Claims
- 1. A demultiplexing photodetector comprising an indium phosphide substrate, a bottom indium phosphide layer of one conductivity type epitaxially grown on said substrate, a plurality of semiconductor layers including a top layer all of the opposite conductivity type epitaxially grown on said bottom layer, and a region of said top semiconductor layer being doped such that said region is of said one conductivity type CHARACTERIZED IN THAT said plurality of semiconductor layers includes a first quaternary layer having a first bandgap and being epitaxially grown on said bottom indium phosphide layer, said first quaternary layer having a diffused pn junction within the layer, at least one barrier layer epitaxially grown on said first quaternary layer, a second quaternary layer having a second bandgap potential and being epitaxially grown on said barrier layer, said second quaternary layer having a diffused pn junction within the layer created by said region of said one conductivity type, said barrier layer having a bandgap higher than either of said quaternary layers, and said photodetector further includes an electrode means for independently coupling potentials to the pn junctions in each of said quaternary layers.
- 2. A demultiplexing photodetector as defined in claim 1 wherein said top semiconductor layer has a central region of said one conductivity type surrounded by a region of said opposite conductivity type, said electrode means being further CHARACTERIZED IN THAT one electrode of said electrode means is connected to the central region of said one conductivity type and a second electrode of said electrode means is connected to the surrounding region of said opposite conductivity type.
- 3. A demultiplexing photodetector as defined in claim 2 wherein the device further includes an outer region of said one conductivity type in each of said semiconductor layers on said substrate, and said electrode means is further CHARACTERIZED IN THAT a third electrode of said electrode means is in contact with said outer region in said top layer, whereby the device is a planar device with all of the electrodes in contact with one surface of said device.
- 4. A demultiplexing photodetector comprising an indium phosphide substrate, a first indium phosphide layer of one conductivity type epitaxially grown on said substrate, a first quaternary layer having a first bandgap and being epitaxially grown as the opposite conductivity type on said first indium phosphide layer thereby establishing a pn junction in said first quaternary layer, a second indium phosphide layer of the opposite conductivity type epitaxially grown on said quaternary layer, a second quaternary layer with a second bandgap that is different than said first bandgap and being epitaxially grown on said second indium phosphide layer as a layer of opposite conductivity type, said second quaternary layer being doped with a dopant of said first conductivity type in a region of said second quaternary layer thereby establishing a pn junction in said second quaternary layer, and means including electrical contacts for independently coupling potentials to the pn junctions in said first and second quaternary layers.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation of our copending application, Ser. No. 969,346, filed Dec. 14, 1978.
US Referenced Citations (10)
Continuations (1)
|
Number |
Date |
Country |
Parent |
969346 |
Dec 1978 |
|