Delivery systems for VfA cardiac therapy

Information

  • Patent Grant
  • 11213676
  • Patent Number
    11,213,676
  • Date Filed
    Monday, April 1, 2019
    4 years ago
  • Date Issued
    Tuesday, January 4, 2022
    2 years ago
Abstract
An implantable medical device delivery system includes a delivery catheter including an elongated body with a first portion defining a first lumen and a second portion defining a second lumen. An angle is defined between a first axis and a second axis defined by the first and second portions, respectively. The second axis points toward the left ventricular (LV) apex of the patient's heart when the first axis points into the CS. The first portion or an elongated element may extend into the CS to anchor the delivery catheter to the orientation of the CS.
Description

The present disclosure relates to implantable medical devices, systems, and methods. In particular, the present disclosure relates to delivery of implantable medical devices, systems, and methods for cardiac therapy, including single chamber or multiple chamber pacing (e.g., dual or triple chamber pacing), atrioventricular synchronous pacing, asynchronous pacing, triggered pacing, cardiac resynchronization pacing, or tachycardia-related therapy.


The cardiac conduction system includes the sinus atrial (SA) node, the atrioventricular (AV) node, the bundle of His, bundle branches and Purkinje fibers. A heart beat is initiated in the SA node, which may be described as the natural “pacemaker” of the heart. An electrical impulse arising from the SA node causes the atrial myocardium to contract. The signal is conducted to the ventricles via the AV node which inherently delays the conduction to allow the atria to stop contracting before the ventricles begin contracting thereby providing proper AV synchrony. The electrical impulse is conducted from the AV node to the ventricular myocardium via the bundle of His, bundle branches, and Purkinje fibers.


Patients with a conduction system abnormality, such as poor AV node conduction or poor SA node function, may receive an implantable medical device (IMD), such as a pacemaker, to restore a more normal heart rhythm and AV synchrony. Some types of IMDs, such as cardiac pacemakers, implantable cardioverter defibrillators (ICDs), or cardiac resynchronization therapy (CRT) devices, provide therapeutic electrical stimulation to a heart of a patient via electrodes on one or more implantable endocardial, epicardial, or coronary venous leads that are positioned in or adjacent to the heart. The therapeutic electrical stimulation may be delivered to the heart in the form of pulses or shocks for pacing, cardioversion, or defibrillation. In some cases, an IMD may sense intrinsic depolarizations of the heart, and control the delivery of therapeutic stimulation to the heart based on the sensing.


Delivery of therapeutic electrical stimulation to the heart can be useful in addressing cardiac conditions such as ventricular dyssynchrony that may occur in patients. Ventricular dyssynchrony may be described as a lack of synchrony or a difference in the timing of contractions between the ventricles of the heart. Significant differences in timing of contractions can reduce cardiac efficiency. CRT, delivered by an IMD to the heart, may enhance cardiac output by resynchronizing the electromechanical activity of the ventricles of the heart. CRT is sometimes referred to as “triple chamber pacing” because CRT can deliver pacing to the right atrium, right ventricle, and left ventricle.


Cardiac arrhythmias may be treated by delivering electrical shock therapy for cardioverting or defibrillating the heart in addition to cardiac pacing, for example, from an ICD, which may sense a patient's heart rhythm and classify the rhythm according to an arrhythmia detection scheme in order to detect episodes of tachycardia or fibrillation. Arrhythmias detected may include ventricular tachycardia (VT), fast ventricular tachycardia (FVT), ventricular fibrillation (VF), atrial tachycardia (AT) and atrial fibrillation (AT). Anti-tachycardia pacing (ATP), a painless therapy, can be used to treat ventricular tachycardia (VT) to substantially terminate many monomorphic fast rhythms. While ATP is painless, ATP may not deliver effective therapy for all types of VTs. For example, ATP may not be as effective for polymorphic VTs, which has variable morphologies. Polymorphic VTs and ventricular fibrillation (VFs) can be more lethal and may require expeditious treatment by shock.


Dual chamber medical devices are available that include a transvenous atrial lead carrying electrodes that may be placed in the right atrium and a transvenous ventricular lead carrying electrodes that may be placed in the right ventricle via the right atrium. Such dual-chamber medical devices are generally implanted in a subcutaneous pocket and the transvenous leads are tunneled to the subcutaneous pocket. Further, such dual-chamber medical devices may sense atrial electrical signals and ventricular electrical signals and can provide both atrial pacing and ventricular pacing as needed to promote a normal heart rhythm and AV synchrony. Some dual-chamber medical devices can treat both atrial and ventricular arrhythmias.


In some patients, single-chamber devices may adequately address the patient's needs. However, single-chamber devices capable of only single chamber sensing and therapy may not fully address cardiac conduction disease or abnormalities in all patients, for example, those with some forms of AV dyssynchrony or tachycardia. Dual-chamber sensing and/or pacing functions, in addition to ICD functionality in some cases, may be used to restore more normal heart rhythms.


SUMMARY

The techniques of this disclosure generally relate to a delivery catheter that guides an implantable medical device or lead to the correct location in the triangle of Koch region and at an orientation to deliver pacing to the LV using the CS as a physical reference.


In one aspect, the present disclosure provides an implantable medical device delivery system including an elongated element anchorable in the coronary sinus (CS) of a patient's heart. The system also includes a delivery catheter with an elongated body having a first portion defining a first lumen and a second portion defining a second lumen. The first lumen in a first distal end region of the first portion extends along a first axis and the second lumen in a second distal end region of the second portion extends along a second axis forming an angle with the first axis. The second axis points toward the left ventricular (LV) apex of the patient's heart when the anchorable elongated element is advanced through the first lumen into the CS.


In another aspect, the present disclosure provides a delivery catheter including a first portion advanceable into the coronary sinus (CS) of a patient's heart having an elongated body defining a first lumen and an exterior channel. When the first portion is advanced into the CS, a region of the first portion adjacent to the CS ostium of the patient's heart extends along a first axis. The device includes a second portion having an elongated body defining a second lumen and having a laterally-extending protrusion configured to be received into the exterior channel of the first portion to slidably guide the second portion along a length of the first portion. A distal end region of the second portion extends along a second axis when the protrusion is engaged in the channel forming a fixed angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the first portion is advanced into the CS.


In yet another aspect, the present disclosure provides a method of delivering an implantable medical device that includes advancing a first distal end region of a first portion of a dual-lumen catheter toward the coronary sinus (CS) of a patient's heart. The first portion defines a first lumen and the first distal end region extends along a first axis. The method includes orienting a second distal end region of a second portion of the dual-lumen catheter toward the triangle of Koch region of the patient's heart. The second portion defines a second lumen and the second distal end region extends along a second axis forming an angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the first distal end region is fully advanced toward the CS.


The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a conceptual diagram of an example of a cardiac therapy system including a delivery system to implant an implantable medical device in a patient's heart shown in a cross-sectional view and a separate medical device positioned outside of the patient's heart.



FIG. 2 is a conceptual diagram of an example of intracardiac medical device that may be delivered with the delivery system of FIG. 1 and anatomical structures of the patient's heart.



FIG. 3 is a perspective view of another example of an intracardiac medical device that may be delivered with the delivery system of FIG. 1.



FIG. 4 is a conceptual diagram of a map of a patient's heart in a standard 17 segment view of the left ventricle showing various electrode implantation locations for use with, e.g., the exemplary systems of FIGS. 1-3.



FIGS. 5A-C are conceptual diagrams of one example of the delivery system of FIG. 1.



FIG. 6 is a conceptual diagram of another example of the delivery system of FIG. 1.



FIG. 7 is a flowchart of one example of a method of using the delivery system of FIG. 1.



FIG. 8 is a flowchart of one example of performing, or carrying out, the method of FIG. 7.



FIG. 9 is a flowchart of another example of performing, or carrying out, the method of FIG. 7.



FIG. 10 is a flowchart of yet another example of performing, or carrying out, the method of FIG. 7.





DETAILED DESCRIPTION

This disclosure relates to delivery of implantable medical devices, systems, and methods for ventricle-from-atrium (VfA) cardiac therapy, including single or multiple-chamber pacing (e.g., dual- or triple-chamber pacing), atrioventricular synchronous pacing, asynchronous pacing, triggered pacing, cardiac resynchronization pacing, or tachycardia-related therapy. Although reference is made herein to implantable medical devices (IMDs), such as a pacemaker or ICD, the methods and processes may be used with any medical devices, systems, or methods related to a patient's heart. Various other applications will become apparent to one of skill in the art having the benefit of the present disclosure.


The procedure for locating a VfA device, or lead, in or at the correct implant location and orientation, so as to aim in the correct direction to stimulate the LV endocardial tissue, may be difficult. There are at least two factors to consider for such VfA device placement. First, the catheter tip of the delivery catheter is to be guided to the triangle of Koch between the CS ostium and the tricuspid valve annulus, which is smooth location in which it may be difficult to hold the placement of a catheter due to the instability of the locale. Second, once the catheter is in position, the device must be oriented in the correct plane of tissue to position an electrode in the LV tissue for pacing.


The present disclosure provides a delivery catheter, which may be described as a dual-lumen, or bi-lumen, catheter that may create stability at a target implant region and may also provide the correct angle into the tissue for providing VfA cardiac therapy. In particular, an example of a delivery catheter may guide an implantable medical device or lead to the correct location in the triangle of Koch region and at an orientation to deliver pacing to the LV using the CS as a physical reference. For example, a portion of the delivery catheter or an elongated element extending through the portion into the CS may anchor the delivery catheter based on the orientation of the CS. In one embodiment, one lumen of the delivery catheter may be used to track, or guide, an elongated member into the CS, and another lumen of the delivery catheter may have a bend near the distal end region to angle a device delivered thereby into the tissue in the correct orientation. The lumens may be described as being positioned side-by-side.


Reference will now be made to the drawings, which depict one or more aspects described in this disclosure. However, it will be understood that other aspects not depicted in the drawings fall within the scope of this disclosure. Like numbers used in the figures refer to like components, steps, and the like. However, it will be understood that the use of a reference character to refer to an element in a given figure is not intended to limit the element in another figure labeled with the same reference character. In addition, the use of different reference characters to refer to elements in different figures is not intended to indicate that the differently referenced elements cannot be the same or similar.


Although the present disclosure describes leadless and leaded implantable medical devices, reference is first made to FIG. 1 showing a conceptual diagram of a cardiac therapy system 2 including a leaded medical device 104, which may also be described as an implantable medical lead, that may be configured for single- or dual-chamber therapy and implanted in a patient's heart 8. In some embodiments, the device 104 may be configured for single chamber pacing and may, for example, switch between single chamber and multiple chamber pacing (e.g., dual- or triple-chamber pacing).


The device 104 is shown implanted in the right atrium (RA) of the patient's heart 8 in a target implant region 4. The device 104 may include one or more fixation members (such as fixation members 20 in FIG. 2) that anchor a distal end of the device against the atrial endocardium in a target implant region 4. The target implant region 4 may lie between the Bundle of His 5 and the coronary sinus 3 and may be adjacent the tricuspid valve 6. The device 104 may be described as a ventricle-from-atrium (VfA) device, which may sense or provide therapy to one or both ventricles (e.g., right ventricle, left ventricle, or both ventricles, depending on the circumstances) while being generally disposed in the right atrium. In particular, the device 104 may include a tissue-piercing electrode that may be implanted in the high basal and/or septal region of the left ventricular myocardium of the patient's heart from the triangle of Koch region of the right atrium through the right atrial endocardium and central fibrous body.


Effective delivery of the device 104 to a precise location in the target implant region 4 at a desired orientation may be challenging. A delivery catheter 100 may provide a stable anchoring to the CS to facilitate delivery of the device 104 to the target implant region 4. The stable anchoring may be facilitated by the use of an elongated element 102 that extends through the delivery catheter 100. In some embodiments, the delivery catheter 100 may be described as a dual-lumen catheter. The dual-lumen catheter may include a first portion 101 defining a first lumen and a second portion 103 defining a second lumen, which may be integrally formed from a single piece of material or separately formed. The first portion 101 may extend into the CS, or the first lumen to of the first portion may be used to deliver the elongated element 102 into the CS, for anchoring. A second lumen may be used to deliver the implantable medical device 104, or lead, to the triangle of Koch for implantation. The dual-lumen catheter may be described as being pre-shaped or configured to provide a fixed or deflectable angle between the first lumen and the second lumen, for example, at least at their distal end regions. When the first lumen is aligned to the orientation of the coronary sinus using the elongated element 102 extended into the CS, the second lumen may be oriented and aligned to the triangle of Koch region at an angle that will implant the tissue-piercing electrode of the device 104 into the high basal and/or septal region of the LV myocardium from the triangle of Koch region of the RA through the RA endocardium and central fibrous body. The delivery catheter 100 may be removed after delivery of the device 104.


The device 104 may include one or more dart electrodes 12 having a straight shaft extending from the distal end region of device 104, through the atrial myocardium and the central fibrous body, and into the ventricular myocardium 14 or along the ventricular septum, without perforating entirely through the ventricular endocardial or epicardial surfaces. In other words, the one or more dart electrodes 12 may not pierce through the ventricular wall into the blood volume. The one or more dart electrodes 12 may each carry one or more electrode elements at the distal end region of the shaft for positioning the one or more electrode elements within the ventricular myocardium for sensing ventricular signals and delivering ventricular pulses (e.g., to depolarize the left ventricle to initiate a contraction of the left ventricle). In some examples, the electrode elements at the distal end region of the shaft may include a cathode electrode provided for use in a bipolar electrode pair for pacing and sensing. While the implant region 4 is shown in FIG. 1 to enable one or more electrodes of the one or more dart electrodes 12 to be positioned in the ventricular myocardium, it is recognized that a device having the aspects disclosed herein may be implanted at other locations for multiple-chamber pacing (e.g., dual- or triple-chamber pacing), single-chamber pacing with multiple-chamber sensing, single-chamber pacing and/or sensing, or other clinical therapy and applications as appropriate.


The cardiac therapy system 2 may also include a separate medical device 50 (depicted diagrammatically in FIG. 1), which may be positioned outside the patient's heart 8 (e.g., subcutaneously) and may be operably coupled to the patient's heart 8 to deliver cardiac therapy thereto. In one example, separate medical device 50 may be an extravascular ICD. In some embodiments, an extravascular ICD may include a defibrillation lead with a defibrillation electrode. A therapy vector may exist between the defibrillation electrode on the defibrillation lead and a housing electrode of the ICD. Further, one or more electrodes of the ICD may also be used for sensing electrical signals related to the patient's heart 8. The ICD may be configured to deliver shock therapy including one or more defibrillation or cardioversion shocks. For example, if an arrhythmia is sensed, the ICD may send a pulse via the electrical lead wires to shock the heart and restore its normal rhythm. In some examples, the ICD may deliver shock therapy without placing electrical lead wires within the heart or attaching electrical wires directly to the heart (subcutaneous ICDs). Examples of extravascular, subcutaneous ICDs that may be used with the system 2 described herein may be described in U.S. Pat. No. 9,278,229 (Reinke et al.), issued 8 Mar. 2016, which is incorporated herein by reference in its entirety.


The device 104 and the separate medical device 50 may cooperate to provide cardiac therapy to the patient's heart 8. For example, the device 104 and the separate medical device 50 may be used to detect tachycardia, monitor tachycardia, and/or provide tachycardia-related therapy. For example, the device 104 may communicate with the separate medical device 50 wirelessly to trigger shock therapy using the separate medical device 50. As used herein, “wirelessly” refers to an operative coupling or connection without using a metal conductor connecting the device 104 and the separate medical device 50. In one example, wireless communication may use a distinctive, signaling, or triggering electrical pulse provided by the device 104 that conducts through the patient's tissue and is detectable by the separate medical device 50. In another example, wireless communication may use a communication interface (e.g., an antenna) of the device 104 to provide electromagnetic radiation that propagates through patient's tissue and is detectable, for example, using a communication interface (e.g., an antenna) of the separate medical device 50.



