Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods

Information

  • Patent Grant
  • 10646338
  • Patent Number
    10,646,338
  • Date Filed
    Friday, June 2, 2017
    7 years ago
  • Date Issued
    Tuesday, May 12, 2020
    4 years ago
Abstract
Delivery systems with telescoping capsules for delivering prosthetic heart valve devices and associated methods are disclosed herein. A delivery system configured in accordance with embodiments of the present technology can include, for example, a delivery capsule having a first housing, a second housing slidably disposed within a portion of the first housing, and a prosthetic device constrained within the first and second housings. The delivery capsule can further include first and second chamber defined in part by the first and second housings. During deployment, fluid is delivered to the first chamber to move the first housing distally over the second housing, thereby releasing a portion of the prosthetic device. Subsequently, fluid is delivered to the second chamber such that the first and second housings move together in the distal direction to release a second portion of the prosthetic device.
Description
TECHNICAL FIELD

The present technology relates generally to systems for delivering prosthetic heart valve devices. In particular, several embodiments of the present technology are related to delivery systems with telescoping capsules for percutaneously delivering prosthetic heart valve devices and associated methods.


BACKGROUND

Heart valves can be affected by several conditions. For example, mitral valves can be affected by mitral valve regurgitation, mitral valve prolapse and mitral valve stenosis. Mitral valve regurgitation is abnormal leaking of blood from the left ventricle into the left atrium caused by a disorder of the heart in which the leaflets of the mitral valve fail to coapt into apposition at peak contraction pressures. The mitral valve leaflets may not coapt sufficiently because heart diseases often cause dilation of the heart muscle, which in turn enlarges the native mitral valve annulus to the extent that the leaflets do not coapt during systole. Abnormal backflow can also occur when the papillary muscles are functionally compromised due to ischemia or other conditions. More specifically, as the left ventricle contracts during systole, the affected papillary muscles do not contract sufficiently to effect proper closure of the leaflets.


Mitral valve prolapse is a condition when the mitral leaflets bulge abnormally up in to the left atrium. This can cause irregular behavior of the mitral valve and lead to mitral valve regurgitation. The leaflets may prolapse and fail to coapt because the tendons connecting the papillary muscles to the inferior side of the mitral valve leaflets (chordae tendineae) may tear or stretch. Mitral valve stenosis is a narrowing of the mitral valve orifice that impedes filling of the left ventricle in diastole.


Mitral valve regurgitation is often treated using diuretics and/or vasodilators to reduce the amount of blood flowing back into the left atrium. Surgical approaches (open and intravascular) for either the repair or replacement of the valve have also been used to treat mitral valve regurgitation. For example, typical repair techniques involve cinching or resecting portions of the dilated annulus. Cinching, for example, includes implanting annular or peri-annular rings that are generally secured to the annulus or surrounding tissue. Other repair procedures suture or clip the valve leaflets into partial apposition with one another.


Alternatively, more invasive procedures replace the entire valve itself by implanting mechanical valves or biological tissue into the heart in place of the native mitral valve. These invasive procedures conventionally require large open thoracotomies and are thus very painful, have significant morbidity, and require long recovery periods. Moreover, with many repair and replacement procedures, the durability of the devices or improper sizing of annuloplasty rings or replacement valves may cause additional problems for the patient. Repair procedures also require a highly skilled cardiac surgeon because poorly or inaccurately placed sutures may affect the success of procedures.


Less invasive approaches to aortic valve replacement have been implemented in recent years. Examples of pre-assembled, percutaneous prosthetic valves include, e.g., the CoreValve Revalving® System from Medtronic/Corevalve Inc. (Irvine, Calif., USA) and the EdwardsSapien® Valve from Edwards Lifesciences (Irvine, Calif., USA). Both valve systems include an expandable frame and a tri-leaflet bioprosthetic valve attached to the expandable frame. The aortic valve is substantially symmetric, circular, and has a muscular annulus. The expandable frames in aortic applications have a symmetric, circular shape at the aortic valve annulus to match the native anatomy, but also because tri-leaflet prosthetic valves require circular symmetry for proper coaptation of the prosthetic leaflets. Thus, aortic valve anatomy lends itself to an expandable frame housing a replacement valve since the aortic valve anatomy is substantially uniform, symmetric, and fairly muscular. Other heart valve anatomies, however, are not uniform, symmetric or sufficiently muscular, and thus transvascular aortic valve replacement devises may not be well suited for other types of heart valves.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure. Furthermore, components can be shown as transparent in certain views for clarity of illustration only and not to indicate that the illustrated component is necessarily transparent. The headings provided herein are for convenience only.



FIG. 1 is a schematic, cross-sectional illustration of the heart showing an antegrade approach to the native mitral valve from the venous vasculature in accordance with various embodiments of the present technology.



FIG. 2 is a schematic, cross-sectional illustration of the heart showing access through the inter-atrial septum (IAS) maintained by the placement of a guide catheter over a guidewire in accordance with various embodiments of the present technology.



FIGS. 3 and 4 are schematic, cross-sectional illustrations of the heart showing retrograde approaches to the native mitral valve through the aortic valve and arterial vasculature in accordance with various embodiments of the present technology.



FIG. 5 is a schematic, cross-sectional illustration of the heart showing an approach to the native mitral valve using a trans-apical puncture in accordance with various embodiments of the present technology.



FIG. 6 is an isometric view of a delivery system for a prosthetic heart valve device configured in accordance with an embodiment of the present technology.



FIG. 7A is an enlarged side isometric view of a distal portion of the delivery system of FIG. 6 configured in accordance with embodiments of the present technology.



FIG. 7B is an exploded view of a delivery capsule of the delivery system of FIG. 7A.



FIGS. 8A-8D are a series of illustrations showing a distal portion of the delivery system of FIGS. 6-7B deploying and resheathing a prosthetic heart valve device in accordance with embodiments of the present technology.



FIG. 9A is a side isometric view of a distal portion of a delivery system configured in accordance with embodiments of the present technology.



FIG. 9B is a side isometric view of a distal portion of a delivery system configured in accordance with embodiments of the present technology.



FIG. 10A is a partial cut-away isometric view of a distal portion of a delivery system configured in accordance with a further embodiment of the present technology.



FIG. 10B is a cross-sectional view of the distal portion of the delivery system of FIG. 10A.



FIGS. 10C and 10D are isometric views of inner housing configurations for use with the delivery system of FIGS. 10A and 10B.



FIG. 11A is an isometric view of a distal portion of a delivery system configured in accordance with yet another embodiment of the present technology.



FIG. 11B is a cross-sectional view of the distal portion of the delivery system of FIG. 11B.



FIG. 12A is an isometric view of a distal portion of a delivery system configured in accordance with a still further embodiment of the present technology.



FIG. 12B is a cross-sectional view of the distal portion of the delivery system of FIG. 12B.



FIG. 13A is a cross-sectional side view and FIG. 13B is a top view schematically illustrating a prosthetic heart valve device in accordance with an embodiment of the present technology.



FIGS. 14A and 14B are cross-sectional side views schematically illustrating aspects of delivering a prosthetic heart valve device in accordance with an embodiment of the present technology.



FIG. 15 is a top isometric view of a prosthetic heart valve device in accordance with an embodiment of the present technology.



FIG. 16 is a side view and FIG. 17 is a bottom isometric view of the prosthetic heart valve device of FIG. 15.



FIG. 18 is a side view and FIG. 19 is a bottom isometric view of a prosthetic heart valve device in accordance with an embodiment of the present technology.



FIG. 20 is a side view and FIG. 21 is a bottom isometric view of the prosthetic heart valve device of FIGS. 18 and 19 at a partially deployed state with respect to a delivery device.



FIG. 22 is an isometric view of a valve support for use with prosthetic heart valve devices in accordance with the present technology.



FIGS. 23 and 24 are side and bottom isometric views, respectively, of a prosthetic heart valve attached to the valve support of FIG. 22.



FIGS. 25 and 26 are side views schematically showing valve supports in accordance with additional embodiments of the present technology.





DETAILED DESCRIPTION

The present technology is generally directed to delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods. Specific details of several embodiments of the present technology are described herein with reference to FIGS. 1-26. Although many of the embodiments are described with respect to devices, systems, and methods for delivering prosthetic heart valve devices to a native mitral valve, other applications and other embodiments in addition to those described herein are within the scope of the present technology. For example, at least some embodiments of the present technology may be useful for delivering prosthetics to other valves, such as the tricuspid valve or the aortic valve. It should be noted that other embodiments in addition to those disclosed herein are within the scope of the present technology. Further, embodiments of the present technology can have different configurations, components, and/or procedures than those shown or described herein. Moreover, a person of ordinary skill in the art will understand that embodiments of the present technology can have configurations, components, and/or procedures in addition to those shown or described herein and that these and other embodiments can be without several of the configurations, components, and/or procedures shown or described herein without deviating from the present technology.


With regard to the terms “distal” and “proximal” within this description, unless otherwise specified, the terms can reference relative positions of portions of a prosthetic valve device and/or an associated delivery device with reference to an operator and/or a location in the vasculature or heart. For example, in referring to a delivery catheter suitable to deliver and position various prosthetic valve devices described herein, “proximal” can refer to a position closer to the operator of the device or an incision into the vasculature, and “distal” can refer to a position that is more distant from the operator of the device or further from the incision along the vasculature (e.g., the end of the catheter). With respect to a prosthetic heart valve device, the terms “proximal” and “distal” can refer to the location of portions of the device with respect to the direction of blood flow. For example, proximal can refer to an upstream position or a location where blood flows into the device (e.g., inflow region), and distal can refer to a downstream position or a location where blood flows out of the device (e.g., outflow region).


Overview


Several embodiments of the present technology are directed to delivery systems and mitral valve replacement devices that address the unique challenges of percutaneously replacing native mitral valves and are well-suited to be recaptured in a percutaneous delivery device after being partially deployed for repositioning or removing the device. Compared to replacing aortic valves, percutaneous mitral valve replacement faces unique anatomical obstacles that render percutaneous mitral valve replacement significantly more challenging than aortic valve replacement. First, unlike relatively symmetric and uniform aortic valves, the mitral valve annulus has a non-circular D-shape or kidney-like shape, with a non-planar, saddle-like geometry often lacking symmetry. The complex and highly variable anatomy of mitral valves makes it difficult to design a mitral valve prosthesis that conforms well to the native mitral annulus of specific patients. As a result, the prosthesis may not fit well with the native leaflets and/or annulus, which can leave gaps that allows backflow of blood to occur. For example, placement of a cylindrical valve prosthesis in a native mitral valve may leave gaps in commissural regions of the native valve through which perivalvular leaks may occur.


Current prosthetic valves developed for percutaneous aortic valve replacement are unsuitable for use in mitral valves. First, many of these devices require a direct, structural connection between the stent-like structure that contacts the annulus and/or leaflets and the prosthetic valve. In several devices, the stent posts which support the prosthetic valve also contact the annulus or other surrounding tissue. These types of devices directly transfer the forces exerted by the tissue and blood as the heart contracts to the valve support and the prosthetic leaflets, which in turn distorts the valve support from its desired cylindrical shape. This is a concern because most cardiac replacement devices use tri-leaflet valves, which require a substantially symmetric, cylindrical support around the prosthetic valve for proper opening and closing of the three leaflets over years of life. As a result, when these devices are subject to movement and forces from the annulus and other surrounding tissues, the prostheses may be compressed and/or distorted causing the prosthetic leaflets to malfunction. Moreover, a diseased mitral annulus is much larger than any available prosthetic aortic valve. As the size of the valve increases, the forces on the valve leaflets increase dramatically, so simply increasing the size of an aortic prosthesis to the size of a dilated mitral valve annulus would require dramatically thicker, taller leaflets, and might not be feasible.


In addition to its irregular, complex shape, which changes size over the course of each heartbeat, the mitral valve annulus lacks a significant amount of radial support from surrounding tissue. Compared to aortic valves, which are completely surrounded by fibro-elastic tissue that provides sufficient support for anchoring a prosthetic valve, mitral valves are bound by muscular tissue on the outer wall only. The inner wall of the mitral valve anatomy is bound by a thin vessel wall separating the mitral valve annulus from the inferior portion of the aortic outflow tract. As a result, significant radial forces on the mitral annulus, such as those imparted by an expanding stent prostheses, could lead to collapse of the inferior portion of the aortic tract. Moreover, larger prostheses exert more force and expand to larger dimensions, which exacerbates this problem for mitral valve replacement applications.


The chordae tendineae of the left ventricle may also present an obstacle in deploying a mitral valve prosthesis. Unlike aortic valves, mitral valves have a maze of cordage under the leaflets in the left ventricle that restrict the movement and position of a deployment catheter and the replacement device during implantation. As a result, deploying, positioning and anchoring a valve replacement device on the ventricular side of the native mitral valve annulus is complicated.


Embodiments of the present technology provide systems, methods and apparatus to treat heart valves of the body, such as the mitral valve, that address the challenges associated with the anatomy of the mitral valve and provide for repositioning and removal of a partially deployed device. The apparatus and methods enable a percutaneous approach using a catheter delivered intravascularly through a vein or artery into the heart, or through a cannula inserted through the heart wall. For example, the apparatus and methods are particularly well-suited for trans-septal and trans-apical approaches, but can also be trans-atrial and direct aortic delivery of a prosthetic replacement valve to a target location in the heart. Additionally, the embodiments of the devices and methods as described herein can be combined with many known surgeries and procedures, such as known methods of accessing the valves of the heart (e.g., the mitral valve or triscuspid valve) with antegrade or retrograde approaches, and combinations thereof.


The systems and methods described herein facilitate delivery of a prosthetic heart valve device using trans-septal delivery approaches to a native mitral valve and allow resheathing of the prosthetic heart valve device after partial deployment of the device to reposition and/or remove the device. The delivery systems can include a telescoping delivery capsule that has a first housing and a second housing slidably disposed within at least a portion of the first housing. During deployment, the first housing moves in a distal direction over the second housing to release a portion of the prosthetic heart valve device, and then the first and second housings move together in a distal direction to fully deploy the prosthetic heart valve device. This telescoping arrangement of the first and second housings requires the delivery capsule to traverse a short overall longitudinal distance relative to the device positioned therein for device deployment and, therefore, facilitates deployment within the constraints of native anatomy surrounding the mitral valve. In addition, when in the initial delivery state, the disclosed telescoping delivery capsules can have a short overall length relative to the length of the prosthetic heart valve device stored therein, which facilitates delivery along tightly curved paths necessary to access the native mitral valve via trans-septal delivery. The disclosed delivery systems can also be used to delivery other medical devices to other target sites with native anatomy that benefits from a compact delivery capsule and reduced longitudinal translation for deployment.


Access to the Mitral Valve


To better understand the structure and operation of valve replacement devices in accordance with the present technology, it is helpful to first understand approaches for implanting the devices. The mitral valve or other type of atrioventricular valve can be accessed through the patient's vasculature in a percutaneous manner. By percutaneous it is meant that a location of the vasculature remote from the heart is accessed through the skin, typically using a surgical cut down procedure or a minimally invasive procedure, such as using needle access through, for example, the Seldinger technique. The ability to percutaneously access the remote vasculature is well known and described in the patent and medical literature. Depending on the point of vascular access, access to the mitral valve may be antegrade and may rely on entry into the left atrium by crossing the inter-atrial septum (e.g., a trans-septal approach). Alternatively, access to the mitral valve can be retrograde where the left ventricle is entered through the aortic valve. Access to the mitral valve may also be achieved using a cannula via a trans-apical approach. Depending on the approach, the interventional tools and supporting catheter(s) may be advanced to the heart intravascularly and positioned adjacent the target cardiac valve in a variety of manners, as described herein.



FIG. 1 illustrates a stage of a trans-septal approach for implanting a valve replacement device. In a trans-septal approach, access is via the inferior vena cava IVC or superior vena cava SVC, through the right atrium RA, across the inter-atrial septum IAS, and into the left atrium LA above the mitral valve MV. As shown in FIG. 1, a catheter 1 having a needle 2 moves from the inferior vena cava IVC into the right atrium RA. Once the catheter 1 reaches the anterior side of the inter-atrial septum IAS, the needle 2 advances so that it penetrates through the septum, for example at the fossa ovalis FO or the foramen ovale into the left atrium LA. At this point, a guidewire replaces the needle 2 and the catheter 1 is withdrawn.



FIG. 2 illustrates a subsequent stage of a trans-septal approach in which guidewire 6 and guide catheter 4 pass through the inter-atrial septum IAS. The guide catheter 4 provides access to the mitral valve for implanting a valve replacement device in accordance with the technology.


In an alternative antegrade approach (not shown), surgical access may be obtained through an intercostal incision, preferably without removing ribs, and a small puncture or incision may be made in the left atrial wall. A guide catheter passes through this puncture or incision directly into the left atrium, sealed by a purse string-suture.


The antegrade or trans-septal approach to the mitral valve, as described above, can be advantageous in many respects. For example, antegrade approaches will usually enable more precise and effective centering and stabilization of the guide catheter and/or prosthetic valve device. The antegrade approach may also reduce the risk of damaging the chordae tendinae or other subvalvular structures with a catheter or other interventional tool. Additionally, the antegrade approach may decrease risks associated with crossing the aortic valve as in retrograde approaches. This can be particularly relevant to patients with prosthetic aortic valves, which cannot be crossed at all or without substantial risk of damage.



FIGS. 3 and 4 show examples of a retrograde approaches to access the mitral valve. Access to the mitral valve MV may be achieved from the aortic arch AA, across the aortic valve AV, and into the left ventricle LV below the mitral valve MV. The aortic arch AA may be accessed through a conventional femoral artery access route or through more direct approaches via the brachial artery, axillary artery, radial artery, or carotid artery. Such access may be achieved with the use of a guidewire 6. Once in place, a guide catheter 4 may be tracked over the guidewire 6. Alternatively, a surgical approach may be taken through an incision in the chest, preferably intercostally without removing ribs, and placing a guide catheter through a puncture in the aorta itself. The guide catheter 4 affords subsequent access to permit placement of the prosthetic valve device, as described in more detail herein. Retrograde approaches advantageously do not need a trans-septal puncture. Cardiologists also more commonly use retrograde approaches, and thus retrograde approaches are more familiar.



FIG. 5 shows a trans-apical approach via a trans-apical puncture. In this approach, access to the heart is via a thoracic incision, which can be a conventional open thoracotomy or sternotomy, or a smaller intercostal or sub-xyphoid incision or puncture. An access cannula is then placed through a puncture in the wall of the left ventricle at or near the apex of the heart. The catheters and prosthetic devices of the invention may then be introduced into the left ventricle through this access cannula. The trans-apical approach provides a shorter, straighter, and more direct path to the mitral or aortic valve. Further, because it does not involve intravascular access, the trans-apical approach does not require training in interventional cardiology to perform the catheterizations required in other percutaneous approaches.


Selected Embodiments of Delivery Systems for Prosthetic Heart Valve Devices



FIG. 6 is an isometric view of a delivery system 100 for a prosthetic heart valve device 102 (“device 102”; shown schematically in broken lines) configured in accordance with an embodiment of the present technology. The delivery system 100 includes a catheter 104 having an elongated catheter body 106 (“catheter body 106”) with a distal portion 106a carrying a delivery capsule 108 and a proximal portion 106b coupled to a control unit or handle assembly 110. The delivery capsule 108 can move between a containment configuration for holding the device 102 in an unexpanded state during delivery of the device 102 and a deployment configuration in which the device 102 is at least partially expanded from the capsule 108. As described in further detail below, the delivery capsule 108 includes a first housing 112 and a second housing 114 slidably disposed within at least a portion of the first housing 112. During a first deployment stage, the first housing 112 moves in a distal direction over the second housing 114 to release a first portion of the device 102 from the delivery capsule 108, and during a second deployment stage the second housing 114 and the first housing 112 move together in a distal direction to release a second portion of the device 102 from the delivery capsule 108 (e.g., fully release the device 102 from the delivery capsule 108). After partial deployment of the device 102, the telescoping delivery capsule 108 can optionally resheathe at least a portion of the device 102 by urging the first housing 112 and/or the second housing 114 in a proximal direction back over at least a portion of the device 102. The partial or full resheathing of the device 102 allows for repositioning of the device 102 relative to the native mitral valve after a portion of the device 102 has been expanded and contacted tissue of the native valve.


