Dental appliance features for speech enhancement

Information

  • Patent Grant
  • 11026831
  • Patent Number
    11,026,831
  • Date Filed
    Friday, December 1, 2017
    6 years ago
  • Date Issued
    Tuesday, June 8, 2021
    2 years ago
Abstract
Provided herein are orthodontic devices and methods for patients whose orthodontic devices are causing a lisp. The device can comprise an aligner configured to fit over a patient's dental arch and comprising an occlusal surface section positioned over an occlusal surface of the patient's teeth. The aligner can comprise a barrier portion extending laterally and adjacent to a region of the dental arch, the barrier portion allowing the patient's tongue to form a seal against the barrier portion when the patient is speaking while wearing the device.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are incorporated herein by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


BACKGROUND

Current clear orthodontic aligners can open a patient's bite temporarily due to the thickness of the plastic trays. Because of the increased vertical dimension from the bite opening, the patient's tongue may not able to create an adequate anterior seal when certain sounds are spoken. A preferred vertical overlap of the anterior teeth is 2 to 4 mm, with less than 2 mm but greater than 0 mm being minimally acceptable. In particular, when the vertical overlap of the anterior teeth opens such that the tongue is unable to form a complete seal, the sibilants may be misarticulated, in some cases leading to lisping (or sigmatism). Inadequate vertical overlap of the posterior teeth (lateral open bite) can also contribute to a similar phenomenon stemming from the leakage of air due to an incomplete seal formed with the tongue. The inability to produce sibilant sounds properly during speech can be problematic for patients during work meetings, speaking over the phone, personal conversations, etc. As a result of this effect on speech, aligner wear compliance by the patient may be compromised, because the patients may simply leave out the aligners during work or during interactions with others in order to avoid lisping. If the amount of increased bite opening is relatively small, the tongue may adapt quickly over the course of a few weeks in order to create a better seal; however, compliance with aligner wear may be suboptimal until this time.


Some patients may naturally have a problem forming a seal between the tongue and the teeth even without a dental appliance in place, because of the presence of an anterior open bite, a lateral open bite, or both. The ability to reduce the open bite may improve the patient's speech, even if the open bite reduction is only temporary (i.e., while a dental device specifically designed for this purpose is being worn).


Described herein are orthodontic apparatuses (e.g., devices, appliances, etc.), including aligners and aligner features that may address these problems.


SUMMARY OF THE DISCLOSURE

The present application relates to an orthodontic device that may prevent, reduce, or inhibit poor speech articulation due to the inability to form an adequate seal between the tongue and the inner surfaces of a patient's teeth, which may result in lisping.


The devices may generally include an occlusal portion having a dentition-receiving cavity extending laterally in an arch and having a first vertical height, wherein the dentition-receiving cavity is configured to fit over a dental arch of a patient, the dentition-receiving cavity comprising an occlusal surface section adapted to be positioned over an occlusal surface of the patient's teeth. The device comprises a barrier portion extending laterally and adjacent to a region of the occlusal portion (e.g., a front region, a lateral region, etc.), the barrier portion having a second vertical height that is approximately the same height or a greater height than the first vertical height, wherein the barrier portion is laterally continuous to reduce or prevent air leakage therethrough, so that a patient's tongue may form a seal against the barrier portion when the patient is speaking while wearing the device.


In another aspect, the application relates to an orthodontic aligner device that prevents lisping. The device comprises an occlusal portion having a dentition-receiving cavity extending laterally in an arch and having a first vertical height, wherein the dentition-receiving cavity is configured to fit over a dental arch of a patient, the occlusal portion further configured to apply a force to a first set of teeth in the dentition-receiving cavity, the dentition-receiving cavity comprising an occlusal surface section adapted to be positioned over an occlusal surface of the patient's teeth; and a barrier portion extending laterally and adjacent to the occlusal portion, the barrier portion having a second vertical height that is greater than the first vertical height, wherein the barrier portion is laterally continuous to reduce or prevent air leakage therethrough, so that a patient's tongue may form a seal against the barrier portion when the patient is speaking while wearing the device.


In some embodiments, the barrier portion is positioned on a lingual side of the front region of the occlusal portion. The barrier portion can comprise a ridge. In some embodiments, the second vertical height of the barrier portion is more than about 0.5 mm higher than the first vertical height of the occlusal portion (e.g., greater than 0.8 mm, greater than 1 mm, between 1-6 mm, between 1-5 mm, between 1-4 mm, between 2-6 mm, between 2-5 mm, between 2-4 mm, etc.). In some embodiments, the second vertical height of the barrier portion is more than about 1 mm higher than the first vertical height of the occlusal portion. In some embodiments, the barrier portion is positioned on a buccal side of the front region of the occlusal portion. In some embodiments, the dentition-receiving cavity is configured to fit over an upper dental arch of the patient. In some embodiments, the dentition-receiving cavity is configured to fit over a lower dental arch of the patient. In some embodiments, the barrier portion is formed integrally with the occlusal portion. In some embodiments, the barrier portion is formed separately from and is attached to the occlusal portion. In some embodiments, the barrier portion is positioned lingual to the occlusal portion adjacent to a portion of the barrier portion that fits over a patient's incisors when the device is worn by the patient. In some embodiments, the barrier portion is positioned adjacent to a portion of the barrier portion that fits over a patient's incisors and canines when the device is worn by the patient. In some embodiments, the barrier extends posteriorly to create positive vertical overlap in the canine, bicuspid, and/or molar region. In some embodiments, the barrier is unilateral or asymmetric. In some embodiments, the barrier portion is curved and/or tapered. In some embodiments, the barrier portion is connected to or used in conjunction with bite ramp features used for temporary bite opening.


In another aspect, an orthodontic aligner device that prevents lisping is provided. The device comprises an aligner body having a dentition-receiving cavity extending laterally in an arch and having a first vertical height, wherein the dentition-receiving cavity is configured to fit over at least a portion of a dental arch of a patient, the aligner body further configured to apply a force to a first set of teeth in the dentition-receiving cavity, the dentition-receiving cavity comprising a plurality of upper surface sections configured to be positioned over occlusal surfaces of the patient's teeth when the device is worn over the dental arch of the patient, and a plurality of lateral wall surfaces configured to be placed in contact with sides of the patient's teeth when the device is worn over the dental arch, further comprising a first occlusal cut-out region at a first terminal end of the arch and a second occlusal cut-out region at a second terminal end of the arch, wherein the first cut-out region and the second cut-out regions are surrounded by lateral wall surfaces, with the occlusal surfaces of the patient's molars (and possibly also the premolars) exposed and able to touch the opposing arch when the device is worn over the teeth. This design may minimize the temporary anterior bite opening that can occur when orthodontic aligner appliances that cover the posterior teeth are being worn.


In some embodiments, the cut-out region extends over two or more teeth when the device is worn over the patient's dental arch. In some embodiments, the cut-out region extends over three or more teeth when the device is worn over the patient's dental arch. In some embodiments, a thickness of the occlusal surface of the device is thinner near the first and second terminal ends of the arch, and gets thicker towards a middle region between the first and second terminal ends of the arch. This middle region of the arch generally corresponds to the anterior teeth. In some embodiments, the cut-out regions extend into the lateral wall surfaces of the portion of the dentition-receiving cavity adjacent to the patient's molars when the device is worn over the dental arch. In some embodiments, the device comprises a barrier portion extending laterally adjacent to an anterior region of the aligner body, the barrier portion having a barrier vertical height that is greater than a first vertical height of the aligner body, wherein the barrier portion is laterally continuous to reduce or prevent air leakage therethrough, so that a patient's tongue may form a seal against the barrier portion when the patient is speaking while wearing the device.


In another aspect, a method of orthodontic treatment of a patient that prevents lisping is provided. The method comprises positioning an occlusal portion of an orthodontic device over the patient's dental arch so that the patient's teeth are contained within a dentition-receiving cavity of the occlusal portion, wherein, while the patient is wearing the orthodontic device, a barrier portion of the orthodontic device is positioned adjacent to a region of the occlusal portion and extends vertically beyond the occlusal portion and away from the patient's teeth, in order to provide a sealing surface for the patient's tongue during speaking.


In another aspect, another method to prevent lisping during orthodontic treatment of a patient is provided. The method comprises positioning an occlusal portion of an orthodontic device over the patient's dental arch so that the patient's teeth are contained within a dentition-receiving cavity of the occlusal portion which applies force to the patient's teeth to align the teeth by gradually moving the patient's teeth relative to each other when the orthodontic device is worn, wherein, while the patient is wearing the orthodontic device, a barrier portion of the orthodontic device that is positioned adjacent to a region (e.g., a front and/or lateral region) of the occlusal portion and extending vertically beyond the occlusal portion and away from the patient's teeth provides a sealing surface for the patient's tongue during speaking.


In some embodiments, the barrier portion extends laterally adjacent to the patient's incisors when the patient is wearing the orthodontic device. In some embodiments, the barrier portion extends in a continuous lateral surface adjacent to the patient's incisors when the patient is wearing the orthodontic device to reduce or prevent air leakage therethrough. In some embodiments, the method comprises differentially applying force to the patient's teeth to gradually move the patient's teeth relative to each other when the orthodontic device is worn. In some embodiments, the method comprises positioning a second occlusal portion of a second orthodontic device over a second dental arch of the patient so that the patient's teeth in the second dental arch are within a second dentition-receiving cavity of the second occlusal portion. In some embodiments, the method comprises positioning a second occlusal portion of a second orthodontic device over a second dental arch of the patient so that the patient's teeth in the second dental arch are within a second dentition-receiving cavity of the second occlusal portion and providing a second barrier portion of the second orthodontic device that is positioned adjacent to a second region of the second occlusal portion to provide a second sealing surface for the patient's tongue during speaking. In some embodiments, the lower jaw of the patient is able to reposition forward such that lower anterior teeth (with or without an orthodontic appliance) abut against a barrier portion located in the upper arch aligner in order to provide a sealing surface for the patient's tongue during speaking. In some embodiments, the lower jaw of the patient is able to rest against a vertical stop feature in the aligner such as a bite ramp feature, with a barrier portion located in the upper arch aligner built in to provide a sealing surface for the patient's tongue during speaking.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 illustrates a temporary bite opening effect by the use of aligners. There is a point of contact in the terminal regions of the arches due to the occlusal thickness of the aligners.



FIGS. 2A and 2B illustrate an embodiment of an aligner having occlusal windows in the terminal regions of the arch. The portions covering the molars have been removed.



FIGS. 3A and 3B illustrate additional embodiments of aligners having occlusal windows. Portions of the aligner (on the occlusal surfaces) over both the molars and the premolars have been removed. Some occlusal regions in between the teeth have not been removed in order to provide crossbeam-like structural supports between the buccal and lingual walls of the plastic appliance (interproximal cross supports).



FIGS. 4A-4D illustrate embodiments of a device having a barrier portion.



FIG. 5 illustrates an example of a tongue crib appliance 501 which is typically used to prevent the tongue from pushing the anterior teeth forward.



FIG. 6 schematically illustrates an embodiment of an upper aligner having a barrier feature.



FIG. 7 illustrates embodiments of upper and lower aligners, the upper aligner having a barrier portion. The lower aligner may come into close proximity of the upper aligner in the patient's existing bite relationship, or after the patient repositions the lower jaw forward. This configuration may be useful if a patient has an excessive overjet which leads to a large anterior opening.



FIG. 8 illustrates embodiments of upper and lower aligners, the lower aligner having a barrier portion. This configuration may be useful if a patient has an excessive overjet which leads to a large anterior opening.



FIG. 9 illustrates embodiments of upper and lower aligners both having barrier portions. The barrier positions may come into close proximity in the patient's existing bite relationship, or after the patient repositions the lower jaw forward. This configuration may be necessary if a patient has an excessive overjet which leads to a large anterior opening, and/or if a patient has an anterior open bite which cannot be sealed by only one barrier alone.



FIG. 10 illustrates embodiments of upper and lower aligners having barrier portions. This configuration may be useful if a patient has a negative overjet which leads to a large anterior opening.



FIG. 11 illustrates embodiments of an upper and lower aligner, the upper aligner having a barrier portion. This configuration may be useful if a patient has an excessive overjet which leads to a large anterior opening, particularly if the patient is unable to sufficiently advance the lower jaw forward to create an adequate anterior seal with the tongue.



FIGS. 12A and 12B illustrates embodiments of upper and lower aligners with jaw repositioning features in the upper and lower arches and also having a barrier portion in the upper aligner (FIG. 12A) or in both the upper and lower aligners (FIG. 12B).



FIG. 12C is another example of a pair of upper and lower jaw appliances including bite ramps and a barrier portion to enhance speech and/or patient comfort. In FIG. 12C the barrier portion extends laterally along the lingual side of the upper aligner, adjacent to and on either side of the bite ramp(s).



FIGS. 12D and 12E illustrate front perspective and top bottom views, respectively, of the upper jaw appliance (which may be configured as an aligner). In FIG. 12D, the bite ramps (e.g., bite supporting structures) are integrated into the occlusal surface of the apparatus and a barrier region extends adjacent to the majority of the lingual side of the appliance to prevent air from escaping. The barrier region may have a height that is approximately the same or larger than the maximum height of the bite ramp(s). The dental appliance on the opposite side may be configured or otherwise adapted to allow the barrier region to seal any air leak between and/or over the occlusal surface(s) of the apparatuses. In FIG. 12E, the top view shows the barrier region is configured as a single barrier region extending from one side of the arch (adjacent to the rear molars) to the opposite side of the arch.



FIGS. 13A-13C illustrates embodiments of aligners having anterior bite ramps. FIG. 13A shows an aligner with a tapered barrier portion in the upper aligner to provide a seal against lateral anterior air leakage when the upper bite ramps are engaged by the lower anterior dentition, especially when a deep Curve of Spee is present. FIG. 13C has an anterior barrier portion in the upper aligner to provide an anterior seal when anterior lingual bite ramps are engaged by the lower dentition.



FIG. 14 illustrates an embodiment of a method of orthodontic treatment.



FIG. 15 illustrates another embodiment of a method of orthodontic treatment.



FIG. 16 illustrates a method for determining dimensions of a barrier portion of an orthodontic device as described herein.



FIGS. 17A and 17B illustrate an upper aligners having a barrier portion similar to that shown in FIG. 7, in which the lower jaw (which may or may not have an aligner) may slide forward to a forward-repositioned location (shown in FIG. 17B) whereby a reduced anterior gap is created between the upper barrier and the lower teeth.



FIG. 18 illustrates another example of an orthodontic appliance including a barrier portion to enhance speech and/or patient comfort. In FIG. 18, the apparatus includes an upper and a lower orthodontic appliance; the barrier portion is on the upper appliance, however it may be positioned on the lower appliance. The upper and lower appliances in this example each include a pair of wings (“precision wings”) that laterally interact with each other to engage with each other to reposition the patient's mandible (e.g., as part of a mandibular repositioning apparatus).