FIG. 2 is a conceptual diagram of a leadless implantable medical device 106, or an intracardiac medical device, and anatomical structures of the patient's heart 8. One or more of the features described with respect to device 106 may also be used with a leaded IMD, such as leaded IMD 104 (FIG. 1). As used herein, “intracardiac” refers to a device configured to be implanted entirely within a patient's heart, for example, to provide cardiac therapy.


The intracardiac device 10 may include a housing 30. The housing 30 may define a hermetically-sealed internal cavity in which internal components of the device 106 reside, such as a sensing circuit, therapy delivery circuit, control circuit, memory, telemetry circuit, other optional sensors, and a power source. The housing 30 may be formed from an electrically conductive material including titanium or titanium alloy, stainless steel, MP35N (a non-magnetic nickel-cobalt-chromium-molybdenum alloy), platinum alloy or other bio-compatible metal or metal alloy. In other examples, the housing 30 may be formed from a non-conductive material including ceramic, glass, sapphire, silicone, polyurethane, epoxy, acetyl co-polymer plastics, polyether ether ketone (PEEK), a liquid crystal polymer, or other biocompatible polymer.


The device 106 may be described being as a leadless implantable medical device. As used herein, “leadless” refers to a device being free of a lead extending out of the patient's heart 8. In other words, a leadless device may have a lead that does not extend from outside of the patient's heart to inside of the patient's heart. Some leadless devices may be introduced through a vein, but once implanted, the device is free of, or may not include, any transvenous lead and may be configured to provide cardiac therapy without using any transvenous lead. A leadless VfA device, in particular, does not use a lead to operably connect to an electrode in the ventricle when a housing of the device is positioned in the atrium. A leadless electrode may be coupled to the housing of the medical device without using a lead between the electrode and the housing.


The housing 30 may be described as extending between a distal end region 32 and a proximal end region 34 in a generally cylindrical shape to facilitate catheter delivery. In other embodiments, the housing 30 may be prismatic or any other shape so as to perform the functionality and utility described herein. The housing 30 may include a delivery tool interface member 26, e.g., at the proximal end 34, for engaging with a delivery tool during implantation of the device 106. For example, the delivery tool interface member 26 may be used while the device 106 is advanced toward the target implant region 4 using the delivery catheter 100 (FIG. 1).


All or a portion of the housing 30 may function as an electrode during cardiac therapy, for example, in sensing and/or pacing. In the example shown, the housing-based electrode 24 is shown to circumscribe a proximal portion of the housing 30. When the housing 30 includes (e.g., is formed from) an electrically conductive material, such as a titanium alloy or other examples listed above, portions of the housing 30 may be electrically insulated by a non-conductive material, such as a coating of parylene, polyurethane, silicone, epoxy, or other biocompatible polymer, leaving one or more discrete areas of conductive material exposed to define the proximal housing-based electrode 24. When the housing 30 includes (e.g., is formed from) a non-conductive material, such as a ceramic, glass, or polymer material, an electrically-conductive coating or layer, such as a titanium, platinum, stainless steel, or alloys thereof, may be applied to one or more discrete areas of the housing 30 to form the proximal housing-based electrode 24. In other examples, the proximal housing-based electrode 24 may be a component, such as a ring electrode, that is mounted or assembled onto the housing 30. The proximal housing-based electrode 24 may be electrically coupled to internal circuitry of the device 106, e.g., via the electrically-conductive housing 30 or an electrical conductor when the housing 30 includes a non-conductive material.


In the example shown, the housing-based electrode 24 is located nearer to the housing proximal end region 34 than the housing distal end region 32 and may, therefore, be described as being a proximal housing-based electrode. In other examples, however, the housing-based electrode 24 may be located at other positions along the housing 30, e.g., relatively more distally than the position shown in FIG. 2.


At the distal end region 32, the device 106 may include a distal fixation and electrode assembly 36, which may include one or more fixation members 20, in addition to one or more dart electrodes 12 of equal or unequal length. The device 106 as depicted includes a single dart electrode 12 that may include a shaft 40 extending distally away from the housing distal end region 32 and may include one or more electrode elements, such as a tip electrode element 42 at or near the free, distal end region of the shaft 40. The tip electrode element 42 may have a conical or hemi-spherical distal tip with a relatively narrow tip diameter (e.g., less than about 1 millimeter (mm)) for penetrating into and through tissue layers without using a sharpened tip or needle-like tip having sharpened or beveled edges.


The shaft 40 of the dart electrode 12 may be a normally straight member and may be rigid. In other embodiments, the shaft 40 may be described as being relatively stiff but still possessing limited flexibility in lateral directions (e.g., resilient or semi-rigid). Further, the shaft 40 may be non-rigid to allow some lateral flexing with heart motion. However, in a relaxed state, when not subjected to any external forces, the shaft 40 may maintain a straight position as shown to hold the tip electrode element 42 spaced apart from the housing distal end region 32 at least by the length or height 47 of the shaft 40. The dart electrode 12 may be configured to pierce through one or more tissue layers to position the tip electrode element 42 within a desired tissue layer, e.g., the ventricular myocardium. As such, the length or height 47 of the shaft 40 may correspond to the expected pacing site depth, and the shaft may have a relatively high compressive-strength along its longitudinal axis to resist bending in a lateral or radial direction when pressed against the implant region 4. If a second dart electrode 12 is employed, its length or height may be unequal to the expected pacing site depth and may be configured to act as an indifferent electrode for delivery of pacing energy to the tissue. A longitudinal axial force may be applied against the tip electrode element 42, e.g., by applying longitudinal “pushing” force to the proximal end 34 of the housing 30, to advance the dart electrode 12 into the tissue within target implant region 4. The shaft 40 may be longitudinally non-compressive. Further, the shaft 40 may be elastically deformable in lateral or radial directions when subjected to lateral or radial forces to allow temporary flexing, e.g., with tissue motion, but may return to its normally straight position when lateral forces diminish. When the shaft 40 is not exposed to any external force, or to only a force along its longitudinal central axis, the shaft 40 may retain a straight, linear position as shown.


The one or more fixation members 20 may be described as one or more “tines” having a normally-curved position. The tines may be held in a distally extended position within a delivery tool. The distal tips of tines may penetrate the heart tissue to a limited depth before elastically curving back proximally into the normally curved position (shown) upon release from the delivery tool. Further, the fixation members 20 may include one or more aspects described in, for example, U.S. Pat. No. 9,675,579 (Grubac et al.), issued 13 Jun. 2017, and U.S. Pat. No. 9,119,959 (Rys et al.), issued 1 Sep. 2015, each of which is incorporated herein by reference in its entirety.


In some examples, the distal fixation and electrode assembly 36 includes a distal housing-based electrode 22. In the case of using the device 106 as a pacemaker for multiple-chamber pacing (e.g., dual- or triple-chamber pacing) and sensing, the tip electrode element 42 may be used as a cathode electrode paired with the proximal housing-based electrode 24 serving as a return anode electrode. Alternatively, the distal housing-based electrode 22 may serve as a return anode electrode paired with tip electrode element 42 for sensing ventricular signals and delivering ventricular pacing pulses. In other examples, the distal housing-based electrode 22 may be a cathode electrode for sensing atrial signals and delivering pacing pulses to the atrial myocardium in the target implant region 4. When the distal housing-based electrode 22 serves as an atrial cathode electrode, the proximal housing-based electrode 24 may serve as the return anode paired with the tip electrode element 42 for ventricular pacing and sensing and as the return anode paired with the distal housing-based electrode 22 for atrial pacing and sensing.


As shown in this illustration, the target implant region 4 in some pacing applications is along the atrial endocardium 18, generally inferior to the AV node 15 and the His bundle 5. The dart electrode 42 may define the length or height 47 of the shaft 40 for penetrating through the atrial endocardium 18 in the target implant region 4, through the central fibrous body 16, and into the ventricular myocardium 14 without perforating through the ventricular endocardial surface 17. When the length or height 47 of the dart electrode 12 is fully advanced into the target implant region 4, the tip electrode element 42 may rest, or be positioned, within the ventricular myocardium 14, and the distal housing-based electrode 22 may be positioned in intimate contact with or close proximity to the atrial endocardium 18. The dart electrode 12 may have a total combined length or height 47 of tip electrode element 42 and shaft 40 from about 3 mm to about 8 mm in various examples. The diameter of the shaft 40 may be less than about 2 mm, and may be about 1 mm or less, or even about 0.6 mm or less.


The device 106 may include a motion detector 11 within the housing 30. The motion detector 11 may be used to monitor mechanical activity, such as atrial mechanical activity (e.g., an atrial contraction) and/or ventricular mechanical activity (e.g., a ventricular contraction). In some embodiments, the motion detector 11 may be used to detect right atrial mechanical activity. A non-limiting example of a motion detector 11 includes an accelerometer. In some embodiments, the mechanical activity detected by the motion detector 11 may be used to supplement or replace electrical activity detected by one or more of the electrodes of the device 106. For example, the motion detector 11 may be used in addition to, or as an alternative to, the proximal housing-based electrode 24.


The motion detector 11 may also be used for rate response detection or to provide a rate-responsive 1 MB. Various techniques related to rate response may be described in U.S. Pat. No. 5,154,170 (Bennett et al.), issued Oct. 13, 1992, entitled “Optimization for rate responsive cardiac pacemaker,” and U.S. Pat. No. 5,562,111 (Yerich et al.), issued Oct. 8, 1996, entitled “Method and apparatus for rate-responsive cardiac pacing,” each of which is incorporated herein by reference in its entirety.



FIG. 3 is a three-dimensional perspective view of another example of a leadless implantable medical device 110, or intracardiac medical device, that may be configured for single- or multiple-chamber cardiac therapy (e.g., dual- or triple-chamber cardiac therapy). One or more of the features described with respect to device 110 may also be used with a leaded IMD, such as leaded 1 MB 104 (FIG. 1).


The device 110 may include a housing 130 having, or defining, an outer sidewall 135, shown as a cylindrical outer sidewall, extending from a housing distal end region 132 to a housing proximal end region 134. The housing 130 may enclose electronic circuitry configured to perform single or multiple chamber cardiac therapy, including atrial and ventricular cardiac electrical signal sensing and pacing the atrial and ventricular chambers. Delivery tool interface member 126 is shown on the housing proximal end region 134.


A distal fixation and electrode assembly 136 may be coupled to the housing distal end region 132. The distal fixation and electrode assembly 136 may include an electrically-insulative distal member 172 coupled to the housing distal end region 132. The tissue-piercing electrode 112 extends away from the housing distal end region 132, and multiple non-tissue-piercing electrodes 122 may be coupled directly to the insulative distal member 172. The tissue-piercing electrode 112 extends in a longitudinal direction away from the housing distal end region 132 and may be coaxial with the longitudinal center axis 131 of the housing 130.


The tissue-piercing distal electrode 112 may include an electrically-insulated shaft 140 and a tip electrode element 142. In some examples, the tissue-piercing distal electrode 112 also functions as a fixation member and may include a helical shaft 140 and a distal cathode tip electrode element 142. The helical shaft 140 may extend from a shaft distal end region 143 to a shaft proximal end region 141, which may be directly coupled to the insulative distal member 172. The helical shaft 140 may be coated with an electrically insulating material, e.g., parylene or other examples listed herein, to avoid sensing or stimulation of cardiac tissue along the shaft length. The tip electrode element 142 is at the shaft distal end region 143 and may serve as a cathode electrode for delivering ventricular pacing pulses and sensing ventricular electrical signals using the proximal housing-based electrode 124 as a return anode when the tip electrode element 142 is advanced into ventricular tissue. The proximal housing-based electrode 124 may be a ring electrode circumscribing the housing 130 and may be defined by an uninsulated portion of the longitudinal sidewall 135. Other portions of the housing 130 not serving as an electrode may be coated with an electrically insulating material as described above in conjunction with FIG. 2.


Using two or more tissue-piercing electrodes (e.g., of any type) penetrating into the LV myocardium may be used for localized pacing capture and may mitigate ventricular pacing spikes affecting capturing atrial tissue. In some embodiments, multiple tissue-piercing electrodes may include two or more of a dart-type electrode (e.g., electrode 12 of FIGS. 1-2) and a helical-type electrode (e.g., electrode 112). Non-limiting examples of multiple tissue-piercing electrodes include two dart electrodes, a helix electrode with a dart electrode extending therethrough (e.g., through the center), or dual intertwined helixes. Multiple tissue-piercing electrodes may also be used for bipolar or multi-polar pacing.


In some embodiments, one or more tissue-piercing electrodes (e.g., of any type) that penetrate into the LV myocardium may be multi-polar tissue-piercing electrodes. A multi-polar tissue-piercing electrode may include one or more electrically active and electrically separate elements, which may enable bipolar or multi-polar pacing from one or more tissue-piercing electrodes.


Multiple non-tissue-piercing electrodes 122 may be provided along a periphery of the insulative distal member 172 (e.g., peripheral to the tissue-piercing electrode 1120. The insulative distal member 172 may define a distal-facing surface 138 of the device 110 and a circumferential surface 139 that circumscribes the device 110 adjacent to the housing longitudinal sidewall 135. Non-tissue-piercing electrodes 122 may be formed of an electrically conductive material, such as titanium, platinum, iridium, or alloys thereof. In the illustrated embodiment, six non-tissue-piercing electrodes 122 are spaced apart radially at equal distances along the outer periphery of the insulative distal member 172. However, two or more non-tissue-piercing electrodes 122 may be provided in some embodiments.


Non-tissue-piercing electrodes 122 may be discrete components each retained within a respective recess 174 in the insulative member 172 sized and shaped to mate with the non-tissue-piercing electrode 122. In other examples, the non-tissue-piercing electrodes 122 may each be an uninsulated, exposed portion of a unitary member mounted within or on the insulative distal member 172. Intervening portions of the unitary member not functioning as an electrode may be insulated by the insulative distal member 172 or, if exposed to the surrounding environment, may be coated with an electrically insulating coating, e.g., parylene, polyurethane, silicone, epoxy, or other insulating coating.


When the tissue-piercing electrode 112 is advanced into cardiac tissue, at least one non-tissue-piercing electrode 122 may be positioned against, in intimate contact with, or in operative proximity to, a cardiac tissue surface for delivering pulses and/or sensing cardiac electrical signals produced by the patient's heart. For example, one or more non-tissue-piercing electrodes 122 may be positioned in contact with right atrial endocardial tissue for pacing and sensing in the atrium when the tissue-piercing electrode 112 is advanced into the atrial tissue and through the central fibrous body until the distal tip electrode element 142 is positioned in direct contact with ventricular tissue, e.g., ventricular myocardium and/or a portion of the ventricular conduction system.


Non-tissue-piercing electrodes 122 may be coupled to a therapy delivery circuit and a sensing circuit enclosed by the housing 130 to function collectively as a cathode electrode for delivering atrial pacing pulses and for sensing atrial electrical signals (e.g., P-waves) in combination with the proximal housing-based electrode 124 as a return anode. Switching circuitry included in the sensing circuit may be activated under the control of the control circuit to couple one or more of the non-tissue-piercing electrodes to the atrial sensing channel. Distal, non-tissue-piercing electrodes 122 may be electrically isolated from each other so that each individual one of the electrodes 122 may be individually selected by switching circuitry included in the therapy delivery circuit to serve alone or in a combination with two or more of the electrodes 122 as an atrial cathode electrode. Switching circuitry included in the therapy delivery circuit may be activated under the control of the control circuit to couple one or more of the non-tissue-piercing electrodes 122 to the atrial pacing circuit. Two or more of the non-tissue-piercing electrodes 122 may be selected at a time to operate as a multi-point atrial cathode electrode.