The handle assembly 110 can include a control assembly 126 to initiate deployment of the device 102 from the telescoping delivery capsule 108 at the target site. The control assembly 126 may include rotational elements, buttons, levers, and/or other actuators that allow a clinician to control rotational position of the delivery capsule 108, as well as the deployment and/or resheathing mechanisms of the delivery system 100. For example, the illustrated control assembly 126 includes a first actuator 130 operably coupled to the first housing 112 via the catheter body 106 to control distal and proximal movement of the first housing 112 and a second actuator 132 operably coupled to the second housing 114 via the catheter body 106 to control proximal and distal movement of the second housing 114. In other embodiments, a single actuator, more than two actuators, and/or other features can be used to initiate movement of the first and second housings 112 and 114. The handle assembly 110 can also include a steering mechanism 128 that provides steering capability (e.g., 360 degree rotation of the delivery capsule 108, 180 degree rotation of the delivery capsule 108, 3-axis steering, 2-axis steering, etc.) for delivering the delivery capsule 108 to a target site (e.g., to a native mitral valve). The steering mechanism 128 can be used to steer the catheter 104 through the anatomy by bending the distal portion 106a of the catheter body 106 about a transverse axis. In other embodiments, the handle assembly 110 may include additional and/or different features that facilitate delivering the device 102 to the target site. In certain embodiments, the catheter 104 can be configured to travel over a guidewire 124, which can be used to guide the delivery capsule 108 into the native mitral valve.


As shown in FIG. 6, the system 100 can also include a fluid assembly 116 configured to supply fluid to and receive fluid from the catheter 104 to hydraulically move the first and second housings 112 and 114 and thereby deploy the device 102. The fluid assembly 116 includes a fluid source 118 and a fluid line 120 fluidically coupling the fluid source 118 to the catheter 104. The fluid source 118 may include a flowable substance (e.g., water, saline, etc.) contained in one or more reservoirs. The fluid line 120 can include one or more hoses, tubes, multiple fluid lines within a hose or tube, or other components (e.g., connectors, valves, etc.) through which the flowable substance can pass from the fluid source 118 to the catheter 104 and/or through which the flowable substance can drain from the catheter 104 to the fluid source 118. The fluid assembly 116 can also include one or more pressurization devices (e.g., a pump), fluid connectors, fittings, valves, and/or other fluidic components that facilitate moving the fluid to and/or from the fluid source 118. As explained in further detail below, the movement of the flowable substance to and from the fluid assembly 116 can be used to deploy the device 102 from the delivery capsule 108 and/or resheathe the device 102 after at least partial deployment. In other embodiments, mechanical means, such as tethers and springs, can be used to move the delivery capsule 108 between the deployment and containment configurations. In further embodiments, both fluidic and mechanical means can initiate deployment and resheathing.


In certain embodiments, the fluid assembly 116 may comprise a controller 122 that controls the movement of fluid to and from the catheter 104. The controller 122 can include, without limitation, one or more computers, central processing units, processing devices, microprocessors, digital signal processors (DSPs), and/or application-specific integrated circuits (ASICs). To store information, for example, the controller 122 can include one or more storage elements, such as volatile memory, non-volatile memory, read-only memory (ROM), and/or random access memory (RAM). The stored information can include pumping programs, patient information, and/or other executable programs. The controller 122 can further include a manual input device (e.g., a keyboard, a touch screen, etc.) and/or an automated input device (e.g., a computer, a data storage device, servers, network, etc.). In still other embodiments, the controller 122 may include different features and/or have a different arrangement for controlling the flow of fluid into and out of the fluid source 118.


The delivery capsule 108 includes the first housing 112 and the second housing 114, which can each contain at least a portion of the device 102 in the containment configuration. The second housing 114 can have an opening 134 at its distal end portion through which the guidewire 124 can be threaded to allow for guidewire delivery to the target site. As shown in FIG. 6, the distal end portion of the second housing 114 may also have an atraumatic shape (e.g., a partially spherical shape, a frusto-conical shape, blunt configuration, rounded configuration, etc.) to facilitate atraumatic delivery of the delivery capsule 108 to the target site. In certain embodiments, the delivery capsule 108 includes a proximal cap 136 that extends proximally from the first housing 112 to seal or enclose the device 102 within the delivery capsule 108. In some embodiments, the proximal cap 136 is omitted and the proximal portion of the delivery capsule 108 is left open. In these embodiments, the proximal end portion of the delivery capsule 108 (e.g., the proximal end portion of the first housing 112) can include rounded proximal edges, a tapered portion, and/or a soft or pliable material (e.g., a polymer) positioned at the proximal end to facilitate atraumatic retraction of the delivery capsule 108 through the body. The first housing 112, the second housing 114, and/or the proximal cap 136 can be made of metal (e.g., stainless steel), polymers, plastic, composites, combinations thereof, and/or other materials capable of holding the device 102 during trans-septal and/or trans-apical delivery to the target site (e.g., the mitral valve).


As discussed above, the first housing 112 slides or otherwise moves relative to the second housing 114 in a telescoping manner to release a portion of the device 102 from the delivery capsule 108 and, optionally, resheathe the device 102 after partial deployment. In certain embodiments, the first and second housings 112 and 114 are hydraulically actuated via the handle assembly 110 and/or the fluid assembly 116. In hydraulically-actuated embodiments, the delivery capsule 108 includes a first fluid chamber configured to receive a flowable material from the fluid assembly 116 to move the first housing 112 relative to the second housing 114. The delivery capsule 108 can further include a second fluid chamber configured to receive a flowable material from the fluid assembly 116 to move the first and second housing 112 and 114 as a unit. During the first deployment stage, a clinician can use the first actuator 130 and/or other suitable control means to deliver fluid (e.g., water or saline) from the fluid source 118 to the first fluid chamber to move the first housing 112 in a distal direction over the second housing 114 to release a first portion of the device 102 from the delivery capsule 108. During the second deployment stage, the clinician can use the second actuator 132 and/or other suitable control means to deliver fluid from the fluid source 118 to the second fluid chamber such that the first and second housings 112 and 114 move together in the distal direction to release a second portion of the device 102 from the delivery capsule 108 until the device 102 is partially or fully unsheathed from the delivery capsule 108. The first actuator 130, the second actuator 132, and/or other features can also be used to remove fluid from the first and second fluid chambers to allow for resheathing of the device 102 or close the delivery capsule 108. In other embodiments, the first housing 112 and/or the second housing 114 can be moved distally and proximally for unsheathing and resheathing using mechanical means, such as wire tethers.


The ability of the first housing 112 to move relative to the second housing 114 in a telescoping manner to deploy the device 102 results in a delivery capsule 108 that is relatively compact in length (e.g., a length of 40 mm or less) and that requires relatively short overall longitudinal translation (e.g., 50 mm or less, 40 mm or less, etc.) to deploy the device 102. For example, the telescoping delivery capsule 108 inherently requires less longitudinal translation for deployment than if the delivery capsule 108 were defined by a single housing that moves distally or proximally to deploy the device 102, or two separate housings that move in opposite directions to deploy the device 102. This shorter longitudinal translation in solely the distal direction facilitates trans-septal delivery of the device 102 to a native mitral valve of a human patient. For a typical patient with functional mitral valve regurgitation (“FMR”), the distance across the left atrium is estimated to be about 50 mm and the length of the left ventricle is estimated to be about 70 mm. During trans-septal delivery of the device 102, the delivery capsule 108 can extend through the opening in the septal wall between the right and left atria and be positioned in or proximate to the mitral valve annulus by bending the distal portion 106a of the catheter body 106 from the left atrium into the mitral valve. The compact size of the delivery capsule 108 facilitates positioning the delivery capsule 108 into the left atrium and making the turn into the native mitral valve without being limited by the anatomical sizing of the right atrium. During device deployment, the telescoping delivery capsule 108 does not require any portion of the delivery capsule 108 to extend in a proximal direction into the left atrium of the heart, and the telescoping arrangement of the first and second housings 112 and 114 results in a short overall longitudinal translation (relative to the axial length of the device 102) of the housings 112, 114 into the left ventricle of the heart, much less than typical length of the left ventricle. Thus, the telescoping delivery capsule 108 avoids the typical constraints associated with trans-septal delivery and the associated anatomy proximate to the target site in the mitral valve.



FIG. 7A is an enlarged side isometric view of the delivery capsule 108 of the delivery system 100 of FIG. 6 configured in accordance with embodiments of the present technology, and FIG. 7B is an exploded view of the delivery capsule 108 of FIG. 7A. The delivery capsule 108 includes the first housing 112 partially overlapping and movable relative to the second housing 114. The first and second housings 112 and 114 are shown as transparent for illustrative purposes in FIGS. 7A and 7B; however, the first and second housings 112 and 114 may be made from opaque materials, including metals, polymers, plastics, composites, and/or combinations thereof. In certain embodiments, the first housing 112 has a length of about 20-30 mm, the second housing has a length of about 20-30 mm, and the first and second housings 112 and 114 overlap in such a manner that the overall longitudinal length of the delivery capsule 108 is 50 mm or less (e.g., 45 mm, 40 mm, etc.) when in the initial containment or delivery state. In various embodiments, such as when the delivery capsule 108 is configured to retain a prosthetic mitral valve device, the first housing 112 may have an outer diameter of about 11.58 mm and an inner diameter of about 10.82 mm, and the second housing 114 may have an outer diameter of about 9.53 mm and an inner diameter of about 9.02 mm. In other embodiments, the first and second housings 112 and 114 have different dimensions suitable for storing and delivering the medical device contained therein.


The delivery capsule 108 further includes a plurality of sealing members (identified individually as first through third sealing members 140a-c, respectively; referred to collectively as “sealing members 140”), such as sealing sleeves and/or O-rings, that can fluidically seal portions of the delivery capsule to define a first fluid chamber 142, a second fluid chamber 144, and/or portions thereof. The sealing members 140 can be sleeves, O-rings, O-rings positioned within sleeves, and/or other sealing features that are fixedly attached to the first housing 112, the second housing 114, and/or other portions of the delivery capsule 108 via bonding, laser welding, and/or other mechanisms for securing the sealing members 140 in position on portions of the delivery capsule 108. In certain embodiments, for example, the first and second housings 112 and 114 can include sleeves or flanges formed in or on the surfaces of the housings 112, 114 (e.g., using 3D printing) and configured to receive O-rings and/or other sealing features. As shown in FIGS. 7A and 7B, the first sealing member 140a can be fixedly attached to the first housing 112, extend between an inner surface of a distal portion 146 of the first housing 112 and an outer surface of the second housing 114, and be slidable relative to the second housing 114. The second sealing member 140b can be fixedly attached to the second housing 114 and extend between an outer surface of a proximal portion 148 of the second housing and the inner surface of the first housing 112. Thus, the first fluid chamber 142 can be defined at a distal end by the first sealing member 140a, at a proximal end by the second sealing member 140b, and the portions of an inner surface of the first housing 112 and an outer surface of the second housing 114 that extend between the first and second sealing members 140a and 140b. During deployment, the first sealing member 140a slides distally along the outer surface of the second housing 114 as the first fluid chamber 142 is pressurized with fluid to move the first housing 112 in a distal direction over a portion of the second housing 114.


The second fluid chamber 144 is positioned within the second housing 114 and can be defined at a proximal end by the third sealing member 140c. As shown in FIG. 7A, for example, the delivery capsule 108 can further include a platform 150 that extends outwardly from the distal end portion of the elongated body 106 and/or other shaft extending into the delivery capsule 108, and the third sealing member 140c can extend from the platform 150 (e.g., from a surface on or a recess within the platform 150) to the inner surface of the second housing 114 to fluidically seal the second fluid chamber 144 at a proximal end from other portions of the delivery capsule 108. In other embodiments, the platform 150 can itself seal against the inner surface of the second housing 114 to fluidically seal the proximal end of the second fluid chamber 144. As further shown in FIG. 7A, the second fluid chamber 144 can be defined at its distal end by a distal end feature 152 (e.g., a nose cone) at a distal end portion 154 of the second housing 114, or by another portion of or within the second housing 114. Thus, the second fluid chamber 144 is defined at its proximal end by a distal-facing portion of the platform 150 and/or the third sealing member 140c, at a distal end by the distal end feature 152 or (if the end feature 152 is omitted) an interior distal end of the second housing 114, and the wall of the second housing 114 extending therebetween. During deployment, the third sealing member 140c, in conjunction with the platform 150, slides along the inner surface of the second housing 114 as the second fluid chamber 144 is pressurized with fluid to move the second housing 114, together with the first housing 112 as a unit, in a distal direction.


The platform 150 is fixed relative to the body 106 and/or another shaft extending therethrough, and can be configured to support a distal end portion of a prosthetic heart valve device (e.g., the device 102 of FIG. 6) during delivery. For example, the platform 150 can be configured to maintain the device in a substantially constant axial position relative to the native anatomy (e.g., the mitral valve) as the first and second housings 112 and 114 move in a distal direction to unsheathe the device. In other embodiments, the platform 150 can be pulled or otherwise moved in a proximal direction to further unsheathe the device. The platform 150 can be formed integrally with the body 106, or the body 106 and the platform 150 can be separate components made from metal, polymers, plastic, composites, combinations thereof, and/or other suitable materials.


The end feature 152 at the distal portion 154 of the second housing 114 can be a nose cone or other element that provides stability to the distal end of the delivery capsule 108 and/or defines an atraumatic tip to facilitate intraluminal delivery of the capsule 108. The end feature 152 can be integrally formed at the distal end portion 154 of the second housing 114, a separate component fixedly attached thereto, or defined by the distal end of the second housing 114. As shown in FIGS. 7A and 7B, the end feature 152 may include a channel 155 extending through its length and in communication with the distal opening 134 through which various components of the system 100 can extend beyond the distal end portion 154 of the delivery capsule 108. For example, the channel 155 can be used to carry a guidewire (e.g., the guidewire 124 of FIG. 6), a fluid lumen (discussed in further detail below), and/or a small shaft through which the guidewire, fluid lumen, and/or other system components can extend. O-rings, valves or other sealing members can be positioned in or around the channel 155 and the components extending therethrough to fluidically seal the second chamber 144 at the distal end from the external environment. In other embodiments, the end feature 152 can include multiple channels that extend to separate distal openings.


As further shown in FIG. 7A, the delivery capsule 108 also includes a separate compartment 156 fluidically sealed from the first and second fluid chambers 142 and 144 and configured to house a prosthetic heart valve device (e.g., the device 102 of FIG. 6) in the unexpanded, containment state. The compartment 156 can be defined at a distal end by a proximal-facing surface of the platform 150, at a proximal end by the proximal cap 136 or the proximal end of the first housing 112, and the interior walls of the first and second housings 112 and 114 extending therebetween. In embodiments where the proximal cap 136 is omitted, the proximal portion of the compartment 156 is open to the surrounding environment (e.g., the vasculature). In various embodiments, the platform 150 can include engagement features that releasably couple to portions of the device to facilitate loading of the device into the delivery capsule 108 and secure the device to the delivery capsule 108 until final deployment to allow for resheathing. During deployment, the compartment 156 is opened to the native environment at the target site by the distal movement of the first and second housings 112 and 114 relative to the platform 150, and, optionally, by proximal movement of the proximal cap 136.


The delivery system 100 further includes fluid lines (identified individually as a first fluid line 158a and a second fluid line 158b; referred to collectively as “fluid lines 158”) in fluid communication with the first and second fluid chambers 142 and 144 via fluid ports (identified individually as a first fluid port 160a and a second fluid port 160b; referred to collectively as “fluid ports 160”). As shown in FIG. 7A, the first fluid line 158a is in fluid communication with the first fluid chamber 142 via the first fluid port 160a, and the second fluid line 158b is in fluid communication with the second fluid chamber 144 via the second fluid port 160b. The fluid ports 160 can include valves or other features with openings that regulate fluid to flow into and/or out of the fluid chambers 142, 144. The fluid lines 158 extend from the first and second fluid chambers 142 and 144 through the elongated catheter body 106, and are placed in fluid communication with a fluid source (e.g., the fluid assembly 116 of FIG. 6) at the proximal portion 106b (FIG. 6) of the catheter body 106 such that the fluid lines 158 can deliver fluid to and, optionally, remove fluid from the first and second fluid chambers 142 and 144 independently of each other. In several embodiments, the first and second fluid chambers 142 and 144 each have a dedicated fluid line 158 extending through or defined by portions of the catheter body 106, or a single fluid line may extend through the catheter body 106 and a valve assembly can be used to selectively deliver fluid to the first and second fluid chambers 142 and 144.


At the distal portion 106a of the catheter body 106, the first fluid line 158a extends in a distal direction from the main catheter body 106, through the distal end of the second housing 114 (e.g., through the channel 155 of the end feature 152 and through the opening 134), outside the second housing 114, and into the first fluid port 160a in fluid communication with the first fluid chamber 142. In the embodiment illustrated in FIG. 7A, the first fluid line 158a extends through the first sealing member 140a and the first fluid port 160a is positioned on a proximal-facing surface of the first sealing member 140a in fluid communication with the first fluid chamber 142. In other embodiments, the first fluid line 158a can extend through the wall of the first housing 112 and/or another portion of the delivery capsule 108 to fluidly communicate with the first fluid chamber 142. The portion of the first fluid line 158a that extends beyond the distal end of the main catheter body 106 and outside of the second housing 114 can be an umbilical cord-type tube or lumen. Although FIG. 7A illustrates the tube spaced apart from the outer surface of the second housing 114, the fluid lumen can run tightly along the distal end feature 152 and the outer surface of the second housing 114. In other embodiments, the distal portion of the first fluid line 158a can be a corrugated tube that coils or otherwise retracts when it is not filled with fluid, and/or another type of tube or structure configured to transport fluid to the first fluid chamber 142.


As further shown in FIG. 7A, the second fluid line 158b can terminate at the second fluid port 160b positioned at the distal end of the main catheter body 106 to place the second fluid port 160b in fluid communication with the second fluid chamber 144. In other embodiments, the second fluid line 158b can terminate at a distal-facing surface of the platform 150 in fluid communication with the second fluid chamber 144, or the second fluid line 158b may extend in a distal direction beyond the distal end of the main catheter body 106 into the second fluid chamber 144. In further embodiments, the distal portion of the second fluid line 158b includes a tube (e.g., a corrugated tube, an umbilical cord-type lumen, etc.) that extends beyond the distal end of the main catheter body 106, through the distal end of the second housing 114, and loops back into fluid communication with the second fluid chamber 144 via a fluid port in the wall of the second housing 112 and/or another portion of the delivery capsule 108 in fluid communication with the second fluid chamber 144.



