The present invention relates to the measurement and control of breathing gas administration into humans, and more specifically the invention relates to a system for rapid response to changes of pressure/flow of breathing gas using delta flow control.
Patients suffering from different forms of breathing disorders can be subject to several types of treatments depending on the illness or disorder present. Such treatments include surgical procedures, pharmacologic therapy, and non-invasive mechanical techniques. Surgical techniques to remedy breathing disorders constitute a considerable risk for the patient and can lead to permanent injury or even mortality. Pharmacologic therapy has in general proved disappointing with respect to treating certain breathing disorders, e.g. sleep apnea. It is therefore of interest to find other treatments, preferably non-invasive techniques.
A mechanical ventilator represents a non-invasive technique for treatment of certain breathing disorders such as ventilatory failure, hypoventilation, and periodic breathing during sleep and awake and in sleep apnea that occurs exclusively during sleep. Ventilatory failure includes all forms of insufficient ventilation with respect to metabolic need whether occurring during wake or periods of sleep. Hypoventilation and periodic breathing, in its most frequently occurring form referred to as Cheyne-Stokes ventilation, may occur periodically or constantly during wake or sleep. Conditions associated with hypoventilation, in particular nocturnal hypoventilation include e.g. central nervous system disorders such as stroke, muscular dystrophies, certain congenital conditions, advanced chronic obstructive pulmonary disease (COPD), etc. Cheyne-Stokes ventilation or various forms of central apnea are commonly associated with cardiac and circulatory disorders, in particular cardiac failure.
Sleep apnea can be categorized into two different forms that occur selectively or in combination. In central sleep apnea, a primarily central nervous system coordination disorder, all respiratory movement is interrupted leading to a sleep apnea event. Obstructive sleep apnea, in contrast, is associated with upper airway collapse, presumably caused by loss of or inadequate upper airway muscle tone. This condition is particularly likely to occur in subjects with narrow upper airways due to excess soft tissue or anatomical abnormalities. Obstructive sleep apnea is the most common type of sleep apnea event. Apnea events are considered pathological, for instance, if they exceed 10 seconds in duration and if they occur more frequently than 10 times per hour of sleep.
Ventilatory failure is a potentially life threatening condition. The general comorbidity in patients with failing ventilation is considerable. The condition is highly disabling in terms of reduced physical capacity, cognitive dysfunction in severe cases and poor quality of life. Patients with ventilatory failure therefore experience significant daytime symptoms but in addition, the majority of these cases experience a general worsening of their condition during state changes such as sleep. The phenomenon of disordered breathing during sleep, whether occurring as a consequence of ventilatory failure or as a component of sleep apnea in accordance with the description above causes sleep fragmentation. Daytime complications include sleepiness and cognitive dysfunction. Severe sleep disordered breathing occurring in other comorbid conditions like obesity, neuromuscular disease, post polio myelitis states, scoliosis or heart failure may be associated with considerable worsening of hypoventilation and compromised blood gas balance. Sleep apnea has been associated with cardiovascular complications including coronary heart disease, myocardial infarction, stroke, arterial hypertension, thrombosis, and cardiac arrhythmia. It is therefore of both immediate and long-term interest to reduce the exposure to sleep disordered breathing.
Recent advancement in mechanical non-invasive ventilator techniques includes administration of continuous positive airway pressure (CPAP) in different forms of sleep disordered breathing. During CPAP administration an elevated airway pressure is maintained throughout the breathing phase during a period coinciding with sleep. In sleep apnea this procedure may provide appropriate stabilization of the upper airway thereby preventing collapse. This, so called mono-level CPAP therapy, provides an almost identical pressure during inhalation and exhalation. Not only may CPAP be uncomfortable for the patient due to a sensed increased work of breathing during ventilation, specifically expiration. Some forms of apnea, mainly including those of central origin, and most forms of hypoventilation are only poorly controlled by CPAP. A more recently developed bi-level CPAP system administers different pressure levels during inhalation and exhalation. Bi-level CPAP provides increased comfort for most patients and not infrequently, an improved clinical response. Bi-level CPAP provides two pressure levels, Inspiratory Positive Airway Pressure (IPAP) and Expiratory Positive Airway Pressure (EPAP). IPAP is administered during the inhalation phase while EPAP is given during the exhalation phase.
In a Bi-Level or CPAP breathing apparatus used for treatment of sleeping disorders as e.g. hypoventilation especially nocturnal hypoventilation, e.g. central nervous system disorders such as muscular dystrophies, Chronic obstructive pulmonary disorder (COPD) etc, the pressure sensing device for regulating the breathing pressure is normally located inside the breathing apparatus to avoid long measuring tubes and risks with e.g. kinked, wrongly connected sensing device or connector leakage.