FIGS. 19A-19B illustrates an example of another orthodontic appliance that may be configured to include (as shown in FIG. 19B) a barrier portion to enhance speech and/or patient comfort. In FIG. 19A, the apparatus is one in a series of sequential palatal expanders that may be secured to the patient's upper arch through the dentition-receiving cavity formed on either side of the device; the dentition-receiving cavity includes a left dentition-receiving cavity portion and a right dentition-receiving cavity portion that are connected by a palatal region that is configured to be positioned adjacent to the patient's palate. Each device in the series of sequential expanders compresses in the transverse dimension enough during activation to engage the inner (lingual) surfaces of the posterior teeth, thereby transferring any expansion forces in the appliance through the posterior teeth to the palatal bone structures. In FIG. 19B, the apparatus of FIG. 19A is configured to include a front-facing (anterior) barrier region that may prevent lisping. The barrier region may be connected to an extension that extends from the palatal region.





DETAILED DESCRIPTION

Described herein are apparatuses including orthodontic devices that may prevent, reduce or inhibit sigmatism, or poor speech articulation of sibilants due to the inability of a patient's tongue to form a complete seal with the back of their teeth which results in lisping. Although the apparatuses and methods described herein are generally directed towards dental appliances, e.g., including, but not limited to aligners for treating teeth misalignment; any of these apparatuses and methods may be used for any other dental or orthodontic device, to improve speech when wearing such devices; furthermore, any of these apparatuses and methods may be used exclusively to treat existing patient miss-articulation (i.e., lisping). For example, these apparatuses may be configured as speech therapy devices. Examples of other appliances that may be configured or adapted to prevent speech problems and/or enhance comfort as described herein may include palatal expanders, mandibular advancement apparatuses, and the like. Any of the features shown herein for any specific appliance (e.g., aligners) may be used as par to any other dental appliance.


For example, disclosed herein are apparatuses and methods for addressing speech alterations caused by orthodontic appliances. FIG. 1 illustrates an example of an upper aligner 102 and a lower aligner 102′. An aligner, such as the shell type aligners shown in FIG. 1, can temporarily open the bite due to the thickness of the aligner on the occlusal surface of the teeth. In FIG. 1, a posterior contact 108 leads to an anterior opening 110. The opening 110 (which may be smaller than that illustrated in this example) can prevent the patient's tongue 104 from creating an adequate anterior seal when certain sounds are spoken, causing misarticulations. If patients are less likely to talk during the day or are less concerned about being embarrassed when speaking while wearing aligners, they are more likely to be compliant and wear the devices during their everyday social activities regardless of whether they lisp. If however, they need to talk without lisping or are embarrassed because they are lisping with the aligners in place, they are more likely to leave the aligners out during the day and only wear them when they are not interacting with others. This inconsistent usage may result in suboptimal orthodontic treatment results. Similar issues may occur with a single aligner or with other orthodontic appliances.


One way to address this problem is to reduce the thickness in the aligner which is increasing the vertical dimension and causing the bite to open. For example, thinning or removing portions of the aligner in the areas covering the posterior teeth (by creating occlusal windows, for example) can allow the back teeth to come closer together (or touch) in order to let the front portions come closer together, thereby reducing the impact of increasing the vertical dimension. For patients with a high a mandibular plane angle, any increase in the vertical dimension of the posterior teeth results in a magnified increase in the anterior vertical dimension. In other words, the change in the anterior is not necessarily 1:1 with the vertical change in the posterior, and may be a multiple instead (e.g., 2× or 3×).



FIGS. 2A and 2B illustrate an embodiment of a device having occlusal windows. FIG. 2A illustrates a perspective view of an aligner 200 comprising an aligner body 202. As shown in the bottom view of FIG. 2B, the aligner body 202 has a dentition-receiving cavity 204 extending laterally in an arch, as shown by arrow 206 and having a first vertical height, h. The dentition-receiving cavity 204 is configured to fit over at least a portion of the dental arch. The aligner body 202 may be configured to apply a force to a first set of teeth in the dentition-receiving cavity 204. The dentition-receiving cavity 204 comprises a plurality of upper surface sections 208 configured to be positioned over the occlusal surfaces of the patient's teeth when the device is worn over the dental arch of the patient. These sections may divide the body region 202 into a plurality of (in this example, laterally contiguous) chambers each substantially conforming to individual teeth. In some variations the dentition-receiving cavity may be separate sub-regions (e.g., on either side of the arch). Alternatively or in addition, the dentition receiving cavity may include a gap or space where a tooth is missing; in some variations the body 202 is configured to attach to just a portion of the patient's dental arch (e.g., the molar/pre-molar region, etc.). The dentition-receiving cavity 204 may comprise a plurality of lateral wall surfaces 210 configured to be placed in contact with surfaces of the patient's teeth when the device is worn over the dental arch. The dentition-receiving cavity 204 in this example includes a first cut-out region 212 at a first terminal end of the arch and a second cut-out region at a second terminal end (e.g., posterior ends) of the arch. The first and second cut-out regions are surrounded by lateral wall surfaces and expose the occlusal surfaces of the patient's molars when the device is worn over the dental arch. The occlusal window can extend over two or more teeth (e.g., all the molars) or three or more teeth. In some embodiments, a thickness of the occlusal surface sections is thinner near the first and second terminal ends of the arch and becomes thicker towards the anterior region of the arch. The cut-out regions or windows can extend into the lateral wall surfaces of the portion of the dentition-receiving cavity adjacent to the patient's molars.



FIGS. 3A and 3B show additional embodiments of an aligner comprising occlusal windows or cutouts. As shown in FIG. 3A, the cutouts include interproximal supports 318 between buccal and lingual surfaces. The aligner 302 comprises occlusal windows 304 or cut-outs over the occlusal surfaces of the back 4 teeth on each terminal end of the arch. In some embodiments, the occlusal window can be positioned over 1, 2, 3, 5, 6, or more teeth of the dental arch. The occlusal window can be positioned at a terminal end of the dental arch. In some embodiments, the occlusal window is spaced away from a terminal end of the dental arch. The aligner can comprise 1, 2, 3, 4, or more occlusal windows positioned along the aligner body.


In some cases, removal of too much of the occlusal portion can reduce rigidity of the aligner. Thus, in some variations, only the cusp tips or occlusal portions may be removed, leaving the interproximal cross supports 328 in place, as shown in FIG. 3B. Alternatively or additionally, these cross supports may be reinforced.


An additional and/or alternative solution may include a barrier (barrier region) in the anterior (and in some variations lateral) portion(s) of the aligner that provides a similar or decreased vertical dimension to what the patient had prior to wearing the aligners, so that the tongue is able to form a similar or better anterior seal while the aligners are being worn. In this manner, the problem of the lisp is reduced or eliminated and patients may be more likely to wear the aligners during the day and during social settings.


In some embodiments, for small increases in vertical dimension, the feature may not be needed, but for patients with shallow overbite, open bite, patients with Class II or Class III overjet, or patients with occlusal features in the aligner that prevent them from closing down into maximum intercuspation, the need for an anterior seal becomes greater.


The anterior seal can be facilitated by providing a barrier that helps the tongue reduce or prevent air leakage so that lisping during speech is reduced or eliminated. This barrier can comprise a protrusion that spans in the mesial-distal direction along the arch, across several teeth and positioned either on the buccal or lingual of the teeth, depending on the arch. This feature may also be used in the posterior portion of the aligner for patients with lateral open bites, where air leakage during speech occurs in the lateral or posterior-lateral regions of the arch. If the air leakage is occurring laterally (e.g., near the canines and premolars), the desired outcome may be accomplished with a barrier which creates a lateral seal with the tongue.



FIGS. 4A-D illustrate an embodiment of an orthodontic appliance (in this example, an aligner) 400 comprising a barrier portion 402. As shown in the top perspective view of FIG. 4A and the bottom view of FIG. 4B, the aligner comprises an occlusal portion 404 having a dentition-receiving cavity 406 extending laterally in an arch as shown by arrow 416. The occlusal portion has a first vertical height 410, as shown in the front view of FIG. 4C. The dentition-receiving cavity 404 is configured to fit over a dental arch of a patient. The dentition-receiving cavity comprises an occlusal surface section 408 adapted to be positioned over an occlusal surface of the patient's teeth. The aligner 400 also comprises a barrier portion 402 extending laterally and adjacent to a region of the occlusal portion 404. The barrier portion has a second vertical height 412 that may be at approximately the same or greater height (e.g., 0.5 mm greater, 1 mm greater) than the first vertical height 410. The barrier portion is laterally continuous to reduce or prevent air leakage there through, so that a patient's tongue may form a seal against the barrier portion when the patient is speaking while wearing the device. FIG. 4D shows the aligner 400 fitting over a patient's dental arch 414. In any of these variations the height of the barrier region may be approximately 1× or greater (e.g., 1.01×, 1.02×, 1.03×, 1.04×, 1.05×, 1.1×, 1.15×, 1.2×, 1.25×, 1.3×, 1.35×, 1.4×, 1.45×, 1.5×, etc. or greater) the height of the maximum vertical height of the appliance. The barrier region may have any lateral extent, and may typically extend along the distal (anterior) region (e.g., adjacent to the anterior teeth). For example, the barrier region may extend adjacent to the entire dental arch (e.g., adjacent to the incisors, from canine to canine, from premolar to premolar, from molar to molar, etc.).


A side benefit of the barrier feature is that orthodontic forces on the teeth which come from the tongue pushing out the teeth bucally/facially may be reduced. The barrier feature may employ the same principle as a “tongue crib” (see, e.g., FIG. 5) for tongue thrust correction; but, unlike a tongue crib 501 which is open and made of wire, the feature claimed is continuous laterally to reduce or restrict the air flow, and allow seal to be made, which may be helpful for speech articulation. If mild air flow is desired for improved salivary circulation or improved air circulation during breathing, perforations or other surface alterations like channels or ridges may be added to the feature. Here, any perforations need to be small enough so as not to disrupt the primary objective of creating an adequate barrier seal with the tongue during speaking in order to avoid lisping.


The following figures depict various embodiments of appliances with barrier features. Unless described otherwise, the appliances described below may comprise occlusal portions and dentition-receiving cavities as described with respect to FIGS. 4A-4D, above. Furthermore, a ‘front portion’ of an occlusal portion with a dentition-receiving cavity fitting over the dental arch may refer to the area near the canines and incisors, but may refer to a smaller (e.g., not extending past the incisors) or greater (e.g., extending past the canines) region than that. The ‘front portion’ of an occlusal portion with a dentition-receiving cavity fitting over the dental arch may refer to the area near the front 2-4 teeth, 2-6 teeth, or 2-8 teeth.



FIG. 6 illustrates a bottom view of an embodiment of an upper aligner comprising a barrier feature 604 positioned proximate to a front portion of an occlusal portion 602 of the aligner. The barrier feature 604 comprises a continuous ridge in the aligner for the purpose of creating an anterior seal with the tongue in order to reduce or prevent air leakage during speaking.



FIG. 7 illustrates a side view cross-section of an embodiment of an aligner comprising an upper aligner 702 and lower aligner 704, wherein the upper aligner comprises a barrier portion 708 and being worn by a patient. The upper aligner is shown on a model of the upper jaw teeth 720; the lower aligner is shown on a model of the lower jaw teeth 721. The barrier portion 708 is positioned proximate to a front portion of the upper occlusal portion. The barrier portion 708 comprises a mesial-distal barrier, in this embodiment positioned lingual to the dentition, which creates a barrier with the lower anterior teeth so that air leakage is reduced or eliminated when the patient speaks. FIG. 7 depicts the tongue 706 encountering the barrier portion 708. While FIG. 7 shows a lingual positioning for the barrier portion 708, buccal positioning is also possible. As mentioned above, the lower jaw of the patient may be able to reposition forward such that lower anterior teeth (with or without an orthodontic appliance) abut against a barrier portion located in the upper arch aligner in order to provide a sealing surface for the patient's tongue during speaking. This is illustrated, for example, in FIGS. 17A and 17B. In this example, similar to that shown in FIG. 7, an upper aligner 1702 includes a barrier portion 1708 lingual to the upper anterior teeth and is shown on the upper jaw 1720. The lower jaw 1721 sliding forward into a forward-repositioned location whereby a reduced anterior gap is created between the upper barrier 1708 and the lower teeth 1721.



FIG. 8 illustrates a side view cross-section of an embodiment of an aligner comprising an upper aligner 802 and a lower aligner 804, the lower aligner 804 comprising a barrier portion 808. The upper aligner is shown on a model of the upper jaw teeth 820; the lower aligner is shown on a model of the lower jaw teeth 821. The barrier portion 808 is positioned near a front portion of an occlusal portion of the lower aligner 804 (a proximate or adjacent to the portion covering the canines and/or incisors). The barrier portion 808 comprises a mesial-distal barrier along the arch positioned near or on the dentition, which creates a barrier with the upper anterior teeth so that air leakage is reduced or eliminated when the patient speaks. FIG. 8 shows the tongue 806 encountering the barrier portion 808. The barrier portion 808 may typically be positioned lingually in the upper arch, particularly for patients with excessive overjet, but buccal positioning in the lower arch is also contemplated as shown in FIG. 8. In some embodiments, a lower barrier portion 808 may be useful if an upper barrier portion is less desirable (e.g., aesthetically undesirable).



FIG. 9 illustrates an embodiment of an upper aligner 902 comprising an upper barrier portion 908 and a lower aligner 904 comprising a lower barrier portion 910. The upper aligner is shown on a model of the upper jaw teeth 920; the lower aligner is shown on a model of the lower jaw teeth 921. One barrier in each arch may be needed if the anterior vertical dimension is excessive (in severe anterior open bite patients, for example) whereby the barrier height needed is greater than what is practical or possible to manufacture into a single aligner. The barrier portions 908, 904 may be positioned towards a front portion of their respective occlusal portions. In some embodiments, one or both of the barrier portions are positioned away from the front portion of their respective occlusal portions. Both of the barrier portions 908, 910 may be positioned lingually. In some embodiments, one barrier portion can be positioned lingually and the other buccally. In some embodiments, both barrier portions are positioned buccally, but for esthetic reasons, typically this configuration would more likely be used in the case of patients with lateral open bites. FIG. 9 shows the tongue 906 encountering the barriers 908, 910.


In some embodiments, the barrier feature is lingually positioned on the lower arch of the aligner or buccally located on the upper arch of the aligner. Such embodiments may be appropriate for patients with Class 3 bite relationships, in which the lower arch is forward of the upper jaw position in a negative overjet relationship. FIG. 10 depicts an embodiment of an upper aligner 1002 with an upper barrier portion 1008 and a lower aligner 1004 with a lower barrier portion 1010. The barrier portions 1008, 1010 are positioned proximate or adjacent to a front portion of their respective aligner's occlusal portion. The upper barrier portion 1008 is positioned buccally, and the lower barrier portion 1010 is positioned lingually. This configuration may not be esthetically feasible in the upper arch, so having the feature present only in the lower arch may be required for Class 3 patients with significant negative overjet. The upper aligner is shown on a model of the upper jaw teeth 1020; the lower aligner is shown on a model of the lower jaw teeth 1021.