FIGS. 8A-8D are a series of illustrations showing the distal portion of the delivery system 100 of FIGS. 6-7B deploying and resheathing the device 102 via hydraulic actuation provided by filling and draining of the first and second fluid chambers 142 and 144. Although the following description is specific to deployment of prosthetic heart valve devices at a native mitral valve, the delivery capsule 108 can be used to deploy prosthetic valves, implants, and/or other medical devices in other portions of the body that may benefit from the short overall longitudinal translation and compact sizing provided by the telescoping delivery capsule 108. FIG. 8A illustrates the delivery capsule 108 in the initial delivery state with the device 102 constrained within the compartment 156 to allow for trans-luminal delivery of the device 102 to the target site. For a trans-septal approach to the native mitral valve, a clinician accesses the mitral valve from the venous system (e.g., via the transfemoral vein), navigates the delivery capsule 108 through the inferior vena cava into the right atrium, and passes the delivery capsule 108 through an aperture formed in the atrial septal wall into the left atrium. From the septal aperture, the clinician steers the distal portion of the delivery capsule 108 from its initial orientation, directed generally transverse to the inlet of the native mitral valve into axial alignment with the native mitral valve (e.g., a 90° turn) such that the distal portion of the delivery capsule 108 can pass through the native mitral annulus partially into the left ventricle. The compact axial length of the delivery capsule 108 (e.g., less than 50 mm) facilitates this turn from the septal wall into the native mitral valve within the anatomical constraints of the left atrium, which typically has a width of about 50 mm. Once the delivery capsule 108 is positioned at the desired site relative to the native mitral valve, the clinician can begin deployment of the device 102.



FIG. 8B illustrates the delivery capsule 108 during the first deployment stage during which the first fluid line 158a delivers fluid from the fluid assembly 116 (FIG. 6) to the first fluid chamber 142 via the first fluid port 160a. As fluid is added to the first fluid chamber 142, the increase in pressure within the first fluid chamber 142 causes the first sealing member 140a and the first housing 112 attached thereto to slide in a distal direction along the outer surface of the second housing 114 (as indicated by arrow 101). In certain embodiments, for example, the first sealing member 140a can be configured to move relative to the second housing 114 when the pressure within the first fluid chamber 142 exceeds a predetermined threshold, such as 4 atm to 8 atm. The total travel length of the first housing 112 in the distal direction during this first deployment stage can be at least 20 mm. In other embodiments, the first housing 112 may move smaller or greater distances depending on the size of the delivery capsule 108 and/or the device 102 positioned therein. The distal movement of the first housing 112 unsheathes a first portion of the device 102, such as a brim or atrial portion, allowing it to expand against surrounding native tissue and/or provide visualization for proper seating within the native valve. When the delivery capsule 108 includes a proximal cap, such as the proximal cap 136 shown in FIGS. 8A and 8B (not shown in FIGS. 8C and 8D for illustrative purposes), the distal movement of the first housing 112 separates the first housing 112 from the proximal cap 136 to expose the device 102. In other embodiments, the proximal cap 136 can be pulled in a proximal direction away from the first housing 112 before or during the first deployment stage.



FIG. 8C illustrates the delivery capsule 108 during the second deployment stage during which the second fluid line 158b delivers fluid from the fluid assembly 116 (FIG. 6) to the second fluid chamber 144 via the second fluid port 160b. When the pressure within the second fluid chamber 144 exceeds a threshold level (e.g., 4-8 atm), the second housing 114 moves in a distal direction (as indicated by arrow 103) relative to the platform 150 and the associated third sealing member 140c as more fluid enters the second fluid chamber 144. Because the first fluid chamber 142 and the second fluid chamber 144 operate independently of each other, the first housing 112 moves with the second housing 114 as fluid fills or drains from the second fluid chamber 144. This distal movement of the second housing 114 partially or fully unsheathes the device 102 from the delivery capsule 108, while maintaining the brim or atrial portion of the device 102 at substantially the same axial position relative to the native annulus. In certain embodiments, the second housing 114 can translate 20-30 mm in the distal direction depending upon the length of the device 102. In other embodiments, filling the second fluid chamber 144 pushes platform 150 in proximal direction such that the platform 150 slides proximally along the inner surface of second housing 114 to deploy the remainder of the device 102. In this embodiment, the device 102 does not maintain its axial position during deployment. During the deployment procedure, the first and second deployment stages can be performed in separate and distinct time intervals as illustrated in FIGS. 8B and 8C to allow for dual-stage deployment of the device 102. In other embodiments, however, the first and second deployment stages can be simultaneous or at least partially overlapping such that the first and second fluid chambers 142 and 144 receive fluid at the same time.


In various embodiments, the delivery capsule 108 can also be configured to partially or fully resheathe the prosthetic heart valve device after partial deployment from the delivery capsule 108. FIG. 8D, for example, illustrates the delivery capsule 108 during a resheathing stage in which the delivery capsule 108 is driven back towards the delivery state by evacuating fluid from the first fluid chamber 142 via the first fluid line 158a and applying a proximally directed force on the first housing 112. For example, as shown in FIG. 8D, the first housing 112 may be operably coupled to a biasing device 137 (e.g., a spring) housed in the handle assembly 110 via a tether 135 and/or other coupling member that extends through the catheter body 106. The biasing device 137 can act on the first housing 112 (e.g., via the tether 135) to drive the first housing 112 in the proximal direction when fluid is removed from the first fluid chamber 142. In some embodiments, the biasing device 137 is omitted and the tether 135 itself can be manipulated at the handle assembly 110 (e.g., via an actuator) to retract the tether 135 in the proximal direction and draw the first housing 112 proximally. In various embodiments, the biasing device 137 can be positioned within the catheter body 106 (e.g., at the distal portion 106a of the catheter body 106) and/or associated with the delivery capsule 108 (e.g., as described in further detail below with respect to FIG. 9B) such that the biasing device 137 drives the first housing 112 proximally upon fluid removal. With the fluid evacuated from the first fluid chamber 142, the first sealing member 140a is allowed to slide in a proximal direction (as indicated by arrow 105) over the outer surface of the second housing 114 and move the first housing 112 back over at least a portion of the device 102 to place the resheathed portion of the device 102 back into the constrained, delivery state. For example, the first sealing member 140a can move in the proximal direction a desired distance and/or until the first sealing member 140a contacts the second sealing member 140b (e.g., about 20 mm). In some embodiments, resheathing can be initiated by removing fluid from the second fluid chamber 144, or removing the fluid from both the first and second fluid chambers 142 and 144 to allow the first housing 112 and/or second housing 114 to move back over the device 102. Similar to the first housing 112, the second housing 114 can be operably coupled to a mechanism that drives the second housing 114 in a proximal direction when fluid is evacuated from the second chamber 144, such as a tether, spring, and/or other biasing device. In some embodiments, a vacuum can be applied to the first fluid chamber 142 and/or the second fluid chamber 144 after the fluid has been evacuated from the chambers 142, 144 to facilitate moving the first housing 112 and/or the second housing 114 in the proximal direction. This resheathing ability allows the clinician to reposition the prosthetic heart valve device, in vivo, for redeployment within the mitral valve MV or remove the prosthetic heart valve device from the patient after partial deployment. Once the device 102 is fully deployed at the desired location, the first and second housings 112 and 114 can be drawn in a proximal direction through the deployed device 102, and the elongated catheter body 106 can be pulled proximally along the access path (e.g., through the aperture in the septal wall into the vasculature) for removal from the patient. After removing the catheter 104 (FIG. 6), the catheter 104 and the delivery capsule 108 can be discarded, or one or both components can be cleaned and used to deliver additional prosthetic devices.


The telescoping delivery capsule 108 and the delivery system 100 described above with respect to FIGS. 6-8D facilitate delivery via the trans-septal delivery approach due to the capsule's compact length, which can accommodate the turn from the aperture in the atrial septal wall into the native mitral valve necessary to position the device 102 in the native mitral valve without contacting the left atrial wall. In addition, the telescoping deployment provided by the first and second housings 112 and 114 results in short overall axial displacement of the delivery capsule 108 (relative to the length of the device 102) into the left ventricle during device deployment, and is thereby expected to avoid contact with portions of the left ventricle wall during deployment. By avoiding contact with the walls of the left ventricle and left atrium, the delivery system 100 also reduces the likelihood of arrhythmia during valve deployment. The hydraulic-actuation of the delivery capsule 108 provides controlled movement of the first and second housings 112 and 114 as the device 102 expands during unsheathing, and in certain embodiments allows the clinician to selectively suspend distal movement of the housings 112, 114 during any point of the deployment process to allow for repositioning and/or visualization. Further, the delivery capsule 108 may also be configured to at least substantially inhibit axial translation of the device 102 during deployment and resheathing (e.g., as shown in FIGS. 8A-8B) to facilitate accurate delivery to the target site.


In other embodiments, the telescoping delivery capsule 108 can operate in the opposite manner with respect to the distal portion 106a of the catheter body 106 such that the telescoping housings 112, 114 are configured to retract in a proximal direction to deploy the device 102 from the delivery capsule 108 and move in a distal direction to resheathe the device 102. Such an embodiment would be suitable to deliver the device 102 to the mitral valve from the left ventricle using a trans-apical approach (e.g., via an opening formed in the apical portion of the left ventricle). For example, the hydraulic actuation mechanism can move the first and second housings 112 and 114 in a proximal direction in a telescoping manner toward the distal portion 106a of the catheter body 106 to unsheathe the device 102. Once the device 102 is fully deployed within the mitral valve, the retracted delivery capsule 108 (with the first housing 112 at least partially overlapping the second housing 114) can be pulled in a proximal direction through the left ventricle and the apical aperture to remove the delivery system 100.



FIG. 9A is a side isometric view of a distal portion of a delivery system 200a configured in accordance with embodiments of the present technology. The delivery system 200a includes various features at least generally similar to the features of the delivery system 100 described above with reference to FIGS. 6-8D. For example, the delivery system 200a includes two telescoping housings 112, 114 that are hydraulically driven distally and proximally between a delivery state and a deployment state by moving fluid to and/or from the first fluid chamber 142 and the second fluid chamber 144. The delivery system 200a further includes a third or proximal fluid chamber 143 positioned in the annular space between the first and second housings 112 and 114. As shown in FIG. 9A, the delivery capsule 108 includes the first sliding sealing member 140a fixedly attached to the distal portion of the first housing 112, the internal second sealing member 140b fixedly attached to the second housing 114 between the first and second housings 112 and 114, and a proximal or fourth sliding sealing member 140d fixedly attached to the proximal portion of the first housing 112. Accordingly, the first fluid chamber 142 is between the distal-most or first sealing member 140a and the internal second sealing member 140b, and the third fluid chamber 143 is between the second sealing member 140b and the proximal sealing member 140d. The third fluid chamber 143 can be placed in fluid communication with a third fluid line 158c via a tube or other fluid-carrying features that extend outside of the second housing 114 and through the wall of the first housing 112 via a third fluid port 260c into fluid communication with the third fluid chamber 143 (e.g., similar to the distal portion of the first fluid line 158a). In other embodiments, the first fluid chamber 142 and/or the third fluid chamber 143 can be placed in fluid communication with the corresponding third fluid line 158c using other suitable means, such as fluid channels within the body of the delivery capsule 108.


During device deployment, the first fluid chamber 142 is pressurized with fluid, thereby causing the first sealing member 140a and the first housing 112 to slide distally until the proximal sealing member 140d comes into contact with the internal second sealing member 140b (e.g., about 20 mm). This unsheathes at least a portion of the device 102 from the delivery capsule 108. Further unsheathing can be performed by pressurizing the second fluid chamber 144 with fluid to hydraulically move the telescoped first and second housings 112 and 114 together in the distal direction to partially or completely unsheathe the device 102. In other embodiments, the telescoped first and second housings 112 and 114 are moved together in the distal direction using mechanical means. To retract the first housing 112, the first fluid chamber 142 is evacuated of fluid and the third fluid chamber 143 is pressurized with fluid via the third fluid line 158c. This causes the proximal sealing member 140d and the first housing 112 to slide proximally, e.g., until the first sealing member 140a stops against the internal second sealing member 140b. Accordingly, the supplemental third fluid chamber 143 can be used to facilitate resheathing of the device 102 and/or retraction of the delivery capsule 108 back to its delivery state. In some embodiments, the delivery capsule 108 can include additional fluid chambers that further facilitate device deployment and recapture, and/or the fluid chambers can be defined by different portions of the delivery capsule 108, while still being configured to hydraulically drive the first and second housings 112 and 114 distally and/or proximally relative to each other.



FIG. 9B is a side isometric view of a distal portion of a delivery system 200b in a delivery state configured in accordance with some embodiments of the present technology. The delivery system 200b includes various features at least generally similar to the features of the delivery system 100 described above with reference to FIGS. 6-8D. For example, the delivery system 200b includes two telescoping housings 112, 114 that are hydraulically driven distally and proximally between a delivery state and a deployment state by moving fluid to and from the first fluid chamber 142 and the second fluid chamber 144. The delivery system 200b further includes at least one biasing device (identified individually as a first biasing device 262a and a second biasing device 262b; referred to collectively as “biasing devices 262”) that urges the first housing 112 and/or the second housing 114 toward the delivery state in the absence of fluid within the first and second fluid chambers 142 and 144. The biasing devices 262 can be springs (e.g., as shown in FIG. 9B) or other components that apply force on the housings 112, 114 when compressed or extended during device deployment.


As illustrated in FIG. 9B, the first biasing device 262a extends around a portion of the second housing 114 and acts on the distal end portion 146 of the first housing 112 when the first housing 112 moves toward the deployment state. An end stop component 263 or other feature can secure the distal end of the first biasing device 262a in place on the second housing 114. The first biasing device 262a compresses as the first housing 112 moves in the distal direction toward the deployment state, thereby applying a force on the first housing 112 in the proximal direction. In certain embodiments, the first biasing device 262a applies a constant proximally-directed force on the first housing 112 when the delivery capsule 108 is in the delivery state, and that force increases as the first housing 112 moves in the distal direction. In other embodiments, the first biasing device 262a is in a neutral state when the delivery capsule 108 is in the delivery state, and then applies a proximally-directed force to the first housing 112 as the first biasing device 262a compresses. This proximally-directed force may not be great enough to urge the first housing 112 closed when fluid is in the first fluid chamber 142, but after fluid removal from the first fluid chamber 142, the first biasing device 262a can push the first housing 112 in a proximal direction to resheathe a prosthetic device (e.g., the device 102 of FIGS. 6 and 8A-8D) positioned within the delivery capsule 108 and/or close the delivery capsule 108 for removal from the patient's body.


As further shown in FIG. 9B, the second biasing device 262b is positioned within the second housing 114 (e.g., within the second fluid chamber 144) such that it acts on the second housing 114 when the second housing 114 moves toward the deployment state. The second biasing device 262b can be coupled to the platform 150 at a proximal end of the second biasing device 262b, and to a distal portion of the second housing 114 or components therein (e.g., the distal end feature 152) at a distal end of the second biasing device 262b. When the second fluid chamber 144 fills with fluid and drives the distal end of the second housing 114 apart from the platform 150, the second biasing device 262b expands, thereby applying force on the first housing 112 and the platform 150 to pull the two components closer together. In certain embodiments, the second biasing device 262b applies a continual proximally-directed force on the second housing 114 when the delivery capsule 108 is in the delivery state, and that force increases as the second housing 114 moves in the distal direction. In other embodiments, the second biasing device 262b is in a neutral state when the delivery capsule 108 is in the delivery state, and then applies a proximally-directed force to the second housing 114 as the second biasing device 262b expands. When fluid is in the second fluid chamber 144, the biasing force is not of a magnitude to urge the second housing 114 toward the delivery state. However, after draining fluid from the second fluid chamber 144, the second biasing device 262b can pull the second housing 114 in a proximal direction and/or pull the second housing 114 and the platform 150 closer together (depending on the force required to slide the platform 150 relative to the second housing 114) to resheathe a device and/or close the delivery capsule 108.


The biasing devices 262 can also limit or substantially prevent distal movement of the housings 112, 114 attributable to the forces produced by an expanding prosthetic heart valve device (e.g., the device 102 of FIGS. 8A-8D). For example, hydraulic actuation can move the first housing 112 and/or the second housing 114 to unsheathe a portion of a prosthetic heart valve device, allowing the device to expand outwardly. Meanwhile, the biasing devices 262 can urge the housings 112, 114 toward the delivery state to counteract the distally-directed expansion forces of the device on the delivery capsule 108, and thereby prevent axial jumping. One, two, or more biasing devices 262 can be incorporated in any of the delivery capsules disclosed herein to urge the telescoping housings toward the deployment state. In some embodiments, the biasing devices 262 can be positioned elsewhere with respect to the delivery capsule 108 and/or the delivery system 200b and operably coupled to the first housing 112 and/or the second housing 114 to bias the housings 112, 114 toward the delivery configuration. For example, the second biasing device 262b can be positioned in a proximal portion of the delivery capsule 108 and operably coupled to the second housing 114 via a tether or other connector such that the second biasing device 262b acts on the second housing 114. As another example, the first biasing device 262a and/or the second biasing device 262b can be positioned in portions of the catheter body 106 and/or a handle assembly (the handle assembly 110 of FIG. 6), and connected to the first and second housings 112 and 114 via tethers or other connectors extending through the catheter body 106.



FIGS. 10A and 10B are a partial cut-away isometric view and a cross-sectional view, respectively, of a distal portion of a delivery system 300 configured in accordance with some embodiments of the present technology. The delivery system 300 includes various features at least generally similar to the features of the delivery systems 100, 200a, 200b described above with reference to FIGS. 6-9. For example, the delivery system 300 includes a telescoping delivery capsule 308 having a first housing 312, a second housing 314 slidably disposed within a portion of the first housing 312, and two fluid chambers (identified individually as a first fluid chamber 342 and a second fluid chamber 344) defined at least in part by sealing members 340 (identified individually as first through third sealing members 340a-c, respectively). More specifically, the first fluid chamber 342 is defined by the annular space between the first and second sealing members 340a and 340b, and the second fluid chamber 344 is defined by the portion of the second housing 314 between a platform 350 (including the third sealing member 340c) and a distal end portion 352. The first and second fluid chambers 342 and 344 are placed in fluid communication with a fluid source (e.g., the fluid assembly 116 of FIG. 6) via dedicated fluid lines 358 (identified individually as a first fluid line 358a and a second fluid line 358b).


In the embodiment illustrated in FIGS. 10A and 10B, the second fluid line 158b is a tube or shaft that extends through an elongated catheter body (not shown; e.g., the catheter body 106 of FIGS. 6-9) and affixes to the platform 350 where it terminates at a second fluid port 360b to deliver fluid to and/or remove fluid from the second fluid chamber 344 (as indicated by arrows 309). The first fluid line 358a includes a tube or channel that extends through the length of the second fluid line 358b, projects in a distal direction beyond the second port 358b and the platform 350, and then extends distally into the second fluid chamber 344 where the first fluid line 358a connects to one or more lumens 370 defined by the annular space in the wall of the second housing 114. The lumen 370 extends through the wall of the second housing 314 to the first fluid port 360a, which allows fluid to be delivered to and/or removed from the first fluid chamber 342 (as indicated by arrows 307). The portion of the first fluid line 358a that extends between the second fluid line 358b and the lumen 370 can be a flexible tube or corrugated lumen bonded to or otherwise sealed to the inlet of the lumen 370. Such flexible tubes or corrugated lumens allow the first fluid line 358b to bend, flex, and extend to maintain the connection with the lumen 370 as the platform 350 and the second housing 314 move relative to each other when the second fluid chamber 344 is filled or drained. In other embodiments, the first fluid line 358a and the second fluid line 358b run alongside each other, rather than concentrically, within an elongated catheter body or defined by separate portions of the catheter body.