Certain non-tissue-piercing electrodes 122 selected for atrial pacing and/or atrial sensing may be selected based on atrial capture threshold tests, electrode impedance, P-wave signal strength in the cardiac electrical signal, or other factors. For example, a single one or any combination of two or more individual non-tissue-piercing electrodes 122 functioning as a cathode electrode that provides an optimal combination of a low pacing capture threshold amplitude and relatively high electrode-impedance may be selected to achieve reliable atrial pacing using minimal current drain from the power source.


In some instances, the distal-facing surface 138 may uniformly contact the atrial endocardial surface when the tissue-piercing electrode 112 anchors the housing 130 at the implant site. In that case, all the electrodes 122 may be selected together to form the atrial cathode. Alternatively, every other one of the electrodes 122 may be selected together to form a multi-point atrial cathode having a higher electrical impedance that is still uniformly distributed along the distal-facing surface 138. Alternatively, a subset of one or more electrodes 122 along one side of the insulative distal member 172 may be selected to provide pacing at a desired site that achieves the lowest pacing capture threshold due to the relative location of the electrodes 122 to the atrial tissue being paced.


In other instances, the distal-facing surface 138 may be oriented at an angle relative to the adjacent endocardial surface depending on the positioning and orientation at which the tissue-piercing electrode 112 enters the cardiac tissue. In this situation, one or more of the non-tissue-piercing electrodes 122 may be positioned in closer contact with the adjacent endocardial tissue than other non-tissue-piercing electrodes 122, which may be angled away from the endocardial surface. By providing multiple non-tissue-piercing electrodes along the periphery of the insulative distal member 172, the angle of the tissue-piercing electrode 112 and the housing distal end region 132 relative to the cardiac surface, e.g., the right atrial endocardial surface, may not be required to be substantially parallel. Anatomical and positional differences may cause the distal-facing surface 138 to be angled or oblique to the endocardial surface, however, multiple non-tissue-piercing electrodes 122 distributed along the periphery of the insulative distal member 172 may increase the likelihood of “good” contact between one or more electrodes 122 and the adjacent cardiac tissue to promote acceptable pacing thresholds and reliable cardiac event sensing using at least a subset of multiple electrodes 122. Contact or fixation circumferentially along the entire periphery of the insulative distal member 172 may not be required.


The non-tissue-piercing electrodes 122 are shown to each include a first portion 122a extending along the distal-facing surface 138 and a second portion 122b extending along the circumferential surface 139. The first portion 122a and the second portion 122b may be continuous exposed surfaces such that the active electrode surface wraps around a peripheral edge 176 of the insulative distal member 172 that joins the distal facing surface 138 and the circumferential surface 139. The non-tissue-piercing electrodes 122 may include one or more of the electrodes along the distal-facing surface 138, one or more electrodes along the circumferential surface 139, one or more electrodes each extending along both of the distal-facing surface 138 and the circumferential surface 139, or any combination thereof. The exposed surface of each of the non-tissue-piercing electrodes 122 may be flush with respective distal-facing surfaces 138 and/or circumferential surfaces. In other examples, each of the non-tissue-piercing electrodes 122 may have a raised surface that protrudes from the insulative distal member 172. Any raised surface of the electrodes 122, however, may define a smooth or rounded, non-tissue-piercing surface.


The distal fixation and electrode assembly 136 may seal the distal end region of the housing 130 and may provide a foundation on which the electrodes 122 are mounted. The electrodes 122 may be referred to as housing-based electrodes. The electrodes 122 may not be not carried by a shaft or other extension that extends the active electrode portion away from the housing 130, like the distal tip electrode element 142 residing at the distal tip of the helical shaft 140 extending away from the housing 130. Other examples of non-tissue-piercing electrodes presented herein that are coupled to a distal-facing surface and/or a circumferential surface of an insulative distal member include the distal housing-based ring electrode 22 (FIG. 2), the distal housing-based ring electrode extending circumferentially around the assembly 36 (FIG. 2), button electrodes, other housing-based electrodes, and other circumferential ring electrodes. Any non-tissue-piercing electrodes directly coupled to a distal insulative member, peripherally to a central tissue-piercing electrode, may be provided to function individually, collectively, or in any combination as a cathode electrode for delivering pacing pulses to adjacent cardiac tissue. When a ring electrode, such as the distal ring electrode 22 and/or a circumferential ring electrode, is provided, portions of the ring electrode may be electrically insulated by a coating to provide multiple distributed non-tissue-piercing electrodes along the distal-facing surface and/or the circumferential surface of the insulative distal member.


The non-tissue-piercing electrodes 122 and other examples listed above are expected to provide more reliable and effective atrial pacing and sensing than a tissue-piercing electrode provided along the distal fixation and electrode assembly 136. The atrial chamber walls are relatively thin compared to ventricular chamber walls. A tissue-piercing atrial cathode electrode may extend too deep within the atrial tissue leading to inadvertent sustained or intermittent capture of ventricular tissue. A tissue-piercing atrial cathode electrode may lead to interference with sensing atrial signals due to ventricular signals having a larger signal strength in the cardiac electrical signal received via tissue-piercing atrial cathode electrodes that are in closer physical proximity to the ventricular tissue. The tissue-piercing electrode 112 may be securely anchored into ventricular tissue for stabilizing the implant position of the device 110 and providing reasonable certainty that the tip electrode element 142 is sensing and pacing in ventricular tissue while the non-tissue-piercing electrodes 122 are reliably pacing and sensing in the atrium. When the device 110 is implanted in the target implant region 4, e.g., as shown in FIG. 1 the ventricular septum, the tip electrode element 142 may reach left ventricular tissue for pacing of the left ventricle while the non-tissue-piercing electrodes 122 provide pacing and sensing in the right atrium. The tissue-piercing electrode 112 may be in the range of about 4 to about 8 mm in length from the distal-facing surface 138 to reach left ventricular tissue. In some instances, the device 110 may achieve four-chamber pacing by delivering atrial pacing pulses from the atrial pacing circuit via the non-tissue-piercing electrodes 122 in the target implant region 4 to achieve bi-atrial (right and left atrial) capture and by delivering ventricular pacing pulses from the ventricular pacing circuit via the tip electrode element 142 advanced into ventricular tissue from the target implant region 4 to achieve biventricular (right and left ventricular) capture.


One or more of the components, such as controllers, circuitry, accelerometers, or sensors, described herein may include a processor, such as a central processing unit (CPU), computer, logic array, or other device capable of directing data coming into or out of the medical device. The controller may include one or more computing devices or processing circuitry having memory, processing, and communication hardware. The controller may include circuitry used to couple various components of the controller together or with other components operably coupled to the controller. The functions of the controller may be performed by hardware and/or as computer instructions on a non-transient computer readable storage medium.


The processor of the controller may include any one or more of a microprocessor, a microcontroller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), and/or equivalent discrete or integrated logic circuitry. In some examples, the processor may include multiple components, such as any combination of one or more microprocessors, one or more controllers, one or more DSPs, one or more ASICs, and/or one or more FPGAs, as well as other discrete or integrated logic circuitry. The functions attributed to the controller or processor herein may be embodied as software, firmware, hardware, or any combination thereof. While described herein as a processor-based system, an alternative controller could utilize other components such as relays and timers to achieve the desired results, either alone or in combination with a microprocessor-based system.


In one or more embodiments, the exemplary systems, methods, and other functionality may be implemented using one or more computer programs using a computing apparatus, which may include one or more processors and/or memory. Program code and/or logic described herein may be applied to input data/information to perform functionality described herein and generate desired output data/information. The output data/information may be applied as an input to one or more other devices and/or methods as described herein or as would be applied in a known fashion. In view of the above, it will be readily apparent that the controller functionality as described herein may be implemented in any manner known to one skilled in the art



FIG. 4 is a two-dimensional (2D) ventricular map 60 of a patient's heart (e.g., a top-down view) showing the left ventricle 62 in a standard 17 segment view and the right ventricle 64. The map 60 includes a plurality of areas 68 corresponding to different regions of a human heart. As illustrated, the areas 68 are numerically labeled 1-17 (which, e.g., correspond to a standard 17 segment model of a human heart, correspond to 17 segments of the left ventricle of a human heart, etc.). Areas 68 of the map 60 may include basal anterior area 1, basal anteroseptal area 2, basal inferoseptal area 3, basal inferior area 4, basal inferolateral area 5, basal anterolateral area 6, mid-anterior area 7, mid-anteroseptal area 8, mid-inferoseptal area 9, mid-inferior area 10, mid-inferolateral area 11, mid-anterolateral area 12, apical anterior area 13, apical septal area 14, apical inferior area 15, apical lateral area 16, and apex area 17. The inferoseptal and anteroseptal areas of the right ventricle 64 are also illustrated, as well as the right bunch branch (RBB) and left bundle branch (LBB).


In some embodiments, any of the tissue-piercing electrodes of the present disclosure may be implanted in the basal and/or septal region of the left ventricular myocardium of the patient's heart. In particular, the tissue-piercing electrode may be implanted from the triangle of Koch region of the right atrium through the right atrial endocardium and central fibrous body.


Once implanted, the tissue-piercing electrode may be positioned in the target implant region 4 (FIG. 1), such as the basal and/or septal region of the left ventricular myocardium. With reference to map 60, the basal region includes one or more of the basal anterior area 1, basal anteroseptal area 2, basal inferoseptal area 3, basal inferior area 4, mid-anterior area 7, mid-anteroseptal area 8, mid-inferoseptal area 9, and mid-inferior area 10. With reference to map 60, the septal region includes one or more of the basal anteroseptal area 2, basal anteroseptal area 3, mid-anteroseptal area 8, mid-inferoseptal area 9, and apical septal area 14.


In some embodiments, the tissue-piercing electrode may be positioned in the basal septal region of the left ventricular myocardium when implanted. The basal septal region may include one or more of the basal anteroseptal area 2, basal inferoseptal area 3, mid-anteroseptal area 8, and mid-inferoseptal area 9.


In some embodiments, the tissue-piercing electrode may be positioned in the high inferior/posterior basal septal region of the left ventricular myocardium when implanted. The high inferior/posterior basal septal region of the left ventricular myocardium may include a portion of at least one of the basal inferoseptal area 3 and mid-inferoseptal area 9. For example, the high inferior/posterior basal septal region may include region 66 illustrated generally as a dashed-line boundary. As shown, the dashed line boundary represents an approximation of about where the high inferior/posterior basal septal region and may take somewhat different shape or size depending on the particular application. Without being bound by any particular theory, intraventricular synchronous pacing and/or activation may result from stimulating the high septal ventricular myocardium due to functional electrical coupling between the subendocardial Purkinje fibers and the ventricular myocardium.



FIGS. 5A-C show various views of one example of an implementation of the delivery catheter 100 (FIG. 1) that may be used with the elongated element 102. FIG. 5A is a side view showing a delivery catheter 200 that may be used with the elongated element 102. FIG. 5B is an overhead view showing the delivery catheter 200. FIG. 5C is a cross-sectional view along line C-C shown in FIG. 5B.


The elongated element 102 may be any suitable device for insertion into the CS. For example, the elongated element 102 may be a guidewire or a catheter. In some embodiments, the elongated element 102 may be steerable.


Further, the elongated element 102 may be anchorable in the CS. Being anchorable in the CS means the elongated element 102 includes any suitable mechanism for retaining the elongated element within the CS for any period of time. In some embodiments, the elongated element 102 may include an anchorable balloon or an anchorable side helix to facilitate stable anchoring in the CS after insertion of the elongated element into the CS, which may provide a reliable reference for delivering a device to the target implant region 4 (FIG. 1). The elongated element 102 may be inserted any suitable distance into the CS to facilitate the use of the elongated element as a physical reference. The elongated element 102 may remain in the CS or be removed after implanting the device at the target implant region 4.


The elongated element 102 may provide other functionality in addition to providing a physical reference to the CS. In some embodiments, the elongated element 102 may remain in the CS and be used as part of the cardiac therapy system 2 (FIG. 1). For example, the elongated element 102 may include one or more electrodes to facilitate cardiac therapy. In some embodiments, the elongated element 102 may be described as being a therapy catheter, such as an electrophysiology (EP) catheter, used for sensing or pacing. For example, an EP catheter may be used for assessing electrical patterns in the heart and then ablating.


The delivery catheter 200 includes an elongated body including a first portion 202 and a second portion 204, which may be integrally formed from a single piece of material or separately formed and coupled together. The first portion 202 and the second portion 204 may extend from a proximal region 210 to a respective first distal end region 206 and a respective second distal end region 208. As illustrated, the proximal region 210 may represent a proximal end region of the delivery catheter 200 or an intermediate region that is not a proximal end region of the delivery catheter 200. The delivery catheter 200 may be any suitable length to facilitate the techniques of the present disclosure. The first portion 202 and the second portion 204 may each extend longitudinally adjacent to one another, or side-by-side.


Each portion may define a lumen. A first lumen 212 defined by the first portion 202 may extend from the proximal region 210 to the first distal end region 206. A second lumen 214 defined by the second portion 204 may extend from the proximal region 210 to the second distal end region 208.


The first lumen 212 in the first distal end region 206 may be described as extending along a first axis 216. The second lumen 214 in the second distal end region 208 may be described as extending along a second axis 218. The first axis 216 and the second axis 218 form, or define, an angle 220 such that the second axis points toward the LV apex of the patient's heart when the first axis points into the CS. For example, the second axis may point toward the LV apex when the elongated element 102 is advanced through the first lumen 212 at least partially along the first axis 216 and inserted into and optionally anchored in the CS. A device advanced through the second lumen 214 may be directed to an implantation site in the triangle of Koch region when the elongated element 102 is advanced through the first lumen 212 into the CS and the second axis 218 points to the LV apex.


Any suitable angle 220 may be used. The angle 220 may depend on the physiology of the particular patient. In some embodiments, the angle 220 may be at least about 30, 40, 50, 60, or even 70 degrees. In some embodiments, the angle 220 may be at most about 110, 100, 90, 80, or even 70 degrees. For example, the angle 200 may be in a range from about 50 degrees to about 90 degrees. As used herein, “at most” may be used interchangeably with “less than or equal to,” and “at least” may be used interchangeably with “greater than or equal to.”


In one or more embodiments, a different angle may be defined between a first vector perpendicular to the CS ostium of the patient's heart and a second vector from the CS ostium to the LV apex, which may be at least about 30, 40, 50, 70, or even 70 degrees or at most about 110, 100, 90, 80, or even 70 degrees.


In the illustrated embodiment, the proximal region 210 of the second portion 204 is aligned with the first axis 216 and the second distal end region 208 is aligned to the second axis 218. A curved region 222 of the second portion 204 may be defined between the second distal end region 208 and the proximal region 210. The curved region 222 provides a transition between the proximal region 210 and the distal end region, which may be more gradual than illustrated in some embodiments. The first portion 202 may extend relatively linearly along the first axis 216 from the proximal region 210 to the first distal end region 206.


In some embodiments, the second distal end region 208 may also be curved. The alignment of the second distal end region 208 may be defined by the most distal segment of the distal end region or, in particular, the orientation of the medical device extending through the second lumen 214 in the distal end region.