FIG. 11 shows an embodiment of an upper aligner 1102 and a lower aligner 1104, the upper aligner 1102 comprising a barrier portion 1108. The barrier portion 1108 is positioned toward the front of an occlusal portion of the upper aligner 1102 and is positioned lingually or closer to the palatal region. Such an embodiment can be appropriate for Class 2 patients with excessive overjet 1110, particularly if the patient's lower jaw is no longer growing or if the jaw is unable to reposition forward into a stable Class 1 bite relationship. The barrier portion may be positioned closer to or even on the palatal region. FIG. 11 shows the tongue 1106 encountering the barrier portion 1108. The upper aligner is shown on a model of the upper jaw teeth 1120; the lower aligner is shown on a model of the lower jaw teeth 1121.


Some embodiments of aligners comprise aligner features which open the patient's bite. In such embodiments, an anterior seal may become even more critical, because of the temporary anterior open bite intentionally created when the aligners are worn. FIGS. 12A and 12B depict embodiments of an upper aligner 1202 having an upper barrier portion 1208, and in FIG. 12B and upper 1208 and a lower aligner 1204 having a lower barrier portion 1210. The aligners comprise bite repositioning features 1212 (e.g., twin block features). FIGS. 12A and 12B, respectively, show the tongue 1206 encountering the barrier portions 1208, 1210. The upper aligner is shown on a model of the upper jaw teeth 1220; the lower aligner is shown on a model of the lower jaw teeth 1221.


As mentioned above, any of the apparatuses (e.g., appliances, including but not limited to aligners) described herein may include a barrier region (or multiple barrier regions) that extend laterally along the side, e.g., adjacent to the premolars and/or molars. These apparatuses may therefore prevent air leakage from the sides and/or allow sealing by the tongue along these lateral side regions. In apparatuses, such as the example shown in FIG. 12A-12B, that may induce or address a lateral open bite, a lateral lingual or buccal barrier may be include to reduce or prevent leakage. For example, in FIGS. 12C to 12E the barrier region extend adjacent to the majority of the apparatus. For example, in FIG. 12C the apparatus includes an upper appliance 1202 and a lower appliance 1204 similar to those shown in FIG. 12A-12B. In FIG. 12C, the barrier portion 1208′ is not limited to the anterior portion, but extends long both sides of the appliance (e.g., the upper and/or lower appliance). This may prevent air leakage from the sides of the appliance(s). Any of these apparatuses may be included along with an occlusal stop so that there is a resting position in which the appliance sits on the back teeth (e.g. molars).


In FIG. 12C, as shown in FIG. 12A-12B, the bite repositioning features 1212 on the upper and lower appliances may limit the closure (intercuspation) of the teeth on the upper and lower arches; in any such variations in which the bite is modified, a barrier region may be included. FIG. 12D, for example, illustrates an example in which a barrier region 1208′ extends lateral from the right rear molar to the left rear molar along the entire lingual side, and adjacent to the bite repositioners 1212, 1212′. The height of the barrier region is typically the same or larger than the maximum height of these bite repositioners; the height of the barrier region may vary along the length. The barrier region may be positioned laterally on the lingual side (as shown in FIGS. 12D and 12E) or on the buccal side. The barrier may act as a shield, for example (e.g., a lingual shield), preventing the tongue from interacting with the spacer(s) and/or the appliance. In FIG. 12E, the top view shows the appliance in which the barrier region 1208′ is recessed slightly lingually from the appliance.


Barrier portions can also be advantageous in embodiments of aligners 1302 in which anterior bite ramps 1310 are used in the upper lingual area, as shown in FIG. 13A. In such embodiments, the addition of a barrier can be desirable in order to form a seal with the tongue and reduce or prevent air leakage. Anterior bite ramps are often used when treating patients with a deep bite and an accentuated curve of Spee, and this curve often leads to a lateral opening prone to air leakage when the lower jaw is advanced forward. FIG. 13B illustrates embodiments of an upper aligner 1302 and a lower aligner 1304. FIG. 13B shows a side view of both aligners in the mouth (shown on a partial sectional view of a patient's mouth or a model of a patient's upper and lower jaws, for simplicity). In FIG. 13B, the barrier 1308 is in front of the bite ramp 1310. The lower jaw 1321 may slide forward (anteriorly) and rest on the anterior vertical stops (bite ramps 1308) which may also contain a barrier portion to block air leakage. FIG. 13C shows a bottom view of the upper aligner 1302. The upper aligner 1302 comprises bite ramps 1310 and a barrier portion 1308.


When implementing the treatments described herein, customized aligners can be used. A simulation of an aligner including features can be placed over the thickness of the teeth. The simulated aligner can include any features used by the patient, such as bite ramps or bite repositioners. The effect of the aligner on the bite is observed in the simulation. Virtual, digital modeling can show the bite angle changes using, for example, a virtual articulator, which can, in turn, show how much the bite opening changes the vertical dimension. Based on such a simulation, a barrier feature can be created to return the bite to a normal vertical dimension.


Generally, the goal is for the barrier portion to extend vertically and create an artificial overbite. In some embodiments, the barrier portion may have to expand beyond the perimeter of the arch. The patient's facial shape may influence the configuration of the barrier portion. Jaw angle can correspond to face shape. For example, a long facial profile (i.e., dolichofacial) can comprise a downward sloping angle in the lower jaw, while a short, square face pattern (i.e., brachyfacial) can comprise a more parallel angle between the lower and upper jaws. In patients with the long facial pattern, the downward sloping angle of the mandible can exaggerate any opening caused by a thickness on the occlusal surfaces of the back teeth. In such cases, the barrier portion can utilize a tapering height to avoid adding any thickness to the aligners in the posterior regions near the terminal ends. For example, the barrier extension can be 3 mm vertical in the front, but taper to 0 mm in height closer towards the back teeth of the dental arch.


A patient may receive an orthodontic treatment course with a series of aligners, for example 20-40 aligners. New sets of aligners can be provided to the patient by the doctor every few weeks. Each aligner is configured to provide orthodontic forces which gradually move the teeth. The barrier portions may be provided in a first subset (e.g., the first 5-10 aligners) of the series, and not be provided in the aligners to be used later.


The barrier portion can be manufactured as part of the aligner, similar to aligner ridges and bite ramps. Alternatively, the barrier portion can be a piece that is manufactured separately (e.g. 3-D printed, milled, or injection molded) and then connected to the aligner in a separate manufacturing step (with adhesive, spot welding, ultrasonic welding, etc.). Alternatively, the barrier portion can be 3-D printed in a different material in the case of 3-D printed aligner appliances. This avoids needing a separate manufacturing step to connect the barrier portion to the aligner appliance.


When a barrier is included as part of aligner in a series of aligners, the position and/or size of the barrier may change within the series. For example, the initial aligners in the series may include a barrier (or a larger barrier); the barrier may be smaller, reducing in size, or absent from subsequent aligners in the series.


The location and thickness of the barrier portion can be important. The greater the amount of surface area engagement of the aligner with the teeth, the more effective the tooth movement. Thus, it can be undesirable for the barrier portion to prevent or reduce the aligner's interaction with the teeth. A possible solution for this problem is to form the barrier portion as thinly as possible so that the base of the barrier covers as much of the dentition as possible. To ensure structural integrity of the barrier despite its thinness, the aligner can be fabricated from a refractory reference mold which contains structural support tabs that break away from the mold when the aligner is separated from the mold during the fabrication process. In other words, the tabs built into the mold via 3-D printing, stereolithography, or milling, separate from the mold and become embedded inside the aligner barrier portion in order to confer extra structural support to the aligner barrier feature. These embedded features are not limited to plastic materials, but can include metals, carbon fiber, and/or ceramics, given that many different types of materials besides plastic can now be 3-D printed as the refractory mold. Thus, in any of the devices described herein, the barrier may include a reinforcing support within the barrier, and this reinforcing support may be formed by support features that break away from the reference mold to become embedded inside the aligner barrier feature during the manufacturing process.


While many of the embodiments described herein have been applied to cases of anterior open bite, the same principles also apply to lateral open bite. The barrier portions could be applied to posterior regions of the aligner in such cases, either unilaterally or bilaterally. Furthermore, in some embodiments, the aligner and barrier portions can be used as standalone therapy for speech impediments, and not just for orthodontic treatments, as some patients may have trouble forming a proper seal with their mouth while speaking, even without an orthodontic appliance in place.



FIG. 14 shows an embodiment of a method of orthodontic treatment using devices such as those disclosed herein. As shown at block 1402, the method comprises positioning an occlusal portion of an orthodontic device over the patient's dental arch so that the patient's teeth are within a dentition-receiving cavity of the occlusal portion. As shown at block 1404, while the patient is wearing the orthodontic device, a barrier portion of the orthodontic device that is positioned adjacent to a region of the occlusal portion and extending vertically beyond the occlusal portion and away from the patient's teeth provides a sealing surface for the patient's tongue during speaking.



FIG. 15 depicts another embodiment of a method of orthodontic treatment using devices such as those disclosed herein. As shown at block 1502, the method comprises positioning an occlusal portion of an orthodontic device over the patient's dental arch so that the patient's teeth are within a dentition-receiving cavity of the occlusal portion to apply force to the patient's teeth to align the teeth by gradually moving the patient's teeth relative to each other when the orthodontic device is worn. As shown at block 1504, while the patient is wearing the orthodontic device, a barrier portion of the orthodontic device that is positioned adjacent to a region of the occlusal portion and extending vertically beyond the occlusal portion and away from the patient's teeth provides a sealing surface for the patient's tongue during speaking.


Also described herein are methods of determining the dimensions of the barrier portion included as part of an aligner apparatuses described herein (or as part of an apparatus that is not configured to align the teeth). FIG. 16 is a schematic flow diagram illustrating a method of determining the dimensions of a barrier in an aligner apparatus. This method may be modified as necessary to determine the dimensions of a barrier for a device that is not also configured as an aligner, by omitting those steps not necessary to re-align the teeth. The models of the patient's dentition (including dimensions) may be made manually and/or electronically. For example, as shown in FIG. 16, the patient's dentition may be initially scanned 1601 or otherwise determined (e.g., using dental impressions, photographic or radiographic images, models, direct measurements, etc.). The patient's dentition may be scanned to determine the patient's dentition and current bite relationship 1603, or the bite relationship (e.g., between the teeth of the upper and lower jaws) may be otherwise determined. Next, the position of desired bite relationship is determined (e.g., Class 1 molar and canine relationship). This may be determined by scanning (e.g., the patient's mouth or a model of the dentition) the position of the desired bite relationship. For example, in a Class 2 patient, the lower jaw can be protruded and the teeth scanned in the “protruded” Class 1 bite relationship. In another example, in a Class 3 patient, physical models of the arches can be repositioned into a Class 1 relationship and the model relationship digitally captured. As an alternative to capturing altered physical bite relationships, the target bite may also be determined by digitally manipulating a digital representation of the patient's arches into the desired bite relationship. The goal in all of these manipulations is to create a model of the bite in a desired bite relationship 1607. Next, the teeth in the models of the arches may be repositioned to determine a desired relationship goal 1609. For example, the teeth may be digitally repositioned to determine a desired alignment configuration. These steps (1607, 1609) may be repeated 1611 until a desired setup of bite relationship/teeth alignment combination is achieved.


The desired movements of the teeth and/or changes in the bite from initial to goal may then be staged in discrete steps or stages, each step/stage representing an individual set of upper and lower aligners 1613. Thereafter, the bite position can be adjusted (e.g., digitally) for each aligner stage to account for temporary vertical/sagittal changes due to the repositioned teeth/bite, aligner thickness, bite repositioning aligner features, anterior bite ramp features, bite blocks, etc. 1615. Thereafter, aligner features (such as barriers or occlusal windows) may be added (e.g., digitally) at each stage to account for the temporary increase in the vertical dimension at each stage due to the aligner thickness and/or additional aligner features present 1617. Each aligner designed in this manner may then be manufactured (e.g., as described herein) and provided to the patient for treatment.



FIG. 18 is another example of an apparatus including a barrier portion extending laterally and adjacent to an occlusal portion. In this example the apparatus includes an upper appliance 1801 (upper arch appliance) and a lower appliance 1802 (lower arch appliance) that are configured to be worn over the patient's upper and lower arch, respectively. The upper and lower appliances in this example are configured as a mandibular advancement apparatus, in which each of the upper and lower appliances include wings that may engage with each other to drive the lower jaw forward during treatment when worn. For example, the upper arch appliance 1801 includes a first upper precision wing 1805′ on a left sides and a second upper precision wing 1805 on the right side. The lower arch appliance may include a pair of wings (e.g., lower precision wings 1803, 1803′) that may engage with each other to advance the patient's mandible. In FIG. 18, the upper arch appliance also includes a barrier 1808 (barrier portion). Alternatively or additionally, the lower arch appliance may include a barrier. In this example, the appliance(s) are formed as shell appliances that may also be configured to apply force to move the teeth. In some variation, the appliances are not configured to move individual teeth, but may be configured for mandibular advancement. When a patient is wearing the apparatus of FIG. 18, the upper and lower appliances may be worn together, so that when the patient's mouth is closed, the upper appliance may engage with the lower appliance, driving the lower appliance forward to advance the mandible; a seal may be formed between the patient's tongue and the barrier 1808, as air may be prevented from passing through the region. As described above, this may enhance comfort and may also prevent lisping or other speech difficulties.


In any of the appliance variations in which bite correction features are included (e.g., bite ramps, wings, etc.), the appliance(s) may include any of the features described herein, such as barriers and/or thinned or removed peak occlusal surface portions. In particular, any treatment and/or apparatus that tends to open the bite may benefit from an anterior compensation for speech enhancement as described herein, in order to avoid lisping in the patient. For example, appliances including a bite ramp, and/or variable thickness appliance, such as aligners.


Another example of an apparatus that may be configured to enhance speech (e.g., preventing lisping, etc.) is shown in FIG. 19A. FIG. 19A shows one in a series of palatal expanders 1900 that may be worn by a subject to expand the subject's palate (e.g., by widening the suture). Although any appropriate palatal expander may be used (including adjustable/expandable variations) the apparatus shown in FIG. 19A may be worn as part of a series of palatal expanders worn sequentially to adjust the width of the palate.



FIG. 19B shows a variations of the palatal expander of FIG. 19A with a barrier region 1908 at the anterior (front) end of the apparatus. In general, the palatal expander includes an occlusal portion having a dentition-receiving cavity 1907, 1907′ extending laterally in an arch and having a first vertical height. In FIGS. 19A and 19B, the occlusal portion includes two dentition-receiving cavities, holding the molar and premolars; a palatal region 1905 extends lateral to the occlusal portion, e.g., between the first and second dentition-receiving cavities 1907, 1097′. Each dentition-receiving cavity is configured to fit over a portion of the patient's dental arch (e.g., the pre-molar and molars), and the dentition-receiving cavity may include an occlusal surface section adapted to be positioned over an occlusal surface of the patient's teeth. In FIG. 19B, the apparatus includes a barrier region 1908 that extends anteriorly from the palatal region on an extension or neck region 1911. The barrier portion therefore also extends laterally and adjacent to the occlusal portion, as descried above. The barrier portion may have a vertical height that is approximately the same height or a greater height than the maximum vertical height of the outer occlusal surface of the apparatus. As in any of these variations, the barrier portion may be laterally continuous to reduce or prevent air leakage, so that a patient's tongue may form a seal against the barrier portion when the patient is speaking while wearing the device.