In operation, fluid is delivered to the first fluid chamber 342 via the first fluid line 358a, which causes the first housing 312 to move in a distal direction over the second housing 314 to unsheathe a portion of a prosthetic heart valve device (e.g., the device 102 of FIGS. 7A-8D). In a subsequent or simultaneous step, fluid is delivered to the second fluid chamber 344 via the second fluid line 358b, causing the second housing 314 to move in the distal direction to further unsheathe the prosthetic heart valve device. During an optional resheathing stage, fluid can be removed from the first fluid chamber 342 via the first fluid line 358a and, optionally, the first fluid chamber 342 can be pressurized to move the first housing 312 in a proximal direction back over the prosthetic heart valve device. Further resheathing can be performed by draining and, optionally, applying a vacuum to the second fluid chamber 344.



FIGS. 10C and 10D are cutaway isometric views of housing configurations for use with the delivery system 300 of FIGS. 10A and 10B. More specifically, FIGS. 10C and 10D illustrate different configurations of a second housing 414, 514 having lumens within the housing wall such that the second housing 414, 514 can define an end portion of a first fluid line (e.g., the first fluid line 358a of FIGS. 10A and 10B) in fluid communication with a first fluid chamber (e.g., the first fluid chamber 342 of FIGS. 10A and 10B). In some embodiments as illustrated in FIG. 10C, the second housing 414 includes four oblong or oval-shaped lumens (identified individually as first through fourth lumens 470a-b, respectively; referred to collectively as lumens 470) spaced equally about the circumference of the second housing 414 and extending through at least a portion of the wall of the second housing 414. In some embodiments as illustrated in FIG. 10D, the second housing 514 includes four circular lumens (identified individually as first through fourth lumens 570a-b, respectively; referred to collectively as lumens 570) spaced equally about the circumference of the second housing 514 and extending through at least a portion of the wall of the second housing 514. In some embodiments, each lumen 470, 570 has a first end coupled to a portion of the first fluid line (e.g., the first fluid line 358a of FIGS. 10A and 10B) extending from a proximal portion of a catheter body (e.g., the catheter bodies 106, 306 of FIGS. 6, 10A and 10B) via a flexible tube or other feature, and a second end that is placed in fluid communication with a first fluid chamber (e.g., the first fluid chamber 342 of FIGS. 10A and 10B) via individual fluid ports. In some embodiments, only one of the lumens 470, 570 is coupled to a portion of the first fluid line (e.g., the first fluid line 358a of FIGS. 10A and 10B) extending from a proximal portion of a catheter body (e.g., the catheter bodies 106, 306 of FIGS. 6, 10A and 10B) via a flexible tube or other feature, and the second housing 414, 514 includes additional internal lumens that connect the other lumens 470, 570 to each other such that the lumens 470, 570 can be placed in fluid communication with a first fluid chamber (e.g., the first fluid chamber 342 of FIGS. 10A and 10B) via individual fluid ports. In some embodiments, the second housing 414, 514 includes one, two, three, or more than four lumens 470, 570 spaced equidistance or at other desired locations around the circumference of the second housing 414, 514. In still further embodiments, the lumens 470, 570 may have different cross-sectional shapes suitable for carrying fluid. Any of the configurations of the second housings 314, 414, 514 described with reference to FIGS. 10A-10D can also replace the second housing 114 in the delivery systems 100, 200a, 200b described above with reference to FIGS. 6-9.



FIGS. 11A and 11B are isometric and cross-sectional views of a distal portion of a delivery system 600 configured in accordance with some embodiments of the present technology. The delivery system 600 includes various features at least generally similar to the features of the delivery systems 100, 200a, 200b, 300 described above with reference to FIGS. 6-10D. For example, the delivery system 600 includes an elongated catheter body 606 and a telescoping delivery capsule 608 at a distal end portion 606a of the catheter body 606. The delivery capsule 608 includes a first housing 612 and a second housing 614 slidably disposed within a portion of the first housing 612 such that, during deployment, the first housing 612 moves in a distal direction over the second housing 614 to release at least a portion of a prosthetic heart valve device (e.g., the device 102 of FIGS. 6 and 8A-8D) from the delivery capsule 608.


Rather than the hydraulically-actuated first and second housings described with reference to FIGS. 6-10D, the delivery capsule 608 of FIGS. 11A and 11B moves the first and second housings 612 and 614 using non-fluidic means. For example, the delivery system 600 includes a plurality of tether elements (identified individually as a first tether element 664a and a second tether element 664b; referred to collectively as “tether elements 664”) coupled to a distal portion and/or other portion of the first housing 612 at corresponding attachment features 666 and configured to move the first housing 612 relative to the second housing 614. The tether elements 664 can be can be wires, sutures, cables, and/or other suitable structures for driving movement of the first housing 612, and the attachment features 666 can include adhesives, interlocking components, hooks, eyelets, and/or other suitable fasteners for joining one end portion of the tether elements 664 to the first housing 612. Although two tether elements 664 are shown in FIGS. 11A and 11B, the delivery system 600 can include a single tether element and/or more than two tether elements to drive movement of the first housing 612.


The tether elements 664 extend from the first housing 612 in a distal direction over a distal end portion 654 of the second housing 614 (e.g., a nose cone), into a distal opening 634 of the second housing 614, and in a proximal direction through the catheter body 606. At a proximal portion of the delivery system 600, proximal end portions of the tether elements 664 can be attached to actuators of a handle assembly (e.g., the handle assembly 110 of FIG. 6) and/or otherwise accessible to allow a clinician to pull or otherwise proximally retract the tether elements 664 (as indicated by the arrows associated with the proximal ends of the tether elements 664). During this proximal retraction of the tether elements 664, the distal end portion 654 of the second housing 614 serves as a pulley to change the direction of motion, and thereby move the first housing 612 in a distal direction (as indicated by arrows 611 of FIG. 11B). This causes the first housing 612 to slide over the second housing 614 such that at least a portion of the second housing 614 is telescoped within the first housing 612 and the prosthetic heart valve device is unsheathed from the first housing 612.


The remainder of the prosthetic heart valve device can be unsheathed from the delivery capsule 608 in a subsequent deployment step by moving the second housing 614 (together with the first housing 612) in a distal direction. For example, the second housing 614 can be driven in the distal direction using mechanical means (e.g., rods or pistons) to push the second housing 614 distally, or the second housing 614 can move via hydraulic means by moving fluid to one or more fluid chambers (e.g., similar to the fluid chambers described above with reference to FIGS. 6-10D). In other embodiments, a piston device and/or other feature can be used to push the prosthetic heart valve device in a proximal direction out from the second housing 614. Similar to the telescoping delivery capsules described above, the mechanically-activated delivery capsule 608 can have a compact size and a relatively short overall longitudinal translation to deploy the prosthetic heart valve device to facilitate trans-septal delivery of the prosthetic heart valve device to the mitral valve. In other embodiments, the delivery capsule 608 can be used to facilitate the delivery of other types of devices to regions of the body that benefit from the short axial deployment paths provided by the telescoping housings 612, 614.


In various embodiments, the delivery capsule 608 can further be configured to allow for resheathing a partially deployed device and/or otherwise moving the delivery capsule 608 back toward its initial delivery state. A clinician pushes or otherwise moves the tether elements 664 in the distal direction (e.g., via an actuator on a proximally-positioned handle assembly), thereby moving the first housing 612 in a proximal direction. To accommodate such distal movement of the tether elements 664, each tether element 664 can be routed through an individual tube or channel that extends through the catheter body 606 and allows the clinician to both pull and push the tether elements 664, while inhibiting the tether elements 664 from buckling along the length of the catheter body 606 during proximal movement. In other embodiments, the tether elements 664 and/or portions thereof can be made from semi-rigid and/or rigid materials that avoid buckling when the tether elements 664 are not placed in tension.



FIGS. 12A and 12B are isometric and cross-sectional views, respectively, of a distal portion of a delivery system 700 configured in accordance with some embodiments of the present technology. The delivery system 700 includes various features at least generally similar to the features of the mechanically-driven delivery system 600 described above with reference to FIGS. 11A and 11B. For example, the delivery system 700 includes an elongated catheter body 706, a delivery capsule 708 with telescoping first and second housings 712 and 714 at a distal end portion 706a of the catheter body 706, and a plurality of tether elements (identified individually as a first through fourth tether element 764a-764d, respectively; referred to collectively as “tether elements 764”) coupled to portions of the first housing 712. The tether elements 764 mechanically drive the first housing 712 in both a distal direction to move the delivery capsule 708 toward an unsheathing or deployment state and a proximal direction to move the delivery capsule 708 back toward its initial delivery state (e.g., for resheathing the device). As described in further detail below, the delivery system 700 includes four tether elements 764—two dedicated unsheathing tether elements 764 that move the first housing 712 in the distal direction and two dedicated resheathing tether elements 764 that move the first housing 712 in the proximal direction. In other embodiments, however, the delivery system 700 can include a single tether element 764 or more than two tether elements 764 to initiate distal movement of the first housing 712. In further embodiments, the delivery system 700 can include a single tether element or more than two tether elements 764 to initiate proximal movement of the first housing 712.


The first and second tether elements 764a and 764b are configured to drive the first housing 712 in the distal direction to at least partially unsheathe a proximal heart valve device and/or other device stored within the delivery capsule 708. Similar to the tether elements 664 of FIGS. 11A and 11B, distal end portions of the first and second tether elements 764a and 764b are coupled to the first housing 712 at two corresponding attachment features 766, from which the first and second tether elements 764a and 764b extend in a distal direction over a distal end portion 754 of the second housing 714 (e.g., a nose cone), into a distal opening 734 of the second housing 714, and then in a proximal direction through the catheter body 706. At a proximal portion of the delivery system 700, a clinician can pull or otherwise proximally retract the first and second tether elements 764a and 764b (e.g., via actuators on the handle assembly 110 of FIG. 6) to move the first housing 712 in a distal direction over the second housing 714 and unsheathe at least a portion of the device from the first housing 712. The remainder of the device can be unsheathed from the delivery capsule 708 in a separate deployment step by moving the second housing 714 (together with the first housing 712) in a distal direction via mechanical or hydraulic actuation means and/or urging the device in a proximal direction out from the second housing 714 (e.g., via a piston device).


The third and fourth tether elements 764c and 764d are used to mechanically drive the first housing 712 in the proximal direction to at least partially resheathe the device and/or close the delivery capsule 708 for removal from the patient. Distal end portions of the third and fourth tether elements 764c and 764d are coupled to a distal end portion of the first housing 712 at two corresponding attachment features 770, such as adhesives, interlocking components, hooks, eyelets, and/or other suitable fasteners for joining one end portion of the tether elements 764 to the first housing 712. As shown in FIGS. 12A and 12B, the third and fourth tether elements 764c and 764d extend from the attachment features 770 in a proximal direction between the first and second housings 712 and 714 until they are routed around an arched feature (identified individually as a first arched feature 768a and a second arched feature 768b; referred to collectively as “arched features 768”) of the second housing 714. The arched features 768 can be protrusions or channels projecting from the outer surface of the second housing 714 and/or in the wall of the second housing 714, and have a U-shaped or V-shaped surface that reverses the direction of the third and fourth tether elements 764c and 764d. In the illustrated embodiment, the second housing 714 includes two arched features 768 corresponding to the two tether elements 764c-d, but in other embodiments the second housing 714 can include a single arched feature 768 and/or more than two arched features 768 that are configured to reverse the direction of one or more tether elements 764. After reversing direction via the arched features 768, the third and fourth tether elements 764c and 764d extend in a distal direction over the distal end portion 754 of the second housing 714, into the distal opening 734, and then in a proximal direction through the catheter body 706. At the proximal portion of the delivery system 700, proximal end portions of the third and fourth tether elements 764c and 764d can be attached to actuators of a handle assembly (e.g., the handle assembly 110 of FIG. 6) and/or otherwise accessible to allow the clinician to pull or otherwise proximally retract the third and fourth tether elements 764c and 764d, which in turn moves the first housing 712 in the proximal direction. In this embodiment, the arched features 768 of the second housing 714 serve as pulleys to change the direction of motion of the third and fourth tether elements 764c and 764d, thereby moving the first housing 712 in the proximal direction when the third and fourth tether elements 764c and 764c are proximally retracted.


In operation, the clinician can at least partially unsheathe the device by proximally retracting the first and second tether elements 764a and 764b to move the first housing 712 in the distal direction toward the unsheathing state. The clinician can further unsheathe the device by moving the second housing 714 in the distal direction. If resheathing is desired to adjust position or remove the device from the patient, the clinician can proximally retract the third and fourth tether elements 764c and 764d to move the first housing 712 back over the device in the proximal direction to resheathe a portion of the device within the first housing 712. After full deployment of the device at the target site, proximal retraction of the third and fourth tether elements 764c and 764d can again be used to move the first housing 712 proximally such that the delivery capsule 708 is placed back into the delivery state for removal from the patient. Accordingly, the delivery system 700 uses proximal retraction of the tether elements 764 to mechanically drive the first housing 712 in both the distal and proximal directions. Similar to the telescoping delivery capsules described above, the delivery capsule 708 of FIGS. 12A and 12B provides deployment procedures that require only short overall longitudinal translation relative to the device size to facilitate trans-septal delivery of a prosthetic heart valve device to the mitral valve and/or deployment of medical devices to other target sites having constrained anatomical dimensions.


Selected Embodiments of Prosthetic Heart Valve Devices


The telescoping delivery systems 100, 200a, 200b, 300, 600 and 700 described above with reference to FIGS. 6-12B can be configured to deliver various prosthetic heart valve devices, such as prosthetic valve devices for replacement of the mitral valve and/or other valves (e.g., a bicuspid or tricuspid valve) in the heart of the patient. Examples of these prosthetic heart valve devices, system components, and associated methods are described in this section with reference to FIGS. 13A-26. Specific elements, substructures, advantages, uses, and/or other features of the embodiments described with reference to FIGS. 13A-26 can be suitably interchanged, substituted or otherwise configured with one another. Furthermore, suitable elements of the embodiments described with reference to FIGS. 13A-26 can be used as stand-alone and/or self-contained devices.



FIG. 13A is a side cross-sectional view and FIG. 13B is a top plan view of a prosthetic heart valve device (“device”) 1100 in accordance with an embodiment of the present technology. The device 1100 includes a valve support 1110, an anchoring member 1120 attached to the valve support 1110, and a prosthetic valve assembly 1150 within the valve support 1110. Referring to FIG. 13A, the valve support 1110 has an inflow region 1112 and an outflow region 1114. The prosthetic valve assembly 1150 is arranged within the valve support 1110 to allow blood to flow from the inflow region 1112 through the outflow region 1114 (arrows BF), but prevent blood from flowing in a direction from the outflow region 1114 through the inflow region 1112.


In the embodiment shown in FIG. 13A, the anchoring member 1120 includes a base 1122 attached to the outflow region 1114 of the valve support 1110 and a plurality of arms 1124 projecting laterally outward from the base 1122. The anchoring member 1120 also includes a fixation structure 1130 extending from the arms 1124. The fixation structure 1130 can include a first portion 1132 and a second portion 1134. The first portion 1132 of the fixation structure 1130, for example, can be an upstream region of the fixation structure 1130 that, in a deployed configuration as shown in FIG. 13A, is spaced laterally outward apart from the inflow region 1112 of the valve support 1110 by a gap G. The second portion 1134 of the fixation structure 1130 can be a downstream-most portion of the fixation structure 1130. The fixation structure 1130 can be a cylindrical ring (e.g., straight cylinder or conical), and the outer surface of the fixation structure 1130 can define an annular engagement surface configured to press outwardly against a native annulus of a heart valve (e.g., a mitral valve). The fixation structure 1130 can further include a plurality of fixation elements 1136 that project radially outward and are inclined toward an upstream direction. The fixation elements 1136, for example, can be barbs, hooks, or other elements that are inclined only in the upstream direction (e.g., a direction extending away from the downstream portion of the device 1100).


Referring still to FIG. 13A, the anchoring member 1120 has a smooth bend 1140 between the arms 1124 and the fixation structure 1130. For example, the second portion 1134 of the fixation structure 1130 extends from the arms 1124 at the smooth bend 1140. The arms 1124 and the fixation structure 1130 can be formed integrally from a continuous strut or support element such that the smooth bend 1140 is a bent portion of the continuous strut. In other embodiments, the smooth bend 1140 can be a separate component with respect to either the arms 1124 or the fixation structure 1130. For example, the smooth bend 1140 can be attached to the arms 1124 and/or the fixation structure 1130 using a weld, adhesive or other technique that forms a smooth connection. The smooth bend 1140 is configured such that the device 1100 can be recaptured in a capsule or other container after the device 1100 has been at least partially deployed.


The device 1100 can further include a first sealing member 1162 on the valve support 1110 and a second sealing member 1164 on the anchoring member 1120. The first and second sealing members 1162, 1164 can be made from a flexible material, such as Dacron® or another type of polymeric material. The first sealing member 1162 can cover the interior and/or exterior surfaces of the valve support 1110. In the embodiment illustrated in FIG. 13A, the first sealing member 1162 is attached to the interior surface of the valve support 1110, and the prosthetic valve assembly 1150 is attached to the first sealing member 1162 and commissure portions of the valve support 1110. The second sealing member 1164 is attached to the inner surface of the anchoring member 1120. As a result, the outer annular engagement surface of the fixation structure 1130 is not covered by the second sealing member 1164 so that the outer annular engagement surface of the fixation structure 1130 directly contacts the tissue of the native annulus.


The device 1100 can further include an extension member 1170. The extension member 1170 can be an extension of the second sealing member 1164, or it can be a separate component attached to the second sealing member 1164 and/or the first portion 1132 of the fixation structure 1130. The extension member 1170 can be a flexible member that, in a deployed state (FIG. 13A), flexes relative to the first portion 1132 of the fixation structure 1130. In operation, the extension member 1170 guides the device 1100 during implantation such that the device 1100 is located at a desired elevation and centered relative to the native annulus. As described below, the extension member 1170 can include a support member, such as a metal wire or other structure, that can be visualized via fluoroscopy or other imaging techniques during implantation. For example, the support member can be a radiopaque wire.



FIGS. 14A and 14B are cross-sectional views illustrating an example of the operation of the smooth bend 1140 between the arms 1124 and the fixation structure 1130 in the recapturing of the device 1100 after partial deployment. FIG. 14A schematically shows the device 1100 loaded into a capsule 1700 of a delivery system in a delivery state, and FIG. 14B schematically shows the device 1100 in a partially deployed state. Referring to FIG. 14A, the capsule 1700 has a housing 1702, a pedestal or support 1704, and a top 1706. In the delivery state shown in FIG. 14A, the device 1100 is in a low-profile configuration suitable for delivery through a catheter or cannula to a target implant site at a native heart valve.


Referring to FIG. 14B, the housing 1702 of the capsule 1700 has been moved distally such that the extension member 1170, fixation structure 1130 and a portion of the arms 1124 have been released from the housing 1702 in a partially deployed state. This is useful for locating the fixation structure 1130 at the proper elevation relative to the native valve annulus A such that the fixation structure 1130 expands radially outward into contact the inner surface of the native annulus A. However, the device 1100 may need to be repositioned and/or removed from the patient after being partially deployed. To do this, the housing 1702 is retracted (arrow R) back toward the fixation structure 1130. As the housing 1702 slides along the arms 1124, the smooth bend 1140 between the arms 1124 and the fixation structure 1130 allows the edge 1708 of the housing 1702 to slide over the smooth bend 1140 and thereby recapture the fixation structure 1130 and the extension member 1170 within the housing 1702. The device 1100 can then be removed from the patient or repositioned for redeployment at a better location relative to the native annulus A. Further aspects of prosthetic heart valve devices in accordance with the present technology and their interaction with corresponding delivery devices are described below with reference to FIGS. 15-26.