The angle 220 may be described as fixed or deflectable (e.g., resilient). When the angle 220 is deflectable, any suitable mechanism may be used to control, define, or change the angle. For example, in some embodiments, a pull wire may be used to define a deflectable angle 220. In general, the delivery catheter 200 may be formed of any suitable flexible or semi-flexible material for delivery of a device to the patient's heart. In some embodiments, the angle 220 may be defined as a fixed angle when the material used to form some or all of the delivery catheter 200 is sufficiently stiff to prevent deflection away from the target implant region 4 during delivery. The second distal end region 208 or the curved region 222 of the second portion 204 may be formed of the same or different material than the remainder of the second portion, such as the proximal region 210, or than the first portion 202. In some embodiments, the second distal end region 208 or the curved region 222 may be formed of a stiffer material than the proximal region 210 or the first portion 202 (e.g., having a higher Shore durometer). For example, the second distal end region 208 or the curved region 222 may be formed of about a 55D material and the proximal region 210 or the first portion 202 may be formed of about a 35D or 40D material.


In some embodiments, the second portion 204 may include a braided structure to define the second lumen 214 to facilitate shape retention. In other embodiments, the second portion 204 may use a larger wall thickness than the first portion 202 to facilitate shape retention.


Any suitable technique may be used to form the delivery catheter 200. In some embodiments, the delivery catheter 200 may be made of a single extrusion. In other embodiments, the delivery catheter 200 may be made using three-dimensional (3D) machine printing. Any suitable material may be used to form the delivery catheter 200, such as an elastomer. Non-limiting examples of materials that may be used to form the delivery catheter 200 include one or more of polyether block amide (such as PEBAX), polyurethane, or a nylon.


The angled or curved regions of the second portion 204 may be straightened while guiding the delivery catheter 200 to the patient's heart. In some embodiments, a dilator that tracks over a guidewire may be inserted into the second lumen 214 and into the curved region 222 and the second distal end region 208 to straighten the second portion 204. Once the second distal end region 208 reaches the patient's heart, the dilator and the guidewire may be retracted and removed to allow the second portion 204 to take shape and form the angle 220 with the first portion 202.


In some embodiments, the first distal end region 206 may extend into the CS (e.g., as opposed to merely guiding the elongated element 102 into the CS). In the illustrated embodiment, the first portion 202 extends more distally than the second portion 204 such that the first distal end region 206 is more distal than the second distal end region 208 along the first axis 216, which may facilitate insertion and anchoring in the CS. The first portion 202 may extend any suitable amount beyond the second portion 204 to facilitate insertion and anchoring in the CS. For example, the first portion 202 may extend at least one inch or may extend at most two inches beyond the second portion 204.


In other embodiments, the first distal end region 206 may extend toward the CS but may not extend into the CS. In one embodiment, the first distal end region 206 may extend no more distally than the second distal end region 208 or the curved region 222.


The delivery catheter 200 may be a passive or active device. In the illustrated embodiment, the delivery catheter 200 may be described as an active device including one or more electrodes 224. The electrodes 224 may be coupled to the second distal end region 208 of the second portion 204 and used to map atrial activation prior to implanting the device in the target implant region 4. The one or more electrodes 224 may be electrically coupled to a proximal end of the delivery catheter 200 using conductors (not shown) extending through the proximal region 210. In the illustrated embodiment, four electrodes 224 are arranged along a distal face of the second portion 204 around an opening 226 at the end of the second lumen 214. The electrodes 224 may be placed against the triangle of Koch region of the RA to map atrial activation before a device is implanted from the second lumen 214 through the opening 226.


The first lumen 212 and the second lumen 214 may be the same or a different size to accommodate various types of devices. As shown in FIG. 5C, the first lumen 212 may define a first width 232 and the second lumen 214 may define a second width 234. In some embodiments, one or both of the first width 232 and the second width 234 may be described as a first diameter and a second diameter, respectively. As illustrated in FIG. 5C, in some embodiments, the second width 234 may be greater than the first width 232. For example, the first width 232 may be sized to accommodate a guidewire (for example, an inner diameter to accommodate a 0.038-inch guidewire), and the second width 234 may be sized to accommodate a pacing lead (for example, an inner diameter to accommodate a 7 French lead). In other embodiments, the first width 232 and the second width 234 may be the same or similar (for example, see FIG. 6), for example, when configured to insert a catheter and a similarly sized lead into the respective lumens.



FIG. 6 shows a cross-sectional view of another example of an implementation of the delivery catheter 100 (FIG. 1) including an interlocking assembly. The delivery catheter 300 may be similar to the delivery catheter 200 (FIGS. 5A-C) in many respects except that delivery catheter 300 may include an interlocking assembly including an exterior channel 342 defined in the first portion 302 and a protrusion 344 extending laterally from the second portion 304 configured to be received into the channel. The channel 342 may slidably guide the second portion 304 along a length of the first portion 302. The interlocking assembly may allow the first portion 302 and the second portion 304 to be translatable relative to one another. In some embodiments, the first portion 302 may be inserted independently from the second portion 304. In other embodiments, the channel 342 may be defined in the second portion 304, and the protrusion 344 may be extend laterally from the first portion 302.


As used herein with reference to delivery catheters, the term “lateral” refers to a direction away from a longitudinal axis, such as the first axis defined by the first portion 302 or the second axis defined by the second portion 304. In some embodiments, lateral may be a direction that is orthogonal to a longitudinal axis.


The channel 342 and the complementary protrusion 344 may have any suitable depth and complementary height, respectively, to facilitate guidance. In some embodiments, the depth or height may be at least about 0.5, 1, 1.5, or even 2 mm. In some embodiments, the depth or height may be at most about 3, 2.5, 2, 1.5, or even 1 mm. For example, the depth or height may be in a range from about 1 mm to about 2 mm.


The channel 342 may extend any suitable length along the first portion 302. In some embodiments, the channel 342 extends along the entire length of the first portion 302. In some embodiments, the channel 342 may include a distal end that stops short of a distal end of the first portion 302.


The protrusion 344 may extend any suitable length along the second portion 304. In some embodiments, the protrusion 344 is disposed at one or more discrete locations on the elongated body of the second portion 304. For example, each protrusion 344 may have a length that is at most about 1, 2, 3, or even 4 centimeters (cm) along a length of the second portion 304. In one embodiment, the protrusion 344 is disposed at only one discrete location. In other embodiments, the protrusion 344 extends along a greater length of the second portion 304. For example, the protrusion 344 may have a length that is at least about 1, 2, 3, or even 4 cm up to the entire length of the second portion 304. The protrusion 344 may extend continuously or discretely.


The protrusion 344 may be positioned at any suitable location along the second portion 304. In some embodiments, the discrete protrusion 344 may be positioned on the distal end region, the curved region, the proximal region, a non-curved region, or between any of these regions.



FIG. 7 is a flow diagram showing one example of a method 400 of using a delivery catheter of the present disclosure. The method 400 may include advancing a first distal end region of the delivery catheter, or dual-lumen catheter, toward the CS 402. In some embodiments, the first distal end region may be inserted into the CS. The method 400 may also include orienting a second distal end region of the delivery catheter toward the triangle of Koch region 404. Orienting the delivery catheter may involve torqueing to rotate the second portion around the first portion until, for example, the end of the second portion is pointed toward the LV apex when the first distal end region is fully advanced toward the CS. As used herein relative to delivery catheters, the term “torqueing” refers to applying a rotational force, or torque, to the delivery catheter. The method 400 may also include implanting a medical device through the delivery catheter and into the triangle of Koch region 406. In some embodiments, an implantable medical device may be advanced through a second lumen of the delivery catheter extending through the second distal end region. The implantable medical device may be fixed to an implantation site, or target implant region, in the triangle of Koch.


In general, the delivery catheter may be advanced toward the CS over an elongated element, such as a guidewire or another catheter, using a first lumen that extends through the first distal end region of the delivery catheter.



FIG. 8 is a flow diagram showing one example of a method 410 of using a guidewire for the elongated element and an integrally formed delivery-catheter having a first lumen and a second lumen. The method 410 may include advancing a cannulation catheter into the CS 412. In particular, the cannulation catheter may be inserted over a guidewire into the subclavian vein and traverse through the superior vena cava (SVC) to enter the RA and then used to cannulate the CS. The guidewire may be advanced into the CS through the cannulation catheter.


In some embodiments, the guidewire may be anchored in the CS. For example, the guidewire may be advanced more than about 1, 2, 3, 4, 5, or even 6 cm into the CS and even into the great cardiac vein (GCV) to anchor the guidewire in the CS. The method 410 may include removing the cannulation catheter and leaving guidewire in place 414.


The method 410 may also include advancing the delivery catheter, or dual-lumen catheter, over the guidewire toward the CS using the first lumen of the delivery catheter 416. The delivery catheter may be tracked along the guidewire until the delivery catheter prevents further advancement. For example, a portion forming the second lumen may be impeded from further advancement by the CS ostium.


The method 410 may include orienting the second lumen of the delivery catheter toward the triangle of Koch region of the patient's heart 418. In some embodiments, the delivery catheter is torqued so that the second portion of the delivery catheter defining the second lumen, which may have a fixed or deflectable curve, comes into contact with tissue in the target implant location in the triangle of Koch region.


The method 410 may also include implanting a device through the second lumen and into the triangle of Koch region 420. The second lumen may direct the device from the implant location toward the LV apex, which may facilitate implanting the device for VfA cardiac therapy. Once in position, the device may be fixed at the implant location. The method 410 may include removing the delivery catheter 422. For example, the delivery catheter may be slit and retracted.



FIG. 9 is a flow diagram showing another example of a method 430 of using a therapy catheter (e.g., EP catheter) for the elongated element and an integrally formed delivery-catheter defining a first lumen and a second lumen. The method 430 may include advancing a therapy catheter into the CS 432. In particular, the therapy catheter may be inserted over a guidewire into the subclavian vein and traverse through the SVC to enter the RA and then used to cannulate the CS. The therapy catheter may be anchored in the CS. For example, the therapy catheter may be advanced more than a few centimeters into the CS and even into the great cardiac vein (GCV) to anchor the therapy catheter in the CS. A guidewire may also be advanced into the CS through the therapy catheter in a similar manner.


The method 430 may also include advancing the delivery catheter, or dual-lumen catheter, over the therapy catheter toward the CS using the first lumen of the delivery catheter 416. The delivery catheter may be tracked along the therapy catheter until the delivery catheter prevents further advancement. For example, a portion forming the second lumen may be impeded from further advancement by the CS ostium.


The method 430 may include orienting the second lumen of the delivery catheter toward the triangle of Koch region of the patient's heart 436. In some embodiments, the delivery catheter is torqued so that the second portion of the delivery catheter defining the second lumen, which may have a fixed or deflectable curve, comes into contact with the tissue in the target implant location in the triangle of Koch region.


The method 430 may also include implanting a device through the second lumen and into the triangle of Koch region 438. The second lumen may direct the device from the implant location toward the LV apex, which may facilitate implanting the device for VfA cardiac therapy. Once in position, the device may be fixed at the implant location. The method 430 may include removing the delivery catheter 440. For example, the delivery catheter may be slit and retracted. The therapy catheter may remain or be removed. The guidewire may also be removed, for example, when the delivery catheter is removed.



FIG. 10 is a flow diagram showing another example of a method 450 of using a guidewire for the elongated element and a separably formed delivery-catheter with translatable first and second portions. The method 450 may include advancing a first portion of the delivery catheter over a guidewire 452. In particular, the first portion defining the first lumen may be inserted over a guidewire into the subclavian vein and traverse through the SVC to enter the RA and then used to cannulate the CS. The guidewire may be advanced into the CS through the first lumen.


The method 450 may include translatably coupling the first and second portions using an interlocking assembly, such as a channel and complementary protrusion, 454. In particular, a protrusion of the second portion may be inserted into the channel of the first portion.


The method 450 may include advancing the second portion defining the second lumen over the first portion toward the CS 456. The protrusion of second portion may be tracked along the channel of the first portion until the second portion prevents further advancement. For example, the second portion forming the second lumen may be impeded from further advancement by the CS ostium.


The method 450 may include orienting the second lumen of the second portion toward the triangle of Koch region of the patient's heart 458. In some embodiments, the delivery catheter is torqued so that the second portion of the delivery catheter, which may have a fixed or deflectable curve, comes into contact with the tissue in the target implant location in the triangle of Koch region.


The method 450 may also include implanting a device through the second lumen and into the triangle of Koch region 460. The second lumen may direct the device from the implant location toward the LV apex, which may facilitate implanting the device for VfA cardiac therapy. Once in position, the device may be fixed at the implant location. The method 450 may include removing the delivery catheter 462. For example, the delivery catheter may be slit and retracted.


ILLUSTRATIVE EMBODIMENTS

While the present disclosure is not so limited, an appreciation of various aspects of the disclosure will be gained through a discussion of the specific illustrative embodiments provided below. Various modifications of the illustrative embodiments, as well as additional embodiments of the disclosure, will become apparent herein.


In illustrative embodiment A1, an implantable medical device delivery system includes an elongated element anchorable in the coronary sinus (CS) of a patient's heart. The system also includes a delivery catheter with an elongated body having a first portion defining a first lumen and a second portion defining a second lumen. The first lumen in a first distal end region of the first portion extends along a first axis and the second lumen in a second distal end region of the second portion extends along a second axis forming an angle with the first axis. The second axis points toward the left ventricular (LV) apex of the patient's heart when the anchorable elongated element is advanced through the first lumen into the CS.


In illustrative embodiment A2, the system of any A illustrative embodiment further includes the delivery catheter configured such that an implantable medical device advanced through the second lumen is directed to an implantation site in the triangle of Koch region of the patient's heart when the elongated element is advanced through the first lumen into the CS and the second axis points to the LV apex.


In illustrative embodiment A3, the system of illustrative embodiment A2 further includes the implantable medical device. The implantable medical device includes at least one electrode to provide cardiac therapy to or sense electrical activity of the right atrium (RA) or the LV of the patient's heart.


In illustrative embodiment A4, the system of any A illustrative embodiment further includes the implantable medical device being a leaded implantable medical device.


In illustrative embodiment A5, the system of any A illustrative embodiment further includes the angle being a fixed angle.


In illustrative embodiment A6, the system of any A illustrative embodiment further includes the elongated element being a guidewire or a catheter.


In illustrative embodiment A7, the system of any A illustrative embodiment further includes the elongated element having one or both of an anchorable balloon and an anchorable side helix.


In illustrative embodiment A8, the system of any A illustrative embodiment further includes the elongated element having one or more electrodes.


In illustrative embodiment A9, the system of any A illustrative embodiment further includes one or more electrodes coupled to the second distal end region of the second portion to map atrial activation


In illustrative embodiment A10, the system of any A illustrative embodiment further includes the second distal end region being more flexible than one or both of the proximal region of the elongated body and the elongated element.


In illustrative embodiment A11, the system of any A illustrative embodiment further includes the second distal end region being distal to the first distal end region relative to the first axis.


In illustrative embodiment A12, the system of any A illustrative embodiment further includes the angle being at most 90 degrees.


In illustrative embodiment B1, a delivery catheter includes a first portion advanceable into the coronary sinus (CS) of a patient's heart having an elongated body defining a first lumen and an exterior channel. When the first portion is advanced into the CS, a region of the first portion adjacent to the CS ostium of the patient's heart extends along a first axis. The device includes a second portion having an elongated body defining a second lumen and having a laterally-extending protrusion configured to be received into the exterior channel of the first portion to slidably guide the second portion along a length of the first portion. A distal end region of the second portion extends along a second axis when the protrusion is engaged in the channel forming a fixed angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the first portion is advanced into the CS.


In illustrative embodiment B2, the system of any B illustrative embodiment further includes an implantable medical device advanced through the second lumen being directed to an implantation site in the triangle of Koch region of the patient's heart when the first portion is advanced into the CS and the second axis points to the LV apex.