Since the patient and user requirement for higher accuracy is an increasing demand, it is essential to implement a system for higher accuracy in Bi-Level and CPAP breathing devices.
To solve this pressure regulating problem a system that uses predetermined tube compensation for pressure losses in breathing tube (patient circuit) can be used. However such a system will lack in flexibility due to this predetermination which leads the user/patient to use one or a couple of patient circuits. By using a measuring tube in parallel to the patient breathing circuit, the pressure accuracy may be increased but the risk for kinked tubing is increased together with an increased necessity for cleaning the tubing as well. One other way to increase pressure measuring accuracy may be utilized by feeding the measuring tube inside the patient breathing circuit. This latter method will however reduce the active breathing tube diameter and hence reduce the breathing flow of gas. The necessity for cleaning the measuring tube and breathing circuit will also be increased since there are more surfaces inside the breathing gas flow.
It is an object of the present invention to provide a system that remedies the above mentioned problems. During pressure regulation when using only a pressure sensor as input, the patient's airways and the breathing tube has to be fully saturated with breathing gas before the pressure sensor can recognize changes in pressure. The time lag between patient effort and the breathing apparatus response in such a system will create a pressure drop in inhalation and a pressure peak in exhalation which creates pressure not being regulated within requirements, creating a discomfort for the patient.
Since gas flow in breathing tubes and breathing masks at low pressures (<30 cmH2O) may be considered as homogenous, there is little time difference between patient breathing and actual flow sensor response. By applying a derivative signal analysis on the measured breathing gas flow, the delta energy term can be retrieved from the gas flow. This delta energy is proportional to pressure withdrawn or added into the breathing circuit and can therefore be used as an input into the pressure regulating function. By incorporating this delta energy flow value into the analyzing function for regulating the pressure, the use of a separate measuring tube is not needed. This system will also reduce the dependency of breathing tube length and width since the flow sensor may be located at the ventilator side of a breathing tube.
Other advantages of the present invention may be that it is possible to keep a constant pressure level and it constitutes a much more hygienic solution.
In a preferred embodiment of the present invention, a mechanical ventilator apparatus supplying breathing gas to humans is provided, the ventilator comprises:
The processing unit may be further arranged to filter the flow signals in a noise reducing filter, such as a low-pass filter, prior to analyzing the flow signals.
The sensing means for sensing flow signals may be arranged at a mechanical ventilator side of tubing for supplying breathing gas.
The measured data may be preprocessed and preformatted prior to filtering the measured signal data.
In another aspect of the present invention, a method for facilitating breathing in connection with a mechanical ventilator arrangement is provided, comprising the steps of:
measuring a breathing gas flow and pressure;
processing the breathing gas flow for flow changes;
using the flow change values as pressure values; and
responding to changes of the pressure signal obtained from the flow change values in a breathing gas tubing by changing control signals for the mechanical ventilator, changing the pressure in the tubing to a set demand pressure using the measured pressure and flow changes as input parameters in a regulating procedure.
The method may further comprise a step of filtering the air flow signal prior to processing the breathing gas flow for flow changes.
In yet another embodiment of the present invention, a system for facilitating breathing when using a mechanical ventilator arrangement, comprising:
The processing unit may further be arranged to apply the flow curve to a filtering procedure in order to reduce noise.
Another preferred embodiment of the present invention, a computer program for controlling a mechanical ventilator apparatus is provided, wherein the program operate on signals obtained from at least two sensing means for measuring flow and pressure of breathing gas to a patient, the program use data indicative of flow changes of breathing obtained from the flow measurement, and the program transmits control signals to a mechanical ventilator in response to changes of the pressure of breathing gas using the flow change data as a pressure value compared against a set demand pressure value together with the measured pressure.
The computer program may further be arranged to filter the flow signals prior to analyzing the flow data for flow changes in order to reduce noise.
The computer program is arranged to operate on signals obtained from sensing means, for sensing flow and pressure signals, arranged at a mechanical ventilator side of tubing for supplying breathing gas.
The measured data may be preprocessed and preformatted prior to filtering the measured signal data.
In the following the invention will be described in a non-limiting way and in more detail with reference to exemplary embodiments illustrated in the enclosed drawings, in which:
In
The breathing gas may be of any suitable gas composition for breathing purposes as understood by the person skilled in the art, the composition depending on the physiological status of the patient.
The pressure or flow from the ventilator 4 is controlled by a processing unit 11 as shown in
The flow sensor 10 may be located at several different positions, e.g. in the breathing air tubing 3 at any suitable position, such as close to the mechanical ventilator apparatus (or even within the ventilator housing) or in the vicinity of the mask.
