptual Design)”, Dec. 2010, a Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo, 57 pp.
He et al., “Three-dimensional cardiac electrical imaging from intracavity recordings,” IEEE Trans Biomed Eng., Aug. 2007; 54(8):1454-60.
Heist et al., “Direct visualization of epicardial structures and ablation utilizing a visually guided laser balloon catheter: preliminary findings,” J Cardiovasc Electrophysiol., Jul. 2011; 22(7):808-12.
Henz et al., “Synchronous Ventricular Pacing without Crossing the Tricuspid Valve or Entering the Coronary Sinus—Preliminary Results,” J Cardiovasc Electrophysiol., Dec. 2009; 20(12):1391-1397.
Hiippala et al., “Automatic Atrial Threshold Measurement and Adjustment in Pediatric Patients,” Pacing Clin Electrophysiol., Mar. 2010; 33(3):309-13.
Ho, “Letter to the Editor” J Cardiovasc Electrophysiol., Mar. 2010; 21(3): E76.
Höijer et al., “Improved cardiac function and quality of life following upgrade to dual chamber pacing after long-term ventricular stimulation,” European Heart Journal, Mar. 2002; 23(6):490-497.
Huang et al., “A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block,” Can J Cardiol., Dec. 2007; Epub Sep. 22, 2017; 33(12):1736.e1-1736.e.
Inter-Office Memo, Model 6426-85 Canine Feasibility AV Septal 8 mm Screw-In Right Single Pass DDD Lead Final Report (AR # 0120A0207).
Ishigaki et al., “Prevention of immediate recurrence of atrial fibrillation with low-dose landiolol after radiofrequency catheter ablation,” Journal of Arrhythmia, Oct. 2015; 31(5):279-285.
Israel, “The role of pacing mode in the development of atrial fibrillation,” Europace, Feb. 2006; 8(2):89-95.
Janion et al., “Dispersion of P wave duration and P wave vector in patients with atrial septal aneurysm,” Europace, Jul. 2007; 9(7):471-4.
Kabra et al., “Recent Trends in Imaging for Atrial Fibrillation Ablation,” Indian Pacing and Electrophysiology Journal, 2010; 10(5):215-227.
Kalbfleisch et al., “Catheter Ablation with Radiofrequency Energy: Biophysical Aspects and Clinical Applications,” Journal of Cardiovascular Electrophysiology, Oct. 2008; 3(2):173-186.
Katritsis et al., “Classification and differential diagnosis of atrioventricular nodal re-entrant tachycardia,” Europace, Jan. 2006; 8(1):29-36.
Katritsis et al., “Anatomically left-sided septal slow pathway ablation in dextrocardia and situs inversus totalis,” Europace, Aug. 2008; 10(8):1004-5.
Khairy et al., “Cardiac Arrhythmias In Congenital Heart Diseases,” Indian Pacing and Electrophysiology Journal, Nov.-Dec. 2009; 9(6):299-317.
Kimmel et al., “Single-site ventricular and biventricular pacing: investigation of latest depolarization strategy,” Europace, Dec. 2007; 9(12):1163-1170.
Knackstedt et al., “Electro-anatomic mapping systems in arrhythmias,” Europace, Nov. 2008; 10 Suppl 3:iii28-ii34.
Kobayashi et al., “Successful Ablation of Antero-septal Accessory Pathway in the Non-Coronary Cusp in a Child,” Indian Pacing and Electrophysiology Journal, 2012; 12(3):124-130.
Kojodjojo et al., “4:2:1 conduction of an AF initiating trigger,” Indian Pacing and Electrophysiology Journal, Nov. 2015; 15(5):255-8.
Kołodzińska et al., “Differences in encapsulating lead tissue in patients who underwent transvenous lead removal,” Europace, Jul. 2012; 14(7):994-1001.
Konecny et al., “Synchronous intra-myocardial ventricular pacing without crossing the tricuspid valve or entering the coronary sinus,” Cardiovascular Revascularization Medicine, 2013; 14:137-138.
Kriatselis et al., “Ectopic atrial tachycardias with early activation at His site: radiofrequency ablation through a retrograde approach,” Europace, Jun. 2008; 10(6):698-704.