In illustrative embodiment B3, the system of illustrative embodiment B2 further includes the implantable medical device. The implantable medical device includes at least one electrode to provide cardiac therapy to or sense electrical activity of the right atrium (RA) or the LV of the patient's heart.


In illustrative embodiment B4, the system of any B illustrative embodiment further includes the protrusion being disposed at a discrete location on the elongated body of the second portion.


In illustrative embodiment B5, the system of any B illustrative embodiment further includes one or more electrodes being coupled to the distal end region of the second portion to map atrial activation.


In illustrative embodiment C1, a method of delivering an implantable medical device includes advancing a first distal end region of a first portion of a dual-lumen catheter toward the coronary sinus (CS) of a patient's heart. The first portion defines a first lumen and the first distal end region extends along a first axis. The method includes orienting a second distal end region of a second portion of the dual-lumen catheter toward the triangle of Koch region of the patient's heart. The second portion defines a second lumen and the second distal end region extends along a second axis forming an angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the first distal end region is fully advanced toward the CS.


In illustrative embodiment C2, the method of any C illustrative embodiment further includes rotating the dual-lumen catheter to point the second axis toward the LV apex, advancing an implantable medical device through the second lumen of the dual-lumen catheter, and fixing the implantable medical device to an implantation site in the triangle of Koch region of the patient's heart.


In illustrative embodiment C3, the method of any C illustrative embodiment further includes advancing an elongated element into the coronary sinus (CS) of the patient's heart. When the elongated element is advanced into the CS, a portion of the elongated element adjacent to the CS ostium extends along the first axis. The method includes advancing the dual-lumen catheter over the elongated element using the first lumen to guide the first distal end region toward the CS.


In illustrative embodiment C4, the method of illustrative embodiment C3 further includes the elongated element having a guidewire and the method further including advancing a cannulation catheter into the CS of the patient's heart, advancing the guidewire through the cannulation catheter into the CS, and removing the cannulation catheter.


In illustrative embodiment C5, the method of any C illustrative embodiment further includes the first portion defining an exterior channel and the second portion having a laterally-extending protrusion configured to be received into the exterior channel. The method includes advancing the second portion guided by first portion using the protrusion engaged with the exterior channel, orienting the second portion to point the second axis toward the LV apex, advancing an implantable medical device through the second lumen of the dual-lumen catheter, and fixing the implantable medical device to an implantation site in the triangle of Koch region of the patient's heart.


Thus, various embodiments of the DELIVERY SYSTEMS FOR VFA CARDIAC THERAPY are disclosed. The techniques of the present disclosure provide a delivery catheter that stabilizes an implantable medical device at an appropriate location and orientation for implantation at a target implant region, particularly in the triangle of Koch region to deliver pacing to the LV, using the CS as a physical reference.


It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. It should also be understood that, depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the techniques). In addition, while certain aspects of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a medical device.


In one or more examples, the described techniques may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include non-transitory computer-readable media, which corresponds to a tangible medium such as data storage media (e.g., RAM, ROM, EEPROM, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer).


Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor” as used herein may refer to any of the foregoing structure or any other physical structure suitable for implementation of the described techniques. Also, the techniques could be fully implemented in one or more circuits or logic elements.


All references and publications cited herein are expressly incorporated herein by reference in their entirety for all purposes, except to the extent any aspect directly contradicts this disclosure.


All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.


Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims may be understood as being modified either by the term “exactly” or “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein or, for example, within typical ranges of experimental error.


The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range. Herein, the terms “at most” or “no greater than” a number (e.g., up to 50) includes the number (e.g., 50), and the term “at least” or “no less than” a number (e.g., no less than 5) includes the number (e.g., 5).


Terms related to orientation, such as “proximal,” “distal,” “side,” and “end,” are used to describe relative positions of components and are not meant to limit the orientation of the embodiments contemplated.


The terms “coupled” or “connected” refer to elements being attached to each other either directly (in direct contact with each other) or indirectly (having one or more elements between and attaching the two elements). Either term may be modified by “operatively” and “operably,” which may be used interchangeably, to describe that the coupling or connection is configured to allow the components to interact to carry out functionality.


As used herein, the term “configured to” may be used interchangeably with the terms “adapted to” or “structured to” unless the content of this disclosure clearly dictates otherwise.


Th singular forms “a,” “an,” and “the” encompass embodiments having plural referents unless its context clearly dictates otherwise.


The term “or” is generally employed in its inclusive sense, for example, to mean “and/or” unless the context clearly dictates otherwise.


The term “and/or” means one or all of the listed elements or a combination of at least two of the listed elements.


The phrases “at least one of,” “comprises at least one of,” and “one or more of” followed by a list refers to any one of the items in the list and any combination of two or more items in the list.


As used herein, “have,” “having,” “include,” “including,” “comprise,” “comprising” or the like are used in their open-ended sense, and generally mean “including, but not limited to.” It will be understood that “consisting essentially of,” “consisting of,” and the like are subsumed in “comprising,” and the like.


Reference to “one embodiment,” “an embodiment,” “certain embodiments,” or “some embodiments,” etc., means that a particular feature, configuration, composition, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of such phrases in various places throughout are not necessarily referring to the same embodiment of the disclosure. Furthermore, the particular features, configurations, compositions, or characteristics may be combined in any suitable manner in one or more embodiments.

