The present invention relates to demolishing glazing, and particularly to window or panel assemblies and structures and especially large-scale glazing such as plate glass, and to safely remove the panes or subpanes from the glazing.
The glazing industry encompasses both the installation of glazing and the demolition of glazing, both the pane or panes of the window or the panel and also the assemblies and structures thereof such as the framing. At times, undamaged glazing may be demolished to be replaced, by either new glazing or by having the opening for it in the wall for it to be closed up or sealed off.
More often, however, one or more of the panes of the glazing have been cracked, or broken or shattered into subpanes, necessitating replacement of the panes. Before replacement, the panes and subpanes must be removed from the glazing.
Typically, the material of the panes of the glazing is one or another composition of glass, although other substances are also used. The broken edge of glass is well known to be exceptionally sharp, rivaling even deliberately designed knives, razors, and scalpels. The movement of a broken glass edge can quickly slice through ordinary cloth, and especially slice through living tissue such as skin, oftentimes painlessly without being immediately noticed. When moving under force, such as gravity when falling, broken glass edge can also slice through muscle and bone, and has been known to inflict serious and even fatal injuries, for example, to internal organs.
While the glazing of windows that are of a common size for residential use presents less of a problem in removal, but by no means hazard-free even in a general sense, greater risk is involved in the removal of large-scale glazing. Large-scale glazing frequently makes use of one large single pane; but also can use multiple large panes adjacent to each other edge-to-edge, typically horizontally aligned with each other. Such a large single pane can weigh tens of pounds to hundreds of pounds (thus effectively amount by mass to tens to hundreds of kilograms), presenting a serious risk for injury upon removal. There are many different names for such large-scale glazing, and may be exemplarily referred to as plate glass, store front, or glass walls, and may be installed as an exterior glazing separating the inside from the outside or as an interior glazing subdividing in some manner an interior volume. Common installations of large-scale glazing are in office buildings, retail shops, manufacturing factories, and even in transportation such as vehicles; but can be also used in residential buildings, where they may be referred to as a picture window.
One technique for the removal of a window or panel pane or panes, or subpane or subpanes, of either undamaged or damaged glazing, and sometimes after any supporting trim, mould, seal, or caulk is removed and typically on one side only of the pane or subpane, is to merely pick up the pane or subpane out of the glazing. However, this is fraught with great and unknowable danger. In addition to the exceptionally sharp edges of the pane or subpane when broken, commonly there may be also partial cracks or microfractures within the glazing material of the pane or subpane itself; and not every such crack or microfracture can be apparent or even seen by visual inspection without specific crack/fracture detection tools. When moved, either by direct manual manipulation or by machine, the internal stresses can quickly overwhelm the structural integrity of the glazing material at such a partial crack or microfracture. The partial crack or microfracture then rapidly extends, often so quickly as to be without any warning, and the pane or subpane virtually instantly breaks or shatters. This breaking or shattering results in more subpanes with many more exceptionally sharp edges all at once. The subpanes usually fall downward, either straight down or at an angle, with any splinters exploding outwardly. Control of the handling of the original pane or subpane being removed is usually lost, and the newly broken subpanes can unexpectedly hit people, or hit hard surfaces and break or shatter into many more pieces that also have exceptionally sharp edges. This typically occurs in about one second or less. Even if the pane or subpane that was so picked up out of the glazing does not break internally in this manner, control of the handling of that pane or subpane can still be lost suddenly, resulting in either the movement of any such exceptionally sharp edge or else the falling and hitting against of that pane or subpane onto a hard surface and the subsequent breaking or shattering of that pane or subpane, or both. Ultimately, the seemingly acceptable risk, before the removal of that pane or subpane, of this technique can quickly lead to any of these subpanes, or the original pane or subpane being removed, to cut, stab, or outright kill any nearby person, especially the worker removing the pane or subpane but even a bystander.
Another technique for the removal of a pane or panes, or a subpane or subpanes, of either undamaged or damaged glazing is to simply hammer, or otherwise push, out it or them out of the glazing. However, this makes the risk of injury even greater because those working to remove that pane or subpane are adjacent, or otherwise in close proximity, to the glazing. Any moving exceptionally sharp edge of that pane or subpane or any subpane resulting in its breaking, again, can quickly lead to that worker, or any other nearby person, being injured or killed.