Any of these apparatuses described herein may be used when the molars/premolars have a reduced height. For example, in some patients having bruxism (e.g., due to grinding of teeth), wearing down of the rear teeth, the jaw may overclose, resulting in a deep bite that may also lead to wear of the front teeth. Appliances to address this, including via restorative dentistry and/or the use of appliances (e.g., a series of aligners) to adjust the teeth, including straightening them, prior to placing restorative crowns on the teeth. Any of these appliances may include the structures, and particularly an anterior barrier structure, to enhance speech. Any of the methods, systems and/or components described herein (including U.S. Pat. No. 8,936,463, showing aligners with images of the target alignment shown on them). The methods and apparatuses described herein may prevent or limit leakage, including buccal leakage, through the apparatus.


When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.


Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.


Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.


Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.


Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.


In general, any of the apparatuses and methods described herein should be understood to be inclusive, but all or a sub-set of the components and/or steps may alternatively be exclusive, and may be expressed as “consisting of” or alternatively “consisting essentially of” the various components, steps, sub-components or sub-steps.


As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that, the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value range of values), +1-10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.


The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims
  • 1. An orthodontic device to manage speech articulation of a patient, the orthodontic device comprising: an occlusal portion having a dentition-receiving cavity configured to receive the patient's teeth and to exert repositioning forces on the patient's teeth, the occlusal portion having an incisor region configured to receive the patient's incisors, wherein the occlusal portion has a first vertical height; anda barrier portion extending laterally and adjacent to the occlusal portion, wherein the barrier portion is positioned lingual to the incisor region of the occlusal portion while the orthodontic device is worn by the patient, wherein the barrier portion has a second vertical height that is greater than the first vertical height, wherein the barrier portion comprises a sealing surface that is laterally continuous at least along a lateral length of the incisor region to reduce or prevent air leakage and form a seal against the patient's tongue, wherein the sealing surface is configured to preventing lisping while the patient is speaking and wearing the orthodontic device in the patient's mouth; andwherein a lingual side of the incisor region is physically separated from the barrier portion by a space to reduce pushing forces applied to the patient's incisors from the patient's tongue.
  • 2. The orthodontic device of claim 1, wherein the barrier portion comprises a ridge.
  • 3. The orthodontic device of claim 1, wherein the barrier portion comprises micro-perforations to allow local circulation of saliva or air.
  • 4. The orthodontic device of claim 1, wherein the second vertical height of the barrier portion is more than about 1 mm higher than the first vertical height of the occlusal portion.
  • 5. The orthodontic device of claim 1, wherein the second vertical height of the barrier portion is between about 2-4 mm higher than the first vertical height of the occlusal portion.
  • 6. The orthodontic device of claim 1, wherein the barrier portion is positioned on a buccal side of the occlusal portion.
  • 7. The orthodontic device of claim 1, further comprising one or more wings extending from the orthodontic device adjacent to the occlusal portion configured to engage with one or more wings extending from a second device worn on an opposite arch.
  • 8. The orthodontic device of claim 1, further comprising a palatal region extending from the occlusal portion that is configured to be positioned adjacent to the patient's palate while the patient is wearing the orthodontic device.
  • 9. The orthodontic device of claim 1, further comprising one or more bite ramps on the occlusal portion.
  • 10. The orthodontic device of claim 1, wherein the dentition-receiving cavity is configured to fit over an upper dental arch of the patient.
  • 11. The orthodontic device of claim 1, wherein the dentition-receiving cavity is configured to fit over a lower dental arch of the patient.
  • 12. The orthodontic device of claim 1, wherein the barrier portion is formed integrally with the occlusal portion.
  • 13. The orthodontic device of claim 1, wherein the barrier portion is formed separately from and is attached to the occlusal portion.
  • 14. The orthodontic device of claim 1, wherein the barrier portion is tapered.
  • 15. The orthodontic device of claim 1, wherein the occlusal portion is an upper occlusal portion adapted to fit over an upper dental arch of the patient, wherein the barrier portion is an upper barrier portion coupled to the upper occlusal portion, wherein the orthodontic device further comprises: a lower occlusal portion adapted to fit over a lower dental arch of the patient, the lower occlusal portion including a lower barrier portion coupled to the lower occlusal portion, wherein one of the upper and lower barrier portions is positioned lingually relative to the other one of the upper and lower barrier portions.
  • 16. The orthodontic device of claim 1, wherein the occlusal portion further includes a first canine region configured to receive a first canine of the patient and a second canine region configured to receive a second canine of the patient, wherein the barrier portion extends laterally from the first canine region to the second canine region of the occlusal portion.
  • 17. The orthodontic device of claim 1, wherein the occlusal portion further includes a first premolar region configured to receive a first premolar of the patient and a second premolar region configured to receive a second premolar of the patient, wherein the barrier portion extends laterally from the first premolar region to the second premolar region of the occlusal portion.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/429,548, titled “ALIGNER FEATURES FOR SPEECH ENHANCEMENT,” filed on Dec. 2, 2016, and herein incorporated by reference in its entirety.