Lalu et al., “Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart,” Eur Heart J., Jan. 2005; 26(1):27-35.
Laske et al., “Excitation of the Intrinsic Conduction System Through His and Interventricular Septal Pacing,” Pacing Clin. Electrophysiol., Apr. 2006; 29(4):397-405.
Leclercq, “Problems and troubleshooting in regular follow-up of patients with cardiac resynchronization therapy,” Europace, Nov. 2009; 11 Suppl 5:v66-71.
Lee et al., “An unusual atrial tachycardia in a patient with Friedreich ataxia,” Europace, Nov. 2011; 13(11):1660-1.
Lee et al., “Blunted Proarrhythmic Effect of Nicorandil in a Langendorff-Perfused Phase-2 Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., Feb. 2013; 36(2):142-51.
Lemay et al., “Spatial dynamics of atrial activity assessed by the vectorcardiogram: from sinus rhythm to atrial fibrillation,” Europace, Nov. 2007; 9 Suppl 6:vi109-18.
Levy et al., “Does the mechanism of action of biatrial pacing for atrial fibrillation involve changes in cardiac haemodynamics? Assessment by Doppler echocardiography and natriuretic peptide measurements,” Europace, Apr. 2000; 2(2):127-35.
Lewalter et al., “Comparison of spontaneous atrial fibrillation electrogram potentials to the P wave electrogram amplitude in dual chamber pacing with unipolar atrial sensing,” Europace, Apr. 2000; 2(2):136-40.
Liakopoulos et al., “Sequential deformation and physiological considerations in unipolar right and left ventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S188-197.
Lian et al., “Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing,” IEEE Transactions on Biomedical Engineering, Aug. 2006; 53(8):1512-1520.
Lim et al., “Right ventricular lead implantation facilitated by a guiding sheath in a patient with severe chamber dilatation with tricuspid regurgitation,” Indian Pacing and Electrophysiology Journal, Sep. 2011; 11(5):156-8.
Lim et al., “Coupled pacing improves left ventricular function during simulated atrial fibrillation without mechanical dyssynchrony,” Europace, Mar. 2010; 12(3):430-6.
Lou et al., “Tachy-brady arrhythmias: the critical role of adenosine-induced sinoatrial conduction block in post-tachycardia pauses,” Heart Rhythm., Jan. 2013; 10(1):110-8.
Lutomsky et al., “Catheter ablation of paroxysmal atrial fibrillation improves cardiac function: a prospective study on the impact of atrial fibrillation ablation on left ventricular function assessed by magnetic resonance imaging,” Europace, May 2008; 10(5):593-9.
Macedo et al., “Septal accessory pathway: anatomy, causes for difficulty, and an approach to ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2010; 10(7):292-309.
Mafi-Rad et al., “Feasibility and Acute Hemodynamic Effect of Left Ventricular Septal Pacing by Transvenous Approach Through the Interventricular Septum,” Circ Arrhythm Electrophysoil., Mar. 2016; 9(3):e003344.
Mani et al., “Dual Atrioventricular Nodal Pathways Physiology: a Review of Relevant Anatomy, Electrophysiology, and Electrocardiogramanifestations,” Indian Pacing and Electrophysiology Journal, Jan. 2014; 14(1):12-25.
Manios et al., “Effects of successful cardioversion of persistent atrial fibrillation on right ventricular refractoriness and repolarization,” Europace, Jan. 2005; 7(1):34-9.
Manolis et al., “Prevention of atrial fibrillation by inter-atrial septum pacing guided by electrophysiological testing, in patients with delayed interatrial conduction,” Europace, Apr. 2002; 4(2):165-174.
Marino et al., “Inappropriate mode switching clarified by using a chest radiograph,” Journal of Arrhythmia, Aug. 2015; 31(4):246-248.
Markowitz et al., “Time course and predictors of autonomic dysfunction after ablation of the slow atrioventricular nodal pathway,” Pacing Clin Electrophysiol., Dec. 2004; 27(12):1638-43.
Marshall et al., “The effects of temperature on cardiac pacing thresholds,” Pacing Clin Electrophysiol., Jul. 2010; 33(7):826-833.