A safer technique is to break up piece-by-piece the pane or subpane of the glazing in location within the glazing. Two individuals, one on each side of the glazing, work from the top of the pane or subpane to be removed downward, breaking it up into generally handheld pieces. Typically, they mount ladders to reach one uppermost corner or portion of the pane or subpane to be removed. Then one of them scores the surface of that pane or subpane to define a small section that is typically no more than about half a foot (about 15 centimeters) in its largest dimension, but does not break that pane or subpane. The other one of them, on the opposite side, works the small section loose, for example with breaking pliers, against the score line, breaking the small section from the rest of that pane or subpane. The small section is then safely removed from the glazing. This procedure is repeated, piece by piece and top to bottom, until the remainder of that pane or subpane is considered to be small enough to safely remove from the glazing in one remaining piece. The risk of breaking or shattering unexpectedly and dangerously is thus greatly reduced. But this “whittling-down” process is highly time consuming and laborious. Furthermore, the remainder of that pane or subpane can still unexpectedly and suddenly move or fall out of the glazing, and any other subpane, that is on the other side of the crack or fracture of the original glazing, can also unexpectedly and suddenly move or fall out of the glazing; and again, with persons being so close to the glazing to be demolished, serious or fatal injuries can occur.
An objective of the present invention is to reduce the risk of serious or fatal injury during the removal of a pane or subpane of glazing when the glazing is demolished.
Another objective is to more quickly demolish glazing while at the same time reducing the risk of serious or fatal injury during that demolition of the glazing.
Another objective is to distance those who are demolishing glazing from that glazing in order to reduce the risk of serious or fatal injury during that demolition of the glazing.
Another objective is to quickly assemble and disassemble a demolition ram to be used in demolishing glazing.
Another objective is to selectively modify a demolition ram to be used in demolishing glazing.
These and further objectives are met by the present invention, which is contemplated to encompass the subject matter as claimed herein, that has been described and also shown in the accompanying drawings, and the equivalents that are consonant therewith.
The present invention comprises a demolition ram. The demolition ram comprises a pusher, and a handle connected to the pusher. The pusher comprises a support plate having a proximal surface and a distal surface, and comprises a boss on the proximal surface. The handle has a proximal end and a distal end, and comprises a plate at the distal end. Fasteners, comprising fixed fasteners on the boss and removable fasteners removably mountable on the fixed fasteners, removably connect the plate to the boss. The handle has a slenderness ratio of at least twenty-five and not more than one hundred ten.
The demolition ram further comprises an end cap removably mountable on the proximal end. A handle extension is connectable to the proximal end, after removal of the end cap when the end cap is mounted on the proximal end. The proximal end and the handle extension each comprises threaded fasteners connectable together. The handle extension comprises a generally textured surface; and the proximal end comprises a generally textured surface, and the distal end comprises a generally smooth surface.
A reinforcing flange is on the proximal surface of the support plate, and a plating is on the distal surface of the support plate. The plating comprises a raised pattern, and can comprises a rubber coating or a rubber working plate. The plating is beveled, and corners of the pusher are clipped. At least one handling aperture is through the pusher.
One method of demolishing glazing, comprising at least one subpane, of the present invention comprises pushing the subpane out of the glazing with the demolition ram. The pushing comprises touching the subpane with the pusher, and exerting a force about the proximal end, and moving the subpane to a position where the subpane can fall due to the weight of the subpane. The exerting generates an impulsive force, generally coaxial with the exerting, onto the subpane through the touching to result in the moving. The method further comprises allowing the subpane to fall due to the weight of the subpane, and catching the subpane as it falls with a receptacle comprising a mat. The method further comprises assembling the pusher and the handle together with the fasteners, removing the end cap when mounted on the handle, and connecting the handle extension to the handle.
When demolishing glazing comprising at least two subpanes, the subpanes can each have an instability, respectively thereamong from least to greatest. The method then comprises pushing out of the glazing the one subpane that has the greatest instability.