US Referenced Citations (1074)
Number Name Date Kind
2098867 Glisson Nov 1937 A
2171695 Harper Sep 1939 A
2194790 Gluck Mar 1940 A
2467432 Kesling Apr 1949 A
2531222 Kesling Nov 1950 A
2818065 Freed Dec 1957 A
3089487 Enicks et al. May 1963 A
3092907 Traiger Jun 1963 A
3178820 Kesling Apr 1965 A
3211143 Grossberg Oct 1965 A
3277892 Tepper Oct 1966 A
3379193 Monsghan Apr 1968 A
3385291 Martin May 1968 A
3407500 Kesling Oct 1968 A
3478742 Bohlmann Nov 1969 A
3496936 Gores Feb 1970 A
3533163 Kirschenbaum Oct 1970 A
3556093 Quick Jan 1971 A
3600808 Reeve Aug 1971 A
3660900 Andrews May 1972 A
3683502 Wallshein Aug 1972 A
3724075 Kesling Apr 1973 A
3738005 Cohen et al. Jun 1973 A
3797115 Silverman et al. Mar 1974 A
3860803 Levine Jan 1975 A
3885310 Northcutt May 1975 A
3916526 Schudy Nov 1975 A
3922786 Lavin Dec 1975 A
3949477 Cohen et al. Apr 1976 A
3950851 Bergersen Apr 1976 A
3955282 McNall May 1976 A
3983628 Acevedo Oct 1976 A
4014096 Dellinger Mar 1977 A
4055895 Huge Nov 1977 A
4094068 Schinhammer Jun 1978 A
4117596 Wallshein Oct 1978 A
4129946 Kennedy Dec 1978 A
4134208 Pearlman Jan 1979 A
4139944 Bergersen Feb 1979 A
4179811 Hinz Dec 1979 A
4179812 White Dec 1979 A
4183141 Dellinger Jan 1980 A
4195046 Kesling Mar 1980 A
4204325 Kaelble May 1980 A
4253828 Coles et al. Mar 1981 A
4255138 Frohn Mar 1981 A
4299568 Crowley Nov 1981 A
4324546 Heitlinger et al. Apr 1982 A
4324547 Arcan et al. Apr 1982 A
4348178 Kurz Sep 1982 A
4368040 Weissman Jan 1983 A
4419992 Chorbajian Dec 1983 A
4433956 Witzig Feb 1984 A
4433960 Garito et al. Feb 1984 A
4439154 Mayclin Mar 1984 A
4449928 von Weissenfluh May 1984 A
4478580 Barrut Oct 1984 A
4500294 Lewis Feb 1985 A
4505672 Kurz Mar 1985 A
4505673 Yoshii Mar 1985 A
4519386 Sullivan May 1985 A
4523908 Drisaldi et al. Jun 1985 A
4526540 Dellinger Jul 1985 A
4553936 Wang Nov 1985 A
4575330 Hull Mar 1986 A
4575805 Moermann et al. Mar 1986 A
4591341 Andrews May 1986 A
4608021 Barrett Aug 1986 A
4609349 Cain Sep 1986 A
4611288 Duret et al. Sep 1986 A
4629424 Lauks et al. Dec 1986 A
4638145 Sakuma et al. Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4663720 Duret et al. May 1987 A
4664626 Kesling May 1987 A
4665621 Ackerman et al. May 1987 A
4676747 Kesling Jun 1987 A
4755139 Abbatte et al. Jul 1988 A
4757824 Chaumet Jul 1988 A
4763791 Halverson et al. Aug 1988 A
4764111 Knierim Aug 1988 A
4790752 Cheslak Dec 1988 A
4793803 Martz Dec 1988 A
4798534 Breads Jan 1989 A
4830612 Bergersen May 1989 A
4836778 Baumrind et al. Jun 1989 A
4837732 Brandestini et al. Jun 1989 A
4850864 Diamond Jul 1989 A
4850865 Napolitano Jul 1989 A
4856991 Breads et al. Aug 1989 A
4877398 Kesling Oct 1989 A
4880380 Martz Nov 1989 A
4886451 Cetlin Dec 1989 A
4889238 Batchelor Dec 1989 A
4890608 Steer Jan 1990 A
4901737 Toone Feb 1990 A
4932866 Guis Jun 1990 A
4935635 O'Harra Jun 1990 A
4936862 Walker et al. Jun 1990 A
4937928 van der Zel Jul 1990 A
4941826 Loran et al. Jul 1990 A
4952928 Carroll et al. Aug 1990 A
4964770 Steinbichler et al. Oct 1990 A
4971557 Martin Nov 1990 A
4975052 Spencer et al. Dec 1990 A
4983334 Adell Jan 1991 A
4997369 Shafir Mar 1991 A
5002485 Aagesen Mar 1991 A
5011405 Lemchen Apr 1991 A
5015183 Fenick May 1991 A
5017133 Miura May 1991 A
5018969 Andreiko et al. May 1991 A
5027281 Rekow et al. Jun 1991 A
5035613 Breads et al. Jul 1991 A
5037295 Bergersen Aug 1991 A
5055039 Abbatte et al. Oct 1991 A
5061839 Matsuno et al. Oct 1991 A
5083919 Quachi Jan 1992 A
5094614 Wildman Mar 1992 A
5100316 Wildman Mar 1992 A
5103838 Yousif Apr 1992 A
5114339 Guis May 1992 A
5121333 Riley et al. Jun 1992 A
5123425 Shannon et al. Jun 1992 A
5128870 Erdman et al. Jul 1992 A
5130064 Smalley et al. Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5131844 Marinaccio et al. Jul 1992 A
5139419 Andreiko et al. Aug 1992 A
5145364 Martz et al. Sep 1992 A
5176517 Truax Jan 1993 A
5194003 Garay et al. Mar 1993 A
5204670 Stinton Apr 1993 A
5222499 Allen et al. Jun 1993 A
5224049 Mushabac Jun 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5245592 Kuemmel et al. Sep 1993 A
5273429 Rekow et al. Dec 1993 A
5278756 Lemchen et al. Jan 1994 A
5306144 Hibst et al. Apr 1994 A
5312247 Sachdeva et al. May 1994 A
5314335 Fung May 1994 A
5324186 Bakanowski Jun 1994 A
5328362 Watson et al. Jul 1994 A
5335657 Terry et al. Aug 1994 A
5338198 Wu et al. Aug 1994 A
5340309 Robertson Aug 1994 A
5342202 Deshayes Aug 1994 A
5344315 Hanson Sep 1994 A
5368478 Andreiko et al. Nov 1994 A
5372502 Massen et al. Dec 1994 A
D354355 Hilgers Jan 1995 S
5382164 Stern Jan 1995 A
5395238 Andreiko et al. Mar 1995 A
5415542 Kesling May 1995 A
5431562 Andreiko et al. Jul 1995 A
5440326 Quinn Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5447432 Andreiko et al. Sep 1995 A
5449703 Mitra et al. Sep 1995 A
5452219 Dehoff et al. Sep 1995 A
5454717 Andreiko et al. Oct 1995 A
5456600 Andreiko et al. Oct 1995 A
5474448 Andreiko et al. Dec 1995 A
5487662 Kipke et al. Jan 1996 A
RE35169 Lemchen et al. Mar 1996 E
5499633 Fenton Mar 1996 A
5522725 Jordan et al. Jun 1996 A
5528735 Strasnick et al. Jun 1996 A
5533895 Andreiko et al. Jul 1996 A
5540732 Testerman Jul 1996 A
5542842 Andreiko et al. Aug 1996 A
5543780 McAuley et al. Aug 1996 A
5549476 Stern Aug 1996 A
5562448 Mushabac Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5575655 Darnell Nov 1996 A
5583977 Seidl Dec 1996 A
5587912 Andersson et al. Dec 1996 A
5588098 Chen et al. Dec 1996 A
5605459 Kuroda et al. Feb 1997 A
5607305 Andersson et al. Mar 1997 A
5614075 Andre Mar 1997 A
5621648 Crump Apr 1997 A
5626537 Danyo et al. May 1997 A
5636736 Jacobs et al. Jun 1997 A
5645420 Bergersen Jul 1997 A
5645421 Slootsky Jul 1997 A
5651671 Seay et al. Jul 1997 A
5655653 Chester Aug 1997 A
5659420 Wakai et al. Aug 1997 A
5683243 Andreiko et al. Nov 1997 A
5683244 Truax Nov 1997 A
5691539 Pfeiffer Nov 1997 A
5692894 Schwartz et al. Dec 1997 A
5711665 Adam et al. Jan 1998 A
5711666 Hanson Jan 1998 A
5725376 Poirier Mar 1998 A
5725378 Wang Mar 1998 A
5730151 Summer et al. Mar 1998 A
5737084 Ishihara Apr 1998 A
5740267 Echerer et al. Apr 1998 A
5742700 Yoon et al. Apr 1998 A
5769631 Williams Jun 1998 A
5774425 Ivanov et al. Jun 1998 A
5790242 Stern et al. Aug 1998 A
5799100 Clarke et al. Aug 1998 A
5800162 Shimodaira et al. Sep 1998 A
5800174 Andersson Sep 1998 A
5813854 Nikodem Sep 1998 A
5816800 Brehm et al. Oct 1998 A
5818587 Devaraj et al. Oct 1998 A
5823778 Schmitt et al. Oct 1998 A
5848115 Little et al. Dec 1998 A
5857853 van Nifterick et al. Jan 1999 A
5866058 Batchelder et al. Feb 1999 A
5876199 Bergersen Mar 1999 A
5879158 Doyle et al. Mar 1999 A
5880961 Crump Mar 1999 A
5880962 Andersson et al. Mar 1999 A
5882192 Bergersen Mar 1999 A
5886702 Migdal et al. Mar 1999 A
5890896 Padial Apr 1999 A
5904479 Staples May 1999 A
5934288 Avila et al. Aug 1999 A
5957686 Anthony Sep 1999 A
5964587 Sato Oct 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti et al. Nov 1999 A
5975906 Knutson Nov 1999 A
5980246 Ramsay et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
6002706 Staver et al. Dec 1999 A
6018713 Coli et al. Jan 2000 A
6044309 Honda Mar 2000 A
6049743 Baba Apr 2000 A
6053731 Heckenberger Apr 2000 A
6068482 Snow May 2000 A
6070140 Tran May 2000 A
6099303 Gibbs et al. Aug 2000 A
6099314 Kopelman et al. Aug 2000 A
6102701 Engeron Aug 2000 A
6120287 Chen Sep 2000 A
6123544 Cleary Sep 2000 A
6152731 Jordan et al. Nov 2000 A
6154676 Levine Nov 2000 A
6183248 Chishti et al. Feb 2001 B1
6183249 Brennan et al. Feb 2001 B1
6186780 Hibst et al. Feb 2001 B1
6190165 Andreiko et al. Feb 2001 B1
6200133 Kittelsen Mar 2001 B1
6201880 Elbaum et al. Mar 2001 B1
6210162 Chishti et al. Apr 2001 B1
6212435 Lattner et al. Apr 2001 B1
6213767 Dixon et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6231338 de Josselin de Jong et al. May 2001 B1
6239705 Glen May 2001 B1
6243601 Wist Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6283761 Joao Sep 2001 B1
6288138 Yamamoto Sep 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6313432 Nagata et al. Nov 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6328745 Ascherman Dec 2001 B1
6332774 Chikami Dec 2001 B1
6334073 Levine Dec 2001 B1
6350120 Sachdeva et al. Feb 2002 B1
6364660 Durbin et al. Apr 2002 B1
6382975 Poirier May 2002 B1
6386878 Pavlovskaia et al. May 2002 B1
6394802 Hahn May 2002 B1
6402510 Williams Jun 2002 B1
6402707 Ernst Jun 2002 B1
6405729 Thornton Jun 2002 B1
6406292 Chishti et al. Jun 2002 B1
6409504 Jones et al. Jun 2002 B1
6413086 Womack Jul 2002 B1
6414264 von Falkenhausen Jul 2002 B1
6414708 Carmeli et al. Jul 2002 B1
6435871 Inman Aug 2002 B1
6436058 Krahner et al. Aug 2002 B1
6441354 Seghatol et al. Aug 2002 B1
6450167 David et al. Sep 2002 B1
6450807 Chishti et al. Sep 2002 B1
6462301 Scott et al. Oct 2002 B1
6470338 Rizzo et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6471970 Fanara et al. Oct 2002 B1
6482002 Jordan et al. Nov 2002 B2
6482298 Bhatnagar Nov 2002 B1
6496814 Busche Dec 2002 B1
6496816 Thiesson et al. Dec 2002 B1
6499026 Rivette et al. Dec 2002 B1
6499995 Schwartz Dec 2002 B1
6507832 Evans et al. Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6515593 Stark et al. Feb 2003 B1
6516288 Bagne Feb 2003 B2
6516805 Thornton Feb 2003 B1
6520772 Williams Feb 2003 B2
6523009 Wilkins Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6524101 Phan et al. Feb 2003 B1
6526168 Ornes et al. Feb 2003 B1
6526982 Strong Mar 2003 B1
6529891 Heckerman Mar 2003 B1
6529902 Kanevsky et al. Mar 2003 B1
6532455 Martin et al. Mar 2003 B1
6535865 Skaaning et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6540707 Stark et al. Apr 2003 B1
6542593 Bowman Amuah Apr 2003 B1
6542881 Meidan et al. Apr 2003 B1
6542894 Lee et al. Apr 2003 B1
6542903 Hull et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6554837 Hauri et al. Apr 2003 B1
6556659 Bowman Amuah Apr 2003 B1
6556977 Lapointe et al. Apr 2003 B1
6560592 Reid et al. May 2003 B1
6564209 Dempski et al. May 2003 B1
6567814 Bankier et al. May 2003 B1
6571227 Agrafiotis et al. May 2003 B1
6572372 Phan et al. Jun 2003 B1
6573998 Cohen Sabban Jun 2003 B2
6574561 Alexander et al. Jun 2003 B2
6578003 Camarda et al. Jun 2003 B1
6580948 Haupert et al. Jun 2003 B2
6587529 Staszewski et al. Jul 2003 B1
6587828 Sachdeva Jul 2003 B1
6592368 Weathers Jul 2003 B1
6594539 Geng Jul 2003 B1
6595342 Maritzen et al. Jul 2003 B1
6597934 de Jong et al. Jul 2003 B1
6598043 Baclawski Jul 2003 B1
6599250 Webb et al. Jul 2003 B2
6602070 Miller et al. Aug 2003 B2
6604527 Palmisano Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6607382 Kuo et al. Aug 2003 B1
6611783 Kelly et al. Aug 2003 B2
6611867 Bowman Amuah Aug 2003 B1
6613001 Dworkin Sep 2003 B1
6615158 Wenzel et al. Sep 2003 B2
6616447 Rizoiu et al. Sep 2003 B1
6616579 Reinbold et al. Sep 2003 B1
6621491 Baumrind et al. Sep 2003 B1
6623698 Kuo Sep 2003 B2
6624752 Klitsgaard et al. Sep 2003 B2
6626180 Kittelsen et al. Sep 2003 B1
6626569 Reinstein et al. Sep 2003 B2
6626669 Zegarelli Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6640128 Vilsmeier et al. Oct 2003 B2
6643646 Su et al. Nov 2003 B2
6647383 August et al. Nov 2003 B1
6650944 Goedeke et al. Nov 2003 B2
6671818 Mikurak Dec 2003 B1
6675104 Paulse et al. Jan 2004 B2
6678669 Lapointe et al. Jan 2004 B2
6682346 Chishti et al. Jan 2004 B2
6685469 Chishti et al. Feb 2004 B2
6689055 Mullen et al. Feb 2004 B1
6690761 Lang et al. Feb 2004 B2
6691110 Wang et al. Feb 2004 B2
6694234 Lockwood et al. Feb 2004 B2
6697164 Babayoff et al. Feb 2004 B1
6697793 McGreevy Feb 2004 B2
6702765 Robbins et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6705863 Phan et al. Mar 2004 B2
6729876 Chishti et al. May 2004 B2
6733289 Manemann et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6749414 Hanson et al. Jun 2004 B1
6769913 Hurson Aug 2004 B2
6772026 Bradbury et al. Aug 2004 B2
6790036 Graham Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6814574 Abolfathi et al. Nov 2004 B2
6830450 Knopp et al. Dec 2004 B2
6832912 Mao Dec 2004 B2
6832914 Bonnet et al. Dec 2004 B1
6843370 Tuneberg Jan 2005 B2
6845175 Kopelman et al. Jan 2005 B2
6885464 Pfeiffer et al. Apr 2005 B1
6890285 Rahman et al. May 2005 B2
6951254 Morrison Oct 2005 B2
6976841 Osterwalder Dec 2005 B1
6978268 Thomas et al. Dec 2005 B2
6983752 Garabadian Jan 2006 B2
6984128 Breining et al. Jan 2006 B2
6988893 Haywood Jan 2006 B2
7016952 Mullen et al. Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7036514 Heck May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7106233 Schroeder et al. Sep 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7121825 Chishti et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7137812 Cleary et al. Nov 2006 B2
7138640 Delgado et al. Nov 2006 B1
7140877 Kaza Nov 2006 B2
7142312 Quadling et al. Nov 2006 B2
7155373 Jordan et al. Dec 2006 B2
7156655 Sachdeva et al. Jan 2007 B2
7156661 Choi et al. Jan 2007 B2
7166063 Rahman et al. Jan 2007 B2
7184150 Quadling et al. Feb 2007 B2
7191451 Nakagawa Mar 2007 B2
7192273 McSurdy Mar 2007 B2
7217131 Vuillemot May 2007 B2
7220122 Chishti May 2007 B2
7220124 Taub et al. May 2007 B2
7229282 Andreiko et al. Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7241142 Abolfathi et al. Jul 2007 B2
7244230 Duggirala et al. Jul 2007 B2
7245753 Squilla et al. Jul 2007 B2
7257136 Mori et al. Aug 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7294141 Bergersen Nov 2007 B2
7302842 Biester et al. Dec 2007 B2
7320592 Chishti et al. Jan 2008 B2
7328706 Barach et al. Feb 2008 B2
7329122 Scott Feb 2008 B1
7338327 Sticker et al. Mar 2008 B2
D565509 Fechner et al. Apr 2008 S
7351116 Dold Apr 2008 B2
7354270 Abolfathi et al. Apr 2008 B2
7357637 Liechtung Apr 2008 B2
7435083 Chishti et al. Oct 2008 B2
7450231 Johs et al. Nov 2008 B2
7458810 Bergersen Dec 2008 B2
7460230 Johs et al. Dec 2008 B2
7462076 Walter et al. Dec 2008 B2
7463929 Simmons Dec 2008 B2
7476100 Kuo Jan 2009 B2
7500851 Williams Mar 2009 B2
D594413 Palka et al. Jun 2009 S
7543511 Kimura et al. Jun 2009 B2
7544103 Walter et al. Jun 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7561273 Stautmeister et al. Jul 2009 B2
7577284 Wong et al. Aug 2009 B2
7596253 Wong et al. Sep 2009 B2
7597594 Stadler et al. Oct 2009 B2
7609875 Liu et al. Oct 2009 B2
D603796 Sticker et al. Nov 2009 S
7616319 Woollam et al. Nov 2009 B1
7626705 Altendorf Dec 2009 B2
7632216 Rahman et al. Dec 2009 B2
7633625 Woollam et al. Dec 2009 B1
7637262 Bailey Dec 2009 B2
7637740 Knopp Dec 2009 B2
7641473 Sporbert et al. Jan 2010 B2
7668355 Wong et al. Feb 2010 B2
7670179 Muller Mar 2010 B2
7695327 Bäuerle et al. Apr 2010 B2
7698068 Babayoff Apr 2010 B2
7711447 Lu et al. May 2010 B2
7724378 Babayoff May 2010 B2
D618619 Walter Jun 2010 S
7728848 Petrov et al. Jun 2010 B2
7731508 Borst Jun 2010 B2
7735217 Borst Jun 2010 B2
7740476 Rubbed et al. Jun 2010 B2
7744369 Imgrund et al. Jun 2010 B2
7746339 Matov et al. Jun 2010 B2
7780460 Walter Aug 2010 B2
7787132 Körner et al. Aug 2010 B2
7791810 Powell Sep 2010 B2
7796243 Choo-Smith et al. Sep 2010 B2
7806687 Minagi et al. Oct 2010 B2
7806727 Dold et al. Oct 2010 B2
7813787 de Josselin de Jong et al. Oct 2010 B2
7824180 Abolfathi et al. Nov 2010 B2
7828601 Pyczak Nov 2010 B2
7841464 Cinader et al. Nov 2010 B2
7845969 Stadler et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7862336 Kopelman et al. Jan 2011 B2
7869983 Raby et al. Jan 2011 B2
7872760 Ertl Jan 2011 B2
7874836 McSurdy Jan 2011 B2
7874837 Chishti et al. Jan 2011 B2
7874849 Sticker et al. Jan 2011 B2