McSharry et al., “A Dynamical Model for Generating Synthetic Electrocardiogram Signals,” IEEE Transactions on Biomedical Engineering, Mar. 2003; 50(3):289-294.
Meijler et al., “Scaling of Atrioventricular Transmission in Mammalian Species: an Evolutionary Riddle!,” Journal of Cfardiovascular Electrophysiology, Aug. 2002; 13(8):826-830.
Meiltz et al., “Permanent form of junctional reciprocating tachycardia in adults: peculiar features and results of radiofrequency catheter ablation,” Europace, Jan. 2006; 8(1):21-8.
Mellin et al., “Transient reduction in myocardial free oxygen radical levels is involved in the improved cardiac function and structure after long-term allopurinol treatment initiated in established chronic heart failure,” Eur Heart J., Aug. 2005; 26(15):1544-50.
Mestan et al., “The influence of fluid and diuretic administration on the index of atrial contribution in sequentially paced patients,” Europace, Apr. 2006; 8(4):273-8.
Metin et al., “Assessment of the P Wave Dispersion and Duration in Elite Women Basketball Players,” Indian Pacing and Electrophysiology Journal, 2010; 10(1):11-20.
Mills et al., “Left Ventricular Septal and Left Ventricular Apical Pacing Chronically Maintain Cardiac Contractile Coordination, Pump Function and Efficiency,” Circ Arrhythm Electrophysoil., Oct. 2009; 2(5):571-579.
Mitchell et al., “How do atrial pacing algorithms prevent atrial arrhythmias?” Europace, Jul. 2004; 6(4):351-62.
Mirzoyev et al., “Embryology of the Conduction System for the Electrophysiologist,” Indian Pacing and Electrophysiology Journal, 2010; 10(8):329-338.
Modre et al., “Noninvasive Myocardial Activation Time Imaging: a Novel Inverse Algorithm Applied to Clinical ECG Mapping Data,” IEE Transactions on Biomedical Engineering, Oct. 2002; 49(10):1153-1161.
Montgomery et al., “Measurement of diffuse ventricular fibrosis with myocardial T1 in patients with atrial fibrillation,” J Arrhythm., Feb. 2016; 32(1):51-6.
Mulpuru et al., “Synchronous ventricular pacing with direct capture of the atrioventricular conduction system: Functional anatomy, terminology, and challenges,” Heart Rhythm, Nov. 2016; Epub Aug. 3, 2016; 13(11):2237-2246.
Musa et al., “Inhibition of Platelet-Derived Growth Factor-AB Signaling Prevents Electromechanical Remodeling of Adult Atrial Myocytes that Contact Myofibroblasts,” Heart Rhythm, Jul. 2013; 10(7):1044-1051.
Nagy et al., “Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and B-catenin expression,” Cardiovascular Research, Jan. 2010; 85(1):100-9.
Namboodiri et al., “Electrophysiological features of atrial flutter in cardiac sarcoidosis: a report of two cases,” Indian Pacing and Electrophysiology Journal, Nov. 2012; 12(6):284-9.
Nanthakumar et al., “Assessment of accessory pathway and atrial refractoriness by transesophageal and intracardiac atrial stimulation: an analysis of methodological agreement,” Europace, Jan. 1999; 1(1):55-62.
Neto et al., “Temporary atrial pacing in the prevention of postoperative atrial fibrillation,” Pacing Clin Electrophysiol., Jan. 2007; 30(Suppl 1):S79-83.
Nishijima et al., “Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology,” Cardiovasc Res., Jul. 2011; 91(1):71-9.
Niwano et al., “Effect of oral L-type calcium channel blocker on repetitive paroxysmal atrial fibrillation: spectral analysis of fibrillation waves in the Holter monitoring,” Europace, Dec. 2007; 9(12):1209-1215.
Okumura et al., “Effects of a high-fat diet on the electrical properties of porcine atria,” Journal of Arrhythmia, Dec. 2015; 31(6):352-358.
Olesen et al., “Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation,” Cardiovascular Research, Mar. 2011; 89(4):786-93.
Ozmen et al., “P wave dispersion is increased in pulmonary stenosis,” Indian Pacing and Electrophysiology Journal, Jan. 2006; 6(1):25-30.