FIG. 15 is a top isometric view of an example of the device 1100. In this embodiment, the valve support 1110 defines a first frame (e.g., an inner frame) and fixation structure 1130 of the anchoring member 1120 defines a second frame (e.g., an outer frame) that each include a plurality of structural elements. The fixation structure 1130, more specifically, includes structural elements 1137 arranged in diamond-shaped cells 1138 that together form at least a substantially cylindrical ring when freely and fully expanded as shown in FIG. 15. The structural elements 1137 can be struts or other structural features formed from metal, polymers, or other suitable materials that can self-expand or be expanded by a balloon or other type of mechanical expander.


In several embodiments, the fixation structure 1130 can be a generally cylindrical fixation ring having an outwardly facing engagement surface. For example, in the embodiment shown in FIG. 15, the outer surfaces of the structural elements 1137 define an annular engagement surface configured to press outwardly against the native annulus in the deployed state. In a fully expanded state without any restrictions, the walls of the fixation structure 1130 are at least substantially parallel to those of the valve support 1110. However, the fixation structure 1130 can flex inwardly (arrow I) in the deployed state when it presses radially outwardly against the inner surface of the native annulus of a heart valve.


The embodiment of the device 1100 shown in FIG. 15 includes the first sealing member 1162 lining the interior surface of the valve support 1110, and the second sealing member 1164 along the inner surface of the fixation structure 1130. The extension member 1170 has a flexible web 1172 (e.g., a fabric) and a support member 1174 (e.g., metal or polymeric strands) attached to the flexible web 1172. The flexible web 1172 can extend from the second sealing member 1164 without a metal-to-metal connection between the fixation structure 1130 and the support member 1174. For example, the extension member 1170 can be a continuation of the material of the second sealing member 1164. Several embodiments of the extension member 1170 are thus a malleable or floppy structure that can readily flex with respect to the fixation structure 1130. The support member 1174 can have a variety of configurations and be made from a variety of materials, such as a double-serpentine structure made from Nitinol.



FIG. 16 is a side view and FIG. 17 is a bottom isometric view of the device 1100 shown in FIG. 15. Referring to FIG. 16, the arms 1124 extend radially outward from the base portion 1122 at an angle α selected to position the fixation structure 1130 radially outward from the valve support 1110 (FIG. 15) by a desired distance in a deployed state. The angle α is also selected to allow the edge 1708 of the delivery system housing 1702 (FIG. 14B) to slide from the base portion 1122 toward the fixation structure 1130 during recapture. In many embodiments, the angle α is 15°-75°, or more specifically 15°-60°, or still more specifically 30°-45°. The arms 1124 and the structural elements 1137 of the fixation structure 1130 can be formed from the same struts (i.e., formed integrally with each other) such that the smooth bend 1140 is a continuous, smooth transition from the arms 1124 to the structural elements 1137. This is expected to enable the edge 1708 of the housing 1702 to more readily slide over the smooth bend 1140 in a manner that allows the fixation structure 1130 to be recaptured in the housing 1702 of the capsule 1700 (FIG. 14B). Additionally, by integrally forming the arms 1124 and the structural elements 1137 with each other, it inhibits damage to the device 1100 at a junction between the arms 1124 and the structural elements 1137 compared to a configuration in which the arms 1124 and structural elements 1137 are separate components and welded or otherwise fastened to each other.


Referring to FIGS. 16 and 17, the arms 1124 are also separated from each other along their entire length from where they are connected to the base portion 1122 through the smooth bend 1140 (FIG. 16) to the structural elements 1137 of the fixation structure 1130. The individual arms 1124 are thus able to readily flex as the edge 1708 of the housing 1702 (FIG. 14B) slides along the arms 1124 during recapture. This is expected to reduce the likelihood that the edge 1708 of the housing 1702 will catch on the arms 1124 and prevent the device 1100 from being recaptured in the housing 1702.


In one embodiment, the arms 1124 have a first length from the base 1122 to the smooth bend 1140, and the structural elements 1137 of the fixation structure 1130 at each side of a cell 1138 (FIG. 15) have a second length that is less than the first length of the arms 1124. The fixation structure 1130 is accordingly less flexible than the arms 1124. As a result, the fixation structure 1130 is able to press outwardly against the native annulus with sufficient force to secure the device 1100 to the native annulus, while the arms 1124 are sufficiently flexible to fold inwardly when the device is recaptured in a delivery device.


In the embodiment illustrated in FIGS. 15-17, the arms 1124 and the structural elements 1137 are configured such that each arm 1124 and the two structural elements 1137 extending from each arm 1124 formed a Y-shaped portion 1142 (FIG. 17) of the anchoring member 1120. Additionally, the right-hand structural element 1137 of each Y-shaped portion 1142 is coupled directly to a left-hand structural element 1137 of an immediately adjacent Y-shaped portion 1142. The Y-shaped portions 1142 and the smooth bends 1140 are expected to further enhance the ability to slide the housing 1702 along the arms 1124 and the fixation structure 1130 during recapture.



FIG. 18 is a side view and FIG. 19 is a bottom isometric view of a prosthetic heart valve device (“device”) 1200 in accordance with another embodiment of the present technology. The device 1200 is shown without the extension member 1170 (FIGS. 15-17), but the device 1200 can further include the extension member 1170 described above. The device 1200 further includes extended connectors 1210 projecting from the base 1122 of the anchoring member 1120. Alternatively, the extended connectors 1210 can extend from the valve support 1110 (FIGS. 13A-17) in addition to or in lieu of extending from the base 1122 of the anchoring member 1120. The extended connectors 1210 can include a first strut 1212a attached to one portion of the base 1122 and a second strut 1212b attached to another portion of the base 1122. The first and second struts 1212a-b are configured to form a V-shaped structure in which they extend toward each other in a downstream direction and are connected to each other at the bottom of the V-shaped structure. The V-shaped structure of the first and second struts 1212a-b causes the extension connector 1210 to elongate when the device 1200 is in a low-profile configuration within the capsule 1700 (FIG. 14A) during delivery or partial deployment. When the device 1200 is fully released from the capsule 1700 (FIG. 14A) the extension connectors 1210 foreshorten to avoid interfering with blood flow along the left ventricular outflow tract.


The extended connectors 1210 further include an attachment element 1214 configured to releasably engage a delivery device. The attachment element 1214 can be a T-bar or other element that prevents the device 1200 from being released from the capsule 1700 (FIG. 14A) of a delivery device until desired. For example, a T-bar type attachment element 1214 can prevent the device 1200 from moving axially during deployment or partial deployment until the housing 1702 (FIG. 14A) moves beyond the portion of the delivery device engaged with the attachment elements 1214. This causes the attachment elements 1214 to disengage from the capsule 1700 (FIG. 14A) as the outflow region of the valve support 1110 and the base 1122 of the anchoring member 1120 fully expand to allow for full deployment of the device 1200.



FIG. 20 is a side view and FIG. 21 is a bottom isometric view of the device 1200 in a partially deployed state in which the device 1200 is still capable of being recaptured in the housing 1702 of the delivery device 1700. Referring to FIG. 20, the device 1200 is partially deployed with the fixation structure 1130 substantially expanded but the attachment elements 1214 (FIG. 18) still retained within the capsule 1700. This is useful for determining the accuracy of the position of the device 1200 during implantation while retaining the ability to recapture the device 1200 in case it needs to be repositioned or removed from the patient. In this state of partial deployment, the elongated first and second struts 1212a-b of the extended connectors 1210 space the base 1122 of the anchoring member 1120 and the outflow region of the valve support 1110 (FIG. 13A) apart from the edge 1708 of the capsule 1700 by a gap G.


Referring to FIG. 21, the gap G enables blood to flow through the prosthetic valve assembly 1150 while the device 1200 is only partially deployed. As a result, the device 1200 can be partially deployed to determine (a) whether the device 1200 is positioned correctly with respect to the native heart valve anatomy and (b) whether proper blood flow passes through the prosthetic valve assembly 1150 while the device 1200 is still retained by the delivery system 1700. As such, the device 1200 can be recaptured if it is not in the desired location and/or if the prosthetic valve is not functioning properly. This additional functionality is expected to significantly enhance the ability to properly position the device 1200 and assess, in vivo, whether the device 1200 will operate as intended, while retaining the ability to reposition the device 1200 for redeployment or remove the device 1200 from the patient.



FIG. 22 is an isometric view of a valve support 1300 in accordance with an embodiment of the present technology. The valve support 1300 can be an embodiment of the valve support 1110 described above with respect to FIGS. 13A-21. The valve support 1300 has an outflow region 1302, an inflow region 1304, a first row 1310 of first hexagonal cells 1312 at the outflow region 1302, and a second row 1320 of second hexagonal cells 1322 at the inflow region 1304. For purposes of illustration, the valve support shown in FIG. 22 is inverted compared to the valve support 1110 shown in FIGS. 13A-21 such that the blood flows through the valve support 1300 in the direction of arrow BF. In mitral valve applications, the valve support 1300 would be positioned within the anchoring member 1120 (FIG. 13A) such that the inflow region 1304 would correspond to orientation of the inflow region 1112 in FIG. 13A and the outflow region 1302 would correspond to the orientation of the outflow region 1114 in FIG. 13A.


Each of the first hexagonal cells 1312 includes a pair of first longitudinal supports 1314, a downstream apex 1315, and an upstream apex 1316. Each of the second hexagonal cells 1322 can include a pair of second longitudinal supports 1324, a downstream apex 1325, and an upstream apex 1326. The first and second rows 1310 and 1312 of the first and second hexagonal cells 1312 and 1322 are directly adjacent to each other. In the illustrated embodiment, the first longitudinal supports 1314 extend directly from the downstream apexes 1325 of the second hexagonal cells 1322, and the second longitudinal supports 1324 extend directly from the upstream apexes 1316 of the first hexagonal cells 1312. As a result, the first hexagonal cells 1312 are offset from the second hexagonal cells 1322 around the circumference of the valve support 1300 by half of the cell width.


In the embodiment illustrated in FIG. 22, the valve support 1300 includes a plurality of first struts 1331 at the outflow region 1302, a plurality of second struts 1332 at the inflow region 1304, and a plurality of third struts 1333 between the first and second struts 1331 and 1332. Each of the first struts 1331 extends from a downstream end of the first longitudinal supports 1314, and pairs of the first struts 1331 are connected together to form first downstream V-struts defining the downstream apexes 1315 of the first hexagonal cells 1312. In a related sense, each of the second struts 1332 extends from an upstream end of the second longitudinal supports 1324, and pairs of the second struts 1332 are connected together to form second upstream V-struts defining the upstream apexes 1326 of the second hexagonal cells 1322. Each of the third struts 1333 has a downstream end connected to an upstream end of the first longitudinal supports 1314, and each of the third struts 1333 has an upstream end connected to a downstream end of one of the second longitudinal supports 1324. The downstream ends of the third struts 1333 accordingly define a second downstream V-strut arrangement that forms the downstream apexes 1325 of the second hexagonal cells 1322, and the upstream ends of the third struts 1333 define a first upstream V-strut arrangement that forms the upstream apexes 1316 of the first hexagonal cells 1312. The third struts 1333, therefore, define both the first upstream V-struts of the first hexagonal cells 1312 and the second downstream V-struts of the second hexagonal cells 1322.


The first longitudinal supports 1314 can include a plurality of holes 1336 through which sutures can pass to attach a prosthetic valve assembly and/or a sealing member. In the embodiment illustrated in FIG. 22, only the first longitudinal supports 1314 have holes 1336. However, in other embodiments the second longitudinal supports 1324 can also include holes either in addition to or in lieu of the holes 1336 in the first longitudinal supports 1314.



FIG. 23 is a side view and FIG. 24 is a bottom isometric view of the valve support 1300 with a first sealing member 1162 attached to the valve support 1300 and a prosthetic valve 1150 within the valve support 1300. The first sealing member 1162 can be attached to the valve support 1300 by a plurality of sutures 1360 coupled to the first longitudinal supports 1314 and the second longitudinal supports 1324. At least some of the sutures 1360 coupled to the first longitudinal supports 1314 pass through the holes 1336 to further secure the first sealing member 1162 to the valve support 1300.


Referring to FIG. 24, the prosthetic valve 1150 can be attached to the first sealing member 1162 and/or the first longitudinal supports 1314 of the valve support 1300. For example, the commissure portions of the prosthetic valve 1150 can be aligned with the first longitudinal supports 1314, and the sutures 1360 can pass through both the commissure portions of the prosthetic valve 1150 and the first sealing member 1162 where the commissure portions of the prosthetic valve 1150 are aligned with a first longitudinal support 1314. The inflow portion of the prosthetic valve 1150 can be sewn to the first sealing member 1162.


The valve support 1300 illustrated in FIGS. 22-24 is expected to be well suited for use with the device 1200 described above with reference to FIGS. 18-21. More specifically, the first struts 1331 cooperate with the extended connectors 1210 (FIGS. 18-21) of the device 1200 to separate the outflow portion of the prosthetic valve 1150 from the capsule 1700 (FIGS. 12A and 12B) when the device 1200 is in a partially deployed state. The first struts 1331, for example, elongate when the valve support 1300 is not fully expanded (e.g., at least partially contained within the capsule 1700) and foreshorten when the valve support is fully expanded. This allows the outflow portion of the prosthetic valve 1150 to be spaced further apart from the capsule 1700 in a partially deployed state so that the prosthetic valve 1150 can at least partially function when the device 1200 (FIGS. 18-21) is in the partially deployed state. Therefore, the valve support 1300 is expected to enhance the ability to assess whether the prosthetic valve 1150 is fully operational in a partially deployed state.



FIGS. 25 and 26 are schematic side views of valve supports 1400 and 1500, respectively, in accordance with other embodiments of the present technology. Referring to FIG. 25, the valve support 1400 includes a first row 1410 of first of hexagonal cells 1412 and a second row 1420 of second hexagonal cells 1422. The valve 1400 can further include a first row 1430 of diamond-shaped cells extending from the first hexagonal cells 1412 and a second row 1440 of diamond-shaped cells extending from the second hexagonal cells 1422. The additional diamond-shaped cells elongate in the low-profile state, and thus they can further space the prosthetic valve 1150 (shown schematically) apart from a capsule of a delivery device. Referring to FIG. 26, the valve support 1500 includes a first row 1510 of first hexagonal cells 1512 at an outflow region 1502 and a second row 1520 of second hexagonal cells 1522 at an inflow region 1504. The valve support 1500 is shaped such that an intermediate region 1506 (between the inflow and outflow regions 1502 and 1504) has a smaller cross-sectional area than that of the outflow region 1502 and/or the inflow region 1504. As such, the first row 1510 of first hexagonal cells 1512 flares outwardly in the downstream direction and the second row 1520 of second hexagonal cells 1522 flares outwardly in the upstream direction.


EXAMPLES

Several aspects of the present technology are set forth in the following examples.


1. A system for delivering a prosthetic heart valve device into a heart of a patient, the system comprising:

    • an elongated catheter body; and
    • a delivery capsule carried by the elongated catheter body and configured to move between a delivery state for holding the prosthetic heart valve device and a deployment state for at least partially deploying the prosthetic heart valve device, wherein the delivery capsule comprises—
      • a first housing configured to contain at least a first portion of the prosthetic heart valve device;
      • a second housing slidably associated with at least a portion of the first housing, wherein the second housing is configured to contain a second portion of the prosthetic heart valve device,
      • wherein, during a first deployment stage, the first housing moves in a distal direction with respect to the second housing to release the first portion of the prosthetic heart valve device from the delivery capsule, and
      • wherein, during a second deployment stage, the second housing and the first housing together move in a distal direction to release the second portion of the prosthetic heart valve device from the delivery capsule.


2. The system of example 1 wherein the delivery capsule further comprises:

    • a first sealing member between a distal portion of the first housing and the second housing, wherein the first sealing member is slidable along the second housing;
    • a second sealing member between a proximal portion of the second housing and the first housing;
    • a first fluid chamber between the first and second sealing members; and
    • a second fluid chamber defined at least in part by an inner surface of the second housing,
    • wherein, during the first deployment stage, fluid is delivered to the first chamber to slide the first sealing member in the distal direction over the second housing, and
    • wherein, during the second deployment stage, fluid is delivered to the second chamber such that the first and second housings move together in the distal direction.


3. The system of example 2, further comprising a platform extending from the elongated catheter body into the second housing, wherein the platform includes a distal end portion slidably sealed against an inner wall of the second housing and defines a proximal end of the second fluid chamber.


4. The system of example 2 or 3 wherein the first sealing member is a first sleeve extending inwardly from the first housing, and the second sealing member is a second sleeve extending outwardly from the second housing.


5. The system of any one of examples 2-4 wherein, after the second deployment stage, the first fluid chamber is configured to be evacuated of fluid while the second fluid chamber remains pressurized with fluid such that the first housing moves in a proximal direction.


6. The system of any one of examples 2-5, further comprising:

    • a first fluid lumen extending through the elongated catheter body and in fluid communication with the first fluid chamber; and
    • a second fluid lumen extending through the elongated catheter body in fluid communication with the second fluid chamber.


7. The system of example 6 wherein the first fluid lumen passes through the second housing and into a port in the first housing, wherein the port is in fluid communication with the first fluid chamber.


8. The system of example 6 wherein second housing has an inner channel in a wall of the second housing, and wherein the inner channel is in fluid communication with the first fluid chamber and defines a portion of the first fluid lumen.


9. The system of any one of examples 1-8 wherein the delivery capsule has an overall length of at most 50 mm.


10. The system of any one of examples 1-9 wherein the delivery capsule has an overall length of at most 40 mm.


11. The system of any one of examples 1-10 wherein the first housing and the second housing each have a length of at most 30 mm.


12. The system of any one of examples 1-11, further comprising:

    • a first spring biasing the first housing toward the delivery state; and
    • a second spring biasing the second housing toward the delivery state.


13. The system of example 1 wherein the second housing includes an arched feature on an outer surface of the second housing and positioned between the first and second housings, wherein the system further comprises:

    • a first tether element attached to a first portion of the first housing, wherein the first tether element extends from the first housing, over a distal end portion of the second housing, into the second housing, and through the elongated catheter body;
    • a second tether element attached to a second portion of the first housing, wherein the second tether element extends in a proximal direction around the arched feature, over the distal end portion of the second housing, into the second housing, and through though the elongated catheter body,
    • wherein proximal retraction of the first tether element slides the first housing over the second housing in the distal direction to unsheathe at least a portion of the prosthetic heart valve device from the delivery capsule, and
    • wherein proximal retraction of the second tether element slides the first housing over the second housing in a proximal direction to resheathe the prosthetic heart valve device.


14. A system for delivering a prosthetic heart valve device into a heart of a patient, the system comprising:

    • an elongated catheter body; and
    • a delivery capsule carried by the elongated catheter body and configured to be hydraulically driven between a delivery state for holding the prosthetic heart valve device and a deployment state for at least partially deploying the prosthetic heart valve device, wherein the delivery capsule comprises—
      • a first housing configured to contain at least a first portion of the prosthetic heart valve device;
      • a second housing slidably disposed within at least a portion of the first housing, wherein the second housing is configured to contain a second portion of the prosthetic heart valve device;
      • a first fluid chamber defined at least in part by an inner surface of the first housing and an outer surface of the second housing; and a second fluid chamber defined at least in part by an inner surface of the second housing,
      • wherein, during a first deployment stage, the first fluid chamber is configured to receive fluid that moves the first housing in a distal direction over the second housing to release the first portion of the prosthetic heart valve device from the delivery capsule, and
      • wherein, during a second deployment stage, the second chamber is configured to receive fluid such that the first and second housings move together in the distal direction to release the second portion of the prosthetic heart valve device from the delivery capsule.