7878801 Abolfathi et al. Feb 2011 B2
7878805 Moss et al. Feb 2011 B2
7880751 Kuo et al. Feb 2011 B2
7892474 Shkolnik et al. Feb 2011 B2
7904308 Arnone et al. Mar 2011 B2
7907280 Johs et al. Mar 2011 B2
7929151 Liang et al. Apr 2011 B2
7930189 Kuo Apr 2011 B2
7947508 Tricca et al. May 2011 B2
7959308 Freeman et al. Jun 2011 B2
7963766 Cronauer Jun 2011 B2
7970627 Kuo et al. Jun 2011 B2
7985414 Knaack et al. Jul 2011 B2
7986415 Thiel et al. Jul 2011 B2
7987099 Kuo et al. Jul 2011 B2
7991485 Zakim Aug 2011 B2
8017891 Nevin Sep 2011 B2
8026916 Wen Sep 2011 B2
8027709 Arnone et al. Sep 2011 B2
8029277 Imgrund et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8045772 Kosuge et al. Oct 2011 B2
8054556 Chen et al. Nov 2011 B2
8070490 Roetzer et al. Dec 2011 B1
8075306 Kitching et al. Dec 2011 B2
8077949 Liang et al. Dec 2011 B2
8083556 Stadler et al. Dec 2011 B2
D652799 Mueller Jan 2012 S
8092215 Stone-Collonge et al. Jan 2012 B2
8095383 Arnone et al. Jan 2012 B2
8099268 Kitching et al. Jan 2012 B2
8099305 Kuo et al. Jan 2012 B2
8118592 Tortorici Feb 2012 B2
8126025 Takeda Feb 2012 B2
8136529 Kelly Mar 2012 B2
8144954 Quadling et al. Mar 2012 B2
8160334 Thiel et al. Apr 2012 B2
8172569 Matty et al. May 2012 B2
8197252 Harrison Jun 2012 B1
8201560 Dembro Jun 2012 B2
8215312 Garabadian et al. Jul 2012 B2
8240018 Walter et al. Aug 2012 B2
8275180 Kuo Sep 2012 B2
8279450 Oota et al. Oct 2012 B2
8292617 Brandt et al. Oct 2012 B2
8294657 Kim et al. Oct 2012 B2
8296952 Greenberg Oct 2012 B2
8297286 Smernoff Oct 2012 B2
8306608 Mandelis et al. Nov 2012 B2
8314764 Kim et al. Nov 2012 B2
8332015 Ertl Dec 2012 B2
8354588 Sticker et al. Jan 2013 B2
8366479 Borst et al. Feb 2013 B2
8401826 Cheng et al. Mar 2013 B2
8419428 Lawrence Apr 2013 B2
8433083 Abolfathi et al. Apr 2013 B2
8439672 Matov et al. May 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8477320 Stock et al. Jul 2013 B2
8488113 Thiel et al. Jul 2013 B2
8517726 Kakavand et al. Aug 2013 B2
8520922 Wang et al. Aug 2013 B2
8520925 Duret et al. Aug 2013 B2
8523565 Matty et al. Sep 2013 B2
8545221 Stone-Collonge et al. Oct 2013 B2
8556625 Lovely Oct 2013 B2
8570530 Liang Oct 2013 B2
8573224 Thornton Nov 2013 B2
8577212 Thiel Nov 2013 B2
8601925 Coto Dec 2013 B1
8639477 Chelnokov et al. Jan 2014 B2
8650586 Lee et al. Feb 2014 B2
8675706 Seurin et al. Mar 2014 B2
8723029 Pyczak et al. May 2014 B2
8738394 Kuo May 2014 B2
8743923 Geske et al. Jun 2014 B2
8753114 Vuillemot Jun 2014 B2
8767270 Curry et al. Jul 2014 B2
8768016 Pan et al. Jul 2014 B2
8771149 Rahman et al. Jul 2014 B2
8839476 Adachi Sep 2014 B2
8843381 Kuo et al. Sep 2014 B2
8856053 Mah Oct 2014 B2
8870566 Bergersen Oct 2014 B2
8874452 Kuo Oct 2014 B2
8878905 Fisker et al. Nov 2014 B2
8899976 Chen et al. Dec 2014 B2
8936463 Mason et al. Jan 2015 B2
8944812 Kou Feb 2015 B2
8948482 Levin Feb 2015 B2
8956058 Rosch Feb 2015 B2
8992216 Karazivan Mar 2015 B2
9004915 Moss et al. Apr 2015 B2
9022792 Sticker et al. May 2015 B2
9039418 Rubbed May 2015 B1
9084535 Girkin et al. Jul 2015 B2
9084657 Matty et al. Jul 2015 B2
9108338 Sirovskiy et al. Aug 2015 B2
9144512 Wagner Sep 2015 B2
9192305 Levin Nov 2015 B2
9204952 Lampalzer Dec 2015 B2
9211166 Kuo et al. Dec 2015 B2
9214014 Levin Dec 2015 B2
9220580 Borovinskih et al. Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9242118 Brawn Jan 2016 B2
9261358 Atiya et al. Feb 2016 B2
9277972 Brandt et al. Mar 2016 B2
9336336 Deichmann et al. May 2016 B2
9351810 Moon May 2016 B2
9375300 Matov et al. Jun 2016 B2
9403238 Culp Aug 2016 B2
9408743 Wagner Aug 2016 B1
9414897 Wu et al. Aug 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9439568 Atiya et al. Sep 2016 B2
9444981 Bellis et al. Sep 2016 B2
9463287 Lorberbaum et al. Oct 2016 B1
9492243 Kuo Nov 2016 B2
9500635 Islam Nov 2016 B2
9506808 Jeon et al. Nov 2016 B2
9510918 Sanchez Dec 2016 B2
9545331 Ingemarsson-Matzen Jan 2017 B2
9566132 Stone-Collonge et al. Feb 2017 B2
9584771 Mandelis et al. Feb 2017 B2
9589329 Levin Mar 2017 B2
9675427 Kopelman Jun 2017 B2
9675430 Verker et al. Jun 2017 B2
9693839 Atiya et al. Jul 2017 B2
9744006 Ross Aug 2017 B2
9820829 Kuo Nov 2017 B2
9830688 Levin Nov 2017 B2
9844421 Moss et al. Dec 2017 B2
9848985 Yang et al. Dec 2017 B2
9861451 Davis Jan 2018 B1
9936186 Jesenko et al. Apr 2018 B2
10123853 Moss et al. Nov 2018 B2
10159541 Bindayel Dec 2018 B2
10172693 Brandt et al. Jan 2019 B2
10195690 Culp Feb 2019 B2
10231801 Korytov et al. Mar 2019 B2
10238472 Levin Mar 2019 B2
10258432 Webber Apr 2019 B2
20010002310 Chishti et al. May 2001 A1
20010032100 Mahmud et al. Oct 2001 A1
20010038705 Rubbert et al. Nov 2001 A1
20010041320 Phan et al. Nov 2001 A1
20020004727 Knaus et al. Jan 2002 A1
20020007284 Schurenberg et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020015934 Rubbert et al. Feb 2002 A1
20020025503 Chapoulaud et al. Feb 2002 A1
20020026105 Drazen Feb 2002 A1
20020028417 Chapoulaud et al. Mar 2002 A1
20020035572 Takatori et al. Mar 2002 A1
20020064752 Durbin et al. May 2002 A1
20020064759 Durbin et al. May 2002 A1
20020087551 Hickey et al. Jul 2002 A1
20020107853 Hofmann et al. Aug 2002 A1
20020188478 Breeland et al. Dec 2002 A1
20020192617 Phan et al. Dec 2002 A1
20030000927 Kanaya et al. Jan 2003 A1
20030009252 Pavlovskaia et al. Jan 2003 A1
20030019848 Nicholas et al. Jan 2003 A1
20030021453 Weise et al. Jan 2003 A1
20030035061 Iwaki et al. Feb 2003 A1
20030049581 Deluke Mar 2003 A1
20030057192 Patel Mar 2003 A1
20030059736 Lai et al. Mar 2003 A1
20030060532 Subelka et al. Mar 2003 A1
20030068598 Vallittu et al. Apr 2003 A1
20030095697 Wood et al. May 2003 A1
20030101079 McLaughlin May 2003 A1
20030103060 Anderson et al. Jun 2003 A1
20030120517 Eida et al. Jun 2003 A1
20030139834 Nikolskiy et al. Jul 2003 A1
20030144886 Taira Jul 2003 A1
20030172043 Guyon et al. Sep 2003 A1
20030190575 Hilliard Oct 2003 A1
20030192867 Yamazaki et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20030215764 Kopelman et al. Nov 2003 A1
20030224311 Cronauer Dec 2003 A1
20030224313 Bergersen Dec 2003 A1
20030224314 Bergersen Dec 2003 A1
20040002873 Sachdeva Jan 2004 A1
20040009449 Mah et al. Jan 2004 A1
20040013994 Goldberg et al. Jan 2004 A1
20040019262 Perelgut Jan 2004 A1
20040029078 Marshall Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040054304 Raby Mar 2004 A1
20040054358 Cox et al. Mar 2004 A1
20040058295 Bergersen Mar 2004 A1
20040068199 Echauz et al. Apr 2004 A1
20040078222 Khan et al. Apr 2004 A1
20040080621 Fisher et al. Apr 2004 A1
20040094165 Cook May 2004 A1
20040107118 Harnsberger et al. Jun 2004 A1
20040133083 Comaniciu et al. Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040158194 Wolff et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040167646 Jelonek et al. Aug 2004 A1
20040170941 Phan et al. Sep 2004 A1
20040193036 Zhou et al. Sep 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040214128 Sachdeva et al. Oct 2004 A1
20040219479 Malin et al. Nov 2004 A1
20040220691 Hofmeister et al. Nov 2004 A1
20040229185 Knopp Nov 2004 A1
20040259049 Kopelman et al. Dec 2004 A1
20050003318 Choi et al. Jan 2005 A1
20050023356 Wiklof et al. Feb 2005 A1
20050031196 Moghaddam et al. Feb 2005 A1
20050037312 Uchida Feb 2005 A1
20050038669 Sachdeva et al. Feb 2005 A1
20050040551 Biegler et al. Feb 2005 A1
20050042569 Plan et al. Feb 2005 A1
20050042577 Kvitrud et al. Feb 2005 A1
20050048433 Hilliard Mar 2005 A1
20050074717 Cleary et al. Apr 2005 A1
20050089822 Geng Apr 2005 A1
20050100333 Kerschbaumer et al. May 2005 A1
20050108052 Omaboe May 2005 A1
20050131738 Morris Jun 2005 A1
20050144150 Ramamurthy et al. Jun 2005 A1
20050171594 Machan et al. Aug 2005 A1
20050171630 Dinauer et al. Aug 2005 A1
20050181333 Karazivan et al. Aug 2005 A1
20050186524 Abolfathi et al. Aug 2005 A1
20050186526 Stewart et al. Aug 2005 A1
20050216314 Secor Sep 2005 A1
20050233276 Kopelman et al. Oct 2005 A1
20050239013 Sachdeva Oct 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244791 Davis et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060056670 Hamadeh Mar 2006 A1
20060057533 McGann Mar 2006 A1
20060063135 Mehl Mar 2006 A1
20060078842 Sachdeva et al. Apr 2006 A1
20060084024 Farrell Apr 2006 A1
20060093982 Wen May 2006 A1
20060098007 Rouet et al. May 2006 A1
20060099545 Lia et al. May 2006 A1
20060099546 Bergersen May 2006 A1
20060110698 Robson May 2006 A1
20060111631 Kelliher et al. May 2006 A1
20060115785 Li et al. Jun 2006 A1
20060137813 Robrecht et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060154198 Durbin et al. Jul 2006 A1
20060154207 Kuo Jul 2006 A1
20060173715 Wang Aug 2006 A1
20060183082 Quadling et al. Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060188848 Tricca et al. Aug 2006 A1
20060194163 Tricca et al. Aug 2006 A1
20060199153 Liu et al. Sep 2006 A1
20060204078 Orth et al. Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223023 Lai et al. Oct 2006 A1
20060223032 Fried et al. Oct 2006 A1
20060223342 Borst et al. Oct 2006 A1
20060234179 Wen et al. Oct 2006 A1
20060257815 De Dominicis Nov 2006 A1
20060275729 Fornoff Dec 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen et al. Dec 2006 A1
20060277075 Salwan Dec 2006 A1
20060290693 Zhou et al. Dec 2006 A1
20060292520 Dillon et al. Dec 2006 A1
20070031775 Andreiko Feb 2007 A1
20070037111 Mailyn Feb 2007 A1
20070037112 Mailyn Feb 2007 A1
20070046865 Umeda et al. Mar 2007 A1
20070053048 Kumar et al. Mar 2007 A1
20070054237 Neuschafer Mar 2007 A1
20070065768 Nadav Mar 2007 A1
20070087300 Willison et al. Apr 2007 A1
20070087302 Reising et al. Apr 2007 A1
20070106138 Beiski et al. May 2007 A1
20070122592 Anderson et al. May 2007 A1
20070128574 Kuo et al. Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070141526 Eisenberg et al. Jun 2007 A1
20070143135 Lindquist et al. Jun 2007 A1
20070168152 Matov et al. Jul 2007 A1
20070172112 Paley et al. Jul 2007 A1
20070172291 Yokoyama Jul 2007 A1
20070178420 Keski-Nisula et al. Aug 2007 A1
20070183633 Hoffmann Aug 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070185732 Hicks et al. Aug 2007 A1
20070192137 Ombrellaro Aug 2007 A1
20070199929 Rippl et al. Aug 2007 A1
20070215582 Roeper et al. Sep 2007 A1
20070218422 Ehrenfeld Sep 2007 A1
20070231765 Phan et al. Oct 2007 A1
20070238065 Sherwood et al. Oct 2007 A1
20070239488 DeRosso Oct 2007 A1
20070263226 Kurtz et al. Nov 2007 A1
20080013727 Uemura Jan 2008 A1
20080020350 Matov et al. Jan 2008 A1
20080045053 Stadler et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057467 Gittelson Mar 2008 A1
20080057479 Grenness Mar 2008 A1
20080059238 Park et al. Mar 2008 A1
20080090208 Rubbert Apr 2008 A1
20080094389 Rouet et al. Apr 2008 A1
20080113317 Kemp et al. May 2008 A1
20080115791 Heine May 2008 A1
20080118882 Su May 2008 A1
20080118886 Liang et al. May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080176448 Muller et al. Jul 2008 A1
20080233530 Cinader Sep 2008 A1
20080242144 Dietz Oct 2008 A1
20080248443 Chishti et al. Oct 2008 A1
20080254402 Hilliard Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080306724 Kitching et al. Dec 2008 A1
20090029310 Pumphrey et al. Jan 2009 A1
20090030290 Kozuch et al. Jan 2009 A1
20090030347 Cao Jan 2009 A1
20090040740 Muller et al. Feb 2009 A1
20090061379 Yamamoto et al. Mar 2009 A1
20090061381 Durbin et al. Mar 2009 A1
20090075228 Kaneko et al. Mar 2009 A1
20090087050 Gandyra Apr 2009 A1
20090098502 Andreiko Apr 2009 A1
20090099445 Burger Apr 2009 A1
20090103579 Ushimaru et al. Apr 2009 A1
20090105523 Kassayan et al. Apr 2009 A1
20090130620 Yazdi et al. May 2009 A1
20090136890 Kang et al. May 2009 A1
20090136893 Zegarelli May 2009 A1
20090148809 Kuo et al. Jun 2009 A1
20090170050 Marcus Jul 2009 A1
20090181346 Orth Jul 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090210032 Beiski et al. Aug 2009 A1
20090218514 Klunder et al. Sep 2009 A1
20090246726 Chelnokov et al. Oct 2009 A1
20090281433 Saadat et al. Nov 2009 A1
20090286195 Sears et al. Nov 2009 A1
20090298017 Boerjes et al. Dec 2009 A1
20090305540 Stadler et al. Dec 2009 A1
20090316966 Marshall et al. Dec 2009 A1
20090317757 Lemchen Dec 2009 A1
20100015565 Carrillo Gonzalez et al. Jan 2010 A1
20100019170 Hart et al. Jan 2010 A1
20100028825 Lemchen Feb 2010 A1
20100045902 Ikeda et al. Feb 2010 A1
20100047732 Park Feb 2010 A1
20100062394 Jones et al. Mar 2010 A1
20100068676 Mason et al. Mar 2010 A1
20100075268 Duran Von Arx Mar 2010 A1
20100086890 Kuo Apr 2010 A1
20100138025 Morton et al. Jun 2010 A1
20100142789 Chang et al. Jun 2010 A1
20100145664 Hultgren et al. Jun 2010 A1
20100145898 Malfliet et al. Jun 2010 A1
20100152599 DuHamel et al. Jun 2010 A1
20100165275 Tsukamoto et al. Jul 2010 A1
20100167225 Kuo Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193482 Ow et al. Aug 2010 A1
20100196837 Farrell Aug 2010 A1
20100216085 Kopelman Aug 2010 A1
20100217130 Weinlaender Aug 2010 A1
20100231577 Kim et al. Sep 2010 A1
20100268363 Karim et al. Oct 2010 A1
20100268515 Vogt et al. Oct 2010 A1
20100279243 Cinader et al. Nov 2010 A1
20100280798 Pattijn Nov 2010 A1
20100281370 Rohaly et al. Nov 2010 A1
20100303316 Bullis et al. Dec 2010 A1
20100312484 DuHamel et al. Dec 2010 A1
20100327461 Co et al. Dec 2010 A1
20110007920 Abolfathi et al. Jan 2011 A1
20110012901 Kaplanyan Jan 2011 A1
20110027743 Cinader, Jr. et al. Feb 2011 A1
20110045428 Boltunov et al. Feb 2011 A1
20110056350 Gale et al. Mar 2011 A1
20110081625 Fuh Apr 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110102549 Takahashi May 2011 A1
20110102566 Zakian et al. May 2011 A1
20110104630 Matov et al. May 2011 A1
20110136072 Li et al. Jun 2011 A1
20110136090 Kazemi Jun 2011 A1
20110143300 Villaalba Jun 2011 A1
20110143673 Landesman et al. Jun 2011 A1
20110159452 Huang Jun 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110207072 Schiemann Aug 2011 A1
20110212420 Vuillemot Sep 2011 A1
20110220623 Beutler Sep 2011 A1
20110235045 Koerner et al. Sep 2011 A1
20110240064 Wales et al. Oct 2011 A1
20110262881 Mauclaire Oct 2011 A1
20110269092 Kuo et al. Nov 2011 A1
20110316994 Lemchen Dec 2011 A1
20120028210 Hegyi et al. Feb 2012 A1
20120029883 Heinz et al. Feb 2012 A1
20120040311 Nilsson Feb 2012 A1
20120064477 Schmitt Mar 2012 A1
20120081786 Mizuyama et al. Apr 2012 A1
20120086681 Kim et al. Apr 2012 A1
20120115107 Adams May 2012 A1
20120129117 McCance May 2012 A1
20120147912 Moench et al. Jun 2012 A1
20120150494 Anderson et al. Jun 2012 A1
20120166213 Arnone et al. Jun 2012 A1
20120172678 Logan et al. Jul 2012 A1
20120281293 Gronenborn et al. Nov 2012 A1
20120295216 Dykes et al. Nov 2012 A1
20120322025 Ozawa et al. Dec 2012 A1
20130029284 Teasdale Jan 2013 A1
20130081272 Johnson et al. Apr 2013 A1
20130089828 Borovinskih et al. Apr 2013 A1
20130095446 Andreiko et al. Apr 2013 A1
20130103176 Kopelman et al. Apr 2013 A1
20130110469 Kopelman May 2013 A1
20130163627 Seurin et al. Jun 2013 A1
20130201488 Ishihara Aug 2013 A1
20130204599 Matov et al. Aug 2013 A1
20130209952 Kuo et al. Aug 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130252195 Popat Sep 2013 A1
20130266326 Joseph et al. Oct 2013 A1
20130278396 Kimmel Oct 2013 A1
20130280671 Brawn et al. Oct 2013 A1
20130286174 Urakabe Oct 2013 A1
20130293824 Yoneyama et al. Nov 2013 A1
20130323664 Parker Dec 2013 A1
20130323671 Dillon et al. Dec 2013 A1
20130323674 Hakomori et al. Dec 2013 A1
20130325431 See et al. Dec 2013 A1
20130337412 Kwon Dec 2013 A1
20140061974 Tyler Mar 2014 A1
20140081091 Abolfathi et al. Mar 2014 A1