Packer et al., “New generation of electro-anatomic mapping: Full intracardiac image integration,” Europace, Nov. 2008; 10 Suppl 3:iii35-41.
Page et al., “Ischemic ventricular tachycardia presenting as a narrow complex tachycardia,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):203-210.
Pakarinen et al., “Pre-implant determinants of adequate long-term function of single lead VDD pacemakers,” Europace, Apr. 2002; 4:137-141.
Patel et al., “Atrial Fibrillation after Cardiac Surgery: Where are we now?” Indian Pacing and Electrophysiology Journal, Oct.-Dec. 2008; 8(4):281-291.
Patel et al., “Successful ablation of a left-sided accessory pathway in a patient with coronary sinus atresia and arteriovenous fistula: clinical and developmental insights,” Indian Pacing and Electrophysiology Journal, Mar. 2011; 11(2):43-49.
Peschar et al., “Left Ventricular Septal and Apex Pacing for Optimal Pump Function in Canine Hearts,” J Am Coll Cardiol., Apr. 2, 2003; 41(7):1218-1226.
Physiological Research Laboratories, Final Report for an Acute Study for Model 6426-85 AV Septal Leads, Feb. 1996.
Porciani et al., “Interatrial septum pacing avoids the adverse effect of interatrial delay in biventricular pacing: an echo-Doppler evaluation,” Europace, Jul. 2002; 4(3):317-324.
Potse et al., “A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart,” IEEE Transactions on Biomedical Engineering, Dec. 2006; 53(12 Pt 1):2425-35.
Prystowsky et al., “Case studies with the experts: management decisions in atrial fibrillation,” J Cardiovasc Electrophysiol., Feb. 2008; 19(Suppl. 1):S1-12.
Prystowsky, “The history of atrial fibrillation: the last 100 years,” J Cardiovasc Electrophysiol, Jun. 2008; 19(6):575-582.
Pytkowski et al., “Paroxysmal atrial fibrillation is associated with increased intra-atrial conduction delay,” Europace, Dec. 2008; 10(12):1415-20.
Qu et al., “Dynamics and cardiac arrhythmias,” J Cardiovasc Electrophysiol., Sep. 2006; 17(9):1042-9.
Ravens et al., “Role of potassium currents in cardiac arrhythmias,” Europace, Oct. 2008; 10(10):1133-7.
Ricci et al., Efficacy of a dual chamber defibrillator with atrial antitachycardia functions in treating spontaneous atrial tachyarrhythmias in patients with life-threatening ventricular tachyarrhythmias, European Heart Journal, Sep. 2002; 23(18):1471-9.
Roberts-Thomson et al., “Focal atrial tachycardia II: management,” Pacing Clin Electrophysiol., Jul. 2006; 29(7):769-78.
Rossi et al., “Endocardial vagal atrioventricular node stimulation in humans: reproducibility on 18-month follow-up,” Europace, Dec. 2010; 12(12):1719-24.
Rouzet et al., “Contraction delay of the RV outflow tract in patients with Brugada syndrome is dependent on the spontaneous ST-segment elevation pattern,” Heart Rhythm, Dec. 2011; 8(12):1905-12.
Russo et al., “Atrial Fibrillation and Beta Thalassemia Major: the Predictive Role of the 12-lead Electrocardiogram Analysis,” Indian Pacing and Electrophysiology Journal, May 2014; 14(3):121-32.
Ryu et al., “Simultaneous Electrical and Mechanical Mapping Using 3D Cardiac Mapping System: Novel Approach for Optimal Cardiac Resynchronization Therapy,” Journal of Cardiovascular Electrophysiology, Feb. 2010, 21(2):219-22.
Sairaku et al., “Prediction of sinus node dysfunction in patients with persistent atrial flutter using the flutter cycle length,” Europace, Mar. 2012; 14(3):380-7.
Santini et al., “Immediate and long-term atrial sensing stability in single-lead VDD pacing depends on right atrial dimensions,” Europace, Oct. 2001; 3(4):324-31.
Saremi et al., “Cardiac Conduction System: Delineation of Anatomic Landmarks With Multidetector CT,” Indian Pacing and Electrophysiology Journal, Nov. 2009; 9(6):318-33.
