The present disclosure relates to an apparatus and a method for wrapping a load with packaging material, and more particularly, to dispensing packaging material for wrapping a load based on demand.
Various packaging techniques have been used to build a load of unit products and subsequently wrap them for transportation, storage, containment and stabilization, protection and waterproofing. One system uses wrapping machines to stretch, dispense, and wrap packaging material around a load. The packaging material may be pre-stretched before it is applied to the load. Wrapping can be performed as an inline, automated packaging technique that dispenses and wraps packaging material in a stretch condition around a load on a pallet to cover and contain the load. Stretch wrapping, whether accomplished by a turntable, rotating arm, vertical rotating ring, or horizontal rotating ring, typically covers the four vertical sides of the load with a stretchable packaging material such as polyethylene packaging material. In each of these arrangements, relative rotation is provided between the load and the packaging material dispenser to wrap packaging material about the sides of the load.
Historically, wrappers have suffered from packaging material breaks and limitations on the amount of wrap force applied to the load (as determined in part by the amount of pre-stretch used) due to erratic speed changes required to wrap “non-square” loads, such as narrow, tall loads, short, wide loads, and short, narrow loads. The non-square shape of such loads often results in the supply of excess packaging material during the wrapping cycle, during time periods in which the demand rate for packaging material by the load is exceeded by the supply rate of the packaging material by the packaging material dispenser. This leads to loosely wrapped loads. In addition, when the demand rate for packaging material by the load is greater than the supply rate of the packaging material by the packaging material dispenser, breakage of the packaging material may occur.
When wrapping a typical rectangular load, the demand for packaging material varies, decreasing as the packaging material approaches contact with a corner of the load and increasing after contact with the corner of the load. When wrapping a tall, narrow load or a short load, the variation in the demand rate is even greater than in a typical rectangular load. In vertical rotating rings, high speed rotating arms, and turntable apparatuses, the variation is caused by a difference between the length and the width of the load. In a horizontal rotating ring apparatus, the variation is caused by a difference between the height of the load (distance above the conveyor) and the width of the load. Variations in demand may make it difficult to properly wrap the load. The problem with variations is exacerbated when wrapping a load having one or more dimensions that may differ from one or more corresponding dimensions of a preceding load. The problem may also be exacerbated when wrapping a load having one or more dimensions that vary at one or more locations of the load itself.
The amount of force, or pull, that the packaging material exhibits on the load determines how tightly and securely the load is wrapped. Conventionally, this wrap force is controlled by controlling the feed or supply rate of the packaging material dispensed by the packaging material dispenser. For example, the wrap force of many known commercially available stretch wrapping machines is controlled by attempting to alter the supply of packaging material such that a relatively constant packaging material wrap force is maintained. With powered pre-stretching devices, changes in the force or tension of the dispensed packaging material were monitored. This has been accomplished using feedback mechanisms typically linked to spring loaded dancer bars, electronic load cells, or torque control devices. The changing force or tension of the packaging material caused by rotating a rectangular shaped load is transmitted back through the packaging material to some type of sensing device which attempts to vary the speed of the motor driven dispenser to minimize the change. The passage of the corner causes the force or tension of the packaging material to increase. This increase is typically transmitted back to an electronic load cell, spring-loaded dancer interconnected with a sensing means, or to a torque control device. After the corner is passed, the force or tension of the packaging material reduces. This reduction is transmitted back to some device that in turn reduces the packaging material supply to attempt to maintain a relatively constant wrap force or tension.
With the ever faster wrapping rates demanded by the industry, the rotation speeds have increased significantly to a point where the concept of sensing changes in force and altering supply speed in response loses effectiveness. The delay of response has been observed to begin to move out of phase with rotation at approximately 20 RPM. The actual response time for the rotating mass of packaging material roll and rollers approximating 100 lbs must shift from accelerate to decelerate eight times per revolution that at 20 RPM is a shift more than every one half of a second.
Also significant is the need to minimize the acceleration and deceleration times for these faster cycles. Initial acceleration must pull against clamped packaging material, which typically cannot stand a high force especially the high force of rapid acceleration that cannot be maintained by the feedback mechanisms described above. Use of high speed wrapping has therefore been limited to relatively lower wrap forces and pre-stretch levels where the loss of control at high speeds does not produce undesirable packaging material breaks.
The present disclosure is directed to overcoming one or more of the above-noted problems, as well as other problems in the art.
According to an aspect of the present disclosure, a control system for a wrapping apparatus may include a packaging material dispenser configured to dispense packaging material for wrapping a load. The control system may also include at least one sensor assembly configured to generate a signal based on instantaneous demand for packaging material at the load. The control system may further include a controller configured to control operation of the packaging material dispenser based at least in part on the signal.
According to another aspect of the present disclosure, an apparatus for wrapping a load may include a packaging material dispenser. The packaging material dispenser may include a dispensing drive configured to drive the packaging material dispenser to dispense packaging material. The apparatus may also include a relative rotation assembly configured to provide relative rotation between the packaging material dispenser and the load. The apparatus may further include a first sensor assembly configured to sense a characteristic indicative of instantaneous demand for packaging material at the load. The apparatus may also include a controller configured to control operation of the dispensing drive based at least in part on the instantaneous demand.
According to yet another aspect of the present disclosure, a method for wrapping a load may include driving a packaging material dispenser to dispense packaging material with a dispensing drive. The method may also include providing relative rotation between the packaging material dispenser and the load. The method may also include sensing a characteristic indicative of instantaneous demand for packaging material at the load. The method may further include controlling operation of the dispensing drive based at least in part on the instantaneous demand.
Additional objects and advantages of the disclosure will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the disclosure. The objects and advantages of the disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosure, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and together with the description, serve to explain the principles of the disclosure.
Reference will now be made in detail to present embodiments of the disclosure, examples of which is illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. The disclosures of each of U.S. Pat. No. 4,418,510, entitled “STRETCH WRAPPING APPARATUS AND PROCESS,” and filed Apr. 17, 1981; U.S. Pat. No. 4,953,336, entitled “HIGH TENSILE WRAPPING APPARATUS,” and filed Aug. 17, 1989; U.S. Pat. No. 4,503,658, entitled “FEEDBACK CONTROLLED STRETCH WRAPPING APPARATUS AND PROCESS,” and filed Mar. 28, 1983; U.S. Pat. No. 4,676,048, entitled “SUPPLY CONTROL ROTATING STRETCH WRAPPING APPARATUS AND PROCESS,” and filed May 20, 1986; U.S. Pat. No. 4,514,955, entitled “FEEDBACK CONTROLLED STRETCH WRAPPING APPARATUS AND PROCESS,” and filed Apr. 6, 1981; U.S. Pat. No. 6,748,718, entitled “METHOD AND APPARATUS FOR WRAPPING A LOAD,” and filed Oct. 31, 2002; U.S. Patent Application Publication No. 2006/0248858, entitled “METHOD AND APPARATUS FOR DISPENSING A PREDETERMINED FIXED AMOUNT OF PRE-STRETCHED FILM RELATIVE TO LOAD GIRTH,” filed Apr. 6, 2006; U.S. Patent Application Publication No. 2007/0209324, entitled “METHOD AND APPARATUS FOR SECURING A LOAD TO A PALLET WITH A ROPED FILM WEB,” and filed Feb. 23, 2007; U.S. Patent Application Publication No. 2007/0204565, entitled “METHOD AND APPARATUS FOR METERED PRE-STRETCH FILM DELIVERY,” and filed Sep. 6, 2007; U.S. Patent Application Publication No. 2007/0204564, entitled “RING WRAPPING APPARATUS INCLUDING METERED PRE-STRETCH FILM DELIVERY ASSEMBLY,” and filed Feb. 23, 2007; and U.S. Patent Application Publication No. 2009/0178374, entitled “ELECTRONIC CONTROL OF METERED FILM DISPENSING IN A WRAPPING APPARATUS,” and filed Jan. 7, 2009, are incorporated herein by reference in their entirety.