20140093160 Porikli et al. Apr 2014 A1
20140100495 Haseley Apr 2014 A1
20140106289 Kozlowski Apr 2014 A1
20140122027 Andreiko et al. May 2014 A1
20140136222 Arnone et al. May 2014 A1
20140142902 Chelnokov et al. May 2014 A1
20140178829 Kim Jun 2014 A1
20140220520 Salamini Aug 2014 A1
20140265034 Dudley Sep 2014 A1
20140272774 Dillon et al. Sep 2014 A1
20140280376 Kuo Sep 2014 A1
20140294273 Jaisson Oct 2014 A1
20140313299 Gebhardt et al. Oct 2014 A1
20140329194 Sachdeva et al. Nov 2014 A1
20140342299 Jung Nov 2014 A1
20140342301 Fleer et al. Nov 2014 A1
20140350354 Stenzler et al. Nov 2014 A1
20140363778 Parker Dec 2014 A1
20150002649 Nowak et al. Jan 2015 A1
20150004553 Li et al. Jan 2015 A1
20150021210 Kesling Jan 2015 A1
20150031940 Floyd Jan 2015 A1
20150079530 Bergersen Mar 2015 A1
20150079531 Heine Mar 2015 A1
20150094564 Tashman et al. Apr 2015 A1
20150097315 DeSimone et al. Apr 2015 A1
20150097316 DeSimone et al. Apr 2015 A1
20150102532 DeSimone et al. Apr 2015 A1
20150132708 Kuo May 2015 A1
20150140502 Brawn et al. May 2015 A1
20150150501 George et al. Jun 2015 A1
20150164335 Van Der Poel et al. Jun 2015 A1
20150173856 Iowe et al. Jun 2015 A1
20150182303 Abraham et al. Jul 2015 A1
20150216626 Ranjbar Aug 2015 A1
20150216716 Anitua Aldecoa Aug 2015 A1
20150230885 Wucher Aug 2015 A1
20150238280 Wu et al. Aug 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150306486 Logan et al. Oct 2015 A1
20150320320 Kopelman et al. Nov 2015 A1
20150320532 Matty et al. Nov 2015 A1
20150325044 Lebovitz Nov 2015 A1
20150338209 Knüttel Nov 2015 A1
20150351638 Amato Dec 2015 A1
20150374469 Konno et al. Dec 2015 A1
20160000332 Atiya et al. Jan 2016 A1
20160003610 Lampert et al. Jan 2016 A1
20160042509 Andreiko et al. Feb 2016 A1
20160051345 Levin Feb 2016 A1
20160064898 Atiya et al. Mar 2016 A1
20160067013 Morton et al. Mar 2016 A1
20160081768 Kopelman et al. Mar 2016 A1
20160081769 Kimura et al. Mar 2016 A1
20160095668 Kuo et al. Apr 2016 A1
20160100924 Wilson et al. Apr 2016 A1
20160106520 Borovinskih et al. Apr 2016 A1
20160120621 Li et al. May 2016 A1
20160135924 Choi et al. May 2016 A1
20160135925 Mason et al. May 2016 A1
20160163115 Furst Jun 2016 A1
20160217708 Levin et al. Jul 2016 A1
20160220105 Durent Aug 2016 A1
20160220200 Sandholm et al. Aug 2016 A1
20160225151 Cocco et al. Aug 2016 A1
20160228213 Tod et al. Aug 2016 A1
20160242871 Morton et al. Aug 2016 A1
20160246936 Kahn Aug 2016 A1
20160287358 Nowak et al. Oct 2016 A1
20160296303 Parker Oct 2016 A1
20160302885 Matov et al. Oct 2016 A1
20160328843 Graham et al. Nov 2016 A1
20160338799 Wu et al. Nov 2016 A1
20160346063 Schulhof et al. Dec 2016 A1
20160367339 Khardekar et al. Dec 2016 A1
20170007365 Kopelman et al. Jan 2017 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170007368 Boronkay Jan 2017 A1
20170020633 Stone-Collonge et al. Jan 2017 A1
20170049311 Borovinskih et al. Feb 2017 A1
20170049326 Alfano et al. Feb 2017 A1
20170056131 Alauddin et al. Mar 2017 A1
20170071705 Kuo Mar 2017 A1
20170079747 Graf et al. Mar 2017 A1
20170086943 Mah Mar 2017 A1
20170100209 Wen Apr 2017 A1
20170100212 Sherwood et al. Apr 2017 A1
20170100213 Kuo Apr 2017 A1
20170100214 Wen Apr 2017 A1
20170105815 Matov et al. Apr 2017 A1
20170135792 Webber May 2017 A1
20170135793 Webber et al. May 2017 A1
20170156821 Kopelman et al. Jun 2017 A1
20170165032 Webber et al. Jun 2017 A1
20170215739 Miyasato Aug 2017 A1
20170251954 Lotan et al. Sep 2017 A1
20170258555 Kopelman Sep 2017 A1
20170265967 Hong Sep 2017 A1
20170265970 Verker Sep 2017 A1
20170319054 Miller et al. Nov 2017 A1
20170319296 Webber et al. Nov 2017 A1
20170325690 Salah et al. Nov 2017 A1
20170340411 Akselrod Nov 2017 A1
20170340415 Choi et al. Nov 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180000565 Shanjani et al. Jan 2018 A1
20180028063 Elbaz et al. Feb 2018 A1
20180028064 Elbaz et al. Feb 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180055602 Kopelman et al. Mar 2018 A1
20180071054 Ha Mar 2018 A1
20180071055 Kuo Mar 2018 A1
20180085059 Lee Mar 2018 A1
20180096465 Levin Apr 2018 A1
20180168788 Fernie Jun 2018 A1
20180228359 Meyer et al. Aug 2018 A1
20180280125 Longley et al. Oct 2018 A1
20180318042 Baek et al. Nov 2018 A1
20180318043 Li et al. Nov 2018 A1
20180368944 Sato et al. Dec 2018 A1
20190026599 Salah et al. Jan 2019 A1
20190046296 Kopelman et al. Feb 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190069975 Cam et al. Mar 2019 A1
20190076216 Moss et al. Mar 2019 A1
20190090983 Webber et al. Mar 2019 A1
20190171618 Kuo Jun 2019 A1
20190314119 Kopelman et al. Oct 2019 A1
20200046463 Kimura et al. Feb 2020 A1
Foreign Referenced Citations (129)
Number Date Country
517102 Nov 1977 AU
3031677 Nov 1977 AU
5598894 Jun 1994 AU
1121955 Apr 1982 CA
1655732 Aug 2005 CN
1655733 Aug 2005 CN
102017658 Apr 2011 CN
103889364 Jun 2014 CN
204092220 Jan 2015 CN
105496575 Apr 2016 CN
105997274 Oct 2016 CN
2749802 May 1978 DE
3526198 Feb 1986 DE
4207169 Sep 1993 DE
69327661 Jul 2000 DE
102005043627 Mar 2007 DE
202010017014 Mar 2011 DE
102011051443 Jan 2013 DE
202012011899 Jan 2013 DE
102014225457 Jun 2016 DE
0428152 May 1991 EP
490848 Jun 1992 EP
541500 May 1993 EP
714632 May 1997 EP
774933 Dec 2000 EP
731673 May 2001 EP
1941843 Jul 2008 EP
2437027 Apr 2012 EP
2447754 May 2012 EP
1989764 Jul 2012 EP
2332221 Nov 2012 EP
2596553 Dec 2013 EP
2612300 Feb 2015 EP
2848229 Mar 2015 EP
463897 Jan 1980 ES
2455066 Apr 2014 ES
2369828 Jun 1978 FR
2867377 Sep 2005 FR
2930334 Oct 2009 FR
1550777 Aug 1979 GB
53-058191 May 1978 JP
4028359 Jan 1992 JP
08-508174 Sep 1996 JP
09-19443 Jan 1997 JP
2003245289 Sep 2003 JP
2000339468 Sep 2004 JP
2005527320 Sep 2005 JP
2005527321 Sep 2005 JP
2006043121 Feb 2006 JP
2007151614 Jun 2007 JP
2007260158 Oct 2007 JP
2007537824 Dec 2007 JP
2008067732 Mar 2008 JP
2008523370 Jul 2008 JP
04184427 Nov 2008 JP
2009000412 Jan 2009 JP
2009018173 Jan 2009 JP
2009078133 Apr 2009 JP
2009101386 May 2009 JP
2009205330 Sep 2009 JP
2010017726 Jan 2010 JP
2011087733 May 2011 JP
2012045143 Mar 2012 JP
2013007645 Jan 2013 JP
2013192865 Sep 2013 JP
201735173 Feb 2017 JP
10-20020062793 Jul 2002 KR
10-20070108019 Nov 2007 KR
10-20090065778 Jun 2009 KR
10-1266966 May 2013 KR
10-2016-041632 Apr 2016 KR
10-2009-0071127 Jun 2016 KR
10-1675089 Nov 2016 KR
480166 Mar 2002 TW
WO91004713 Apr 1991 WO
WO9203102 Mar 1992 WO
WO94010935 May 1994 WO
WO9623452 Aug 1996 WO
WO98032394 Jul 1998 WO
WO98044865 Oct 1998 WO
WO0108592 Feb 2001 WO
WO0185047 Nov 2001 WO
WO02017776 Mar 2002 WO
WO02062252 Aug 2002 WO
WO02095475 Nov 2002 WO
WO03003932 Jan 2003 WO
WO2006096558 Sep 2006 WO
WO2006100700 Sep 2006 WO
WO2006133548 Dec 2006 WO
WO2007019709 Feb 2007 WO
WO2007071341 Jun 2007 WO
WO2007103377 Sep 2007 WO
WO2008115654 Sep 2008 WO
WO2009016645 Feb 2009 WO
WO2009085752 Jul 2009 WO
WO2009089129 Jul 2009 WO
WO2009146788 Dec 2009 WO
WO2009146789 Dec 2009 WO
WO2010059988 May 2010 WO
WO2010123892 Oct 2010 WO
WO2012007003 Jan 2012 WO
WO2012064684 May 2012 WO
WO2012074304 Jun 2012 WO
WO2012078980 Jun 2012 WO
WO2012083968 Jun 2012 WO
WO2012140021 Oct 2012 WO
WO2013058879 Apr 2013 WO
WO 2014068107 May 2014 WO
WO2014091865 Jun 2014 WO
WO2014143911 Sep 2014 WO
WO2015015289 Feb 2015 WO
WO2015063032 May 2015 WO
WO2015112638 Jul 2015 WO
WO2015176004 Nov 2015 WO
WO2016004415 Jan 2016 WO
WO2016028106 Feb 2016 WO
WO2016042393 Mar 2016 WO
WO2016061279 Apr 2016 WO
WO2016084066 Jun 2016 WO
WO2016099471 Jun 2016 WO
WO2016113745 Jul 2016 WO
WO2016116874 Jul 2016 WO
WO2016200177 Dec 2016 WO
WO2017006176 Jan 2017 WO
WO2017182654 Oct 2017 WO
WO2018057547 Mar 2018 WO
WO2018085718 May 2018 WO
WO2018232113 Dec 2018 WO
WO2019018784 Jan 2019 WO
Non-Patent Literature Citations (288)
Entry
US 8,553,966 B1, 10/2013, Alpern et al. (withdrawn)
Bandodkar et al.; All-printed magnetically self-healing electrochemical devices; Science Advances; 2(11); 11 pages; e1601465; Nov. 2016.
Bandodkar et al.; Self-healing inks for autonomous repair of printable electrochemical devices; Advanced Electronic Materials; 1(12); 5 pages; 1500289; Dec. 2015.
Bandodkar et al.; Wearable biofuel cells: a review; Electroanalysis; 28 (6); pp. 1188-1200; Jun. 2016.
Bandodkar et al.; Wearable chemical sensors: present challenges and future prospects; Acs Sensors; 1(5); pp. 464-482; May 11, 2016.
Imani et al.; A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring; Nature Communications; 7; 11650. doi 1038/ncomms11650; 7 pages; May 23, 2016.
Jia et al.; Epidermal biofuel cells: energy harvesting from human perspiration; Angewandle Chemie International Edition; 52(28); pp. 7233-7236; Jul. 8, 2013.
Jia et al.; Wearable textile biofuel cells for powering electronics; Journal of Materials Chemistry A; 2(43); pp. 18184-18189; Oct. 14, 2014.
Jeerapan et al.; Stretchable biofuel cells as wearable textile-based self-powered sensors; Journal of Materials Chemistry A; 4(47); pp. 18342-18353; Dec. 21, 2016.
Kim et al.; Advanced materials for printed wearable electrochemical devices: A review; Advanced Electronic Materials; 3(1); 15 pages; 1600260; Jan. 2017.
Kim et al.; Noninvasive alcohol monitoring using a wearable tatto-based iontophoretic-biosensing system; Acs Sensors; 1(8); pp. 1011-1019; Jul. 22, 2016.
Kim et al.; Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites; Analyst; 139(7); pp. 1632-1636; Apr. 7, 2014.
Kim et al.; A wearable fingernail chemical sensing platform: pH sensing at your fingertips; Talanta; 150; pp. 622-628; Apr. 2016.
Kim et al.; Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics; Biosensors and Bioelectronics; 74; pp. 1061-1068; 19 pages; (Author Manuscript); Dec. 2015.
Kumar et al.; All-printed, stretchable Zn—Ag2o rechargeable battery via, hyperelastic binder for self-powering wearable electronics; Advanced Energy Materials; 7(8); 8 pages; 1602096; Apr. 2017.
Kumar et al.; Biomarkers in orthodontic tooth movement; Journal of Pharmacy Bioallied Sciences; 7(Suppl 2); pp. S325-S330; 12 pages; (Author Manuscript); Aug. 2015.
Parrilla et al.; A textile-based stretchable multi-ion potentiometric sensor; Advanced Healthcare Materials; 5(9); pp. 996-1001; May 2016.
Windmiller et al.; Wearable electrochemical sensors and biosensors: a , review; Electroanalysis; 25(1); pp. 29-46; Jan. 2013.
Zhou et al.; Bio-logic analysis of injury biomarker patterns in human serum samples; Talanta; 83(3); pp. 955-959; Jan. 15, 2011.
Zhou et al.; Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review; Electroanalysis; 24(2); pp. 197-209; Feb. 2012.
Kopelman et al.; U.S. Appl. No. 16/152,281 entitled “Intraoral appliances for sampling soft-tissue,” filed Oct. 4, 2018.
Morton et al.; U.S. Appl. No. 16/177,067 entitled “Dental appliance having selective occlusal loading and controlled intercuspation,” filed Oct. 31, 2018.
Akopov et al.; U.S. Appl. No. 16/178,491 entitled “Automatic treatment planning,” filed Nov. 1, 2018.
Elbaz et al.; U.S. Appl. No. 16/198,488 entitled “Intraoral scanner with dental diagnostics capabilities,” filed Nov. 21, 2018.
Elbaz et al.; U.S. Appl. No. 16/188,262 entitled “Intraoral scanner with dental diagnostics capabilities,” filed Nov. 12, 2018.
AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA; p. 195; Mar. 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Alcaniz et aL; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996.
Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990.
Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances—Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998.
Allesee Orthodontic Appliances: DuraClearTM; Porduct information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; p(roduct information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003.
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979.
Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981.
Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979.
Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989.
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989.
Barone et al.; Creation of 3D multi-body orthodontic models by using independent imaging sensors; Sensors; 13(2); pp. 2033-2050; Feb. 5, 2013.
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987.
Baumrind et al, “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972.
Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978.
Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975.
Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001.
Bernard et al; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988.
Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984.
Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972.
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive,Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/' pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996.
Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the lnvisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001.
Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985.
Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986.
Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981.
Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979.
Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979.
Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000.
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993.
Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990.
Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985.
Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980.
Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997.
Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969.
Crawford; CAD/CAM in the Dental Office: Does It Work?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991.
Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. Duret ' A Man With a Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes 'N Bites The Computer Moves From the Front Desk to the Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988.
Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990.
Cureton; Correcting Malaligned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996.
Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001.
Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986.
DCS Dental AG; The CAD/CAM ‘DCS Titan System’ for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992.
Defranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976.
Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method; 2 pages; May 1991.
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Dent-X; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998.
Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000.
Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1(2); pp. 150-154; Apr. 1991.
Duret et al; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988.
Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986.
Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985.
Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979.
Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950.
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7.
Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978.
Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form; American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987.
Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987.
Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98 -Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.cz/bitstream/11025/15851/1/Strasser_98.pdf); on Aug. 21, 2018.