and
One embodiment of the present invention for demolishing glazing is a demolition ram 1, as shown in
The pusher 2 comprises a support plate 3. As shown in
Corners 9, 10, 11, and 12 of the pusher 2, and thus particularly the support plate 3 and the nonslip plating 6, are clipped to remove these right-angled corners, reducing the possibility of the demolition ram 1 undesirably catching on or damaging adjacent objects or injuring nearby persons. The pusher 2 is thus more particularly octagonal. The nonslip plating 6, too, is beveled as shown in
Handling apertures 13 and 14 go through the support plate 3 and the nonslip plating 6 of the pusher 2. The handling apertures 13 and 14 are located generally adjacent to but spaced from the shorter sides of the pusher 2. The handling apertures 13 and 14 are for easily handling the pusher 2, such as picking it up. While two handling apertures 13 and 14 are specifically shown in
A reinforcing flange 15 is on the proximal surface 4 of the support plate 3 and extends generally perpendicularly away from the proximal surface 4. The reinforcing flange 15 is located at the perimeter of the support plate 3, and encompasses the entire perimeter. Alternatively, a pattern (not shown) of reinforcing flanges can be arrayed across any portion, or the entirety, of the proximal surface 4.
A boss 16 is also on the proximal surface 4 of the support plate 3 and extends generally outwardly away from the proximal surface 4. The boss 16 is centrally located on the proximal surface 4, and is generally rectangular, having sides of unequal length or preferably, as shown especially in
The demolition ram 1 also comprises a handle 22. The handle 22 is an elongate, generally circularly cross-sectional shaft, as shown in
The handle 22 has a generally distal portion that has a distal end 23 of the handle 22 and a generally proximal portion that has a proximal end 24 of the handle 22. The handle 22 has a longitudinal axis generally concentric with the geometric cross section of the handle 22 and extending between the distal end 23 and the proximal end 24. The longitudinal axis is generally perpendicular to the proximal surface 4 of the support plate 3. The distal portion including the distal end 23 has a generally smooth surface 25, and the proximal portion including the proximal end 24 has a generally textured surface 26. The textured surface 26 is, generally, about half of the total surface, by either length or area, of the handle 22. Alternatively, the textured surface 26 may be more or less than half of the total surface, by either length or area, of the handle 22.
A plate 27 is at the distal end 23. The plate 27 is centrally located with respect to the cross section of the handle 22. The geometry of the plate 27 generally corresponds with that of the boss 16, and thus preferably is also generally rectangular having sides of equal length but is slightly smaller in area than that of the boss 16 as shown in especially
A handle extension 33 for the demolition ram 1 is an elongate shaft, preferably generally circularly cross-sectional, as shown in
As shown in
An end cap 37 is removably mountable on the proximal end 24. The end cap 37 may be rubber or plastic. The end cap 37 is friction-fitted onto the proximal end 24, and covers the socket 35 when the handle extension 33 is not on the handle 22.
The pusher 2 and the handle 22 of the demolition ram 1, as well as the handle extension 33, may be made of any suitable material. Preferably, each of the pusher 2, the handle 22, and the handle extension 33 is made of solid fiberglass. The lineal density of the fiberglass may be about 2.2 pounds per 32 inches (about 1 kilogram per 0.8 meters). The support plate 3, the reinforcing flange 15, and the boss 16 may be unitarily formed as a single piece of fiberglass. The nonslip plating 6 is therefore adhered, or otherwise attached, to this single fiberglass piece. Likewise, the handle 22 and the plate 27 at the distal end 23 may be unitarily formed as a single piece of fiberglass. The handle extension 33, with the pin 36, may also be unitarily formed as a single fiberglass piece. The textured surface 26 of the proximal end portion of the handle 22 may be unitarily formed of the material of the handle 22. Also, the textured surface 34 of the handle extension 33 may be unitarily formed of the material of the handle extension 33. Alternatively, the pusher 2, specifically the support plate 3, could be steel and the handle 22, and also the handle extension 33, could be aluminum. Moreover, instead, the pusher 2 could be a four-foot-by-eight-foot sheet (122 by 244 centimeters) of OSB (commonly known as chipboard) or plywood, and the handle 22 could be a ten-foot length (0.3 meters) of two-by-four (5 by 10 centimeters) studding lumber.