According to one aspect of the present disclosure, a wrapping apparatus 100, shown in
Packaging material dispenser 116 may include a pre-stretch assembly 120 configured to pre-stretch packaging material before it is applied to load 104 if pre-stretching is desired, or to dispense packaging material to load 104 without pre-stretching. Pre-stretch assembly 120 may include at least one packaging material dispensing roller, including, for example, an upstream dispensing roller 121 and a downstream dispensing roller 122. It is contemplated that pre-stretch assembly 120 may include an assembly of pre-stretch rollers and idle rollers, similar to those described in U.S. Patent Application Publication Nos. 2006/0248858, 2007/0204565, 2007/0204564, and 2009/0178374, the disclosures of which are incorporated herein by reference in their entirety. Additional or fewer rollers may be used as desired.
The terms “upstream” and “downstream,” as used in this application, are intended to define positions and movement relative to the direction of flow of packaging material 118 as it moves from packaging material dispenser 116 to load 104. Movement of an object toward packaging material dispenser 116, away from load 104, and thus, against the direction of flow of packaging material 118, may be defined as “upstream.” Similarly, movement of an object away from packaging material dispenser 116, toward load 104, and thus, with the flow of packaging material 118, may be defined as “downstream.” Also, positions relative to load 104 (or a load support surface 102) and packaging material dispenser 116 may be described relative to the direction of packaging material flow. For example, when two pre-stretch rollers are present, the pre-stretch roller closer to packaging material dispenser 116 may be characterized as the “upstream” roller and the pre-stretch roller closer to load 104 (or load support surface 102) and further from packaging material dispenser 116 may be characterized as the “downstream” roller.
A packaging material drive system 124, including, for example, an electric motor 126, may be used to drive dispensing rollers 121 and 122. For example, electric motor 126 may rotate downstream dispensing roller 122. Downstream dispensing roller 122 may be operatively coupled to upstream dispensing roller 121 by a chain and sprocket assembly, such that upstream dispensing roller 121 may be driven in rotation by downstream dispensing roller 122. Other connections may be used to drive upstream roller 121 or, alternatively, a separate drive (not shown) may be provided to drive upstream roller 121.
Downstream dispensing roller 122, and/or packaging material 118 dispensed thereby, may be monitored for the purposes of determining the rotational speed of downstream dispensing roller 122, the number of rotations undergone by downstream dispensing roller 122, the amount and/or speed of packaging material dispensed by downstream dispensing roller 122, and/or one or more performance parameters indicative of the operating state of packaging material drive system 124, including, for example, a speed of packaging material drive system 124. The monitored characteristics may also provide an indication of the amount of packaging material 118 being dispensed and wrapped onto load 104.
One way of monitoring is via use of a sensor assembly 128. In one embodiment, sensor assembly 128 may be configured to sense rotation of downstream dispensing roller 122. Sensor assembly 128, as shown in
Instantaneous demand for packaging material 118 at the load 104 may be determined and/or approximated for control purposes, such as for controlling packaging material dispensing. As used herein, the term “demand” may be defined as the quantity of packaging material needed to wrap at least a portion of the load to achieve a desired wrap force and/or containment force. As used herein, wrap force is defined as the force exerted on the load by an individual web of packaging material applied to the load. As used herein, containment force is defined as the force exerted on the load by cumulative layers of packaging material. The containment force may be generated by the wrap forces exerted on the load by multiple layers of packaging material. The term “instantaneous demand” may be defined as the demand for packaging material at a load at a particular instant. There are many ways to determine values indicative of instantaneous demand. The instantaneous demand may be characterized as the speed an unstretchable material (e.g., a wire) would be dispensed from the packaging material dispenser onto the load if the unstretchable material was drawn from the packaging material dispenser by relative rotation between the packaging material dispenser and the load, with a speed of the relative rotation remaining substantially constant.
For a wrapping apparatus with a packaging material dispenser that rotates around a stationary load (e.g., a rotating arm apparatus or a rotating ring apparatus), the instantaneous demand may be represented or approximated by a line extending perpendicularly from the rotational axis of the packaging material dispenser to a plane defined by a surface of a length of the packaging material that extends between the packaging material dispenser and the load. For a wrapping apparatus with a rotating load instead of a rotating packaging material dispenser, such as a rotating turntable apparatus, the instantaneous demand may be represented or approximated by a line extending perpendicularly from the rotational axis of the rotating turntable to the plane. Additionally or alternatively, the instantaneous demand may be represented or approximated by a line extending radially from the rotational axis of the packaging material dispenser to a point on the surface of the load (for a rotating packaging material dispenser), or by a line extending radially from the rotational axis of the rotating turntable to a point on the surface of the load (for a rotating load). Additionally or alternatively, the instantaneous demand may be represented or approximated by a line extending from a point on the packaging material dispenser to a plane defined by a surface of a length of the packaging material that extends between the packaging material dispenser and the load.
For example, as shown in
Even during portions of the wrapping cycle where the characteristics of the portion of the load being wrapped do not change, the instantaneous demand may change. For example, in
Instantaneous demand can also be represented or approximated using a speed of packaging material dispensed by the packaging material dispenser at a location between the packaging material dispenser and the load. Further explanation will be provided in subsequent paragraphs.
Instantaneous demand can also be represented or approximated using a distance measurement from a rotational axis of the packaging material dispenser to a point on a surface of the load, taken along a line extending from the rotational axis to a point on, for example, the packaging material dispenser (for a wrapping apparatus where the packaging material dispenser rotates around the load). Additionally or alternatively, the instantaneous demand can be represented or approximated using a distance measurement from a rotational axis of a rotating turntable to a point on a surface of the load, taken along a line extending from the rotational axis to a point on the packaging material dispenser. Such distance measurements are shown in
Instantaneous demand can also be represented or approximated using a distance measurement from a point on, for example, the packaging material dispenser, and a plane defined by a surface of a length of the packaging material that extends between the packaging material dispenser and the load. The measured distance is indicative of an angle between a reference line extending from the point to a point on a surface of a dispensing roller of the packaging material dispenser at which packaging material leaves the dispensing roller, and the plane defined by the surface of the length of the packaging material extending between the packaging material dispenser and the load. Such a distance measurement is shown in
As described above, the instantaneous demand maps characteristics of the load, including, for example, the shape of the load, one or more dimensions of the load, and/or a position of the load relative to the packaging material dispenser. That is, as one or more characteristics changes, the instantaneous demand changes accordingly. Thus, by monitoring the instantaneous demand (e.g., taking periodic or continuous measurements), characteristics of the load can be modeled.