Savelieva et al., “Anti-arrhythmic drug therapy for atrial fibrillation: current anti-arrhythmic drugs, investigational agents, and innovative approaches,” Europace, Jun. 2008; 10(6):647-665.
Schmidt et al., “Navigated DENSE strain imaging for post-radiofrequency ablation lesion assessment in the swine left atria,” Europace, Jan. 2014; 16(1):133-41.
Schoonderwoerd et al., “Rapid Pacing Results in Changes in Atrial but not in Ventricular Refractoriness,” Pacing Clin Electrophysiol., Mar. 2002; 25(3):287-90.
Schoonderwoerd et al., “Atrial natriuretic peptides during experimental atrial tachycardia: role of developing tachycardiomyopathy,” J Cardiovasc Electrophysiol., Aug. 2004; 15(8):927-32.
Schoonderwoerd et al., “Atrial ultrastructural changes during experimental atrial tachycardia depend on high ventricular rate,” J Cardiovasc Electrophysiol., Oct. 2004; 15(10):1167-74.
Sedmera, “Function and form in the developing cardiovascular system,” Cardiovasc Res., Jul. 2011; 91(2):252-9.
Severi et al., “Alterations of atrial electrophysiology induced by electrolyte variations: combined computational and P-wave analysis,” Europace, Jun. 2010; 12(6):842-9.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering, vol. 60(8): 2067-2079, 2013.
Shah et al., “Stable atrial sensing on long-term follow up of VDD pacemakers,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):189-93.
Shenthar et al., “Permanent pacemaker implantation in a patient with situs solitus, dextrocardia, and corrected transposition of the great arteries using a novel angiographic technique,” Journal of Arrhythmia, Apr. 2014; 30(2):134-138.
Shenthar et al., “Transvenous permanent pacemaker implantation in dextrocardia: technique, challenges, outcome, and a brief review of literature,” Europace, Sep. 2014; 16(9):1327-33.
Shirayama, “Role of atrial fibrillation threshold evaluation on guiding treatment,” Indian Pacing and Electrophysiology Journal, Oct. 2003; 3(4):224-230.
Sperzel et al., “Intraoperative Characterization of Interventricular Mechanical Dyssynchrony Using Electroanatomic Mapping System—a Feasibility Study,” Journal of Interventional Cardiac Electrophysiology, Nov. 2012, 35(2): 189-96.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
Sreeram et al., “Indications for Electrophysiology Study in children,” Indian Pacing and Electrophysiology Journal, Apr.-Jun. 2008; 8(Suppl. 1):S36-S54.
Stockburger et al., “Optimization of cardiac resynchronization guided by Doppler echocardiography: haemodynamic improvement and intraindividual variability with different pacing configurations and atrioventricular delays,” Europace, Oct. 2006; 8(10):881-6.
Stroobandt et al., “Prediction of Wenckebach Behavior and Block Response in DDD Pacemakers,” Pacing Clin Electrophysiol., Jun. 2006; 9(6):1040-6.
Suenari et al., “Idiopathic left ventricular tachycardia with dual electrocardiogram morphologies in a single patient,” Europace, Apr. 2010; 12(4):592-4.
Sweeney et al., “Analysis of Ventricular Activation Using Surface Electrocardiogramaft Ventricular Reverse Volumetric Remodeling During Cardiac Resynchronization Therapy,” Circulation, Feb. 9, 2010, 121(5): 626-34.
Tan et al., “Electrocardiogramavidence of ventricular repolarization remodelling during atrial fibrillation,” Europace, Jan. 2008; 10(1):99-104.
Taramasco et al., “Internal low-energy cardioversion: a therapeutic option for restoring sinus rhythm in chronic atrial fibrillation after failure of external cardioversion,” Europace, Jul. 1999; 1(3):179-82.
Testa et al., “Rate-control or rhythm-control: where do we stand?” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):296-304.
Thejus et al., “N-terminal Pro-Brain Natriuretic Peptide and Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2009; 9(1):1-4.
Thornton et al., “Magnetic Assisted Navigation in Electrophysiology and Cardiac Resynchronisation: a Review,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):202-13.