The pusher 2, the handle 22, and the handle extension 33 of the demolition ram 1 are sized for more safely demolishing glazing. Typically, one size, a common residential glazing size, for the demolition ram 1 is for common sizes of the glazing of residential windows such as 20 by 24 inches (51 by 61 centimeters); and a different size, a large-scale glazing size, for the demolition ram 1 is for large-scale glazing as may be exemplified by plate glass such as 84 by 108 inches (213 by 274 centimeters). The common residential glazing size would typically be on the order of about 16 by 16 inches (about 40 by 40 centimeters) or about 18 by 18 inches (about 46 by 46 centimeters) for the pusher 2. The large-scale glazing size would typically be on the order of about 24 by 36 inches (about 61 by 91 centimeters), although it could be anywhere from about 22 by 30 inches (about 56 to 76 centimeters) to about 48 by 48 inches (about 122 by 122 centimeters). For both the common residential glazing size and the large-scale glazing size, typically the support plate 3 would have a thickness on the order of about three fourths of an inch (about 19 millimeters), the boss also having a thickness on the order of about three fourths of an inch (about 19 millimeters) and a size on the order of about six by six inches (about 15 by 15 centimeters), and the plate 27 also having a thickness on the order of about three fourths of an inch (about 19 millimeters) but a size on the order of about five by five inches (about 13 by 13 centimeters). The reinforcing flange 15 typically would have a thickness on the order of about five sixteenths of an inch (about 8 millimeters) and a height of about one half of an inch (about 13 millimeters).
The handle 22 is sized to space far apart a worker using the demolition ram 1 to demolish glazing and the glazing itself; and preferably also sized so as to fit, either along the length or else diagonally, within a conventional pickup truck bed. Further, the handle 22, and also the handle extension 33, is sized so as to be easily grasped by hand and especially when those handling the demolition ram 1 are wearing gloves. The handle 22 for the common residential glazing size typically would be on the order of about nine feet (about 274 centimeters) in length by about four and one-half inches (about eleven and one-half centimeters) in circumference. The handle 22 for the large-scale glazing size would typically be on the order of about nine feet to ten feet (about 274 to 305 centimeters) by about four and one-half inches (about eleven and one-half centimeters) in circumference. The handle extension 33 would more likely be used for the large-scale glazing size, and would typically be on the order of about four feet to three feet (about 122 to 91 centimeters) in length by about four and one-half inches (about eleven and one-half centimeters) in circumference; thus, the connected-together handle 22 and handle extension 33 would be about thirteen feet (about 396 centimeters) in length. The end cap 37 for the proximal end 24 of the handle 22 typically would have a length on the order of about six inches (about 15 centimeters).
Thus, in sizing the handle 22 and the handle extension 33 to space far apart a worker using the demolition ram 1 to demolish glazing and the glazing itself, the handle 22 has a slenderness ratio defined as the ratio of the overall length of the handle 22 to the maximum transverse dimension, as a diameter when the cross section of the handle 22 is circular as shown, of the handle 22. Specifically, the overall length of the handle 22 is the length of the handle 22 between the terminus, where the plate 27 is, of the distal end 23 and the terminus, where the opening for the socket 35 is, of the proximal end 24. Preferably, the slenderness ratio of the handle 22 is about seventy-five; but the slenderness ratio of the handle 22 may be in the range of at least twenty-five and not more than one hundred ten. Further, the connected-together handle 22 and handle extension 33 as a unit preferably has a slenderness ratio of about one hundred eight, but may have a slenderness ratio of at least one hundred five and not more than one hundred fifteen.
The demolishing of the glazing begins first with an evaluation of the glazing. The glazing may comprise exactly one original pane, or may comprise a plurality of original panes, irrespective of the assembly or structure of the glazing, for example singular framing or multiple framing, whether external or internal, and also irrespective of the number of any layering of panes between the ultimately inner surface and the ultimately outer surface of that pane, whether that pane is exactly one original pane or one of a plurality of original panes, although such inner and outer with respect to such surfaces may not necessarily be with respect to any inside and outside.
The glazing may be essentially completely undamaged, and the glazing is to be demolished for reasons other than damage to that glazing such as replacement, by, for example, new glazing, or to have the opening for it in the wall for it to be closed up or sealed off.
Alternatively, the glazing to be demolished may be damaged, but any apparent damage, as a crack or a hole, in the material, for example glass, in the glazing does not fully divide any original pane into individual subpanes. Specifically, every original pane has its own perimeter edge, that may comprise any number of rectilinear or curved edges including exactly one edge, that define the perimeter of its pane and encompass the volume and the opposite surfaces, that are the ultimately inner surface and the ultimately outer surface, of that pane; and, furthermore, due to the necessarily three dimensionality of that pane, its perimeter edge might even be identified as an extensive surface, but is nonetheless the perimeter edge of that pane because it does encompass the volume and the opposite surfaces of that pane. Thus, damage, for example a crack, may not fully divide any original pane into individual subpanes by extending from one point on the perimeter edge of that pane to a different point on the perimeter edge, irrespective of the number of any layering of panes between the ultimately inner surface and the ultimately outer surface of that pane.