By controlling the packaging material drive system based at least in part on the instantaneous demand, adjustments can be made in response to the variations described above. Thus, loads may be properly wrapped in a consistent manner even though different portions of the load being wrapped have different features or characteristics, or one load to be wrapped has features or characteristics that differ from those of another load to be wrapped. By controlling wrapping of the load as the instantaneous demand changes it may be possible to obtain more consistently wrapped loads, reduce costs by decreasing the likelihood of packaging material breaks and ensuring that excess packaging material is not dispensed, wrap a wide variety of loads regardless of their characteristics, and improve throughput by allowing adjustments to settings to be made automatically.
Three exemplary ways of determining and/or approximating the instantaneous demand for control purposes will now be described. A first way that the instantaneous demand may be determined and/or approximated is by monitoring one or more characteristics of dispensed packaging material 118D extending between load 104 and downstream dispensing roller 122. As shown in
As one example, sensor assembly 136 may be configured to monitor the rotation of idle roller 134, positioned downstream from dispensing roller 122 and configured to engage dispensed packaging material 118D. This monitoring may be for purposes of sensing the rotational speed of idle roller 134. Sensor assembly 136 may include components similar to those in sensor assembly 128. One example of a sensor assembly that may be used is a Sick 7900266 Magnetic Sensor and Encoder. Other suitable sensors and/or encoders known in the art may be used for monitoring, such as, for example, magnetic encoders, electrical sensors, mechanical sensors, photodetectors, and/or motion sensors. The instantaneous demand and the monitored characteristics of dispensed packaging material 118D may be linked. For example, an increase in the instantaneous demand may produce an increase in the speed of dispensed packaging material 118D, the amount of dispensed packaging material 118D, and/or the speed of rotation of idle roller 134, while a decrease in the instantaneous demand may produce a decrease in the speed of dispensed packaging material 118D, the amount of dispensed packaging material 118D, and/or the speed of rotation of idle roller 134. One reason for this is that as the instantaneous demand increases, load 104 tends to draw packaging material 118 more quickly over idle roller 134, and when instantaneous demand decreases, load 104 tends to draw packaging material 118 more slowly over idle roller 134. Thus, sensor assembly 136, by monitoring the speed of rotation of idle roller 134 during wrapping, monitors the instantaneous demand for packaging material 118 at the portion of load 104 being wrapped. Accordingly, the signal generated by sensor assembly 136, based on monitoring the speed of rotation of idle roller 134, is indicative of instantaneous demand at the portion of load 104 being wrapped. As the instantaneous demand increases (producing an increase in the speed of rotation of idle roller 134), the instantaneous demand signal from sensor assembly 136 may increase. As the instantaneous demand decreases (producing a decrease in the speed of rotation of idle roller 134), the instantaneous demand signal from upstream sensor assembly 136 may decrease.
Additionally or alternatively, one or more characteristics of dispensed packaging material 118D may be monitored with another sensor assembly, similar to sensor assembly 136, but positioned to engage a different portion of dispensed packaging material 118D. This other sensor assembly may include, for example, a sensor assembly 114 configured to monitor an idle roller 133. Idle roller 133 may be similar to idle roller 134. Sensor assembly 114 may also generate an instantaneous demand signal based on the one or more sensed characteristics.
A second way that the instantaneous demand may be determined and/or approximated, in addition to or as an alternative to the first way, is by using a distance measuring device 137 (see
As shown in
In
Signals generated by distance measuring device 137 may provide data on the measured distances and/or the calculated radial distances. These signals may provide an indication or approximation of instantaneous demand at the surface point on load 104 where the measurement is taken. As the instantaneous demand increases (exemplified by an increase in the radial distance between the center of rotation 139 and the surface point on load 104), the instantaneous demand signal from distance measuring device 137 may increase. As the instantaneous demand decreases (exemplified by a decrease in the radial distance between the center of rotation 139 and the surface point on load 104), the instantaneous demand signal from distance measuring device 137 may decrease. The signals from distance measuring device 137 may be sent to controller 170 together with signals indicative of relative rotation speed, allowing controller 170 to adjust wrap settings.
Distance measuring device 137 may be positioned on or near packaging material dispenser 116 such that distance measuring device 137 may be used to anticipate changes in the instantaneous demand. For example, distance measuring device 137 may be positioned at a location on or near a forward end of packaging material dispenser 116. This may allow distance measuring device 137 to measure the distance to a portion of load 104 that is not yet being wrapped. By determining the instantaneous demand at that portion of load 104, controller 170 may anticipate the instantaneous demand at that portion. This may provide controller 170 with additional time to adjust operational settings based on the anticipated instantaneous demand. For example, controller 170 may gradually adjust operational settings over a period of time to prevent spikes in force on packaging material 118, and/or to ensure smoother running of packaging material dispenser 116. It should be understood that a calculated delay may be required to align packaging material dispensing with the instantaneous demand determined and/or approximated using distance measuring device 137.
A third way that the instantaneous demand may be determined and/or approximated, in addition to or as an alternative to the first and second ways, is by using a distance measuring device 141 (see
As shown in
Signals generated by distance measuring device 141 may provide data on the measured distances and/or angles. Thus, these signals may be indicative of instantaneous demand at the surface point on load 104 being wrapped. As the instantaneous demand increases (exemplified by an increase in the measured distance or angle), the instantaneous demand signal from distance measuring device 141 may increase. As the instantaneous demand decreases (exemplified by a decrease in the measured distance or angle), the instantaneous demand signal from distance measuring device 141 may decrease. The signals from distance measuring device 141 may be sent to controller 170 together with signals indicative of relative rotation speed, allowing controller 170 to adjust wrap settings.
By controlling the relationship between the operation of packaging material drive 124 and the instantaneous demand, as determined and/or approximated using one or more of the ways described above, apparatus 100 may wrap at least a portion of load 104 at a desired and/or predetermined payout percentage even as conditions change. The word “predetermined,” as used herein, means “determined and set in advance.” Values described herein as “predetermined” may include values determined through, for example, experimentation, analysis of historical performance data, use of mathematical equations and formulas, measurement, and/or any other suitable ways of making determinations, that are set in advance (e.g., before starting a wrapping cycle or during a wrapping cycle as conditions change) to achieve a desired goal. As used herein, the phrase “payout percentage” is defined as a ratio of the amount of packaging material dispensed for at least a portion of a wrapping cycle to the demand for packaging material at the load for that same portion of the wrapping cycle.
The desired and/or predetermined payout percentage may be input into apparatus 100 by a machine operator. A controller 170 (shown in
Wrapping apparatus 100 may include a relative rotation assembly 106 configured to rotate rotating arm 112, and thus, packaging material dispenser 116 mounted thereon, relative to load 104 as load 104 is supported on load support surface 102. Relative rotation assembly 106 may include a rotational drive system 108, including, for example, an electric motor 110. It is contemplated that rotational drive system 108 and packaging material drive system 124 may run independently of one another. Thus, rotation of dispensing rollers 121 and 122 may be independent of the relative rotation of packaging material dispenser 116 relative to load 104. This independence allows a length of packaging material 118 to be dispensed per a portion of relative revolution that is neither predetermined or constant. Rather, the length may be adjusted periodically or continuously based on changing conditions.
Wrapping apparatus 100 may further include a lift assembly 146. Lift assembly 146 may be powered by a lift drive system 148, including, for example, an electric motor 150, that may be configured to move roll carriage 132 vertically relative to load 104. Lift drive system 148 may drive roll carriage 132, and thus packaging material dispenser 116, upwards and downwards vertically on rotating arm 112 while roll carriage and packaging material dispenser 116 are rotated about load 104 by rotational drive system 108, to wrap packaging material spirally about load 104.