Claims
  • 1. A method of delivering an implantable medical device comprising: advancing a first distal end region of a first portion of a dual-lumen catheter toward the coronary sinus (CS) of a patient's heart, wherein the first portion defines a first lumen and the first distal end region extends along a first axis; andorienting a second distal end region of a second portion of the dual-lumen catheter toward the triangle of Koch region of the patient's heart, wherein the second portion defines a second lumen and the second distal end region extends along a second axis forming an angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the second portion is located in the right atrium (RA) and the first distal end region is fully advanced toward the CS wherein, the angle is between 30 degree to 110 degree.
  • 2. The method according to claim 1, further comprising: rotating the dual-lumen catheter to point the second axis toward the LV apex;advancing an implantable medical device through the second lumen of the dual-lumen catheter; andfixing the implantable medical device to an implantation site in the triangle of Koch region of the patient's heart.
  • 3. The method according to claim 1, further comprising: advancing an elongated element into the coronary sinus (CS) of the patient's heart, wherein when the elongated element is advanced into the CS, a portion of the elongated element adjacent to the CS ostium extends along the first axis; andadvancing the dual-lumen catheter over the elongated element using the first lumen to guide the first distal end region toward the CS.
  • 4. The method according to claim 3, wherein the elongated element comprises a guidewire, and the method further comprises: advancing a cannulation catheter into the CS of the patient's heart;advancing the guidewire through the cannulation catheter into the CS; andremoving the cannulation catheter.
  • 5. The method according to claim 1, wherein the first portion defines an exterior channel and the second portion comprises a laterally-extending protrusion configured to be received into the exterior channel, further comprising: advancing the second portion guided by first portion using the protrusion engaged with the exterior channel;orienting the second portion to point the second axis toward the LV apex;advancing an implantable medical device through the second lumen of the dual-lumen catheter; and
US Referenced Citations (1357)
Number Name Date Kind
3835864 Rasor et al. Sep 1974 A
3865118 Bures Feb 1975 A
3943936 Rasor et al. Mar 1976 A
3949757 Sabel Apr 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
RE30366 Rasor et al. Aug 1980 E
4243045 Mass Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4280502 Baker, Jr. et al. Jul 1981 A
4289144 Gilman Sep 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4332259 McCorkle, Jr. Jun 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4374382 Markowitz et al. Feb 1983 A
4393883 Smyth et al. Jul 1983 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4479500 Smits Oct 1984 A
4522208 Buffet Jun 1985 A
4537200 Widrow Aug 1985 A
4546777 Groch et al. Oct 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4574814 Buffet Mar 1986 A
4593702 Ski et al. Jun 1986 A
4593955 Leiber Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4776338 Lekholm et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4830006 Haluska et al. May 1989 A
4858610 Callaghan et al. Aug 1989 A
4865037 Chin et al. Sep 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole, Jr. Dec 1989 A
4928688 Mower May 1990 A
4953564 Berthelsen Sep 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5107850 Olive Apr 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grievous et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5154170 Bennett et al. Oct 1992 A
5170784 Ramon et al. Dec 1992 A
5174289 Cohen Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5255692 Neubauer et al. Oct 1993 A
5259387 dePinto Nov 1993 A
5269326 Verrier Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318594 Limousin et al. Jun 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5342408 Decoriolis et al. Aug 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5456691 Snell Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5554177 Kieval et al. Sep 1996 A
5562711 Yerich et al. Oct 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5620466 Haefner et al. Apr 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5720770 Nappholz et al. Feb 1998 A
5728140 Salo et al. Mar 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5749909 Schroeppel et al. May 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grievous et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5814089 Stokes et al. Sep 1998 A
5817130 Cox et al. Oct 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Goyal et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5873894 Vandegriff et al. Feb 1999 A
5891184 Lee et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5928271 Hess et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6016445 Baura Jan 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6041250 dePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055454 Heemels Apr 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6132456 Sommer et al. Oct 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6256534 Dahl Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6393316 Gillberg et al. May 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6508771 Padmanabhan et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6544270 Yongxing Apr 2003 B1
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6623518 Thompson et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6647292 Bardy et al. Nov 2003 B1
6666844 Igo et al. Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6754528 Bardy et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6847844 Sun et al. Jan 2005 B2
6869404 Schulhauser et al. Mar 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6871096 Hill Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6931286 Sigg et al. Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6941169 Pappu Sep 2005 B2
6957107 Rogers et al. Oct 2005 B2
6978176 Lattouf Dec 2005 B2
6980675 Evron et al. Dec 2005 B2
6985773 Von Arx et al. Jan 2006 B2
6990375 Kloss et al. Jan 2006 B2
6993389 Ding et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013176 Ding et al. Mar 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Bumes et al. Apr 2006 B2
7031711 Brown et al. Apr 2006 B2
7031771 Brown et al. Apr 2006 B2
7035684 Lee et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7060031 Webb et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7181284 Burnes et al. Feb 2007 B2
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7231248 Kramer et al. Jun 2007 B2
7231253 Tidemand et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7286866 Okerlund et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7307321 Avanzino Dec 2007 B1
7308297 Reddy et al. Dec 2007 B2
7308299 Burrell et al. Dec 2007 B2
7310556 Bulkes Dec 2007 B2
7317950 Lee Jan 2008 B2
7319905 Morgan et al. Jan 2008 B1
7321677 Evron et al. Jan 2008 B2
7321798 Muhlenberg et al. Jan 2008 B2
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7346381 Okerlund et al. Mar 2008 B2
7346393 Spinelli et al. Mar 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7433739 Salys et al. Oct 2008 B1
7454248 Burrell et al. Nov 2008 B2
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7499743 Vass et al. Mar 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7546166 Michels et al. Jun 2009 B2
7558626 Corbucci Jul 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565190 Okerlund et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7584002 Burnes et al. Sep 2009 B2
7587074 Zarkh et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7599730 Hunter et al. Oct 2009 B2
7606621 Brisken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7613500 Vass et al. Nov 2009 B2
7616991 Mann et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630764 Ding et al. Dec 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7635541 Scott et al. Dec 2009 B2
7637867 Zdeblick Dec 2009 B2
7640057 Libbus et al. Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7657313 Rom Feb 2010 B2
7668596 Von Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7702392 Echt et al. Apr 2010 B2
7706879 Burnes et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Von Arx et al. Jun 2010 B2
7742629 Zarkh et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747047 Okerlund et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7778685 Evron et al. Aug 2010 B2
7778686 Vass et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7813785 Okerlund et al. Oct 2010 B2
7840281 Kveen et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7877144 Coles, Jr. et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881791 Sambelashvili et al. Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Keisch et al. Feb 2011 B1
7894885 Baitai et al. Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894902 Rom Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7912544 Min et al. Mar 2011 B1
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930027 Prakash et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7941218 Sambelashvili et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hubinette May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7979136 Young et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996063 Vass et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8000807 Morris et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8002718 Buchholtz et al. Aug 2011 B2
8010191 Zhu et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8014861 Zhu et al. Sep 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8046065 Burnes et al. Oct 2011 B2
8046079 Bange et al. Oct 2011 B2
8046080 Von Arx et al. Oct 2011 B2
8050297 Delmain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8055350 Roberts Nov 2011 B2
8060185 Hunter et al. Nov 2011 B2
8060212 Rios et al. Nov 2011 B1
8065018 Haubrich et al. Nov 2011 B2
8068920 Gaudiani Nov 2011 B2
8073542 Doerr Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8105714 Schmidt et al. Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8145308 Sambelashvili et al. Mar 2012 B2
8150521 Crowley et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8175715 Cox May 2012 B1
8180428 Kaiser et al. May 2012 B2
8180451 Hickman et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204590 Sambelashvili et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8214041 Van Gelder et al. Jul 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8262578 Bharmi et al. Oct 2012 B1
8280521 Haubrich et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8321014 Maskara et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8332036 Hastings et al. Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8352025 Jacobson Jan 2013 B2
8352027 Spinelli et al. Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8380320 Spital Feb 2013 B2
8383269 Scott et al. Feb 2013 B2
8386051 Rys Feb 2013 B2
8391964 Musley et al. Mar 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8401616 Verard et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8406899 Reddy et al. Mar 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428716 Mullen et al. Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8447412 Dal Molin et al. May 2013 B2
8452413 Young et al. May 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8467871 Maskara Jun 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8509916 Byrd et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8521268 Zhang et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund et al. Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matoes Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8594775 Ghosh et al. Nov 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8617082 Zhang et al. Dec 2013 B2
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bornzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639333 Stadler et al. Jan 2014 B2
8639335 Peichel et al. Jan 2014 B2
8644934 Hastings et al. Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8676314 Maskara et al. Mar 2014 B2
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bornzin et al. Apr 2014 B2
8705599 Dal Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8731642 Zarkh et al. May 2014 B2
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8747314 Stahmann et al. Jun 2014 B2
8750994 Ghosh et al. Jun 2014 B2
8750998 Ghosh et al. Jun 2014 B1
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768459 Ghosh et al. Jul 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Comdorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8861830 Brada et al. Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886307 Sambelashvili et al. Nov 2014 B2
8886311 Anderson et al. Nov 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bornzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8948883 Eggen et al. Feb 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9033996 West May 2015 B1
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9072872 Asleson et al. Jul 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9101281 Reinert et al. Aug 2015 B2
9119959 Rys et al. Sep 2015 B2
9155882 Grubac et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9248300 Rys et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashbili et al. Mar 2016 B1
9302115 Molin et al. Apr 2016 B2
9320446 Gillberg et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Regnier et al. Sep 2016 B2
9457193 Klimovitch et al. Oct 2016 B2
9474457 Ghosh et al. Oct 2016 B2
9486151 Ghosh et al. Nov 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9517336 Eggen et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishier et al. Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9533163 Klimovitch et al. Jan 2017 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9579500 Rys et al. Feb 2017 B2
9623234 Anderson Apr 2017 B2
9636511 Carney et al. May 2017 B2
9643014 Zhang et al. May 2017 B2
9675579 Rock et al. Jun 2017 B2
9707399 Zielinski et al. Jul 2017 B2
9724519 Demmer et al. Aug 2017 B2
9789319 Sambelashvili Oct 2017 B2
9808628 Sheldon et al. Nov 2017 B2
9808633 Bonner et al. Nov 2017 B2
9877789 Ghosh Jan 2018 B2
9924884 Ghosh et al. Mar 2018 B2
10004467 Lahm et al. Jun 2018 B2
10064567 Ghosh et al. Sep 2018 B2
10099050 Chen et al. Oct 2018 B2
10166396 Schrock et al. Jan 2019 B2
10251555 Ghosh et al. Apr 2019 B2
10850107 Li et al. Dec 2020 B2
10850108 Li et al. Dec 2020 B2
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020004263 Bardy et al. Apr 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020049476 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Erlinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030004549 Hill et al. Jan 2003 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030088278 Bardy et al. May 2003 A1
20030092995 Thompson May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20040002443 Leckrone et al. Feb 2004 A1
20040064158 Klein et al. Apr 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040008793 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040102830 Williams May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Strand et al. Sep 2004 A1
20040176818 Strand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040022063 Mulligan et al. Nov 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040002673 Guenst Dec 2004 A1
20040230283 Prinzen et al. Dec 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20050008210 Evron et al. Jan 2005 A1
20050038477 Kramer et al. Feb 2005 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050102003 Grabek et al. May 2005 A1
20050137629 Dyjach et al. Jun 2005 A1
20050137671 Liu et al. Jun 2005 A1
20050014913 Min et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050203410 Jenkins Sep 2005 A1
20050277990 Ostroff et al. Dec 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060006413 Brockway Mar 2006 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060074285 Zarkh et al. Apr 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060161205 Mitrani et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060235478 Van Gelder et al. Oct 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070049975 Cates et al. Mar 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jaconson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070233216 Liu et al. Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20070299475 Levin et al. Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080082136 Gaudiani Apr 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080243217 Wildon Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269816 Prakash et al. Oct 2008 A1
20080269823 Burnes et al. Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080294229 Friedman et al. Nov 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090036941 Corbucci Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090099619 Lessmeier et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 Jason Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090234412 Sambelashvili Sep 2009 A1
20090234413 Sambelashvili et al. Sep 2009 A1
20090234414 Sambelashvili et al. Sep 2009 A1
20090234415 Sambelashvili et al. Sep 2009 A1
20090248103 Sambelashvili et al. Oct 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100016914 Mullen et al. Jan 2010 A1
20100023078 Dong et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100065871 Govari et al. Mar 2010 A1
20100094250 Gumm Apr 2010 A1
20100094367 Sen Apr 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100152798 Sanghera et al. Jun 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100185250 Rom Jul 2010 A1
20100002173 Belson Aug 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198291 Sambelashvili et al. Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100218147 Ishikawa Aug 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100286541 Musley et al. Nov 2010 A1
20100286626 Petersen Nov 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100298841 Prinzen et al. Nov 2010 A1
20100003123 Harding Dec 2010 A1
20110022113 Ideblick et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110106202 Ding et al. May 2011 A1
20110112398 Zarkh et al. May 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110019083 Brockway et al. Aug 2011 A1
20110190841 Sambelashvili et al. Aug 2011 A1
20110196444 Prakash et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110002703 Murray et al. Nov 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120035685 Saha et al. Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120078322 Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120089214 Kroll et al. Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120010923 Sheldon et al. May 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120001973 Khairkhahan et al. Aug 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120232478 Haslinger Sep 2012 A1
20120232563 Williams et al. Sep 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20120263218 Dal Molin et al. Oct 2012 A1
20120002963 Matos Nov 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120277725 Kassab Nov 2012 A1
20120283587 Gosh et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120284003 Gosh et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296228 Zhang et al. Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20130012151 Hankins Jan 2013 A1
20130013017 Mullen et al. Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053906 Ghosh et al. Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085550 Polefko et al. Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourg et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116739 Brada et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123872 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130131750 Stadler et al. May 2013 A1
20130131751 Stadler et al. May 2013 A1
20130138006 Bornzin et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197599 Sambelashvili et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Walfhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268017 Zhang et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140012344 Hastings et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140339570 Carroll et al. Feb 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140114173 Bar-Tal et al. Apr 2014 A1