In either case, any such original pane of that glazing is its own subpane; in other words, the subpane is one hundred percent of the original pane of that glazing to be demolished, irrespective of the total number of original panes of that glazing.
However, it is more frequently the case that the demolition is the demolishing of glazing that comprises, not merely at least one subpane due to the original pane being its own subpane, but at least two subpanes due to at least one of the original panes of that glazing having at least one crack that extends from one point on the perimeter edge of that original pane to a different point on the perimeter edge of that original pane.
Furthermore, though, if there is at least one such crack that has fully divided any original pane into individual subpanes, it may be that one or more of those subpanes have already fallen or are otherwise removed from the glazing. In which case, there may be indeed at least one subpane, and perhaps only one subpane remaining, in the glazing that is less than one hundred percent of the original pane of that glazing to be demolished.
Continuing the demolition, a receptacle is located to easily and safely catch the glazing as it is being demolished. Many times, though, a common waste gondola is too tall to locate immediately in front of and below the glazing for especially large-scale glazing. Therefore, the present invention contemplates a mat for the receptacle, such as an industrial quilt or a fire blanket for example, especially in such a case.
A mat 107, as a receptacle, is placed to catch the subpanes, and in the embodiment as shown in
Next, the instability of each subpane is evaluated. The factors of instability include how loose that subpane is, how it responds to a light touch toward inclining it slightly out of the glazing, whether the framing is lessened in maintaining that subpane in the glazing, etc. Thus, the instability of each subpane is identified, and the subpanes have amongst themselves a range of instability, respectively from the least to the greatest. Therefore, one of the subpanes has the greatest instability. However, sometimes the instabilities are approximately equal; and may even be a null result, that is, approximately zero instability. Then in this case the subpane with the greatest instability is that subpane the removal of which would affect the other subpanes the least.
Further, the pusher 2 of the demolition ram 1 is selected for its size, either the residential glazing size or the large-scale glazing size. This is typically based upon the specific subpane to be removed. Therefore, at times the residential glazing size may be selected for the demolition of large-scale glazing, or the large-scale glazing size may be selected for the demolition of residential glazing, so as to better match the specific subpane that is next to be removed.
Then the handle 22 is selected for its size. More typically, the residential glazing size is almost always selected for demolishing common residential glazing, and the large-scale glazing size is almost always selected for demolishing large-scale glazing, although it may be vice versa as need be for the specific demolition.
Also, the pusher 2 or the handle 22, or both, of the demolition ram 1 for the size selected may be disassembled from the demolition ram 1 and a different size of the pusher 2 or the handle 22, or both, selected for reassembly of the demolition ram 1, or also connecting or disconnecting of the handle extension 33 to or from the handle 22, during the same demolition of the same glazing, so as to better match the specific subpane that is next to be removed.
Upon selecting the pusher 2 and the handle 22, the demolition ram 1 is assembled by aligning the apertures in the plate 27 with the fixed fasteners 17 on the boss 16. Assembling the handle 22 and the pusher 2 together is shown in
Optionally, and especially for the demolition of large-scale glazing, the handle extension 33 may be connected as shown in
Upon assembly of the demolition ram 1 and deployment, and for the embodiment of the present invention as shown in
As shown in
Once moved to that position, as shown in
Once caught in the mat 107, the subpane 101 is broken up on the mat 107. The mat 107, with all of the fragments of the subpane 101, is then emptied (not shown), and preferably into a waste gondola, for safe disposal. Alternatively, another subpane or piece of the glazing can also be demolished by pushing it out of the glazing so that it can fall and be caught by the mat 107 before emptying the mat 107. The mat 107 is then replaced to continue to catch more of the glazing 100 that is being demolished.
Subsequently, each next subpane, and in the embodiment as shown in
After the mat 107 is no longer needed for the demolition of the glazing, the mat 107 can be put away for cleaning and storage for later reuse. The demolition ram 1 can also be disassembled for storage for later reuse.
Thus, the demolition ram 1 and the demolishing of glazing with the demolition ram 1 of the present invention can quickly demolish glazing yet reduce the risk of serious or fatal injury during that demolition of the glazing.