An exemplary schematic of a control system 160 for wrapping apparatus 100 is shown in
Controller 170 may include hardware components and software programs that allow it to receive, process, and transmit data. It is contemplated that controller 170 may operate similar to a processor in a computer system. Controller 170 may communicate with an operator interface 176 via a data link 178. Operator interface 176 may include a screen and controls that may provide an operator with a way to monitor, program, and operate wrapping apparatus 100. For example, an operator may use operator interface 176 to enter or change predetermined and/or desired settings and values, or to start, stop, or pause the wrapping cycle. Controller 170 may also communicate with one or more sensor assemblies (described above) through a data link 174, thus allowing controller 170 to receive performance related data during wrapping. It is contemplated that data links 162, 172, 174, and 178 may include any suitable wired communications medium known in the art. It is also contemplated that data links 162, 172, 174, and 178 may include any suitable wireless communications medium known in the art that allows the sensor assemblies to transmit data wirelessly to controller 170.
By controlling the operation of packaging material drive 124 based at least in part on the instantaneous demand with controller 170, apparatus 100 may wrap at least a portion of load 104 at the predetermined and/or desired payout percentage for at least a portion of a wrapping cycle. The portion of the wrapping cycle may be a portion of a single relative revolution between the dispenser and the load, a complete relative revolution, or more than a single relative revolution. During that portion of the wrapping cycle, load 104 may be wrapped with a substantially equal wrap force around its perimeter. This may be achieved even though the instantaneous demand may change during the portion of the wrapping cycle. Such changes in instantaneous demand may be caused by, for example, a change in one or more dimensions of the load, the shape of the portion of the load being wrapped, the placement of the load being wrapped relative to packaging material dispenser 116, and/or the speed of relative rotation of packaging material dispenser 116 relative to load 104.
The instantaneous demand, as well as changes in the instantaneous demand may be determined and/or approximated by or using sensor assembly 136, distance measuring device 137, and/or distance measuring device 141. Controller 170 may receive signals from sensor assembly 136, distance measuring device 137, and/or distance measuring device 141. Along with the signals from distance measuring device 137 and/or distance measuring device 141, controller 170 may also receive a relative rotation speed signal from any suitable sensor (not shown) monitoring rotational drive system 108. Controller 170 may also receive the drive signal from sensor assembly 128, as it monitors dispensing roller 122. Controller 170 may be programmed to set or adjust operation of packaging material drive system 124 by changing the frequency of electrical power supplied to packaging material drive VFD 166, based on the instantaneous demand signal. Additionally, controller 170 may be programmed to set or adjust operation of packaging material drive system 124 based at least in part on the relative rotation speed signal when the instantaneous demand signal is from distance measuring device 137 of distance measuring device 141.
For example, controller 170 may be programmed to use the instantaneous demand signal from sensor assembly 136, distance measuring device 137, and/or distance measuring device 141 as a baseline signal, and may adjust operation of packaging material drive system 124 as the instantaneous demand signal changes. If the instantaneous demand signal increases, controller 170 may adjust operation of packaging material drive system 124 to produce a corresponding increase in the drive signal. If the instantaneous demand signal decreases, controller 170 may adjust operation of packaging material drive system 124 to produce a corresponding decrease in the drive signal. Controller 170 may adjust operation of packaging material drive system 124 until the drive signal is equal to the instantaneous demand signal (producing a payout percentage of 100% and/or equal rotation speeds for dispensing roller 122 and idle roller 134), and/or within a predetermined and/or desired range above the instantaneous demand signal (producing a payout percentage of more than 100% and/or a rotation speed for dispensing roller 122 that exceeds the rotation speed of idle roller 134) or below the instantaneous demand signal (producing a payout percentage of less than 100% and/or a rotation speed for dispensing roller 122 that is exceeded by the rotation speed of idle roller 134). The adjusted drive signal may be linked with the speed of downstream dispensing roller 122 required to produce the desired payout percentage in light of the instantaneous demand.
A plot of drive signal values and instantaneous demand signal values over time may produce a drive signal curve and an instantaneous demand signal curve that are similar. For example, the drive signal curve and the instantaneous demand signal curve may be sinusoidal (due, for example, to the presence of sides and corners on rectangular loads), and may be coincident, vertically offset (i.e., parallel) by a predetermined and/or desired magnitude, and/or horizontally offset by a predetermined and/or desired magnitude. By performing these steps, controller 170 may produce the predetermined and/or desired payout percentage for the portion of the wrapping cycle. Of course, when the instantaneous demand signal remains substantially constant, controller 170 may operate packaging material drive system 124 in a substantially constant manner.
It is also contemplated that controller 170 may be programmed to use the instantaneous demand signal from sensor assembly 114 as the baseline signal, if sensor assembly 114 is provided. It is further contemplated that sensor assembly 128 may be ignored or omitted, and controller 170 may be programmed to adjust operation of packaging material drive system 124 as the instantaneous demand signal changes, without monitoring downstream drive roller 122. In such an embodiment, controller 170 may increase the speed of packaging material drive system 124 when the instantaneous demand signal increases, and decrease the speed of packaging material drive system 124 when the instantaneous demand signal decreases. The change in the speed of packaging material drive system 124 may be proportional to the magnitude of the change in the instantaneous demand signal. Moreover, the speed of packaging material drive system 124 may be set at a first level relative to the instantaneous demand signal to achieve a first payout percentage, at a higher level to achieve a higher payout percentage, and at a lower level to achieve a lower payout percentage. A plot of the speed of packaging material drive system 124 and instantaneous demand signal values over time may produce a drive speed curve and an instantaneous demand signal curve that are similar (e.g., sinusoidal, coincident, vertically offset, and/or horizontally offset).
By using the instantaneous demand signal as a baseline, controller 170 may make adjustments when wrapping loads with varying profiles, including, for example, loads composed of units having different dimensions; when wrapping loads with irregular shapes, including, for example, non-square loads; or when wrapping square loads that are positioned off-center of load support surface 102. When wrapping such loads, it is possible for the instantaneous demand to change a plurality of times. For example, when packaging material dispenser 116 moves from wrapping a top portion 151 to a middle portion 149 of load 104 (see, e.g.,
It is also contemplated that if, after load 104 is wrapped, a subsequent load to be wrapped has one or more dimensions and/or a shape that is different from that of load 104, the predetermined and/or desired payout percentage may still be produced during wrapping of the subsequent load. For example, if the subsequent load is larger than load 104, there will be a greater instantaneous demand for packaging material 118 at the subsequent load. The increase in instantaneous demand will result in an increase in the instantaneous demand signal, and an increase in the speed of downstream dispensing roller 122 in response. Thus, the predetermined and/or desired payout percentage may be achieved as the speed of downstream dispensing roller 122 rises to meet the increase in the instantaneous demand. If, on the other hand, the subsequent load is smaller than load 104, there will be a smaller instantaneous demand for packaging material 118 at the subsequent load. The decrease in instantaneous demand will result in a decrease in the instantaneous demand signal, and a decrease in the speed of downstream dispensing roller 122. Thus, once again, the predetermined and/or desired payout percentage may be achieved as the speed of downstream dispensing roller 122 falls to meet the decrease in the instantaneous demand. As such, wrapping at the predetermined and/or desired payout percentage may be accomplished although the actual dimensions of the load being wrapped are unknown, and/or a series of loads to be wrapped have random shapes and/or dimensions.