Tilz et al., “In vivo left-ventricular contact force analysis: comparison of antegrade transseptal with retrograde transaortic mapping strategies and correlation of impedance and electrical amplitude with contact force,” Europace, Sep. 2014; 16(9):1387-95.
Tomaske et al., “Do daily threshold trend fluctuations of epicardial leads correlate with pacing and sensing characteristics in paediatric patients?” Europace, Aug. 2007; 9(8):662-668.
Tomioka et al., “The effect of ventricular sequential contraction on helical heart during pacing: high septal pacing versus biventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S198-206.
Tournoux et al., “A ‘Regularly Irregular’ tachycardia: What is the diagnosis?” Europace, Dec. 2008; 10(12):1445-6.
Traykov et al., “Electrogram analysis at the His bundle region and the proximal coronary sinus as a tool to predict left atrial origin of focal atrial tachycardias,” Europace, Jul. 2011; 13(7):1022-7.
Trudel et al., “Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing,” IEEE Trans Biomed Eng., Aug. 2004; 51(8):1319-29.
Tse et al., “Cardiac dynamics: Alternans and arrhythmogenesis,” Journal of Arrhythmia, Oct. 2016; 32(5):411-417.
Tse, “Mechanisms of cardiac arrhythmias,” Journal of Arrhythmia, Apr. 2016; 32(2):75-81.
Ueda et al., “Outcomes of single- or dual-chamber implantable cardioverter defibrillator systems in Japanese patients,” Journal of Arrhythmia, Apr. 2016; 32(2):89-94.
Van Dam et al., “Volume conductor effects involved in the genesis of the P wave,” Europace, Sep. 2005; 7 Suppl 2:30-8.
Van den Berg et al., “Depletion of atrial natriuretic peptide during longstanding atrial fibrillation,” Europace, Sep. 2004; 6(5):433-7.
Van Deursen, et al., “Vectorcardiography as a Tool for Easy Optimization of Cardiac Resynchronization Therapy in Canine LBBB Hearts,” Circulation Arrhythmia and Electrophysiology, Jun. 1, 2012, 5(3): 544-52.
Van Opstal et al., “Paradoxical increase of stimulus to atrium interval despite His-bundle capture during para-Hisian pacing,” Europace, Dec. 2009; 11(12):1702-4.
Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardia: part 1,” Pacing Clin Electrophysiol., Jun. 2011; 34(6):767-82.
Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardias: part 2,” Pacing Clin Electrophysiol., Jun. 2012; 35(6):757-69.
Veenhuyzen et al., “Principles of Entrainment: Diagnostic Utility for Supraventricular Tachycardia,” Indian Pacing and Electrophysiology Journal, 2008; 8(1):51-65.
Verbrugge et al., “Revisiting diastolic filling time as mechanistic insight for response to cardiac resynchronization therapy,” Europace, Dec. 2013; 15(12):1747-56.
Verrier et al., “Mechanisms of ranolazine's dual protection against atrial and ventricular fibrillation,” Europace, Mar. 2013; 15(3):317-324.
Verrijcken et al., “Pacemaker-mediated tachycardia with varying cycle length: what is the mechanism?” Europace, Oct. 2009; 11(10):1400-2.
Villani et al., “Reproducibility of internal atrial defibrillation threshold in paroxysmal and persistent atrial fibrillation,” Europace, Jul. 2004; 6(4):267-72.
Violi et al., “Antioxidants for prevention of atrial fibrillation: a potentially useful future therapeutic approach? A review of the literature and meta-analysis,” Europace, Aug. 2014; 16(8):1107-1116.
Weber et al., “Adenosine sensitive focal atrial tachycardia originating from the non-coronary aortic cusp,” Europace, Jun. 2009; 11(6):823-6.
Weber et al., “Open-irrigated laser catheter ablation: relationship between the level of energy, myocardial thickness, and collateral damages in a dog model,” Europace, Jan. 2014; 16(1):142-8.
Wegmoller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
Wei et al., “Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models,” IEEE Trans Biomed Eng., Apr. 1995; 42(4):343-57.
Weijs et al., “Clinical and echocardiographic correlates of intra-atrial conduction delay,” Europace, Dec. 2011; 13(12):1681-7.