15. The system of example 14 wherein the delivery capsule further comprises:

    • a first sealing member between a distal portion of the first housing and the second housing, wherein the first sealing member is slidable along the second housing; and
    • a second sealing member between a proximal portion of the first housing and the second housing,
    • wherein the first fluid chamber extends between the first and second sealing members.


16. The system of example 14 or 15, further comprising a platform extending from the elongated catheter body into the second housing, wherein the platform includes a distal end portion slidably sealed against an inner wall of the second housing, and wherein the distal end portion of the platform defines a proximal end of the second fluid chamber.


17. The system of any one of examples 14-16 wherein, during a resheathing phase, the first fluid chamber is configured to be evacuated of fluid while the second fluid chamber remains pressurized with fluid to allow the first housing to slide in a proximal direction over the second housing.


18. The system of any one of examples 14-17, further comprising:

    • a first fluid lumen extending through the elongated catheter body and in fluid communication with the first fluid chamber; and
    • a second fluid lumen extending through the elongated catheter body in fluid communication with the second fluid chamber.


19. The system of example 18 wherein the first fluid lumen passes into the second housing, outside the first and second housings, and into a port in the first housing, wherein the port is in fluid communication with the first fluid chamber.


20. The system of example 18 wherein the first lumen is defined in part by an inner channel of the second housing.


21. The system of any one of examples 14-20 wherein the first and second housings each have a length of 20-30 mm.


22. The system of any one of examples 14-21, further comprising:

    • a first spring configured to urge the first housing toward the delivery state when the first fluid chamber is evacuated of fluid; and
    • a second spring configured to urge the second housing toward the delivery state when the second fluid chamber is evacuated of fluid.


23. A method for delivering a prosthetic heart valve device to a native mitral valve of a heart of a human patient, the method comprising:

    • positioning a delivery capsule at a distal portion of an elongated catheter body within the heart, the delivery capsule carrying the prosthetic heart valve device;
    • delivering fluid to a first fluid chamber of the delivery capsule to slide a first housing in a distal direction over a portion of a second housing, thereby releasing a first portion of the prosthetic heart valve device from the delivery capsule; and
    • delivering fluid to a second fluid chamber of the delivery capsule to move the second housing together with the first housing in the distal direction to release a second portion of the prosthetic heart valve device from the delivery capsule.


24. The method of example 23, further comprising evacuating fluid from the first fluid chamber while the second fluid chamber remains pressurized with fluid such that the first housing slides in a proximal direction over the second housing.


25. The method of example 23 or 24 wherein positioning the delivery capsule within the heart comprises delivering the delivery capsule across an atrial septum of the heart to a left atrium.


26. A method for delivering a prosthetic heart valve device to a native mitral valve of a heart of a human patient, the method comprising:

    • delivering a delivery capsule at a distal portion of an elongated catheter body across an atrial septum of the heart to a left atrium of the heart, the delivery capsule having a first housing and a second housing slidably disposed within at least a portion of the first housing, wherein the first and second housing contain the prosthetic heart valve device in a delivery state;
    • positioning the delivery capsule between native leaflets of the native mitral valve;
    • moving the first housing in a distal direction over the second housing to release a first portion of the prosthetic heart valve device from the delivery capsule; and
    • moving a second housing in the distal direction to release a second portion of the prosthetic heart valve device from the delivery capsule.


CONCLUSION

The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology as those skilled in the relevant art will recognize. For example, although steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.


From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.


Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A system for delivering a prosthetic heart valve device into a heart of a patient, the system comprising: an elongated catheter body; anda delivery capsule carried by the elongated catheter body and configured to move between a delivery state for holding the prosthetic heart valve device and a deployment state for at least partially deploying the prosthetic heart valve device, wherein the delivery capsule comprises:a first housing configured to contain at least a first portion of the prosthetic heart valve device; anda second housing slidably associated with a portion of the first housing, wherein the second housing is configured to contain a second portion of the prosthetic heart valve device,wherein, during a first deployment stage, the first housing moves in a distal direction with respect to the second housing to release the first portion of the prosthetic heart valve device from the delivery capsule, andwherein, during a second deployment stage, the second housing and the first housing together move in a distal direction to release the second portion of the prosthetic heart valve device from the delivery capsule.
  • 2. The system of claim 1 wherein the delivery capsule further comprises: a first sealing member between a distal portion of the first housing and the second housing, wherein the first sealing member is slidable along the second housing;a second sealing member between a proximal portion of the second housing and the first housing;a first fluid chamber between the first and second sealing members; anda second fluid chamber defined at least in part by an inner surface of the second housing,wherein, during the first deployment stage, fluid is delivered to the first chamber to slide the first sealing member in the distal direction over the second housing, andwherein, during the second deployment stage, fluid is delivered to the second chamber such that the first and second housings move together in the distal direction.
  • 3. The system of claim 2, further comprising a platform extending from the elongated catheter body into the second housing, wherein the platform includes a distal end portion slidably sealed against an inner wall of the second housing and defines a proximal end of the second fluid chamber.
  • 4. The system of claim 2 wherein the first sealing member is a first sleeve extending inwardly from the first housing, and the second sealing member is a second sleeve extending outwardly from the second housing.
  • 5. The system of claim 2 wherein, after the second deployment stage, the first fluid chamber is configured to be evacuated of fluid while the second fluid chamber remains pressurized with fluid such that the first housing moves in a proximal direction.
  • 6. The system of claim 2, further comprising: a first fluid lumen extending through the elongated catheter body and in fluid communication with the first fluid chamber; anda second fluid lumen extending through the elongated catheter body in fluid communication with the second fluid chamber.
  • 7. The system of claim 6 wherein the first fluid lumen passes through the second housing and into a port in the first housing, wherein the port is in fluid communication with the first fluid chamber.
  • 8. The system of claim 6 wherein second housing has an inner channel in a wall of the second housing, and wherein the inner channel is in fluid communication with the first fluid chamber and defines a portion of the first fluid lumen.
  • 9. The system of claim 1 wherein the delivery capsule has an overall length of at most 50 mm.
  • 10. The system of claim 1 wherein the delivery capsule has an overall length of at most 40 mm.
  • 11. The system of claim 1 wherein the first housing and the second housing each have a length of at most 30 mm.
  • 12. The system of claim 1, further comprising: a first spring biasing the first housing toward the delivery state; anda second spring biasing the second housing toward the delivery state.
  • 13. The system of claim 1 wherein the second housing includes an arched feature on an outer surface of the second housing and positioned between the first and second housings, wherein the system further comprises: a first tether element attached to a first portion of the first housing, wherein the first tether element extends from the first housing, over a distal end portion of the second housing, into the second housing, and through the elongated catheter body;a second tether element attached to a second portion of the first housing, wherein the second tether element extends in a proximal direction around the arched feature, over the distal end portion of the second housing, into the second housing, and through though the elongated catheter body,wherein proximal retraction of the first tether element slides the first housing over the second housing in the distal direction to unsheathe at least a portion of the prosthetic heart valve device from the delivery capsule, andwherein proximal retraction of the second tether element slides the first housing over the second housing in a proximal direction to resheathe the prosthetic heart valve device.
  • 14. A system for delivering a prosthetic heart valve device into a heart of a patient, the system comprising: an elongated catheter body; anda delivery capsule carried by the elongated catheter body and configured to be hydraulically driven between a delivery state for holding the prosthetic heart valve device and a deployment state for at least partially deploying the prosthetic heart valve device, wherein the delivery capsule comprises:a first housing configured to contain at least a first portion of the prosthetic heart valve device;a second housing slidably disposed within at least a portion of the first housing, wherein the second housing is configured to contain a second portion of the prosthetic heart valve device;a first fluid chamber defined at least in part by an inner surface of the first housing and an outer surface of the second housing; anda second fluid chamber defined at least in part by an inner surface of the second housing,wherein, during a first deployment stage, the first fluid chamber is configured to receive fluid that moves the first housing in a distal direction over the second housing to release the first portion of the prosthetic heart valve device from the delivery capsule, andwherein, during a second deployment stage, the second chamber is configured to receive fluid such that the first and second housings move together in the distal direction to release the second portion of the prosthetic heart valve device from the delivery capsule.
  • 15. The system of claim 14 wherein the delivery capsule further comprises: a first sealing member between a distal portion of the first housing and the second housing, wherein the first sealing member is slidable along the second housing; anda second sealing member between a proximal portion of the first housing and the second housing,wherein the first fluid chamber extends between the first and second sealing members.
  • 16. The system of claim 14, further comprising a platform extending from the elongated catheter body into the second housing, wherein the platform includes a distal end portion slidably sealed against an inner wall of the second housing, and wherein the distal end portion of the platform defines a proximal end of the second fluid chamber.
  • 17. The system of claim 14 wherein, during a resheathing phase, the first fluid chamber is configured to be evacuated of fluid while the second fluid chamber remains pressurized with fluid to allow the first housing to slide in a proximal direction over the second housing.
  • 18. The system of claim 14, further comprising: a first fluid lumen extending through the elongated catheter body and in fluid communication with the first fluid chamber; anda second fluid lumen extending through the elongated catheter body in fluid communication with the second fluid chamber.
  • 19. The system of claim 18 wherein the first fluid lumen passes into the second housing, outside the first and second housings, and into a port in the first housing, wherein the port is in fluid communication with the first fluid chamber.
  • 20. The system of claim 18 wherein the first lumen is defined in part by an inner channel of the second housing.
  • 21. The system of claim 14 wherein the first and second housings each have a length of 20-30 mm.
  • 22. The system of claim 14, further comprising: a first spring configured to urge the first housing toward the delivery state when the first fluid chamber is evacuated of fluid; anda second spring configured to urge the second housing toward the delivery state when the second fluid chamber is evacuated of fluid.
US Referenced Citations (784)
Number Name Date Kind
3526219 Balamuth Sep 1970 A
3565062 Kuris Feb 1971 A
3589363 Banko et al. Jun 1971 A
3667474 Lapkin et al. Jun 1972 A
3823717 Pohlman et al. Jul 1974 A
3861391 Antonevich et al. Jan 1975 A
3896811 Storz Jul 1975 A
4042979 Angell Aug 1977 A
4188952 Loschilov et al. Feb 1980 A
4282882 Langham Aug 1981 A
4431006 Trimmer et al. Feb 1984 A
4445509 Auth May 1984 A
4484579 Meno et al. Nov 1984 A
4490859 Black et al. Jan 1985 A
4587958 Noguchi et al. May 1986 A
4589419 Laughlin et al. May 1986 A
4602911 Ahmadi et al. Jul 1986 A
4646736 Auth Mar 1987 A
4649922 Wiktor Mar 1987 A
4692139 Stiles Sep 1987 A
4747821 Kensey et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4777951 Cribier et al. Oct 1988 A
4787388 Hofmann Nov 1988 A
4796629 Grayzel Jan 1989 A
4808153 Parisi Feb 1989 A
4819751 Shimada et al. Apr 1989 A
4841977 Griffith et al. Jun 1989 A
4870953 DonMicheal et al. Oct 1989 A
4878495 Grayzel Nov 1989 A
4898575 Fischell et al. Feb 1990 A
4909252 Goldberger Mar 1990 A
4919133 Chiang Apr 1990 A
4920954 Alliger et al. May 1990 A
4936281 Stasz Jun 1990 A
4960411 Buchbinder Oct 1990 A
4986830 Owens et al. Jan 1991 A
4990134 Auth Feb 1991 A
5058570 Idemoto et al. Oct 1991 A
5069664 Guess et al. Dec 1991 A
5076276 Sakurai et al. Dec 1991 A
5106302 Farzin-Nia et al. Apr 1992 A
5248296 Alliger Sep 1993 A
5267954 Nita Dec 1993 A
5269291 Carter Dec 1993 A
5295958 Shturman Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
5314407 Auth et al. May 1994 A
5318014 Carter Jun 1994 A
5332402 Teitelbaum Jul 1994 A
5344426 Lau et al. Sep 1994 A
5352199 Tower Oct 1994 A
5356418 Shturman Oct 1994 A
5397293 Alliger et al. Mar 1995 A
5411025 Webster, Jr. May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5489297 Duran Feb 1996 A
5584879 Reimold et al. Dec 1996 A
5609151 Mulier et al. Mar 1997 A
5626603 Venturelli et al. May 1997 A
5656036 Palmaz Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5681336 Clement et al. Oct 1997 A
5695507 Auth et al. Dec 1997 A
5725494 Brisken Mar 1998 A
5782931 Yang et al. Jul 1998 A
5817101 Fiedler Oct 1998 A
5827229 Auth et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5853422 Huebsch et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5868781 Killion Feb 1999 A
5873811 Wang et al. Feb 1999 A
5904679 Clayman May 1999 A
5910129 Koblish et al. Jun 1999 A
5957882 Nita et al. Sep 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5989208 Nita Nov 1999 A
5989280 Euteneuer Nov 1999 A
6047700 Eggers et al. Apr 2000 A
6056759 Fiedler May 2000 A
6085754 Alferness et al. Jul 2000 A
6113608 Monroe et al. Sep 2000 A
RE36939 Tachibana et al. Oct 2000 E
6129734 Shturman et al. Oct 2000 A
6132444 Shturman et al. Oct 2000 A
6159139 Chiu Dec 2000 A
6168579 Tsugita Jan 2001 B1
6217595 Shturman et al. Apr 2001 B1
6254635 Schroeder et al. Jul 2001 B1
6295712 Shturman et al. Oct 2001 B1
6306414 Koike Oct 2001 B1
6321109 Ben-Haim et al. Nov 2001 B2
6402679 Mortier et al. Jun 2002 B1
6423032 Parodi Jul 2002 B2
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6494890 Shturman et al. Dec 2002 B1
6494891 Cornish et al. Dec 2002 B1
6505080 Sutton Jan 2003 B1
6514261 Randall et al. Feb 2003 B1
6530952 Vesely Mar 2003 B2
6540782 Snyders Apr 2003 B1
6562067 Mathis May 2003 B2
6565588 Clement et al. May 2003 B1
6569196 Vesely May 2003 B1
6579308 Jansen et al. Jun 2003 B1
6582460 Cryer Jun 2003 B1
6582462 Andersen et al. Jun 2003 B1
6595912 Lau et al. Jul 2003 B2
6605109 Fiedler Aug 2003 B2
6616689 Ainsworth et al. Sep 2003 B1
6623452 Chien et al. Sep 2003 B2
6638288 Shturman et al. Oct 2003 B1
6648854 Patterson et al. Nov 2003 B1
6689086 Nita et al. Feb 2004 B1
6702748 Nita et al. Mar 2004 B1
6730121 Ortiz et al. May 2004 B2
6746463 Schwartz Jun 2004 B1
6811801 Nguyen et al. Nov 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6843797 Nash et al. Jan 2005 B2
6852118 Shturman et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6869439 White et al. Mar 2005 B2
6951571 Srivastava Oct 2005 B1
6986775 Morales et al. Jan 2006 B2
7018404 Holmberg et al. Mar 2006 B2
7052487 Cohn et al. May 2006 B2
7077861 Spence Jul 2006 B2
7125420 Rourke et al. Oct 2006 B2
7163552 Diaz Jan 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7261732 Justino Aug 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7381218 Schreck Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7442204 Schwammenthal et al. Oct 2008 B2
7473275 Marquez Jan 2009 B2
7510575 Spenser et al. Mar 2009 B2
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7803168 Gifford et al. Sep 2010 B2
7857845 Stacchino et al. Dec 2010 B2
7896915 Guyenot et al. Mar 2011 B2
7942928 Webler et al. May 2011 B2
7985238 Balgobin et al. Jul 2011 B2
8002826 Seguin Aug 2011 B2
8052750 Tuval et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8114154 Righini Feb 2012 B2
8252051 Chau et al. Aug 2012 B2
8398704 Straubinger et al. Mar 2013 B2
8403981 Forster et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414643 Tuval et al. Apr 2013 B2
8449599 Chau et al. May 2013 B2
8496671 Hausen Jul 2013 B1
8512252 Ludomirsky et al. Aug 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523883 Saadat Sep 2013 B2
8532352 Ionasec et al. Sep 2013 B2
8540767 Zhang Sep 2013 B2
8545551 Loulmet Oct 2013 B2
8551161 Dolan Oct 2013 B2
8579788 Orejola Nov 2013 B2
8579964 Lane et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8597348 Rowe et al. Dec 2013 B2
8608796 Matheny Dec 2013 B2
8608797 Gross et al. Dec 2013 B2
8623077 Cohn Jan 2014 B2
8628566 Eberhardt et al. Jan 2014 B2
8632585 Seguin et al. Jan 2014 B2
8632586 Spenser et al. Jan 2014 B2
8634935 Gaudiani Jan 2014 B2
8647254 Callas et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8652204 Quill et al. Feb 2014 B2
8657872 Seguin Feb 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8673001 Cartledge et al. Mar 2014 B2
8679176 Matheny Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8688234 Zhu et al. Apr 2014 B2
8690858 Machold et al. Apr 2014 B2
8709074 Solem et al. Apr 2014 B2
8712133 Guhring et al. Apr 2014 B2
8715160 Raman et al. May 2014 B2
8721665 Oz et al. May 2014 B2
8721718 Kassab May 2014 B2
8740918 Seguin Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8758431 Orlov et al. Jun 2014 B2
8758432 Solem Jun 2014 B2
8771292 Allen et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8771346 Tuval et al. Jul 2014 B2
8777991 Zarbatany et al. Jul 2014 B2
8778016 Janovsky et al. Jul 2014 B2
8781580 Hedberg et al. Jul 2014 B2
8784482 Randert et al. Jul 2014 B2
8792699 Guetter et al. Jul 2014 B2
8795356 Quadri et al. Aug 2014 B2
8801779 Seguin et al. Aug 2014 B2
8808356 Braido et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8812431 Voigt et al. Aug 2014 B2
8828043 Chambers Sep 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852213 Gammie et al. Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858622 Machold et al. Oct 2014 B2
8859724 Meier et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870936 Rowe Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8894702 Quadri et al. Nov 2014 B2
8900214 Nance et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926694 Costello Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8961597 Subramanian et al. Feb 2015 B2
8968393 Rothstein Mar 2015 B2
8968395 Hauser et al. Mar 2015 B2
8974445 Warnking et al. Mar 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8979923 Spence et al. Mar 2015 B2
8986370 Annest Mar 2015 B2
8986376 Solem Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9011522 Annest Apr 2015 B2
9011523 Seguin Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
9023098 Kuehn May 2015 B2
9023100 Quadri et al. May 2015 B2
9023101 Krahbichler May 2015 B2
9050188 Schweich, Jr. et al. Jun 2015 B2
9066800 Clague et al. Jun 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9119713 Board et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9138313 McGuckin, Jr. et al. Sep 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9192466 Kovalsky et al. Nov 2015 B2
9192471 Bolling Nov 2015 B2
9226825 Starksen et al. Jan 2016 B2
9232942 Seguin et al. Jan 2016 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241790 Lane et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9254192 Lutter et al. Feb 2016 B2
9259317 Wilson et al. Feb 2016 B2
9271833 Kim et al. Mar 2016 B2
9289291 Gorman, III et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9289927 Weber et al. Mar 2016 B2
9295547 Costello et al. Mar 2016 B2
9301836 Buchbinder et al. Apr 2016 B2
9308087 Lane et al. Apr 2016 B2
9326850 Venkatasubramanian May 2016 B2
9326852 Spenser May 2016 B2
9333073 Quadri et al. May 2016 B2
9333074 Quadri et al. May 2016 B2
9339378 Quadri et al. May 2016 B2
9339379 Quadri et al. May 2016 B2
9339380 Quadri et al. May 2016 B2
9339382 Tabor et al. May 2016 B2
9358108 Bortlein et al. Jun 2016 B2
9387075 Bortlein et al. Jul 2016 B2
9387078 Gross et al. Jul 2016 B2
9393111 Ma et al. Jul 2016 B2
9425916 Nakao et al. Aug 2016 B2
9579198 Deem et al. Feb 2017 B2
9629719 Rothstein et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9681951 Ratz et al. Jun 2017 B2
9687342 Figulla et al. Jun 2017 B2
9687343 Bortlein et al. Jun 2017 B2
9693859 Braido et al. Jul 2017 B2
9693862 Campbell et al. Jul 2017 B2
9694121 Alexander et al. Jul 2017 B2
9700409 Braido et al. Jul 2017 B2
9700411 Klima et al. Jul 2017 B2
9730791 Ratz et al. Aug 2017 B2
9730794 Carpentier et al. Aug 2017 B2
9750605 Ganesan et al. Sep 2017 B2
9750606 Ganesan et al. Sep 2017 B2
9750607 Ganesan et al. Sep 2017 B2
9763657 Hacohen et al. Sep 2017 B2
9763658 Eigler et al. Sep 2017 B2
9763782 Solem et al. Sep 2017 B2
9770328 Macoviak Sep 2017 B2
9788931 Giordano et al. Oct 2017 B2
9801717 Edquist et al. Oct 2017 B2
9827092 Vidlund et al. Nov 2017 B2
9827101 Solem et al. Nov 2017 B2
9833313 Board et al. Dec 2017 B2
9833315 Vidlund et al. Dec 2017 B2
9839511 Ma et al. Dec 2017 B2
9844435 Eidenschink Dec 2017 B2
9848880 Coleman et al. Dec 2017 B2
9848983 Lashinski et al. Dec 2017 B2
9861477 Backus et al. Jan 2018 B2
9861480 Zakai et al. Jan 2018 B2
9968453 Vola et al. May 2018 B2
10258468 Deem et al. Apr 2019 B2
20010021872 Bailey et al. Sep 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020007219 Merrill et al. Jan 2002 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020072792 Burgermeister et al. Jun 2002 A1
20020077627 Johnson et al. Jun 2002 A1
20020082637 Lumauig Jun 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20030120340 Liska et al. Jun 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20040006358 Wulfman et al. Jan 2004 A1
20040039412 Isshiki et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040057955 O'Brien et al. Mar 2004 A1
20040082910 Constantz et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040092989 Wilson et al. May 2004 A1
20040106989 Wilson et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122510 Sarac Jun 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040199191 Schwartz Oct 2004 A1
20040230117 Tosaya et al. Nov 2004 A1
20040230212 Wulfman Nov 2004 A1
20040230213 Wulfman et al. Nov 2004 A1
20040243162 Wulfman et al. Dec 2004 A1
20050007219 Ma et al. Jan 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137700 Spence et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050267523 Devellian et al. Dec 2005 A1
20060058872 Salahieh et al. Mar 2006 A1
20060106456 Machold et al. May 2006 A9
20060142833 Von Oepen et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070056346 Spenser et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070073391 Bourang et al. Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070173932 Cali et al. Jul 2007 A1
20070203561 Forster et al. Aug 2007 A1
20080071369 Tuval et al. Mar 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080103586 Styrc et al. May 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234728 Starksen et al. Sep 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080243246 Ryan et al. Oct 2008 A1
20090024137 Chuter et al. Jan 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090093670 Annest et al. Apr 2009 A1
20090157174 Yoganathan et al. Jun 2009 A1
20090164006 Seguin et al. Jun 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090259292 Bonhoeffer Oct 2009 A1
20090259306 Rowe Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281609 Benichou et al. Nov 2009 A1
20090281618 Hill et al. Nov 2009 A1
20090292350 Eberhardt et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090319038 Gurskis et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100030330 Bobo et al. Feb 2010 A1
20100035703 Ishikawa et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100076548 Konno Mar 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100121436 Tuval et al. May 2010 A1
20100160931 Karpiel et al. Jun 2010 A1
20100185275 Richter et al. Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249915 Zhang Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100324554 Gifford et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015722 Hauser et al. Jan 2011 A1
20110022166 Dahlgren et al. Jan 2011 A1
20110029071 Zlotnick et al. Feb 2011 A1
20110029072 Gabbay Feb 2011 A1
20110040374 Goetz et al. Feb 2011 A1
20110040375 Letac et al. Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137409 Yang et al. Jun 2011 A1
20110137410 Hacohen Jun 2011 A1
20110153008 Marchand et al. Jun 2011 A1
20110172784 Richter et al. Jul 2011 A1
20110184512 Webler et al. Jul 2011 A1
20110201874 Birk et al. Aug 2011 A1
20110208293 Tabor Aug 2011 A1
20110224785 Hacohen Sep 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20120022639 Hacohen et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120053680 Bolling et al. Mar 2012 A1
20120053682 Kovalsky et al. Mar 2012 A1
20120078347 Braido et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179239 Quadri Jul 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20130035628 Garrison et al. Feb 2013 A1
20130138090 Fargahi May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197354 Maschke et al. Aug 2013 A1
20130197630 Azarnoush Aug 2013 A1
20130204356 Dwork et al. Aug 2013 A1
20130204358 Matheny Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231735 Deem Sep 2013 A1
20130238089 Lichtenstein et al. Sep 2013 A1
20130244927 Lal et al. Sep 2013 A1
20130253641 Lattouf Sep 2013 A1
20130253642 Brecker Sep 2013 A1
20130253643 Rolando et al. Sep 2013 A1
20130259337 Guhring et al. Oct 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Clague et al. Oct 2013 A1
20130261739 Kuehn Oct 2013 A1
20130261741 Accola Oct 2013 A1
20130268066 Rowe Oct 2013 A1
20130274870 Lombardi et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130282060 Tuval Oct 2013 A1
20130282110 Schweich, Jr. et al. Oct 2013 A1
20130289642 Hedberg et al. Oct 2013 A1
20130289717 Solem Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130296851 Boronyak et al. Nov 2013 A1
20130296999 Burriesci et al. Nov 2013 A1
20130304180 Green et al. Nov 2013 A1
20130304181 Green Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304198 Solem Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130309292 Andersen Nov 2013 A1
20130310436 Lowes et al. Nov 2013 A1
20130310925 Eliasen et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130325114 McLean et al. Dec 2013 A1
20130331864 Jelich et al. Dec 2013 A1
20130338684 Hausen Dec 2013 A1
20130338763 Rowe et al. Dec 2013 A1
20130345797 Dahlgren et al. Dec 2013 A1
20130345803 Bergheim, III Dec 2013 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140018906 Rafiee Jan 2014 A1
20140018913 Cartledge et al. Jan 2014 A1
20140023261 Watanabe et al. Jan 2014 A1
20140025164 Montorfano et al. Jan 2014 A1
20140031928 Murphy et al. Jan 2014 A1