A buffer may be added to dampen or reduce the amplitude of the speed variation undergone by downstream dispensing roller 122. By doing so, the buffer may allow smoother operation to be achieved during wrapping. The buffer may also reduce stress on packaging material 118, helping to prevent packaging material breaks from occurring.
The buffer may operate by dampening or delaying the instantaneous demand signal from sensing assembly 136 in instances where the instantaneous demand is trending down or decreasing. Dampening and/or delaying the instantaneous demand signal may weaken, reduce, and/or slow the response of controller 170 to the decrease in instantaneous demand. While this could result in loose wrapping for a portion of the wrapping cycle, such loose wrapping may be remedied by subsequent wrapped layers of packaging material 118. Moreover, the dampening or delaying may help prevent packaging material breaks. When packaging material 118 is torn or otherwise damaged, that portion of packaging material 118 may cause idle roller 134 to slow as it passes over idle roller 134. If controller 170 immediately reacts to the slowing of idle roller 134, as if it was indicative of a decrease in instantaneous demand, controller 170 will increase stress on the damaged portion and potentially cause a packaging material break. By dampening or delaying the instantaneous demand signal, additional time is provided for the damaged portion to be wrapped onto load 104, allowing wrapping to continue. Thus, the benefits obtained by reducing or slowing the response of controller 170 may outweigh any potential drawbacks.
Dampening and/or delaying the instantaneous demand signal from sensing assembly 136, while desirable when the instantaneous demand decreases, may be undesirable when the instantaneous demand increases. For example, when wrapping a corner of load 104 or an enlarged portion of load 104, the instantaneous demand may increase, producing an increase in the instantaneous demand signal. If the instantaneous demand signal is dampened and/or delayed, controller 170 may not be able to adjust packaging material drive system 124 quickly enough to ensure that enough packaging material 118 is dispensed to meet the increased demand. Tension in dispensed packaging material 118D may increase to a point where a tear, or even a break, may develop. Thus, when the instantaneous demand signal increases, any dampening and/or delaying of the instantaneous demand signal may be avoided.
Controller 170 may also be programmed to detect packaging material breaks during at least a portion of the wrapping cycle. As used herein, the term “break” is meant to describe a complete or total severing of packaging material 118, that is, a cutting or tearing across the entire width of packaging material 118 that splits the packaging material 118 into separate pieces. The term “break” is not meant to refer to a relatively small puncture, rip, or tear in packaging material 118 that may be carried through onto load 104 during wrapping. However, if the relatively small puncture, rip, or tear in packaging material 118 stretches to the point that it completely severs packaging material 118 before making its way onto load 104, then the relatively small puncture, rip, or tear will have become a break. The direction of rotation of idle roller 134 may reverse due to recovery of the packaging material after breakage or backlash of the broken packaging material. Thus, controller 170 may recognize that a packaging material break has occurred when a reversal is sensed. When a packaging material break is detected, controller 170 may instruct packaging material drive VFD 166 to stop packaging material drive system 124, thus halting the dispensing of packaging material 118 from packaging material dispenser 116. It is also contemplated that packaging material breaks may be detected using photodetectors, loads cells, spring-biased rollers, and/or any other suitable devices known in the art.
Controller 170 may also be programmed to give priority to some signals from sensing assembly 136, distance measuring device 137, and/or distance measuring device 141, over other signals. For example, rather than treating all of the signals as equally important, the controller 170 may give the signals corresponding to the corners of load 104 (such as those represented by R3, R4, and R5 in
Wrapping apparatus 200 may include an idle roller 234 and a sensing assembly 236 similar to idle roller 134 and sensing assembly 136. Sensing assembly 236, like sensing assembly 136, may provide a signal indicative of instantaneous demand. Additionally or alternatively, a distance measuring sensor 237, similar to distance measuring sensor 137, may be mounted on or near any point on packaging material dispenser 216, roll carriage 232, rotating ring 212, and/or any other suitable location where distance measuring sensor 237 can measure the distance to load 204 while rotating relative to load 204. It is contemplated that distance measuring sensor 237 may be mounted such that its view is not obstructed by dispensed packaging material 218D. Additionally or alternatively, a distance measuring sensor 241, similar to distance measuring sensor 141, may be mounted on or near any point on packaging material dispenser 216, roll carriage 232, rotating ring 212, and/or any other suitable location where distance measuring sensor 241 can measure the distance to dispensed packaging material 218D while load 204 is wrapped.
Wrapping apparatus 200 may also include a controller (not shown) similar to controller 170. The controller may receive signals from sensor assembly 236, distance measuring device 237, and/or distance measuring device 241. The controller may also receive a drive signal from a sensor assembly 228 (similar to sensor assembly 128), as it monitors a dispensing roller 222 (similar to dispensing roller 122). The controller may be programmed to set or adjust operation of a packaging material drive system 224 (similar to packaging material drive system 124) by, for example, changing the frequency of electrical power supplied to a packaging material drive (not shown, but similar to packaging material drive VFD 166) based on the instantaneous demand signals from sensing assembly 236, distance measuring device 237, and/or distance measuring device 241.
Wrapping apparatus 300 may include an idle roller 334 and a sensing assembly 336 similar to idle roller 134 and sensing assembly 136. Sensing assembly 336, like sensing assembly 136, may provide a signal indicative of instantaneous demand. Additionally or alternatively, a distance measuring sensor 337, similar to distance measuring sensor 137, may be mounted on or near any point on packaging material dispenser 316, roll carriage 332, and/or any other suitable location where distance measuring sensor 337 can measure the distance to load 304 while rotating relative to load 304. It is contemplated that distance measuring sensor 337 may be mounted such that its view is not obstructed by dispensed packaging material 318D. Additionally or alternatively, a distance measuring sensor 341, similar to distance measuring sensor 141, may be mounted on or near any point on packaging material dispenser 316, roll carriage 332, and/or any other suitable location where distance measuring sensor 341 can measure the distance to dispensed packaging material 318D while load 304 is wrapped.
Wrapping apparatus 300 may also include a controller (not shown) similar to controller 170. The controller may receive signals from sensor assembly 336, distance measuring device 337, and/or distance measuring device 341. The controller may also receive a drive signal from a sensor assembly 328 (similar to sensor assembly 128), as it monitors a dispensing roller 322 (similar to dispensing roller 122). The controller may be programmed to set or adjust operation of a packaging material drive system 324 (similar to packaging material drive system 124) by, for example, changing the frequency of electrical power supplied to a packaging material drive (not shown, but similar to packaging material drive VFD 166) based on the instantaneous demand signals from sensing assembly 336, distance measuring device 337, and/or distance measuring device 341.
While pre-stretched packaging material is included in the exemplary embodiments described above, it should be understood that other types of packaging material, such as those that do not undergo pre-stretching (e.g., netting, strapping, banding, or tape), may also be used. Such an embodiment would be similar to the embodiment including pre-stretched packaging material, except that the speed of rotation of the upstream dispensing roller, which may be indicative of the speed and/or amount of undispensed packaging material coming off the upstream dispensing roller, may be substantially equal to the speed of rotation of the downstream dispensing roller, which may be indicative of the speed and/or amount of dispensed packaging material coming off the downstream dispensing roller.
A first exemplary method for wrapping a load will now be described. Reference will be made to elements in
The predetermined and/or desired payout percentage may be obtained by or entered into controller 170. The predetermined and/or desired payout percentage may be selected, for example, based on the desired wrap force. The desired wrap force may be obtained by, for example, looking at historical performance data to identify a wrap force that has successfully prevented shifting of loads similar to load 104 during shipping.