20140114372 Ghosh et al. Apr 2014 A1
20140012893 Kumar et al. May 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172060 Bornzin Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140323882 Ghosh et al. Oct 2014 A1
20140323892 Ghosh et al. Oct 2014 A1
20140330208 Christie et al. Nov 2014 A1
20140330287 Thompson-Naumann et al. Nov 2014 A1
20140336326 Thompson-Naumann et al. Nov 2014 A1
20140358135 Sambelashvili et al. Dec 2014 A1
20140371832 Ghosh Dec 2014 A1
20140371833 Ghosh et al. Dec 2014 A1
20140379041 Foster Dec 2014 A1
20150025612 Haasl et al. Jan 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150088155 Foster et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150142070 Sambelashvili May 2015 A1
20150148697 Bumes et al. May 2015 A1
20150149096 Soykan May 2015 A1
20150157861 Aghassian Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150019063 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann et al. Jul 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150305695 Lahm et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20150335894 Bornzin et al. Nov 2015 A1
20160015287 Anderson et al. Jan 2016 A1
20160015322 Anderson et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160045738 Ghosh et al. Feb 2016 A1
20160051821 Sambelashvili et al. Feb 2016 A1
20160059002 Grubac et al. Mar 2016 A1
20160067486 Brown et al. Mar 2016 A1
20160067487 Demmer et al. Mar 2016 A1
20160067490 Carney et al. Mar 2016 A1
20160114161 Amblard et al. Apr 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishier et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160129239 Anderson May 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160228026 Jackson Aug 2016 A1
20160310733 Sheldon et al. Oct 2016 A1
20160317825 Jacobson Nov 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20170014629 Ghosh et al. Jan 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
20170056670 Sheldon et al. Mar 2017 A1
20170182327 Liu Jun 2017 A1
20170189681 Anderson Jul 2017 A1
20170209689 Chen Jul 2017 A1
20170216575 Asleson et al. Aug 2017 A1
20170304624 Friedman et al. Oct 2017 A1
20170326369 Koop et al. Nov 2017 A1
20170340885 Sambelashvili Nov 2017 A1
20180000215 An et al. Jan 2018 A1
20180008829 An et al. Jan 2018 A1
20180021567 An et al. Jan 2018 A1
20180021581 An et al. Jan 2018 A1
20180050208 Shuros et al. Feb 2018 A1
20180078773 Thakur et al. Mar 2018 A1
20180078779 An et al. Mar 2018 A1
20180117324 Schilling et al. May 2018 A1
20180140848 Stahmann May 2018 A1
20180178007 Shuros et al. Jun 2018 A1
20180212451 Schmidt et al. Jul 2018 A1
20180256904 Li Sep 2018 A1
20180264262 Haasl et al. Sep 2018 A1
20180264272 Haasl et al. Sep 2018 A1
20180264273 Haasl et al. Sep 2018 A1
20180264274 Haasl et al. Sep 2018 A1
20180280686 Shuros et al. Oct 2018 A1
20180326215 Ghosh Nov 2018 A1
20190030346 Li Jan 2019 A1
20190038906 Koop et al. Feb 2019 A1
20190083779 Yang et al. Mar 2019 A1
20190083800 Yang et al. Mar 2019 A1
20190083801 Yang et al. Mar 2019 A1
20190192860 Ghosh et al. Jun 2019 A1
20190269926 Ghosh Sep 2019 A1
20210085986 Li et al. Mar 2021 A1
Foreign Referenced Citations (43)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
202933393 May 2013 CN
0362611 Apr 1990 EP
0459 239 Dec 1991 EP
0 728 497 Aug 1996 EP
1 541 191 Jun 2005 EP
1 702 648 Sep 2006 EP
1 904 166 Jun 2011 EP
2 452 721 May 2012 EP
2 471 452 Jul 2012 EP
2 662 113 Nov 2013 EP
1 703 944 Jul 2015 EP
2005245215 Sep 2005 JP
WO 9500202 Jan 1995 WO
WO 9636134 Nov 1996 WO
WO 9724981 Jul 1997 WO
WO 0222206 Mar 2002 WO
WO 03092800 Nov 2003 WO
WO 2005000206 Jan 2005 WO
WO 2005042089 May 2005 WO
WO 2006086435 Aug 2006 WO
WO 2006113659 Oct 2006 WO
2006116595 Nov 2006 WO
WO 2007073435 Jun 2007 WO
WO 2007075974 Jul 2007 WO
2008042887 Apr 2008 WO
WO 2009006531 Jan 2009 WO
WO 2013080038 Jun 2013 WO
WO 2013098644 Jul 2013 WO
WO 2015081221 Jun 2015 WO
2015193047 Dec 2015 WO
WO 2016011042 Jan 2016 WO
WO 2016077099 May 2016 WO
WO 2016110856 Jul 2016 WO
WO 2016171891 Oct 2016 WO
WO 2017075193 May 2017 WO
WO 2018009569 Jan 2018 WO
WO 2018017226 Jan 2018 WO
WO 2018017361 Jan 2018 WO
WO 2018035343 Feb 2018 WO
WO 2018081519 May 2018 WO
Non-Patent Literature Citations (231)
Entry
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
http://www.isrctn.com/ISRCTN47824547, public posting published 08/19.
Abed et al., “Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation,” Heart Rhythm Society, Jan. 2013; 10(1):90-100.
Adragão et al., “Ablation of pulmonary vein foci for the treatment of atrial fibrillation; percutaneous electroanatomical guided approach,” Europace, Oct. 2002; 4(4):391-9.
Aliot et al., “Arrhythmia detection by dual-chamber implantable cardioverter defibrillators: A review of current algorithms,” Europace, Jul. 2004; 6(4):273-86.
Amirahmadi et al., “Ventricular Tachycardia Caused by Mesothelial Cyst,” Indian Pacing and Electrophysiology Journal, 2013; 13 (1): 43 -44.
Ammirabile et al., “Pitx2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium,” Cardiovasc Res., Feb. 2012; 93(2):291-30L.
Anfinsen, “Non-pharmacological Treatment of Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2002; 2(1):4-14.
Anné et al., “Ablation of post-surgical intra-atrial reentrant Tachycardia,” European Heart Journal, 2002; 23:169-1616.
Arenal et al., “Dominant frequency differences in atrial fibrillation patients with and without left ventricular systolic dysfunction,” Europace, Apr. 2009; 11(4):450-457.
Arriagada et al., “Predictors of arrhythmia recurrence in patients with lone atrial fibrillation,” Europace, Jan. 2008; 10(1):9-14.
Asirvatham et al., “Cardiac Anatomic Considerations in Pediatric Electrophysiology,” Indian Pacing and Electrophysiology Journal, Apr. 2008; 8(Suppl 1):S75-S91.
Asirvatham et al., “Intramyocardial Pacing and Sensing for the Enhancement of Cardiac Stimulation and Sensing Specificity,” Pacing Clin. Electrophysiol., Jun. 2007; 30(6):748-754.
Asirvatham et al., “Letter to the Editor,” J Cardiovasc Electrophysiol., Mar. 2010; 21(3): E77.
Balmer et al., “Long-term follow up of children with congenital complete atrioventricular block and the impact of pacemaker therapy,” Europace, Oct. 2002; 4(4):345-349.
Barold et al., “Conventional and biventricular pacing in patients with first-degree atrioventricular block,” Europace, Oct. 2012; 14(10):1414-9.
Barold et al., “The effect of hyperkalaemia on cardiac rhythm devices,” Europace, Apr. 2014; 16(4):467-76.
Bayrak et al., “Added value of transoesophageal echocardiography during transseptal puncture performed by inexperienced operators,” Europace, May 2012; 14(5):661-5.
Bergau et al., “Measurement of Left Atrial Pressure is a Good Predictor of Freedom From Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):181-93.
Bernstein et al., “The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group,” Pacing Clin Electrophysiol., Feb. 2002; 25(2):260-4.
Bito et al., “Early exercise training after myocardial infarction prevents contractile but not electrical remodeling or hypertrophy,” Cardiovascular Research, Apr. 2010; 86(1):72-81.
Bollmann et al., “Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications,” Europace, Nov. 2006; 8(11):911-926.
Bortone et al., “Evidence for an incomplete mitral isthmus block after failed ablation of a left postero-inferior concealed accessory pathway,” Europace, Jun. 2006; 8(6):434-7.
Boulos et al., “Electroanatomical mapping and radiofrequency ablation of an accessory pathway associated with a large aneurysm of the coronary sinus,” fEuropace, Nov. 2004; 6(6):608-12.
Brembilla-Perrot et al., “Incidence and prognostic significance of spontaneous and inducible antidromic tachycardia,” Europace, Jun. 2013; 15(6):871-876.
Buber et al., “Morphological features of the P-waves at surface electrocardiogram as surrogate to mechanical function of the left atrium following a successful modified maze procedure,” Europace, Apr. 2014; 16(4):578-86.
Burashnikov et al., “Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation,” Pacing Clin Electrophysiol., Mar. 2006; 29(3):290-5.
Burashnikov et al., “Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation,” Heart Rhythm, Jan. 2012; 9(1):125-31.
Calvo et al., “Efficacy of circumferential pulmonary vein ablation of atrial fibrillation in endurance athletes,” Europace, Jan. 2010; 12(1):30-6.
Can et al., ““Atrial torsades de pointes” Induced by Low-Energy Shock From Implantable-Cardioverter Defibrillator,” Indian Pacing and Electrophysiology Journal, Sep. 2013; 13(5):194-199.
Carroz et al., “Pseudo-pacemaker syndrome in a young woman with first-degree atrio-ventricular block,” Europace, Apr. 2010; 12(4):594-596.
Catanchin et al., “Wolff-Parkinson-White syndrome with an unroofed coronary sinus without persistent left superior vena cava treated with catheter cryoablation,” Indian Pacing and Electrophysiology Journal, Aug. 2008; 8(3):227-233.
Cazeau et al., “Cardiac resynchronization therapy,” Europace, Sep. 2004; 5 Suppl 1:S42-8.
Chandra et al., “Evaluation of KCB-328, a new IKr blocking anti arrhythmic agent in pacing induced canine atrial fibrillation,” Europace, Sep. 2004; 6(5):3 84-91.
Chang et al., “Electrophysiological characteristics and catheter ablation in patients with paroxysmal supraventricular tachycardia and paroxysmal atrial fibrillation,” J Cardiovasc Electrophysiol., Apr. 2008; 19(4):367-73.
Charron et al., “A familial form of conduction defect related to a mutation in the PRKAG2 gene,” Europace, Aug. 2007; 9(8):597-600.
Chou et al., “Effects of SEA0400 on Arrhythmogenicity in a Langendorff-Perfused 1-Month Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., May 2013; 36(5):596-606.
Ciploetta et al., “Posterior Coronary Vein as the Substrate for an Epicardial Accessory Pathway,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13(4):142-7.
Climent et al., “Effects of endocardial microwave energy ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2005; 5(3):233-43.
Comtois et al., “Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry,” Europace, Sep. 2005; 7 Suppl 2:10-20.
Crick et al., “Anatomy of the pig heart: comparisons with normal human cardiac structure,” J. Anat.,1998, 193:105-119.
Daoulah et al., “Unintended Harm and Benefit of the Implantable Defibrillator in an Unfortunate 19-Year-Old Male: Featuring a Sequence of Rare Life-threatening Complications of Cardiac Procedures,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13 (4): 151 -6.
De Mattia et al., “Paroxysmal atrial fibrillation triggered by a monomorphic ventricular couplet in a patient with acute coronary syndrome,” Indian Pacing and Electrophysiology Journal, Jan. 2012; 12(1): 19-23.
DeSimone et al., “New approach to cardiac resynchronization therapy: CRT without left ventricular lead,” Apr. 25, 2014, 2 pages.
De Sisti et al., “Electrophysiological determinants of atrial fibrillation in sinus node dysfunction despite atrial pacing,” Europace, Oct. 2000; 2(4):304-11.
De Voogt et al., “Electrical characteristics of low atrial septum pacing compared with right atrial appendage pacing,” Europace, Jan. 2005; 7(l):60-6.
De Voogt et al., “A technique of lead insertion for low atrial septal pacing,” Pacing Clin Electrophysiol., Jul. 2005; 28(7):639-46.
Dizon et al. “Real-time stroke volume measurements for the optimization of cardiac resynchronization therapy parameters,” Europace, Sep. 2010; 12(9):1270-1274.
Duckett et al., “Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy,” Europace, Jan. 2012; 14(1):99-106.
Eksik et al., “Influence of atrioventricular nodal reentrant tachycardia ablation on right to left inter-atrial conduction,” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):279-88.
Fiala et al., “Left Atrial Voltage during Atrial Fibrillation in Paroxysmal and Persistent Atrial Fibrillation Patients,” PACE, May 2010; 33(5):541-548.
Fragakis et al., “Acute beta-adrenoceptor blockade improves efficacy of ibutilide in conversion of atrial fibrillation with a rapid ventricular rate,” Europace, Jan. 2009; 11(1):70-4.
Frogoudaki et al., “Pacing for adult patients with left atrial isomerism: efficacy and technical considerations,” Europace, Apr. 2003; 5(2):189-193.
Ganapathy et al., “Implantable Device to Monitor Cardiac Activity with Sternal Wires,” Pacing Clin. Electrophysiol., Dec. 2014; Epub Aug. 24, 2014; 37(12):1630-40.
Geddes, “Accuracy limitations of chronaxie values,” IEEE Trans Biomed Eng., Jan. 2004; 51(1):176-81.
Gertz et al., “The impact of mitral regurgitation on patients undergoing catheter ablation of atrial fibrillation,” Europace, Aug. 2011; 13(8):1127-32.
Girmatsion et al., “Changes in microRNA-1 expression and IKI up-regulation in human atrial fibrillation,” Heart Rhythm, Dec. 2009; 6(12):1802-9.
Goette et al., “Acute atrial tachyarrhythmia induces angiotensin II type 1 receptor-mediated oxidative stress and microvascular flow abnormalities in the ventricles,” European Heart Journal, Jun. 2009; 30(11):1411-20.
Goette et al., “Electrophysiological effects of angiotensin II. Part I: signal transduction and basic electrophysiological mechanisms,” Europace, Feb. 2008; 10(2):238-41.
Gómez et al., “Nitric oxide inhibits Kv4.3 and human cardiac transient outward potassium current (Ito1),” Cardiovasc Res., Dec. 2008; 80(3):375-84.
Gros et al., “Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate,” Cardiovascular Research, Jan. 2010; 85(1):45-55.
Guenther et al., “Substernal Lead Implantation: A Novel Option to Manage OFT Failure in S-ICD patients,” Clinical Research Cardiology, Feb. 2015; Epub Oct. 2, 2014; 104(2):189-91.
Guillem et al., “Noninvasive mapping of human atrial fibrillation,” J Cardiovasc Electrophysiol., May 2009; 20(5):507-513.
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Hakacova et al., “Septal atrial pacing for the prevention of atrial fibrillation,” Europace, 2007; 9:1124-1128.
Hasan et al., “Safety, efficacy, and performance of implanted recycled cardiac rhythm management (CRM) devices in underprivileged patients,” Pacing Clin Electrophysiol., Jun. 2011; 34(6):653-8.
Hawkins, “Epicardial Wireless Pacemaker for Improved Left Ventricular Reynchronization (Conceptual Design)”, Dec. 2010, A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo, 57 pp.
He et al., “Three-dimensional cardiac electrical imaging from intracavity recordings,” IEEE Trans Biomed Eng., Aug. 2007; 54(8):1454-60.
Heist et al., “Direct visualization of epicardial structures and ablation utilizing a visually guided laser balloon catheter: preliminary findings,” J Cardiovasc Electrophysiol., Jul. 2011; 22(7):808-12.
Henz et al., “Synchronous Ventricular Pacing without Crossing the Tricuspid Valve or Entering the Coronary Sinus—Preliminary Results,” J Cardiovasc Electrophysiol., Dec. 2009; 20(12):1391-1397.
Hiippala et al., “Automatic Atrial Threshold Measurement and Adjustment in Pediatric Patients,” Pacing Clin Electrophysiol., Mar. 2010; 33(3):309-13.
Ho, “Letter to the Editor” J Cardiovasc Electrophysiol., Mar. 2010; 21(3): E76.
Höijer et al., “Improved cardiac function and quality of life following upgrade to dual chamber pacing after long-term ventricular stimulation,” European Heart Journal, Mar. 2002; 23(6):490-497.
Huang et al., “A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block,” Can J Cardiol., Dec. 2007; Epub Sep. 22, 2017; 33(12):1736.e1-1736.e.
Inter-Office Memo, Model 6426-85 Canine Feasibility AV Septal 8 mm Screw-In Right Single Pass DDD Lead Final Report (AR # 0120A0207).
Ishigaki et al., “Prevention of immediate recurrence of atrial fibrillation with low-dose landiolol after radiofrequency catheter ablation,” Journal of Arrhythmia, Oct. 2015; 31(5):279-285.
Israel, “The role of pacing mode in the development of atrial fibrillation,” Europace, Feb. 2006; 8(2):89-95.
Janion et al., “Dispersion of P wave duration and P wave vector in patients with atrial septal aneurysm,” Europace, Jul. 2007; 9(7):471-4.
Kabra et al., “Recent Trends in Imaging for Atrial Fibrillation Ablation,” Indian Pacing and Electrophysiology Journal, 2010; 10(5):215-227.
Kalbfleisch et al., “Catheter Ablation with Radiofrequency Energy: Biophysical Aspects and Clinical Applications,” Journal of Cardiovascular Electrophysiology, Oct. 2008; 3(2):173-186.
Katritsis et al., “Classification and differential diagnosis of atrioventricular nodal reentrant tachycardia,” Europace, Jan. 2006; 8(1):29-36.
Katritsis et al., “Anatomically left-sided septal slow pathway ablation in dextrocardia and situs inversus totalis,” Europace, Aug. 2008; 10(8):1004-5.
Khairy et al., “Cardiac Arrhythmias In Congenital Heart Diseases,” Indian Pacing and Electrophysiology Journal, Nov.-Dec. 2009; 9(6):299-317.
Kimmel et al., “Single-site ventricular and biventricular pacing: investigation of latest depolarization strategy,” Europace, Dec. 2007; 9(12):1163-1170.
Knackstedt et al., “Electro-anatomic mapping systems in arrhythmias,” Europace, Nov. 2008; 10 Suppl 3:iii28-iii34.
Kobayashi et al., “Successful Ablation of Antero-septal Accessory Pathway in the Non-Coronary Cusp in a Child,” Indian Pacing and Electrophysiology Journal, 2012; 12(3):124-130.
Kojodjojo et al., “4:2:1 conduction of an AF initiating trigger,” Indian Pacing and Electrophysiology Journal, Nov. 2015; 15(5):255-8.
Kołodzińska et al., “Differences in encapsulating lead tissue in patients who underwent transvenous lead removal,” Europace, Jul. 2012; 14(7):994-1001.
Konecny et al., “Synchronous intra-myocardial ventricular pacing without crossing the tricuspid valve or entering the coronary sinus,” Cardiovascular Revascularization Medicine, 2013; 14:137-138.
Kriatselis et al., “Ectopic atrial tachycardias with early activation at His site: radiofrequency ablation through a retrograde approach,” Europace, Jun. 2008; 10(6):698-704.
Lalu et al., “Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart,” Eur Heart J., Jan. 2005; 26(1):27-3 5.
Laske et al., “Excitation of the Intrinsic Conduction System Through His and Interventricular Septal Pacing,” Pacing Clin. Electrophysiol., Apr. 2006; 29(4):397-405.
Leclercq, “Problems and troubleshooting in regular follow-up of patients with cardiac resynchronization therapy,” Europace, Nov. 2009; 11 Suppl 5:v66-71.
Lee et al., “An unusual atrial tachycardia in a patient with Friedreich ataxia,” Europace, Nov. 2011; 13(11):1660-1.
Lee et al., “Blunted Proarrhythmic Effect of Nicorandil in a Langendorff-Perfused Phase-2 Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., Feb. 2013; 36(2):142-51.
Lemay et al., “Spatial dynamics of atrial activity assessed by the vectorcardiogram: from sinus rhythm to atrial fibrillation,” Europace, Nov. 2007; 9 Suppl 6:vi109-18.
Levy et al., “Does the mechanism of action of biatrial pacing for atrial fibrillation involve changes in cardiac haemodynamics? Assessment by Doppler echocardiography and natriuretic peptide measurements,” Europace, Apr. 2000; 2(2):127-35.
Lewalter et al., “Comparison of spontaneous atrial fibrillation electrogram potentials to the P wave electrogram amplitude in dual chamber pacing with unipolar atrial sensing,” Europace, Apr. 2000; 2(2):136-40.
Liakopoulos et al., “Sequential deformation and physiological considerations in unipolar right and left ventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S188-197.
Lian et al., “Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing,” IEEE Transactions on Biomedical Engineering, Aug. 2006; 53(8):1512-1520.
Lim et al., “Right ventricular lead implantation facilitated by a guiding sheath in a patient with severe chamber dilatation with tricuspid regurgitation,” Indian Pacing and Electrophysiology Journal, Sep. 2011; 11(5):156-8.
Lim et al., “Coupled pacing improves left ventricular function during simulated atrial fibrillation without mechanical dyssynchrony,” Europace, Mar. 2010; 12(3):430-6.
Lou et al., “Tachy-brady arrhythmias: The critical role of adenosine-induced sinoatrial conduction block in post-tachycardia pauses,” Heart Rhythm., Jan. 2013; 10(1):110-8.
Lutomsky et al., “Catheter ablation of paroxysmal atrial fibrillation improves cardiac function: a prospective study on the impact of atrial fibrillation ablation on left ventricular function assessed by magnetic resonance imaging,” Europace, May 2008; 10(5):593-9.
Macedo et al., “Septal accessory pathway: anatomy, causes for difficulty, and an approach to ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2010; 10(7):292-309.