A computational device is depicted in
The computational device 200 may also have a data storage unit 202 for post analysis and inspection and there may also be a connection 207 for an external non-volatile memory device, like for instance a memory device using a USB connection, an external hard drive, a floppy disk, a CD-ROM writer, a DVD writer, a Memorystick, a Compact Flash memory, a Secure Digital memory, an xD-Picture memory card, or a Smart Media memory card. These are only given as examples, and are not limiting for the invention, many more external memory devices may be used in the invention.
The computational device 200 may also have input means 205 for manually setting control parameters and other parameters necessary for the operation of the device.
Through a communication means 206 it is possible to communicate with the device 200 to and from an external computational device (e.g. a personal computer, workstation, embedded computer, and so on as understood by the person skilled in the art) for retrieving data and results for later analysis and/or inspection. The communication means 206 can be of a serial type like for instance according to the standards RS232, RS485, USB, Ethernet, or Firewire, or of a parallel type like for instance according to the standards Centronics, ISA, PCI, or GPIB/HPIB (general purpose interface bus). The communication means 206 may also be any wireless system of the standards in the IEEE 802.11 series, HiperLAN, Bluetooth, IR, GSM, GPRS, or UMTS, or any other appropriate fixed or wireless communication system. It may also be of any proprietary non-standardized communication formats, whether being wireless or wired.
The ventilator device 4 or the computational device 200 may also have display means (not shown) for displaying measured data and obtained response parameters for use by a physician, other medical personnel, or the patient. The display means may be of any normal type as appreciated by a person skilled in the art. The data is displayed with such a high rate that a real time feedback is provided to a person monitoring the ventilator characteristics and function for immediate feedback and control.
Turning now to
The system is utilized by placing two sensors in the air path to the patient 1 in order to monitor pressure and flow using pressure and flow sensors 9 and 10. The pressure sensor 9 senses the pressure in the patient breathing tube 3 and the pressure signal is input to the pressure regulating computational device 200 (
A flow change generating procedure is then used in order to deduce the flow changes from the flow signal and finally the flow change data is fed into the pressure regulating procedure together with the sensed pressure data. The flow change values are used as a pressure change value in the algorithm since the flow change may be considered homogenous in the tubing 3. Flow changes thus triggers the regulating algorithm to respond and change the pressure delivered to the patient 1. Many different types of regulating algorithms may be used in this application including, but not limited to, different types of PID algorithms (Proportional, Integration, and Derivative), logical function gates, and neural networks.
A method according to the present invention may be illustrated by
The above described method and apparatus may be used to determine many different control parameters concerning a breathing gas ventilation apparatus or method including but not limited to:
The tidal volume (VT) level is the volume of breathing gas moving in and out of the lungs per breath. PEEP is a baseline of elevated positive pressure maintained during inhalation and exhalation during machine assisted ventilation. FiO2 level is the amount of oxygen in the air inhaled. Minute ventilation level is the volume of breathing gas moving in and out of the lungs per minute.
In another preferred embodiment of the present invention the algorithms and methods are realized in a computer program residing in a computer readable medium. The computer program is arranged to acquire signals from the sensing means 5, 6, 7, 8, 9, and 10 and operating on signals indicative of gas flow and pressure in order to deduce control signals from a flow and pressure regulating algorithm, transmitting control signals to regulate the mechanical ventilator in accordance.
There are many types of ventilation modes where the above described embodiments may find its application including but not limited to:
These kinds of methods and devices are often used for treating disturbed breathing during for instance sleep either in the home or in a clinical environment. The methods and devices described above within the scope of the invention may also be used for treatment of many other different forms of ventilatory failure events or hypoventilation events, and treatment may be done both at home and in the clinical environment. Examples of groups of breathing disorders include, but are not limited to, breathing disorders during sleep, obstructive lung diseases (COPD), neuromuscular disorders, neurological disorders, chest wall disorders, and more.
Several benefits may be found using techniques from embodiments of the present invention: a faster response to flow changes will increase the well being of the patient 1 due to that the mechanical ventilator more accurately follows the patient 1 breathing pattern, a faster response also lowers a pressure difference between patients airway pressure (Paw) and esophageous pressure (Peso) reducing the work of breathing (WoB). By reducing the work of breathing for the patient the risk of causing the patient anxiety is drastically lowered.
The above mentioned and described embodiments are only given as examples and should not be limiting to the present invention. Other solutions, uses, objectives, and functions within the scope of the invention as claimed in the below described patent claims should be apparent for the person skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
0401809-9 | Jul 2004 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/006880 | 6/27/2005 | WO | 00 | 5/14/2007 |
Number | Date | Country | |
---|---|---|---|
60610137 | Sep 2004 | US |