With load 104 in place, and controller 170 programmed with the predetermined and/or desired payout percentage, controller 170 may begin wrapping load 104. Controller 170 may implement operational settings of wrapping apparatus 100 so that a sufficient amount of packaging material 118 is dispensed initially to prevent pulling the initial end of packaging material 118 out of or off of clamping device 180, and so that load 104 may be properly wrapped. For example, controller 170 may implement settings to produce the predetermined and/or desired payout percentage.
During wrapping, the instantaneous demand for packaging material 118 at load 104 may change due to changes in load girth within load 104, features associated with the shape of load 104 (e.g., flat surfaces and/or corners), one or more dimensions of load 104, and/or placement of load 104 relative to packaging material dispenser 116 (e.g., on or off center with respect to the rotational axis of packaging material dispenser 116). If the instantaneous demand increases, producing an increase in the instantaneous demand signal from sensor assembly 136, distance measuring device 137, and/or distance measuring device 141, controller 170 may increase the speed of dispensing roller 122 in response to maintain the predetermined and/or desired payout percentage. When the instantaneous demand signal is supplied by distance measuring device 137 or distance measuring device 141, controller 170 may also obtain a relative rotation speed signal for determining the speed of dispensing roller 122 in response to maintain the predetermined and/or desired payout percentage. If the instantaneous demand at load 104 decreases, producing a decrease in the instantaneous demand signal, controller 170 may decrease the speed of dispensing roller 122 in response to maintain the predetermined and/or desired payout percentage. For example, the instantaneous demand at load 104 may decrease as packaging material dispenser 116 moves from wrapping middle portion 149 of load 104 to wrapping top portion 151 of load 104, since top portion 151 has a smaller girth than middle portion 149. This decrease in the portion of load 104 being wrapped may correspond to a decrease in the instantaneous demand that is sensed by sensor assembly 136, resulting in a decrease in the instantaneous demand signal to controller 170, which decreases the speed of dispensing roller 122 in response to maintain the predetermined and/or desired payout percentage.
Controller 170 may implement a buffer to ensure that it responds to decreases in the instantaneous demand signal, as indicated by sensing assembly 136, less severely and/or less quickly than it responds to increases in the instantaneous demand signal. The buffer may dampen and/or delay the instantaneous demand signal from sensing assembly 136 when the instantaneous demand signal decreases. Dampening may reduce fluctuations, thus providing for smoother machine operations. Dampening may also allow damaged portions (e.g., portions with a hole and/or a partial tear) of packaging material 118 to pass onto load 104 without causing complete failure of packaging material 118.
Packaging material dispenser 116 may dispense packaging material 118 to form one or more layers around a bottom portion of load 104, a top portion of a pallet 153 supporting load 104, the sides of load 104, and a top portion of load 104. With load 104 substantially wrapped, packaging material dispenser 116 may proceed back towards its home position proximate clamping device 180 in
During wrapping, controller 170 may also monitor the rotation of an idle roller, such as idle roller 134, using downstream sensor assembly 136, to detect when a break has occurred in packaging material 118. Controller 170 may determine that a break has occurred if a decrease in the sensed instantaneous demand is of a magnitude, and/or occurs within a period of time, indicative of a break having occurred. Additionally or alternatively, if sensor assembly 136 senses that at least idle roller 134 has undergone a reversal in rotation, controller 170 may recognize that a break has occurred. If a break is detected, controller 170 may instruct packaging material drive VFD 166 to stop packaging material drive system 124, thus halting the dispensing of packaging material 118 from packaging material dispenser 116. It should be understood that idle roller 133 and sensor assembly 114 may be used in place of, or in combination with, idle roller 134 and sensor assembly 136, in the steps described above.
In a second exemplary method for wrapping a load, packaging material dispenser 116 may be in its home position proximate clamping device 180, packaging material 118 may extend from packaging material dispenser 116 toward clamping device 180, and clamping device 180 may grip the leading end of packaging material 118. Load 104 may be placed on wrapping surface 102 in a manner similar to that described in the first method. The predetermined and/or desired payout percentage may be obtained by or entered into controller 170, after having been selected in a manner similar to that described in the first method. With load 104 in place, and controller 170 programmed with the predetermined and/or desired payout percentage, controller 170 may begin wrapping load 104.
During wrapping, controller 170 may make adjustments to the operational settings of wrapping apparatus 100 so that load 104 may be properly wrapped. For example, controller 170 may implement settings to produce the predetermined and/or desired payout percentage. Controller 170 may retain the instantaneous demand signals from sensor assembly 136, distance measuring device 137, and/or distance measuring device 141, in a memory location for one or more relative revolutions between packaging material dispenser 116 and load 122. For example, controller 170 may generate a curve indicative of instantaneous demand versus time for the one or more relative revolutions, and/or a curve indicative of instantaneous demand versus time for corners of load 104. The curves may be used by controller 170 as a model of the size and/or shape of load 104. Controller 170 may use the curve as a baseline, and may set and adjust operation of packaging material drive system 124 and its dispensing roller 122 based on the curve, to wrap load 104 at the predetermined and/or desired payout percentage.
After load 104 has been modeled during the one or more relative revolutions, controller 170 may wrap load 104 without referring back to sensor assembly 136, distance measuring device 137, and/or distance measuring device 141, for additional data. Additionally or alternatively, controller 170 may replace the curve with an updated curve if the instantaneous demand signals from sensor assembly 136 are outside of a predetermined range with respect to the curve. The one or more relative revolutions during which controller 170 may model load 104 may include the first relative revolution between packaging material dispenser 116 and load 104 during the start-up period of the wrapping cycle. Additionally or alternatively, the one or more relative revolutions may include the first relative revolution between packaging material dispenser 116 and load 104 during the intermediate period of the wrapping cycle. It is contemplated, however, that the one or more revolutions may include any of the one or more relative revolutions between packaging material dispenser 116 and load 104 during the wrapping cycle.
During wrapping, controller 170 may also monitor the rotation of idle roller 134, using downstream sensor assembly 136, to detect when a break has occurred in packaging material 118, in a manner similar to that which was described in the first method. Controller 170 may also include a buffer to dampen and/or delay the instantaneous demand signal when the instantaneous demand signal decreases. With load 104 substantially wrapped, packaging material dispenser 116 may proceed back towards its home position. Similar steps may be performed during wrapping with wrapping apparatuses 200 and 300, where similar elements have similar reference numerals and perform similar operations.
In a third exemplary method for wrapping a load, any of the methods or steps described in U.S. Patent Application Publication No. 2009/0178374, which is incorporated herein by reference in its entirety, may be performed during the wrapping of one or more loads.
It is also contemplated that any sequence or combination of the above-described methods may be performed during the wrapping of one or more loads. For example, while wrapping a load, one method may be performed, whereas while wrapping another load, another method may be performed. Additionally or alternatively, while wrapping a single load, two or more of the three methods may be performed. One method may be performed during one portion of the wrapping cycle, and another method may be performed during another portion of the wrapping cycle. Additionally or alternatively, one load may be wrapped using a first combination of methods, while another load may be wrapped using a second combination of methods (e.g., a different combination of methods, and/or a different sequence of methods).
Each of the elements and methods described in the present disclosure may be used in any suitable combination with the other described elements and methods.
Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.
This application is a continuation-in-part of application Ser. No. 12/349,929, filed Jan. 7, 2009 now U.S. Pat. No. 9,725,195, which claims priority under 35 U.S.C. § 119 of Provisional Application No. 61/006,338, filed Jan. 7, 2008, the disclosures of which are incorporated herein by reference in their entirety. This application claims priority under 35 U.S.C. § 119 of Provisional Application No. 61/258,740, filed Nov. 6, 2009, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2227398 | Mohl | Dec 1940 | A |
2904196 | Teixeira | Sep 1959 | A |
3029571 | Douthit | Apr 1962 | A |
3815313 | Heisler | Jun 1974 | A |
3910005 | Thimon et al. | Oct 1975 | A |
4152879 | Shulman | May 1979 | A |
4216640 | Kaufman | Aug 1980 | A |
4235062 | Lancaster, III et al. | Nov 1980 | A |
4271657 | Lancaster, III et al. | Jun 1981 | A |
4300326 | Stackhouse | Nov 1981 | A |
4387548 | Lancaster et al. | Jun 1983 | A |
4395255 | Branecky et al. | Jul 1983 | A |
4418510 | Lancaster, III et al. | Dec 1983 | A |
4429514 | Lancaster et al. | Feb 1984 | A |
4432185 | Geisinger | Feb 1984 | A |
4458467 | Shulman et al. | Jul 1984 | A |
4497159 | Lancaster, III | Feb 1985 | A |
4501105 | Rogers et al. | Feb 1985 | A |
4503658 | Mouser et al. | Mar 1985 | A |
4505092 | Bowers et al. | Mar 1985 | A |
4514955 | Mouser et al. | May 1985 | A |
4524568 | Lancaster et al. | Jun 1985 | A |
4590746 | Humphrey | May 1986 | A |
4628667 | Humphrey et al. | Dec 1986 | A |
4676048 | Lancaster et al. | Jun 1987 | A |
4693049 | Humphrey | Sep 1987 | A |
4712354 | Lancaster et al. | Dec 1987 | A |
4716709 | Lamb et al. | Jan 1988 | A |
4736567 | Pienta | Apr 1988 | A |
4754594 | Lancaster | Jul 1988 | A |
4761934 | Lancaster | Aug 1988 | A |
4807427 | Casteel et al. | Feb 1989 | A |
4840006 | Humphrey | Jun 1989 | A |
4845920 | Lancaster | Jul 1989 | A |
4855924 | Strosser | Aug 1989 | A |
4862678 | Humphrey | Sep 1989 | A |
4866909 | Lancaster, III et al. | Sep 1989 | A |
4905451 | Jaconelli et al. | Mar 1990 | A |
4953336 | Lancaster, III et al. | Sep 1990 | A |
4991381 | Simons | Feb 1991 | A |
5027579 | Keip | Jul 1991 | A |
5040356 | Thimon | Aug 1991 | A |
5040359 | Thimon | Aug 1991 | A |
5054263 | Maki-Rahkola et al. | Oct 1991 | A |
5054987 | Thornton | Oct 1991 | A |
5077956 | Thimon | Jan 1992 | A |
5081824 | Thimon et al. | Jan 1992 | A |
5107657 | Diehl et al. | Apr 1992 | A |
5123230 | Upmann | Jun 1992 | A |
5138817 | Mowry et al. | Aug 1992 | A |
5163264 | Hannen | Nov 1992 | A |
5186981 | Shellhamer et al. | Feb 1993 | A |
5195296 | Matsumoto | Mar 1993 | A |
5195297 | Lancaster et al. | Mar 1993 | A |
5195301 | Martin-Cocher et al. | Mar 1993 | A |
5203136 | Thimon et al. | Apr 1993 | A |
5203139 | Salsburg et al. | Apr 1993 | A |
5216871 | Hannen | Jun 1993 | A |
5240198 | Dorfel | Aug 1993 | A |
5301493 | Chen | Apr 1994 | A |
5311725 | Martin et al. | May 1994 | A |
5315809 | Gordon et al. | May 1994 | A |
5369416 | Haverty et al. | Nov 1994 | A |
5414979 | Moore et al. | May 1995 | A |
5447008 | Martin-Cocher | Sep 1995 | A |
5450711 | Martin-Cocher | Sep 1995 | A |
5463842 | Lancaster | Nov 1995 | A |
5524413 | Fukuda | Jun 1996 | A |
5546730 | Newell et al. | Aug 1996 | A |
5572855 | Reigrut et al. | Nov 1996 | A |
5581979 | Scherer | Dec 1996 | A |
5595042 | Cappi et al. | Jan 1997 | A |
5634321 | Martin-Cocher et al. | Jun 1997 | A |
5653093 | Delledonne | Aug 1997 | A |
5671593 | Ginestra et al. | Sep 1997 | A |
5765344 | Mandeville et al. | Jun 1998 | A |
5768862 | Mauro et al. | Jun 1998 | A |
5797246 | Martin-Cocher | Aug 1998 | A |
5799471 | Chen | Sep 1998 | A |
5836140 | Lancaster, III | Nov 1998 | A |
5875617 | Scherer | Mar 1999 | A |
5884453 | Ramsey et al. | Mar 1999 | A |
5953888 | Martin-Cocher et al. | Sep 1999 | A |
6082081 | Mucha | Jul 2000 | A |
6185900 | Martin | Feb 2001 | B1 |
6195968 | Marois et al. | Mar 2001 | B1 |
6253532 | Orpen | Jul 2001 | B1 |
6293074 | Lancaster, III et al. | Sep 2001 | B1 |
6314333 | Rajala et al. | Nov 2001 | B1 |
6338480 | Endo | Jan 2002 | B1 |
6360512 | Marois et al. | Mar 2002 | B1 |
6370839 | Nakagawa et al. | Apr 2002 | B1 |
6453643 | Buscherini et al. | Sep 2002 | B1 |
6516591 | Lancaster, III et al. | Feb 2003 | B1 |
6684612 | Trottet | Feb 2004 | B2 |
6698161 | Rossi | Mar 2004 | B1 |
6748718 | Lancaster, III et al. | Jun 2004 | B2 |
6826893 | Cere′ | Dec 2004 | B2 |
6848240 | Frey | Feb 2005 | B2 |
6851252 | Maki-Rahkola et al. | Feb 2005 | B2 |
6918229 | Lancaster, III et al. | Jul 2005 | B2 |
7040071 | Heikaus | May 2006 | B2 |
7114308 | Cox | Oct 2006 | B2 |
7386968 | Sperry et al. | Jun 2008 | B2 |
7490823 | Oishi et al. | Feb 2009 | B2 |
7540128 | Lancaster, III et al. | Jun 2009 | B2 |
7568327 | Lancaster, III et al. | Aug 2009 | B2 |
7707801 | Lancaster, III | May 2010 | B2 |
7707901 | Lancaster, III et al. | May 2010 | B2 |
7779607 | Lancaster, III et al. | Aug 2010 | B2 |
8001745 | Carter et al. | Aug 2011 | B2 |
8037660 | Lancaster, III et al. | Oct 2011 | B2 |
8074431 | Pierson | Dec 2011 | B1 |
8276346 | Lancaster, III et al. | Oct 2012 | B2 |
8276354 | Lancaster, III et al. | Oct 2012 | B2 |
8739502 | Lancaster, III | Jun 2014 | B2 |
8915460 | Busch et al. | Dec 2014 | B2 |
20010015057 | Suolahti | Aug 2001 | A1 |
20030089081 | Platon | May 2003 | A1 |
20030110737 | Lancaster et al. | Jun 2003 | A1 |
20030145563 | Cere′ | Aug 2003 | A1 |