Mafi-Rad et al., “Feasibility and Acute Hemodynamic Effect of Left Ventricular Septal Pacing by Transvenous Approach Through the Interventricular Septum,” Circ Arrhythm Electrophysoil., Mar. 2016; 9(3):e003344.
Mani et al., “Dual Atrioventricular Nodal Pathways Physiology: A Review of Relevant Anatomy, Electrophysiology, and Electrocardiographic Manifestations,” Indian Pacing and Electrophysiology Journal, Jan. 2014; 14(1):12-25.
Manios et al., “Effects of successful cardioversion of persistent atrial fibrillation on right ventricular refractoriness and repolarization,” Europace, Jan. 2005; 7(1):34-9.
Manolis et al., “Prevention of atrial fibrillation by inter-atrial septum pacing guided by electrophysiological testing, in patients with delayed interatrial conduction,” Europace, Apr. 2002; 4(2):165-174.
Marino et al., “Inappropriate mode switching clarified by using a chest radiograph,” Journal of Arrhythmia, Aug. 2015; 31(4):246-248.
Markowitz et al., “Time course and predictors of autonomic dysfunction after ablation of the slow atrioventricular nodal pathway,” Pacing Clin Electrophysiol., Dec. 2004; 27(12):1638-43.
Marshall et al., “The effects of temperature on cardiac pacing thresholds,” Pacing Clin Electrophysiol., Jul. 2010; 33(7):826-833.
McSharry et al., “A Dynamical Model for Generating Synthetic Electrocardiogram Signals,” IEEE Transactions on Biomedical Engineering, Mar. 2003; 50(3):289-294.
Meijler et al., “Scaling of Atrioventricular Transmission in Mammalian Species: An Evolutionary Riddle!,” Journal of Cfardiovascular Electrophysiology, Aug. 2002; 13(8):826-830.
Meiltz et al., “Permanent form of junctional reciprocating tachycardia in adults: peculiar features and results of radiofrequency catheter ablation,” Europace, Jan. 2006; 8(1):21-8.
Mellin et al., “Transient reduction in myocardial free oxygen radical levels is involved in the improved cardiac function and structure after long-term allopurinol treatment initiated in established chronic heart failure,” Eur Heart J., Aug. 2005; 26(15):1544-50.
Mestan et al., “The influence of fluid and diuretic administration on the index of atrial contribution in sequentially paced patients,” Europace, Apr. 2006; 8(4):273-8.
Metin et al., “Assessment of the P Wave Dispersion and Duration in Elite Women Basketball Players,” Indian Pacing and Electrophysiology Journal, 2010; 10(1):11-20.
Mills et al., “Left Ventricular Septal and Left Ventricular Apical Pacing Chronically Maintain Cardiac Contractile Coordination, Pump Function and Efficiency,” Circ Arrhythm Electrophysoil., Oct. 2009; 2(5):571-579.
Mitchell et al., “How do atrial pacing algorithms prevent atrial arrhythmias?” Europace, Jul. 2004; 6(4):351-62.
Mirzoyev et al., “Embryology of the Conduction System for the Electrophysiologist,” Indian Pacing and Electrophysiology Journal, 2010; 10(8):329-338.
Modre et al., “Noninvasive Myocardial Activation Time Imaging: A Novel Inverse Algorithm Applied to Clinical ECG Mapping Data,” IEE Transactions on Biomedical Engineering, Oct. 2002; 49(10):1153-1161.
Montgomery et al., “Measurement of diffuse ventricular fibrosis with myocardial T1 in patients with atrial fibrillation,” J Arrhythm., Feb. 2016; 32(1):51-6.
Mulpuru et al., “Synchronous ventricular pacing with direct capture of the atrioventricular conduction system: Functional anatomy, terminology, and challenges,” Heart Rhythm, Nov. 2016; Epub Aug. 3, 2016; 13(11):2237-2246.
Musa et al., “Inhibition of Platelet-Derived Growth Factor-AB Signaling Prevents Electromechanical Remodeling of Adult Atrial Myocytes that Contact Myofibroblasts,” Heart Rhythm, Jul. 2013; 10(7):1044-1051.
Nagy et al., “Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and β-catenin expression,” Cardiovascular Research, Jan. 2010; 85(1):100-9.
Namboodiri et al., “Electrophysiological features of atrial flutter in cardiac sarcoidosis: a report of two cases,” Indian Pacing and Electrophysiology Journal, Nov. 2012; 12(6):284-9.
Nanthakumar et al., “Assessment of accessory pathway and atrial refractoriness by transesophageal and intracardiac atrial stimulation: An analysis of methodological agreement,” Europace, Jan. 1999; 1(1):55-62.
Neto et al., “Temporary atrial pacing in the prevention of postoperative atrial fibrillation,” Pacing Clin Electrophysiol., Jan. 2007; 30(Suppl 1):S79-83.
Nishijima et al., “Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology,” Cardiovasc Res., Jul. 2011; 91(1):71-9.
Niwano et al., “Effect of oral L-type calcium channel blocker on repetitive paroxysmal atrial fibrillation: spectral analysis of fibrillation waves in the Holter monitoring,” Europace, Dec. 2007; 9(12):1209-1215.
Okumura et al., “Effects of a high-fat diet on the electrical properties of porcine atria,” Journal of Arrhythmia, Dec. 2015; 31(6):352-358.
Olesen et al., “Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation,” Cardiovascular Research, Mar. 2011; 89(4):786-93.
Ozmen et al., “P wave dispersion is increased in pulmonary stenosis,” Indian Pacing and Electrophysiology Journal, Jan. 2006; 6(1):25-30.
Packer et al., “New generation of electro-anatomic mapping: Full intracardiac image integration,” Europace, Nov. 2008; 10 Suppl 3:iii35-41.
Page et al., “Ischemic ventricular tachycardia presenting as a narrow complex tachycardia,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):203-210.
Pakarinen et al., “Pre-implant determinants of adequate long-term function of single lead VDD pacemakers,” Europace, Apr. 2002; 4:137-141.
Patel et al., “Atrial Fibrillation after Cardiac Surgery: Where are we now?” Indian Pacing and Electrophysiology Journal, Oct.-Dec. 2008; 8(4):281-291.
Patel et al., “Successful ablation of a left-sided accessory pathway in a patient with coronary sinus atresia and arteriovenous fistula: clinical and developmental insights,” Indian Pacing and Electrophysiology Journal, Mar. 2011; 11(2):43-49.
Peschar et al., “Left Ventricular Septal and Apex Pacing for Optimal Pump Function in Canine Hearts,” J Am Coll Cardiol., Apr. 2, 2003; 41(7):1218-1226.
Physiological Research Laboratories, Final Report for an Acute Study for Model 6426-85 AV Septal Leads, Feb. 1996.
Porciani et al., “Interatrial septum pacing avoids the adverse effect of interatrial delay in biventricular pacing: an echo-Doppler evaluation,” Europace, Jul. 2002; 4(3):317-324.
Potse et al., “A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart,” IEEE Transactions on Biomedical Engineering, Dec. 2006; 53(12 Pt 1):2425-35.
Prystowsky et al., “Case studies with the experts: management decisions in atrial fibrillation,” J Cardiovasc Electrophysiol., Feb. 2008; 19(Suppl. 1):S1-12.
Prystowsky, “The history of atrial fibrillation: the last 100 years,” J Cardiovasc Electrophysiol, Jun. 2008; 19(6):575-582.
Pytkowski et al., “Paroxysmal atrial fibrillation is associated with increased intra-atrial conduction delay,” Europace, Dec. 2008; 10(12):1415-20.
Qu et al., “Dynamics and cardiac arrhythmias,” J Cardiovasc Electrophysiol., Sep. 2006; 17(9):1042-9.
Ravens et al., “Role of potassium currents in cardiac arrhythmias,” Europace, Oct. 2008; 10(10):1133-7.
Ricci et al., Efficacy of a dual chamber defibrillator with atrial antitachycardia functions in treating spontaneous atrial tachyarrhythmias in patients with lifethreatening ventricular tachyarrhythmias, European Heart Journal, Sep. 2002; 23(18):1471-9.
Roberts-Thomson et al., “Focal atrial tachycardia II: management,” Pacing Clin Electrophysiol., Jul. 2006; 29(7):769-78.
Rossi et al., “Endocardial vagal atrioventricular node stimulation in humans: reproducibility on 18-month follow-up,” Europace, Dec. 2010; 12(12):1719-24.
Rouzet et al., “Contraction delay of the RV outflow tract in patients with Brugada syndrome is dependent on the spontaneous ST-segment elevation pattern,” Heart Rhythm, Dec. 2011; 8(12): 1905-12.
Russo et al., “Atrial Fibrillation and Beta Thalassemia Major: The Predictive Role of the 12-lead Electrocardiogram Analysis,” Indian Pacing and Electrophysiology Journal, May 2014; 14(3):121-32.
Ryu et al., “Simultaneous Electrical and Mechanical Mapping Using 3D Cardiac Mapping System: Novel Approach for Optimal Cardiac Resynchronization Therapy,” Journal of Cardiovascular Electrophysiology, Feb. 2010, 21(2): 219-22.
Sairaku et al., “Prediction of sinus node dysfunction in patients with persistent atrial flutter using the flutter cycle length,” Europace, Mar. 2012; 14(3):380-7.
Santini et al., “Immediate and long-term atrial sensing stability in single-lead VDD pacing depends on right atrial dimensions,” Europace, Oct. 2001; 3(4):324-31.
Saremi et al., “Cardiac Conduction System: Delineation of Anatomic Landmarks With Multi detector CT,” Indian Pacing and Electrophysiology Journal, Nov. 2009; 9(6):318-33.
Savelieva et al., “Anti-arrhythmic drug therapy for atrial fibrillation: current anti-arrhythmic drugs, investigational agents, and innovative approaches,” Europace, Jun. 2008; 10(6):647-665.
Schmidt et al., “Navigated DENSE strain imaging for post-radiofrequency ablation lesion assessment in the swine left atria,” Europace, Jan. 2014; 16(1):133-41.
Schoonderwoerd et al., “Rapid Pacing Results in Changes in Atrial but not in Ventricular Refractoriness,” Pacing Clin Electrophysiol., Mar. 2002; 25(3):287-90.
Schoonderwoerd et al., “Atrial natriuretic peptides during experimental atrial tachycardia: role of developing tachycardiomyopathy,” J Cardiovasc Electrophysiol., Aug. 2004; 15(8):927-32.
Schoonderwoerd et al., “Atrial ultrastructural changes during experimental atrial tachycardia depend on high ventricular rate,” J Cardiovasc Electrophysiol., Oct. 2004; 15(10):1167-74.
Sedmera, “Function and form in the developing cardiovascular system,” Cardiovasc Res., Jul. 2011; 91(2):252-9.
Severi et al., “Alterations of atrial electrophysiology induced by electrolyte variations: combined computational and P-wave analysis,” Europace, Jun. 2010; 12(6):842-9.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering, vol. 60(8): 2067-2079, 2013.
Shah et al., “Stable atrial sensing on long-term follow up of VDD pacemakers,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):189-93.
Shenthar et al., “Permanent pacemaker implantation in a patient with situs solitus, dextrocardia, and corrected transposition of the great arteries using a novel angiographic technique,” Journal of Arrhythmia, Apr. 2014; 30(2):134-138.
Shenthar et al., “Transvenous permanent pacemaker implantation in dextrocardia: technique, challenges, outcome, and a brief review of literature,” Europace, Sep. 2014; 16(9):1327-33.
Shirayama, “Role of atrial fibrillation threshold evaluation on guiding treatment,” Indian Pacing and Electrophysiology Journal, Oct. 2003; 3(4):224-230.
Sperzel et al., “Intraoperative Characterization of Interventricular Mechanical Dyssynchrony Using Electroanatomic Mapping System—A Feasibility Study,” Journal of Interventional Cardiac Electrophysiology, Nov. 2012, 35(2): 189-96.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
Sreeram et al., “Indications for Electrophysiology Study in children,” Indian Pacing and Electrophysiology Journal, Apr.-Jun. 2008; 8(Suppl. 1 ):S36-S54.
Stockburger et al., “Optimization of cardiac resynchronization guided by Doppler echocardiography: haemodynamic improvement and intraindividual variability with different pacing configurations and atrioventricular delays,” Europace, Oct. 2006; 8(10):881-6.
Stroobandt et al., “Prediction of Wenckebach Behavior and Block Response in DDD Pacemakers,” Pacing Clin Electrophysiol., Jun. 2006; 9(6):1040-6.
Suenari et al., “Idiopathic left ventricular tachycardia with dual electrocardiogram morphologies in a single patient,” Europace, Apr. 2010; 12(4):592-4.
Sweeney et al., “Analysis of Ventricular Activation Using Surface Electrocardiography to Predict Left Ventricular Reverse Volumetric Remodeling During Cardiac Resynchronization Therapy,” Circulation, Feb. 9, 2010, 121(5): 626-34.
Tan et al., “Electrocardiographic evidence of ventricular repolarization remodelling during atrial fibrillation,” Europace, Jan. 2008; 10(1):99-104.
Taramasco et al., “Internal low-energy cardioversion: a therapeutic option for restoring sinus rhythm in chronic atrial fibrillation after failure of external cardioversion,” Europace, Jul. 1999; 1(3):179-82.
Testa et al., “Rate-control or rhythm-control: where do we stand?” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):296-304.
Thejus et al., “N-terminal Pro-Brain Natriuretic Peptide and Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2009; 9(1):1-4.
Thornton et al., “Magnetic Assisted Navigation in Electrophysiology and Cardiac Resynchronisation: A Review,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):202-13.
Tilz et al., “In vivo left-ventricular contact force analysis: comparison of antegrade transseptal with retrograde transaortic mapping strategies and correlation of impedance and electrical amplitude with contact force,” Europace, Sep. 2014; 16(9):1387-95.
Tomaske et al., “Do daily threshold trend fluctuations of epicardial leads correlate with pacing and sensing characteristics in paediatric patients?” Europace, Aug. 2007, 9(8):662-668.
Tomioka et al., “The effect of ventricular sequential contraction on helical heart during pacing: high septal pacing versus biventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S198-206.
Tournoux et al., “A ‘Regularly Irregular’ tachycardia: What is the diagnosis?” Europace, Dec. 2008; 10(12):1445-6.
Traykov et al., “Electrogram analysis at the His bundle region and the proximal coronary sinus as a tool to predict left atrial origin of focal atrial tachycardias,” Europace, Jul. 2011; 13(7):1022-7.
Trudel et al., “Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing,” IEEE Trans Biomed Eng., Aug. 2004; 51(8):1319-29.
Tse et al., “Cardiac dynamics: Alternans and arrhythmogenesis,” Journal of Arrhythmia, Oct. 2016; 32(5):411-417.
Tse, “Mechanisms of cardiac arrhythmias,” Journal of Arrhythmia, Apr. 2016, 32(2):75-81.
Ueda et al., “Outcomes of single- or dual-chamber implantable cardioverter defibrillator systems in Japanese patients,” Journal of Arrhythmia, Apr. 2016, 32(2):89-94.
Van Dam et al., “Volume conductor effects involved in the genesis of the P wave,” Europace, Sep. 2005; 7 Suppl 2:30-8.
Van den Berg et al., “Depletion of atrial natriuretic peptide during longstanding atrial fibrillation,” Europace, Sep. 2004, 6(5):433-7.
Van Deursen, et al., “Vectorcardiography as a Tool for Easy Optimization of Cardiac Resynchronization Therapy in Canine LBBB Hearts,” Circulation Arrhythmia and Electrophysiology, Jun. 1, 2012, 5(3): 544-52.
Van Opstal et al., “Paradoxical increase of stimulus to atrium interval despite His-bundle capture during para-Hisian pacing,” Europace, Dec. 2009, 11(12):1702-4.
Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardia: part 1,” Pacing Clin Eleclrophysiol., Jun. 2011; 34(6):767-82.
Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardias: part 2,” Pacing Clin Eleclrophysiol., Jun. 2012; 35(6):757-69.
Veenhuyzen et al., “Principles of Entrainment: Diagnostic Utility for Supraventricular Tachycardia,” Indian Pacing and Electrophysiology Journal, 2008; 8(1):51-65.
Verbrugge et al., “Revisiting diastolic filling time as mechanistic insight for response to cardiac resynchronization therapy,” Europace, Dec. 2013; 15(12):1747-56.
Verrier et al., “Mechanisms of ranolazine's dual protection against atrial and ventricular fibrillation,” Europace, Mar. 2013; 15(3):317-324.
Verrijcken et al., “Pacemaker-mediated tachycardia with varying cycle length: what is the mechanism?” Europace, Oct. 2009; 11(10):1400-2.
Villani et al., “Reproducibility of internal atrial defibrillation threshold in paroxysmal and persistent atrial fibrillation,” Europace, Jul. 2004; 6(4):267-72.
Violi et al., “Antioxidants for prevention of atrial fibrillation: a potentially useful future therapeutic approach? A review of the literature and meta-analysis,” Europace, Aug. 2014; 16(8):1107-1116.
Weber et al., “Adenosine sensitive focal atrial tachycardia originating from the noncoronary aortic cusp,” Europace, Jun. 2009; 11(6):823-6.
Weber et al., “Open-irrigated laser catheter ablation: relationship between the level of energy, myocardial thickness, and collateral damages in a dog model,” Europace, Jan. 2014; 16(1):142-8.
Wegmoller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
Wei et al., “Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models.” IEEE Trans Biomed Eng., Apr. 1995; 42(4):343-57.
Weijs et al., “Clinical and echocardiographic correlates of intra-atrial conduction delay,” Europace, Dec. 2011; 13(12):1681-7.
Weiss et al., “The influence of fibre orientation, extracted from different segments of the human left ventricle, on the activation and repolarization sequence: a simulation study,” Europace, Nov. 2007; 9(Suppl. 6):vi96-vi104.
Wetzel et al., “A stepwise mapping approach for localization and ablation of ectopic right, left, and septal atrial foci using electroanatomic mapping,” European Heart Journal, Sep. 2002; 23(17):1387-1393.
Wlodarska et al., “Thromboembolic complications in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy,” Europace, Aug. 2006; 8(8):596-600.
Wong et al., “A review of mitral isthmus ablation,” Indian Pacing and Electrophysiology Journal, 2012; 12(4):152-170.
Wu et al., “Acute and long-term outcome after catheter ablation of supraventricular tachycardia in patients after the Mustard or Senning operation for D-transposition of the great arteries,” Europace, Jun. 2013; 15(6):886-91.
Xia et al., “Asymmetric dimethylarginine concentration and early recurrence of atrial fibrillation after electrical cardioversion,” Pacing Clin Electrophysiol., Aug. 2008; 31(8):1036-40.
Yamazaki et al., “Acute Regional Left Atrial Ischemia Causes Acceleration of Atrial Drivers during Atrial Fibrillation,” Heart Rhythm, Jun. 2013; 10(6):901-9.
Yang et al., “Focal atrial tachycardia originating from the distal portion of the left atrial appendage: Characteristics and long-term outcomes of radiofrequency ablation,” Europace, Feb. 2012; 14(2):254-60.
Yiginer et al., “Advanced Age, Female Gender and Delay in Pacemaker Implantation May Cause TdP in Patients With Complete Atrioventricular Block,” Indian Pacing and Electrophysiology Journal, Oct. 2010; 10(10):454-63.
Yoon et al., “Measurement of thoracic current flow in pigs for the study of defibrillation and cardioversion.” IEEE Transactions on Biomedical Engineering. Oct. 2003; 50(10):1167-1773.
Yuan et al., “Recording monophasic action potentials using a platinum-electrode ablation catheter,” Europace, Oct. 2000; 2(4):312-9.
Yusuf et al., “5-Hydroxytryptamine and Atrial Fibrillation: How Significant is This Piece in the Puzzle?” J Cardiovasc Electrophysiol., Feb. 2003; 14(2):209-14.
Zaugg et al., “Current concepts on ventricular fibrillation: a vicious circle of cardiomyocyte calcium overload in the initiation, maintenance, and termination of ventricular fibrillation,” Indian Pacing and Electrophysiology Journal, Apr. 2004; 4(2):85-92.
Zhang et al., “Acute atrial arrhythmogenicity and altered Ca(2+) homeostasis in murine RyR2-P2328S hearts,” Cardiovascular Research, Mar. 2011, 89(4):794-804.
Zoghi et al., “Electrical stunning and hibernation: suggestion of new terms for short- and long-term cardiac memory,” Europace, Sep. 2004, 6(5):418-24.
Zografos et al., “Inhibition of the renin-angiotensin system for prevention of atrial fibrillation,” Pacing Clin Electrophysiol., Oct. 2010; 33(10):1270-85.
(PCT/US2014/066792) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority.
(PCT/US2014/013601) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority.
(PCT/US2014/036782) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Aug. 22, 2014, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2017/047378, 8 pages, date dated Dec. 6, 2017.
(PCT/US2018/050988) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, datedd Nov. 14, 2018, 11 pages.
(PCT/US20 U.S. Appl. No. 18/050,993) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Nov. 16, 2018, 7 pages.
(PCT/US2019/023642) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Jun. 28, 2019, 14 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US2020/019200 dated May 29, 2020, 9 pages.
Related Publications (1)
Number Date Country
20200306529 A1 Oct 2020 US