Weiss et al., “The influence of fibre orientation, extracted from different segments of the human left ventricle, on the activation and repolarization sequence: a simulation study,” Europace, Nov. 2007; 9(Suppl. 6):vi96-vi104.
Wetzel et al., “A stepwise mapping approach for localization and ablation of ectopic right, left, and septal atrial foci using electroanatomic mapping,” European Heart Journal, Sep. 2002; 23(17):1387-1393.
Wlodarska et al., “Thromboembolic complications in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy,” Europace, Aug. 2006; 8(8):596-600.
Wong et al., “A review of mitral isthmus ablation,” Indian Pacing and Electrophysiology Journal, 2012; 12(4):152-170.
Wu et al., “Acute and long-term outcome after catheter ablation of supraventricular tachycardia in patients after the Mustard or Senning operation for D-transposition of the great arteries,” Europace, Jun. 2013; 15(6):886-91.
Xia et al., “Asymmetric dimethylarginine concentration and early recurrence of atrial fibrillation after electrical cardioversion,” Pacing Clin Electrophysiol., Aug. 2008; 31(8):1036-40.
Yamazaki et al., “Acute Regional Left Atrial Ischemia Causes Acceleration of Atrial Drivers during Atrial Fibrillation,” Heart Rhythm, Jun. 2013; 10(6):901-9.
Yang et al., “Focal atrial tachycardia originating from the distal portion of the left atrial appendage: Characteristics and long-term outcomes of radiofrequency ablation,” Europace, Feb. 2012; 14(2):254-60.
Yiginer et al., “Advanced Age, Female Gender and Delay in Pacemaker Implantation May Cause TdP in Patients With Complete Atrioventricular Block,” Indian Pacing and Electrophysiology Journal, Oct. 2010; 10(10):454-63.
Yoon et al., “Measurement of thoracic current flow in pigs for the study of defibrillation and cardioversion,” IEEE Transactions on Biomedical Engineering, Oct. 2003; 50(10):1167-1773.
Yuan et al., “Recording monophasic action potentials using a platinum-electrode ablation catheter,” Europace, Oct. 2000; 2(4):312-9.
Yusuf et al., “5-Hydroxytryptamine and Atrial Fibrillation: How Significant is This Piece in the Puzzle?” J Cardiovasc Electrophysiol., Feb. 2003; 14(2):209-14.
Zaugg et al., “Current concepts on ventricular fibrillation: a vicious circle of cardiomyocyte calcium overload in the initiation, maintenance, and termination of ventricular fibrillation,” Indian Pacing and Electrophysiology Journal, Apr. 2004; 4(2):85-92.
Zhang et al., “Acute atrial arrhythmogenicity and altered Ca(2+) homeostasis in murine RyR2-P2328S hearts,” Cardiovascular Research, Mar. 2011; 89(4):794-804.
Zoghi et al., “Electrical stunning and hibernation: suggestion of new terms for short- and long-term cardiac memory,” Europace, Sep. 2004; 6(5):418-24.
Zografos et al., “Inhibition of the renin-angiotensin system for prevention of atrial fibrillation,” Pacing Clin Electrophysiol., Oct. 2010; 33(10):1270-85.
(PCT/US2014/066792) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority.
(PCT/US2014/013601) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority.
(PCT/US2014/036782) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Mailed Aug. 22, 2014, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2017/047378, 8 pages, date mailed Dec. 6, 2017.
(PCT/US2018/050988) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Mailed Nov. 14, 2018, 11 pages.
(PCT/US2018/050993) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, mailed Nov. 16, 2018, 7 pages.
(PCT/US2019/023642) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, mailed Jun. 28, 2019, 14 pages.
(PCT/US2019/023645) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, mailed Sep. 4, 2019, 14 pages.
(PCT/US2019/023646) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, mailed Aug. 19, 2019, 15 pages.
(PCT/IB2019/057352) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, mailed Nov. 27, 2019, 123 pages.
International Preliminary Report on Patentability dated Jul. 1, 2021 from PCT Application No. PCT/2019/067858, 7 pages.
Related Publications (1)
Number Date Country
20200197706 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
62783479 Dec 2018 US