20030200731 | Maki-Rahkola et al. | Oct 2003 | A1 |
20030200732 | Maki-Rahkola et al. | Oct 2003 | A1 |
20040031238 | Cox | Feb 2004 | A1 |
20040040477 | Neumann | Mar 2004 | A1 |
20050044812 | Lancaster et al. | Mar 2005 | A1 |
20050115202 | Mertz et al. | Jun 2005 | A1 |
20060028969 | Kondo et al. | Feb 2006 | A1 |
20060213155 | Forni et al. | Sep 2006 | A1 |
20060248858 | Lancaster | Nov 2006 | A1 |
20060254214 | Cox et al. | Nov 2006 | A1 |
20060254225 | Lancaster et al. | Nov 2006 | A1 |
20060289691 | Forni | Dec 2006 | A1 |
20070204564 | Lancaster et al. | Sep 2007 | A1 |
20070204565 | Lancaster et al. | Sep 2007 | A1 |
20070209324 | Lancaster et al. | Sep 2007 | A1 |
20080216449 | Zimmerli | Sep 2008 | A1 |
20080229714 | Zitella et al. | Sep 2008 | A1 |
20080295614 | Lancaster, III et al. | Dec 2008 | A1 |
20090178374 | Lancaster, III et al. | Jul 2009 | A1 |
20090293425 | Carter et al. | Dec 2009 | A1 |
20100107653 | Paskevich et al. | May 2010 | A1 |
20100239403 | Lancaster, III et al. | Sep 2010 | A1 |
20100300049 | Schmidt et al. | Dec 2010 | A1 |
20100303526 | Hayase | Dec 2010 | A1 |
20100320305 | Lia | Dec 2010 | A1 |
20110131927 | Lancaster, III et al. | Jun 2011 | A1 |
20110146203 | Lancaster, III et al. | Jun 2011 | A1 |
20110153277 | Morath | Jun 2011 | A1 |
20110168751 | Tsurumi | Jul 2011 | A1 |
20110179752 | Lancaster, III et al. | Jul 2011 | A1 |
20120031053 | Lancaster, III et al. | Feb 2012 | A1 |
20120102887 | Lancaster, III et al. | May 2012 | A1 |
20120124944 | Lancaster, III et al. | May 2012 | A1 |
20120181368 | Ekola | Jul 2012 | A1 |
20130076753 | Lancaster, III et al. | Mar 2013 | A1 |
20140116006 | Lancaster, III et al. | May 2014 | A1 |
20140116007 | Lancaster, III et al. | May 2014 | A1 |
20140116008 | Lancaster, III et al. | May 2014 | A1 |
20150353220 | Lancaster, III | Dec 2015 | A1 |
20170088301 | Riemenschneider | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
3140972 | Jun 1982 | DE |
3119038 | Dec 1982 | DE |
3634924 | Apr 1988 | DE |
3901704 | Aug 1990 | DE |
4234604 | Apr 1994 | DE |
19509649 | Sep 1996 | DE |
0096635 | Dec 1983 | EP |
0144266 | Jun 1985 | EP |
0246659 | Nov 1987 | EP |
0466980 | Jan 1992 | EP |
0653352 | May 1995 | EP |
0671324 | Sep 1995 | EP |
0811554 | Dec 1997 | EP |
1125841 | Aug 2001 | EP |
1213223 | Jun 2002 | EP |
1489004 | Dec 2004 | EP |
1705119 | Sep 2006 | EP |
1717149 | Nov 2006 | EP |
1736426 | Dec 2006 | EP |
1736426 | Oct 2007 | EP |
1 546 523 | May 1979 | GB |
2059906 | Apr 1981 | GB |
2107668 | May 1983 | GB |
57166252 | Oct 1982 | JP |
63191707 | Aug 1988 | JP |
0385209 | Apr 1991 | JP |
06239311 | Aug 1994 | JP |
085448 | Jan 1996 | JP |
09254913 | Sep 1997 | JP |
11165705 | Jun 1999 | JP |
2001048111 | Feb 2001 | JP |
2001072012 | Mar 2001 | JP |
2002211503 | Jul 2002 | JP |
2004161344 | Jun 2004 | JP |
3634993 | Jan 2005 | JP |
4350940 | Oct 2009 | JP |
WO 9107341 | May 1991 | WO |
9420367 | Sep 1994 | WO |
9700202 | Jan 1997 | WO |
9822346 | May 1998 | WO |
2004069659 | Aug 2004 | WO |
2006110596 | Oct 2006 | WO |
2007071593 | Jun 2007 | WO |
2007100596 | Sep 2007 | WO |
2007100597 | Sep 2007 | WO |
WO 2007100596 | Sep 2007 | WO |
2008007189 | Jan 2008 | WO |
2008129432 | Oct 2008 | WO |
WO 2012058549 | May 2012 | WO |
Entry |
---|
European Patent Office; Search Report and Written Opinion in International Patent Application No. PCT/US2010/055754 dated May 6, 2011; 16 pages. |
wulftecstretchwrapper.blogspot.com; “The Technology Behind a “No-Tear”, “No-Rip” Film Carriage, and How to Explain It to Your Customers”; published Jan. 1, 2010. |
European Patent Office; Partial Search Report in International Patent Application No. PCT/US2007/004589 dated Sep. 10, 2007; 7 pages |
European Patent Office; Search Report in International Patent Application No. PCT/US2004/000219 dated Jun. 21, 2004; 3 pages. |
European Patent Office; Search Report in International Patent Application No. PCT/US2007/004588 dated Aug. 27, 2007; 2 pages. |
European Patent Office; Search Report in International Patent Application No. PCT/US2007/004581 dated Feb. 5, 2008; 3 pages. |
European Patent Office; Search Report and Written Opinion in International Patent Application No. PCT/US2010/028355 dated Jul. 7, 2010; 12 pages. |
European Patent Office; Search Report and Written Opininon in International Patent Application No. PCT/US2009/030327 dated Jun. 22, 2009; 16 pages. |
European Patent Office; Search Report and Written Opinion in International Patent Application No. PCT/US2006/013178 dated Aug. 14, 2006; 9 pages. |
http://2012.modexshow.com/press/release.aspx?ref=press&id=1899. Feb. 6, 2012. |
http://www.mhpn.com/product/force—anticipation—stretch—technology—for—stretch—wrappers/packaging. Nov. 23, 2012. |
http://www.wulftec.com/contents/brochures/015f519c-8a1a-4a0b-81d1-727cbdcbf946.pdf. Oct. 10, 2010. |
http://literature.rockwellautomation.com/idc/groups/literature/documents/ap/oem-ap069—-en-p.pdf. Aug. 1, 2011. |
http://www.packworld.com/machinery/pallelizing/wulftec-international-inc-film-feeding-system-secure-product-containment. Sep. 14, 2011. |
Bossler, John D., “Manual of Geospatial Science and Technology”, CRC Press 2001, pp. 8-15. |
Number | Date | Country | |
---|---|---|---|
20110131927 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61006338 | Jan 2008 | US | |
61258740 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12349929 | Jan 2009 | US |
Child | 12941047 | US |