20140046219 Sauter et al. Feb 2014 A1
20140046436 Kheradvar Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052240 Zhang Feb 2014 A1
20140056906 Yue et al. Feb 2014 A1
20140066895 Kipperman Mar 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140067052 Chau et al. Mar 2014 A1
20140067054 Chau et al. Mar 2014 A1
20140088071 Nakai et al. Mar 2014 A1
20140088680 Costello et al. Mar 2014 A1
20140088693 Seguin et al. Mar 2014 A1
20140088695 Figulla et al. Mar 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140107775 Hjelle et al. Apr 2014 A1
20140114404 Gammie et al. Apr 2014 A1
20140114407 Rajamannan Apr 2014 A1
20140121763 Duffy et al. May 2014 A1
20140128965 Rafiee May 2014 A1
20140135913 Lichtenstein et al. May 2014 A1
20140163652 Witzel et al. Jun 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172076 Jonsson et al. Jun 2014 A1
20140172084 Callas et al. Jun 2014 A1
20140172085 Quadri et al. Jun 2014 A1
20140172086 Quadri et al. Jun 2014 A1
20140179993 Alexander et al. Jun 2014 A1
20140180401 Quill et al. Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194920 Krahbichler Jul 2014 A1
20140194969 Headley Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140200397 Raman et al. Jul 2014 A1
20140200649 Essinger Jul 2014 A1
20140200657 Maurer et al. Jul 2014 A1
20140200662 Eftel et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140219524 Takeguchi et al. Aug 2014 A1
20140222040 Park et al. Aug 2014 A1
20140222135 Forster et al. Aug 2014 A1
20140222138 Machold et al. Aug 2014 A1
20140225946 Quinn et al. Aug 2014 A1
20140228942 Krahbichler Aug 2014 A1
20140228946 Chau et al. Aug 2014 A1
20140242056 Karandikar et al. Aug 2014 A1
20140242086 Lal et al. Aug 2014 A1
20140243560 Lorenz et al. Aug 2014 A1
20140243860 Morris et al. Aug 2014 A1
20140243954 Shannon Aug 2014 A1
20140243964 Venkatasubramanian Aug 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140257101 Gaudiani Sep 2014 A1
20140257466 Board et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257473 Rajamannan Sep 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276395 Wilson et al. Sep 2014 A1
20140276609 Magee et al. Sep 2014 A1
20140276782 Paskar Sep 2014 A1
20140276971 Kovach Sep 2014 A1
20140277119 Akpinar Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277404 Wilson et al. Sep 2014 A1
20140277405 Wilson et al. Sep 2014 A1
20140277406 Arcidi Sep 2014 A1
20140277407 Dale et al. Sep 2014 A1
20140277408 Folan Sep 2014 A1
20140277409 Bortlein et al. Sep 2014 A1
20140277410 Bortlein et al. Sep 2014 A1
20140277411 Bortlein et al. Sep 2014 A1
20140277412 Bortlein et al. Sep 2014 A1
20140277420 Migliazza et al. Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140288480 Zimmerman et al. Sep 2014 A1
20140296878 Oz et al. Oct 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140303721 Fung et al. Oct 2014 A1
20140309727 Lamelas et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140309731 Quadri et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140358222 Gorman, III et al. Dec 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140371843 Wilson et al. Dec 2014 A1
20140371844 Dale et al. Dec 2014 A1
20140371846 Wilson et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150004165 Yue et al. Jan 2015 A1
20150005874 Vidlund et al. Jan 2015 A1
20150005875 Tuval et al. Jan 2015 A1
20150012069 Puskas Jan 2015 A1
20150018353 Kim et al. Jan 2015 A1
20150018940 Quill et al. Jan 2015 A1
20150025311 Kadan et al. Jan 2015 A1
20150025623 Granada et al. Jan 2015 A1
20150032127 Gammie et al. Jan 2015 A1
20150045878 Rowe Feb 2015 A1
20150057738 Hepke et al. Feb 2015 A1
20150066138 Alexander et al. Mar 2015 A1
20150066140 Quadri et al. Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150094803 Navia Apr 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150112427 Schweich, Jr. et al. Apr 2015 A1
20150112429 Khairkhahan et al. Apr 2015 A1
20150112433 Schweich, Jr. et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150119981 Khairkhahan et al. Apr 2015 A1
20150119982 Quill et al. Apr 2015 A1
20150127091 Cecere et al. May 2015 A1
20150127096 Rowe et al. May 2015 A1
20150134055 Spence et al. May 2015 A1
20150139911 Santamore et al. May 2015 A1
20150141855 Inoue May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142105 Bolling et al. May 2015 A1
20150150678 Brecker Jun 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150157459 Macoviak et al. Jun 2015 A1
20150164637 Khairkhahan et al. Jun 2015 A1
20150164639 Starksen et al. Jun 2015 A1
20150164641 Annest Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150173898 Drasler et al. Jun 2015 A1
20150173900 Hauser et al. Jun 2015 A1
20150190229 Seguin Jul 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150202043 Zakai et al. Jul 2015 A1
20150209137 Quadri et al. Jul 2015 A1
20150209139 Granada et al. Jul 2015 A1
20150216655 Lane et al. Aug 2015 A1
20150216661 Hacohen et al. Aug 2015 A1
20150223802 Tegzes Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150223935 Subramanian et al. Aug 2015 A1
20150230920 Alfieri et al. Aug 2015 A1
20150230921 Chau et al. Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150238314 Bortlein et al. Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150250590 Gries et al. Sep 2015 A1
20150257877 Hernandez Sep 2015 A1
20150257878 Lane et al. Sep 2015 A1
20150257879 Bortlein et al. Sep 2015 A1
20150257881 Bortlein et al. Sep 2015 A1
20150257882 Bortlein et al. Sep 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150272737 Dale et al. Oct 2015 A1
20150305861 Annest Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150313739 Hummen et al. Nov 2015 A1
20150320553 Chau et al. Nov 2015 A1
20150327999 Board et al. Nov 2015 A1
20150328000 Ratz et al. Nov 2015 A1
20150342733 Alkhatib et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20150351908 Keranen et al. Dec 2015 A1
20150359628 Keranen Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20150359631 Sheahan et al. Dec 2015 A1
20150366666 Khairkhahan et al. Dec 2015 A1
20150374495 Ruyra Baliarda et al. Dec 2015 A1
20160000562 Siegel Jan 2016 A1
20160000564 Buchibnder et al. Jan 2016 A1
20160000983 Mohl et al. Jan 2016 A1
20160008129 Siegel Jan 2016 A1
20160015513 Lashinski et al. Jan 2016 A1
20160015514 Lashinski et al. Jan 2016 A1
20160015515 Lashinski et al. Jan 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160038246 Wang et al. Feb 2016 A1
20160038280 Morriss et al. Feb 2016 A1
20160038283 Divekar et al. Feb 2016 A1
20160038286 Yellin et al. Feb 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106539 Buchbinder et al. Apr 2016 A1
20160113764 Sheahan et al. Apr 2016 A1
20160113765 Ganesan et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160120643 Kupumbati May 2016 A1
20160143730 Kheradvar May 2016 A1
20160151154 Gorman, III et al. Jun 2016 A1
20160151156 Seguin et al. Jun 2016 A1
20160151552 Solem Jun 2016 A1
20160157999 Lane et al. Jun 2016 A1
20160158000 Granada et al. Jun 2016 A1
20160158001 Wallace et al. Jun 2016 A1
20160158002 Wallace et al. Jun 2016 A1
20160158003 Wallace et al. Jun 2016 A1
20160184095 Spence et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160206424 Al-Jilaihawi et al. Jul 2016 A1
20160262881 Schankereli et al. Sep 2016 A1
20160317290 Chau et al. Nov 2016 A1
20170079790 Vidlund et al. Mar 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170100250 Marsot et al. Apr 2017 A1
20170119526 Luong et al. May 2017 A1
20170128198 Cartledge et al. May 2017 A1
20170128205 Tamir et al. May 2017 A1
20170128206 Rafiee et al. May 2017 A1
20170128208 Christianson et al. May 2017 A1
20170156860 Lashinski Jun 2017 A1
20170165054 Benson et al. Jun 2017 A1
20170165055 Hauser et al. Jun 2017 A1
20170165064 Nyuli Jun 2017 A1
20170172737 Kuetting et al. Jun 2017 A1
20170181851 Annest Jun 2017 A1
20170189177 Schweich, Jr. et al. Jul 2017 A1
20170189179 Ratz et al. Jul 2017 A1
20170189180 Alkhatib Jul 2017 A1
20170189181 Alkhatib et al. Jul 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170231762 Quadri et al. Aug 2017 A1
20170231763 Yellin et al. Aug 2017 A1
20170258585 Marquez et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
20170281345 Yang et al. Oct 2017 A1
20170290659 Ulmer et al. Oct 2017 A1
20170296338 Cambell et al. Oct 2017 A1
20170296339 Thambar et al. Oct 2017 A1
20170319333 Tegels et al. Nov 2017 A1
20170325842 Siegel Nov 2017 A1
20170325941 Wallace et al. Nov 2017 A1
20170325945 Dale et al. Nov 2017 A1
20170325948 Wallace et al. Nov 2017 A1
20170325949 Rodgers et al. Nov 2017 A1
20170325953 Klima et al. Nov 2017 A1
20170325954 Perszyk Nov 2017 A1
20170333186 Spargias Nov 2017 A1
20170333188 Carpentier et al. Nov 2017 A1
20170340440 Ratz et al. Nov 2017 A1
20170348097 Taft et al. Dec 2017 A1
20170348098 Rowe et al. Dec 2017 A1
20170348100 Lane et al. Dec 2017 A1
20170354496 Quadri et al. Dec 2017 A1
20170354497 Quadri et al. Dec 2017 A1
20170354499 Granada et al. Dec 2017 A1
20170360426 Hacohen et al. Dec 2017 A1
20170360549 Lashinski et al. Dec 2017 A1
20170360558 Ma Dec 2017 A1
20170360585 White Dec 2017 A1
20170361065 Legaspi et al. Dec 2017 A1
Foreign Referenced Citations (369)
Number Date Country
1440261 Sep 2003 CN
101076290 Nov 2007 CN
101291637 Oct 2008 CN
103491900 Jan 2014 CN
19605042 Jan 1998 DE
102006052564 Dec 2007 DE
186104 Jul 1986 EP
1512383 Mar 2005 EP
1545371 Jun 2005 EP
1551274 Jul 2005 EP
1629794 Mar 2006 EP
1646332 Apr 2006 EP
1702247 Sep 2006 EP
1734903 Dec 2006 EP
1891914 Feb 2008 EP
2026280 Feb 2009 EP
2037829 Mar 2009 EP
2081519 Jul 2009 EP
2111190 Oct 2009 EP
2142143 Jan 2010 EP
2167742 Mar 2010 EP
2278944 Feb 2011 EP
2306821 Apr 2011 EP
2327429 Jun 2011 EP
2400924 Jan 2012 EP
2400926 Jan 2012 EP
2410947 Feb 2012 EP
2416739 Feb 2012 EP
2419050 Feb 2012 EP
2444031 Apr 2012 EP
2488126 Aug 2012 EP
2509538 Oct 2012 EP
2522307 Nov 2012 EP
2549955 Jan 2013 EP
2549956 Jan 2013 EP
2566416 Mar 2013 EP
2586492 May 2013 EP
2618784 Jul 2013 EP
2623068 Aug 2013 EP
2626012 Aug 2013 EP
2626013 Aug 2013 EP
2629699 Aug 2013 EP
2633457 Sep 2013 EP
2637659 Sep 2013 EP
2641569 Sep 2013 EP
2644158 Oct 2013 EP
2654624 Oct 2013 EP
2656794 Oct 2013 EP
2656795 Oct 2013 EP
2656795 Oct 2013 EP
2656796 Oct 2013 EP
2656796 Oct 2013 EP
2667823 Dec 2013 EP
2670358 Dec 2013 EP
2670358 Dec 2013 EP
2676640 Dec 2013 EP
2688041 Jan 2014 EP
2693984 Feb 2014 EP
2697721 Feb 2014 EP
2713953 Apr 2014 EP
2714068 Apr 2014 EP
2723272 Apr 2014 EP
2723273 Apr 2014 EP
2723277 Apr 2014 EP
2739214 Jun 2014 EP
2741711 Jun 2014 EP
2750630 Jul 2014 EP
2750631 Jul 2014 EP
2755562 Jul 2014 EP
2755602 Jul 2014 EP
2757962 Jul 2014 EP
2777616 Sep 2014 EP
2777617 Sep 2014 EP
2782523 Oct 2014 EP
2785282 Oct 2014 EP
2786817 Oct 2014 EP
2790609 Oct 2014 EP
2793751 Oct 2014 EP
2809263 Dec 2014 EP
2810620 Dec 2014 EP
2814428 Dec 2014 EP
2814429 Dec 2014 EP
2819617 Jan 2015 EP
2819618 Jan 2015 EP
2819619 Jan 2015 EP
2717803 Feb 2015 EP
2833836 Feb 2015 EP
2838475 Feb 2015 EP
2839815 Feb 2015 EP
2844190 Mar 2015 EP
2849680 Mar 2015 EP
2849681 Mar 2015 EP
2852354 Apr 2015 EP
2854719 Apr 2015 EP
2870933 May 2015 EP
2873011 May 2015 EP
2875797 May 2015 EP
2760375 Jun 2015 EP
2882374 Jun 2015 EP
2886082 Jun 2015 EP
2886083 Jun 2015 EP
2886084 Jun 2015 EP
2895111 Jul 2015 EP
2901966 Aug 2015 EP
2907479 Aug 2015 EP
2911594 Sep 2015 EP
2945572 Nov 2015 EP
2948094 Dec 2015 EP
2948102 Dec 2015 EP
2964152 Jan 2016 EP
2967847 Jan 2016 EP
2967859 Jan 2016 EP
2967860 Jan 2016 EP
2967866 Jan 2016 EP
2968847 Jan 2016 EP
2976043 Jan 2016 EP
2981208 Feb 2016 EP
2982336 Feb 2016 EP
2999433 Mar 2016 EP
3003187 Apr 2016 EP
3003219 Apr 2016 EP
3003220 Apr 2016 EP
3010447 Apr 2016 EP
3013281 May 2016 EP
3017792 May 2016 EP
3021792 May 2016 EP
3023117 May 2016 EP
3027143 Jun 2016 EP
3033048 Jun 2016 EP
3037064 Jun 2016 EP
3079633 Oct 2016 EP
3229736 Nov 2016 EP
2470119 May 2017 EP
2999436 May 2017 EP
3184081 Jun 2017 EP
3191027 Jul 2017 EP
2611389 Aug 2017 EP
3082656 Aug 2017 EP
3206628 Aug 2017 EP
2010103 Sep 2017 EP
2509538 Sep 2017 EP
3223751 Oct 2017 EP
3027144 Nov 2017 EP
3110368 Nov 2017 EP
3110369 Nov 2017 EP
3132773 Nov 2017 EP
3245980 Nov 2017 EP
3250154 Dec 2017 EP
3256074 Dec 2017 EP
3256077 Dec 2017 EP
3258883 Dec 2017 EP
3270825 Jan 2018 EP
3273910 Jan 2018 EP
6504516 May 1994 JP
H10258124 Sep 1998 JP
2002509756 Apr 2002 JP
2005280917 Oct 2005 JP
2008528117 Jul 2008 JP
2008541863 Nov 2008 JP
2009195712 Sep 2009 JP
2010518947 Jun 2010 JP
5219518 Jun 2013 JP
WO-1992017118 Oct 1992 WO
WO-1995016407 Jun 1995 WO
WO-1999004730 Feb 1999 WO
WO-1999039648 Aug 1999 WO
WO-1999049799 Oct 1999 WO
WO-2001010343 Feb 2001 WO
WO-2002003892 Jan 2002 WO
WO-2002028421 Apr 2002 WO
WO-2002039908 May 2002 WO
WO-2003043685 May 2003 WO
WO-2004084746 Oct 2004 WO
WO-2004093728 Nov 2004 WO
WO-2004096097 Nov 2004 WO
WO-2004112657 Dec 2004 WO
WO-2005002466 Jan 2005 WO
WO-2005007219 Jan 2005 WO
WO-2005009285 Feb 2005 WO
WO-2005009506 Feb 2005 WO
WO-2005087140 Sep 2005 WO
WO-2006041877 Apr 2006 WO
WO-2006063199 Jun 2006 WO
WO-2007008371 Jan 2007 WO
WO-2007067820 Jun 2007 WO
2007098232 Aug 2007 WO
WO-2008022077 Feb 2008 WO
WO-2008028569 Mar 2008 WO
WO-2008035337 Mar 2008 WO
2008046593 Apr 2008 WO
2008103722 Aug 2008 WO
WO-2008103497 Aug 2008 WO
WO-2008129405 Oct 2008 WO
WO-2009045338 Apr 2009 WO
2009091509 Jul 2009 WO
WO-2010006627 Jan 2010 WO
WO-2010008549 Jan 2010 WO
WO-2010057262 May 2010 WO
WO-2010080594 Jul 2010 WO
WO-2010098857 Sep 2010 WO
WO-2010099032 Sep 2010 WO
2010121076 Oct 2010 WO
WO-2010117680 Oct 2010 WO
2011025981 Mar 2011 WO
WO-2011047168 Apr 2011 WO
WO-2011051043 May 2011 WO
WO-2011057087 May 2011 WO
WO-2011072084 Jun 2011 WO
WO-2011106137 Sep 2011 WO
WO-2011106544 Sep 2011 WO
WO-2011111047 Sep 2011 WO
WO-2011137531 Nov 2011 WO
WO-2011139747 Nov 2011 WO
WO-2012011018 Jan 2012 WO
WO-2012011108 Jan 2012 WO
WO-2012027487 Mar 2012 WO
WO-2012035279 Mar 2012 WO
WO-2012040655 Mar 2012 WO
2012052718 Apr 2012 WO
WO-2012047644 Apr 2012 WO
WO-2012055498 May 2012 WO
WO-2012087842 Jun 2012 WO
WO-2012095455 Jul 2012 WO
2012106602 Aug 2012 WO
WO-2012102928 Aug 2012 WO
WO-2012106602 Aug 2012 WO
WO-2012118508 Sep 2012 WO
WO-2012118816 Sep 2012 WO
WO-2012118894 Sep 2012 WO
WO-2012177942 Dec 2012 WO
WO-2013021374 Feb 2013 WO
WO-2013021375 Feb 2013 WO
WO-2013028387 Feb 2013 WO
WO-2013059743 Apr 2013 WO
WO-2013059747 Apr 2013 WO
WO-2013114214 Aug 2013 WO
WO-2013120181 Aug 2013 WO
WO-2013123059 Aug 2013 WO
WO-2013128432 Sep 2013 WO
WO-2013130641 Sep 2013 WO
WO-2013131925 Sep 2013 WO
WO-2013140318 Sep 2013 WO
WO-2013148017 Oct 2013 WO
WO-2013148018 Oct 2013 WO
WO-2013148019 Oct 2013 WO
WO-2013150512 Oct 2013 WO
WO-2013152161 Oct 2013 WO
WO-2013158613 Oct 2013 WO
WO-2013169448 Nov 2013 WO
WO-2013175468 Nov 2013 WO
WO-2013176583 Nov 2013 WO
WO-2013188077 Dec 2013 WO
WO-2013192107 Dec 2013 WO
WO-2014036113 Mar 2014 WO
WO-2014043527 Mar 2014 WO
WO-2014047111 Mar 2014 WO
WO-2014047325 Mar 2014 WO
WO-2014055981 Apr 2014 WO
WO-2014059432 Apr 2014 WO
WO-2014064694 May 2014 WO
WO-2014066365 May 2014 WO
WO-2014089424 Jun 2014 WO
WO-2014093861 Jun 2014 WO
WO-2014111918 Jul 2014 WO
WO-2014114794 Jul 2014 WO
WO-2014114795 Jul 2014 WO
WO-2014114796 Jul 2014 WO
WO-2014114798 Jul 2014 WO
WO-2014116502 Jul 2014 WO
WO-2014121280 Aug 2014 WO
WO-2014128705 Aug 2014 WO
WO-2014134277 Sep 2014 WO
WO-2014138194 Sep 2014 WO
WO-2014138284 Sep 2014 WO
WO-2014138482 Sep 2014 WO
WO-2014138868 Sep 2014 WO
WO-2014144100 Sep 2014 WO
WO-2014144937 Sep 2014 WO
WO-2014145338 Sep 2014 WO
WO-2014147336 Sep 2014 WO
WO-2014152306 Sep 2014 WO
WO-2014152375 Sep 2014 WO
WO-2014152503 Sep 2014 WO
WO-2014153544 Sep 2014 WO
WO-2014158617 Oct 2014 WO
WO-2014162181 Oct 2014 WO
WO-2014162306 Oct 2014 WO
WO-2014163705 Oct 2014 WO
WO-2014168655 Oct 2014 WO
WO-2014179391 Nov 2014 WO
WO-2014181336 Nov 2014 WO
WO-2014189974 Nov 2014 WO
2014200764 Dec 2014 WO
WO-2014191994 Dec 2014 WO
WO-2014194178 Dec 2014 WO
WO-2014201384 Dec 2014 WO
WO-2014201452 Dec 2014 WO
WO-2014205064 Dec 2014 WO
WO-2014207699 Dec 2014 WO
WO-2014210124 Dec 2014 WO
WO-2014210299 Dec 2014 WO
WO-2015009503 Jan 2015 WO
WO-2015020971 Feb 2015 WO
2015031898 Mar 2015 WO
WO-2015028986 Mar 2015 WO
2015061558 Apr 2015 WO
WO-2015051430 Apr 2015 WO
WO-2015052663 Apr 2015 WO
WO-2015057407 Apr 2015 WO
WO-2015057735 Apr 2015 WO
WO-2015057995 Apr 2015 WO
WO-2015061378 Apr 2015 WO
WO-2015061431 Apr 2015 WO
WO-2015061463 Apr 2015 WO
WO-2015061533 Apr 2015 WO
WO-2015075128 May 2015 WO
WO-2015081775 Jun 2015 WO
WO-2015089334 Jun 2015 WO
WO-2015092554 Jun 2015 WO
WO-2015120122 Aug 2015 WO
WO-2015125024 Aug 2015 WO
WO-2015127264 Aug 2015 WO
WO-2015127283 Aug 2015 WO
WO-2015128739 Sep 2015 WO
WO-2015128741 Sep 2015 WO
WO-2015128747 Sep 2015 WO
WO-2015132667 Sep 2015 WO
WO-2015132668 Sep 2015 WO
WO-2015135050 Sep 2015 WO
WO-2015142648 Sep 2015 WO
WO-2015142834 Sep 2015 WO
WO-2015148241 Oct 2015 WO
2015179181 Nov 2015 WO
WO-2015171190 Nov 2015 WO
WO-2015171743 Nov 2015 WO
WO-2015191604 Dec 2015 WO
WO-2015191839 Dec 2015 WO
WO-2015195823 Dec 2015 WO
2016005803 Jan 2016 WO
WO-2016011185 Jan 2016 WO
WO-2016020918 Feb 2016 WO
WO-2016027272 Feb 2016 WO
WO-2016059533 Apr 2016 WO
WO-2016065158 Apr 2016 WO
WO-2016073741 May 2016 WO
WO-2016083551 Jun 2016 WO
WO-2016093877 Jun 2016 WO
WO-2016097337 Jun 2016 WO
WO-2016108181 Jul 2016 WO
2016133950 Aug 2016 WO
WO-2017062640 Apr 2017 WO
2017087701 May 2017 WO
2017096157 Jun 2017 WO
2017100927 Jun 2017 WO
2017101232 Jun 2017 WO
2017117388 Jul 2017 WO
2017127939 Aug 2017 WO
2017136287 Aug 2017 WO
2017136596 Aug 2017 WO
2017165810 Sep 2017 WO
2017192960 Nov 2017 WO
2017196511 Nov 2017 WO
2017196909 Nov 2017 WO
2017196977 Nov 2017 WO
2017197064 Nov 2017 WO
2017197065 Nov 2017 WO
2017189040 Dec 2017 WO
2017218671 Dec 2017 WO
2018017886 Jan 2018 WO
Non-Patent Literature Citations (49)
Entry
US 9,265,606 B2, 02/2016, Buchbinder et al. (withdrawn)
International Search Report and Written Opinion dated Jul. 11, 2018 for PCT Application No. PCT/US2018/027990, 15 pages.
International Search Report and Written Opinion dated Jun. 28, 2018 for PCT Application No. PCT/US2018/027983, 15 pages.
International Search Report and Written Opinion dated Aug. 3, 2018 for PCT Application No. PCT/US2018035086, 15 pages.
International Search Report and Written Opinion dated Aug. 9, 2018 for PCT Application No. PCT/US2018/035081, 11 pages.
Bernard et al., “Aortic Valve Area Evolution After Percutaneous Aortic Valvuloplasty,” European Heart Journal, Jul. 1990, vol. 11 (2), pp. 98-107.
BlueCross BlueShield of Northern Carolina Corporate Medical Policy “Balloon valvuloplasty, Percutaneous”, (Jun. 1994).
Cimino et al., “Physics of Ultrasonic Surgery Using Tissue Fragmentation: Part I and Part II”, Ultrasound in Medicine and Biologyl, Jun. 1996, vol. 22 (1), pp. 89-100, and pp. 101-117.
Cimino, “Ultrasonic Surgery: Power Quantification and Efficiency Optimization”, Aesthetic Surgery Journal, Feb. 2001, pp. 233-241.
Cowell et al., “A Randomized Trial of Intensive Lipid-Lowering Therapy in Calcific Aortic Stenosis,” NEJM, Jun. 2005, vol. 352 (23), pp. 2389-2397.
De Korte et al., “Characterization of Plaque Components and Vulnerability with Intravascular Ultrasound Elastography”, Phys. Med. Biol., Feb. 2000, vol. 45, pp. 1465-1475.
European Search Report dated Mar. 13, 2015 for European Application. No. 05853460.3.
Feldman, “Restenosis Following Successful Balloon Valvuloplasty: Bone Formation in Aortic Valve Leaflets”, Cathet Cardiovasc Diagn, May 1993, vol. 29 (1), pp. 1-7.
Fitzgerald et al., “Intravascular Sonotherapy Decreased Neointimal Hyperplasia After Stent Implantation in Swine”, Circulation, Feb. 2001, vol. 103, pp. 1828-1831.
Freeman et al., “Ultrasonic Aortic Valve Decalcification: Serial Doppler Echocardiographic Follow Up”, J Am Coll Cardiol., Sep. 1990, vol. 16 (3), pp. 623-630.
Greenleaf et al., “Selected Methods for Imaging Elastic Properties of Biological Tissues”, Annu. Rev. Biomed. Eng., Apr. 2003, vol. 5, pp. 57-78.
Gunn et al., “New Developments in Therapeutic Ultrasound-Assisted Coronary Angioplasty”, Curr Interv Cardiol Rep., Dec. 1990, vol. 1 (4), pp. 281-290.
Guzman et al., “Bioeffects Caused by Changes in Acoustic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-to-Bubble Ratio and Blast Radius”, Ultrasound in Med. & Biol., Mar. 2003, vol. 29 (8), pp. 1211-1222.
Hallgrimsson et al., “Chronic Non-Rheumatic Aortic Valvular Disease: a Population Study Based on Autopsies”, J Chronic Dis., Jun. 1979, vol. 32 (5), pp. 355-363.
Isner et al., “Contrasting Histoarchitecture of Calcified Leaflets from Stenotic Bicuspid Versus Stenotic Tricuspid Aortic Valves”, J Am Coll Cardiol., Apr. 1990, vol. 15 (5), p. 1104-1108.
Lung et al., “A Prospective Survey of Patients with Valvular Heart Disease in Europe: The Euro Heart Survey on Valvular Heart Disease”, Euro Heart Journal, Mar. 2003, vol. 24, pp. 1231-1243.
McBride et al “Aortic Valve Decalcification”, J Thorac Cardiovas-Surg, Jul. 1990, vol. 100, pp. 36-42.
Miller et al., “Lysis and Sonoporation of Epidermoid and Phagocytic Monolayer Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies”, Ultrasound in Med. & Biol., May 2007, vol. 27 (8), pp. 1107-1113.
Mohler, “Mechanisms of Aortic Valve Calcificaion”, Am J Cardiol, Dec. 2004, vol. 94 (11), pp. 1396-1402.
Otto et al., “Three-Year Outcome After Balloon Aortic Valvuloplasty. Insights into Prognosis of Valvular Aortic Stenosis”, Circulation, Feb. 1994, vol. 89, pp. 642-650.
Passik et al., “Temporal Changes in the Causes of Aortic Stenosis: A Surgical Pathologic Study of 646 Cases”, Mayo Clin Proc, Feb. 1987, vol. 62, pp. 19-123.
Quaden et al., “Percutaneous Aortic Valve Replacement: Resection Before Implantation”, Eur J Cardiothorac Surg, Jan. 2005, vol. 27, pp. 836-840.
Riebman et al., “New Concepts in the Management of Patients with Aortic Valve Disease”, Abstract, Valvular Heart Disease, JACC, Mar. 2004, p. 34A.
Rosenschein et al., “Percutaneous Transluminal Therapy of Occluded Saphenous Vein Grafts” Circulation, Jan. 1999, vol. 99, pp. 26-29.
Sakata et al., “Percutaneous Balloon Aortic Valvuloplasty: Antegrade Transseptal vs. Conventional Retrograde Transarterial Approach”, Catheter Cardiovasc Interv., Mar. 2005, vol. 64 (3), pp. 314-321.
Sasaki et al., “Scanning Electron Microscopy and Fourier Transformed Infrared Spectroscopy Analysis of Bone Removal Using Er:YAG and CO2 Lasers”, J Periodontol., Jun. 2002, vol. 73 (6), pp. 643-652.
Search Report and Written Opinion dated Dec. 10, 2012 for PCT Application No. PCT/US2012/043636.
Search Report and Written Opinion dated Dec. 6, 2016 for PCT Application No. PCT/US2016/047831.
Search Report and Written Opinion dated Apr. 19, 2014 PCT Application No. PCT/US2012/061215.
Search Report and Written Opinion dated Apr. 19, 2014 PCT Application No. PCT/US2012/061219.
Search Report and Written Opinion dated Mar. 2, 2015 for PCT Application No. PCT/US2014/029549.
Search Report and Written Opinion dated May 1, 2012 for PCT Application No. PCT/US2011/065627.
Search Report and Written Opinion dated May 22, 2007 for PCT Application No. PCT/US2005/044543.
Search Report and Written Opinion dated Oct. 20, 2014 for PCT Application No. PCT/US2014/038849.
Search Report and Written Opinion dated Sep. 4, 2014 for PCT Application No. PCT/US2014/014704.
The CoreValve System Medtronic, 2012, 4 Pages.
Van Den Brand et al., “Histological Changes in the Aortic Valve after Balloon Dilation: Evidence for a Delayed Healing Process”, Br Heart J, Jun. 1992,vol. 67, pp. 445-459.
Verdaadadonk et al., “The Mechanism of Action of the Ultrasonic Tissue Resectors Disclosed Using High-Speed and Thermal Imaging Techniques”, SPIE, Jan. 1999, vol. 3594, pp. 221-231.
Voelker et al., “Inoperative Valvuloplasty in Calcific Aortic Stenosis: a Study Comparing the Mechanism of a Novel Expandable Device with Conventional Balloon Dilation”, Am Heart J., Nov. 1991, vol. 122 (5), pp. 1327-1333.
Waller et al., “Catheter Balloon Valvuloplasty of Stenotic Aortic Valves. Part II: Balloon Valvuloplasty During Life Subsequent Tissue Examination”, Clin Cardiol., Nov. 1991, vol. 14 (11), pp. 924-930.
Wang, “Balloon Aortic Valvuloplasty”, Prog Cardiovasc Dis., Jul.-Aug. 1997, vol. 40 (1), pp. 27-36.
Wilson et al., “Elastography—The movement Begins”, Phys. Med. Biol., Jun. 2000, vol. 45, pp. 1409-1421.
Yock et al, “Catheter-Based Ultrasound Thrombolysis”, Circulation, Mar. 1997, vol. 95 (6), pp. 1411-1416.
U.S. Appl. No. 16/288,679, filed Feb. 28, 2019, naming inventor Deem et al.
Related Publications (1)
Number Date Country
20180344454 A1 Dec 2018 US