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002.
Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the Internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982.
Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990.
Guess et al.; Computer Treatment Estimates in Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262- 268; 11 pages; (Author Manuscript); Apr. 1989.
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991.
Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressputonfa..); on Nov. 5, 2004.
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Inclused); Feb. 1987.
Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; lnformatbnen, pp. 375-396; (English Abstract Included); Mar. 1991.
Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990.
Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999.
JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994.
JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983.
Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998.
Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989.
Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945.
Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946.
Kleeman et al.; The Speed Positioner; J. Clin. Orthod.; 30(12); pp. 673-680; Dec. 1996.
Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996.
Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991.
Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989.
Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983.
McCann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989.
McNamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985.
McNamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993.
Moermann et al, Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987.
Moles; Correcting Mild Malalignments—As Easy As One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Macine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985.
Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964.
Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990.
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004.
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002.
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998.
Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages , Jan./Feb. 1989.
Pinkham; Inventor's CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990.
Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971.
Procera Research Projects; Procera Research Projects 1993 ' Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993.
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000.
Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993.
Raintree Essix & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997.
Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000.
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991.
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991.
Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992.
Rekow; CAD/CAM in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992.
Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987.
Rekow; Dental CAD-CAM Systems: What is the State of the Art?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991.
Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988.
Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986.
Richmond; Recording the Dental Cast in Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987.
Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981.
Sakuda et al.; Integrated Information-Processing System in Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992.
Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988.
Schroeder et al; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998.
Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971.
Shimada et al.; Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations; Current Oral Health Reports; 2(2); pp. 73-80; Jun. 2015.
Siemens; CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin; 15 pagesl; (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004.
Sinclair; The Readers' Corner; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992.
Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rztl Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004.
The Dental Company Sirona: Cerc omnicam and cerec bluecam brochure: The first choice in every case; 8 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2014.
Thorlabs; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012.
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000.
Truax; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-8; Sep.-Oct. 1992.
Tru-Tatn Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996.
U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973.
U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977.
Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972.
Van Hilsen et al.; Comparing potential early caries assessment methods for teledentistry; BMC Oral Health; 13(16); doi: 10.1186/1472-6831-13-16; 9 pages; Mar. 2013.
Varady et al.; Reverse Engineering of Geometric Models'An Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997.
Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989.
Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23 (10); pp. 694-700; Oct. 1989.
Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970.
Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987.
Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990.
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998.
Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Biol. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988.
Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164; 43 pages; (Author Manuscript); Nov. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 pages; (Author Manuscript); Dec. 1980.
Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004.
Friedrich et al; Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy; J. Biomech.; 32(1); pp. 81-85; (Abstract Only) Jan. 1999.
Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis; 171 pages; Dec. 2007.
Invisalign; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017.
Kumar et al.; Rapid maxillary expansion: A unique treatment modality in dentistry; J. Clin. Diagn. Res.; 5(4); pp. 906-911; Aug. 2011.
Nedelcu et al.; “Scanning Accuracy and Precision in 4 Intraoral Scanners: An In Vitro Comparison Based on 3-Dimensional Analysis”; J. Prosthet. Dent.; 112(6); pp. 1461-71; Dec. 2014.
Sahm et al.; “Micro-Electronic Monitoring of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990.
Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 19990.
Schafer et al.; “Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation”; Eur J Orthod.; 37(1)pp. 1-8; doi:10.1093/ejo/cju012; Jul. 3, 2014.
Thera Mon; “Microsensor”; “2 pages”; retrieved from the interent (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016.
Wikipedia; Palatal expansion; 3 pages; retrieved from the Internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018.
Wireless Sensor Networks Magazine; Embedded Teeth for Oral Activity Recognition; 2 pages; retrievedon Sep. 19, 2016 from the internet (www.wsnmagazine.com/embedded-teeth/); Jul. 29, 2013.
Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop.; 52(3); pp. 117-125; (Translation Included) Jun. 1991.
Carrier et al.; U.S. Appl. No. 15/803,718 entitled “Methods and apparatuses for dental images,” filed Nov. 3, 2017.
Atiya et al.; U.S. Appl. No. 15/859,010 entitled “Compact confocal dental scanning apparatus,” filed Dec. 29, 2017.
Shanjani et al.; U.S. Appl. No. 15/831,159 entitled “Palatal expanders and methods of expanding a palate,” filed Dec. 4, 2017.
Wu et al.; U.S. Appl. No. 15/831,262 entitled “Methods and apparatuses for customizing a rapid palatal expander,” filed Dec. 4, 2017.
Grove et al.; U.S. Appl. No. 15/726,243 entitled “Interproximal reduction templates,” filed Oct. 5, 2017.
Arakawa et al; Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor; Biosensors and Bioelectronics; 84; pp. 106-111; Oct. 2016.
O'Leary et al.; U.S. Appl. No. 16/195,701 entitled “Orthodontic retainers,” filed Nov. 19, 2018.
Shanjani et al., U.S. Appl. No. 16/206,894 entitled “Sensors for monitoring oral appliances,” filed Nov. 28, 2019.
Shanjani et al., U.S. Appl No. 16/231,906 entitled “Augmented reality enhancements for dental practitioners.” Dec. 24, 2018.
Kopleman et al., U.S. Appl. No. 16/220,381 entitled “Closed loop adaptive orthodontic treatment methods and apparatuses,” Dec. 14, 2018.
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004.
Berland; The use of smile libraries for cosmetic dentistry; Dental Tribunne: Asia pacfic Edition; pp. 16-18; Mar. 29, 2006.
Bookstein; Principal warps: Thin-plate splines and decomposition of deformations; IEEE Transactions on pattern analysis and machine intelligence; 11(6); pp. 567-585; Jun. 1989.
Cadent Inc.; OrthoCAD ABO user guide; 38 pages; Dec. 21, 2005.
Cadent Inc.; Reviewing and modifying an orthoCAD case; 4 pages; Feb. 14, 2005.
Daniels et al.; The development of the index of complexity outcome and need (ICON); British Journal of Orthodontics; 27(2); pp. 149-162; Jun. 2000.
Dentrix; Dentrix G3, new features; 2 pages; retrieved from the internet (http://www.dentrix.com/g3/new_features/index.asp); on Jun. 6, 2008.
Di Giacomo et al.; Clinical application of sterolithographic surgical guides for implant placement: Preliminary results; Journal Periodontolgy; 76(4); pp. 503-507; Apr. 2005.
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003.
Geomagic; Dental reconstruction; 1 page; retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008.
Gottschalk et al.; OBBTree: A hierarchical structure for rapid interference detection; 12 pages; (http://www.cs.unc.edu/?geom/OBB/OBBT.html); retieved from to internet (https://www.cse.iitk.ac.in/users/amit/courses/RMP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019.
gpsdentaire.com; Get a realistic smile simulation in 4 steps with GPS; a smile management software; 10 pages; retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008.
Karaman et al.; A practical method of fabricating a lingual retainer; Am. Journal of Orthodontic and Dentofacial Orthopedics; 124(3); pp. 327-330; Sep. 2003.
Mantzikos et al.; Case report: Forced eruption and implant site development; The Angle Orthodontist; 68(2); pp. 179-186; Apr. 1998.
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006.
OrthoCAD downloads; retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp); 2 pages; Feb. 14, 2005.
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002.
Patterson Dental; Cosmetic imaging; 2 pages retrieved from the internet (http://patterson.eaglesoft.net/cnt_di_cosimg.html) on Jun. 6, 2008.
Rose et al.; The role of orthodontics in implant dentistry; British Dental Journal; 201(12); pp. 753-764; Dec. 23, 2006.
Rubin et al.; Stress analysis of the human tooth using a three-dimensional finite element model; Journal of Dental Research; 62(2); pp. 82-86; Feb. 1983.
Sarment et al.; Accuracy of implant placement with a sterolithographic surgical guide; journal of Oral and Maxillofacial Implants; 118(4); pp. 571-577; Jul. 2003.
Smalley; Implants for tooth movement: Determining implant location and orientation: Journal of Esthetic and Restorative Dentistry; 7(2); pp. 62-72; Mar. 1995.
Smart Technology; Smile library II; 1 page; retrieved from the internet (http://smart-technology.net/) on Jun. 6, 2008.
Smile-VISION_The smile-vision cosmetic imaging system; 2 pages; retrieved from the internet (http://www.smile-vision.net/cos_imaging.php) on Jun. 6, 2008.
Szeliski; Introduction to computer vision: Structure from motion; 64 pages; retrieved from the internet (http://robots.stanford.edu/cs223b05/notes/CS%20223-B%20L10%structurefrommotion1b.ppt, on Feb. 3, 2005.
Vevin et al.; Pose estimation of teeth through crown-shape matching; In Medical Imaging: Image Processing of International Society of Optics and Photonics; vol. 4684; pp. 955-965; May 9, 2002.
Virtual Orthodontics; Our innovative software; 2 pages; (http://www.virtualorthodontics.com/innovativesoftware.html); retrieved from the Internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2005.
Wiedmann; According to the laws of harmony to find the right tooth shape with assistance of the computer; Digital Dental News; 2nd Vol.; pp. 0005-0008; (English Version Included); Apr. 2008.
Wong et al.; Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants: Case report; Implant Dentistry; 16(2); pp. 123-130; Sep. 2007.
Wang et al.; The uses of orthodontic study models in diagnosis and treatment planning; Hong Knog Dental Journal; 3(2); pp. 107-115; Dec. 2006.
Yaltara Software; Visual planner; 1 page; retrieved from the internet (http://yaltara.com/vp/) on Jun. 6, 2008.
Zhang et al.; Visual speech features extraction for improved speech recognition; 2002 IEEE International conference on Acoustics, Speech and Signal Processing; vol. 2; 4 pages; May 13-17, 2002.
Arnone et al.; U.S. Appl. No. 16/235,449 entitled “Method and system for providing indexing and cataloguing of orthodontic related treatment profiles and options,” filed Dec. 28, 2018.
Mason et al.; U.S. Appl. No. 16/374,648 entitled “Dental condition evaluation and treatment,” filed Apr. 3, 2019.
Brandt et al.; U.S. Appl. No. 16/235,490 entitled “Dental wire attachment,” filed Dec. 28, 2018.
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017.
Alves et al.; New trends in food allergens detection: toward biosensing strategies; Critical Reviews in Food Science and Nutrition; 56(14); pp. 2304-2319; doi: 10.1080/10408398.2013.831026; Oct. 2016.
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010.
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018.
Ellias et al.; Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement; The Scientific World Journal; vol. 2012; Article ID 647240; dio:10.1100/2012/647240; 7 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2012.
Florez-Moreno; Time-related changes in salivary levels of the osteotropic factors sRANKL and OPG through orthodontic tooth movement; American Journal of Orthodontics and Dentofacial Orthopedics; 143(1); pp. 92-100; Jan. 2013.
Sirona Dental Systems GmbH, Cerec 3D, Manuel utiiisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003.
Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018.
Watson et al.; Pressures recorded at to denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987.
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969.
Riley et al.; U.S. Appl. No. 16/003,841 entitled Palatal expander with skeletal anchorage devices, filed Jun. 8, 2018.
Shanjani et al.; U.S. Appl. No. 16/019,037 entitled “Biosensor performance indicator for intraoral appliances,” filed Jun. 26, 2018.
Sato et al.; U.S. Appl. No. 16/041,606 entitled “Palatal contour anchorage,” filed Jul. 20, 2018.
Xue et al.; U.S. Appl. No. 16/010,087 entitled “Automatic detection of tooth type and eruption status,” filed Jun. 15, 2018.
Sato et al.; U.S. Appl. No. 16/048,054 entitled “Optical coherence tomography for orthodontic aligners,” filed Jul. 27, 2018.
Miller et al.; U.S. Appl. No. 16/038,088 entitled “Method and apparatuses for interactive ordering of dental aligners,” filed Jul. 17, 2018.
Moalem et al.; U.S. Appl. No. 16/046,897 entitled Tooth shading, transparency and glazing, filed Jul. 26, 2018.
Nyukhtikov et al.; U.S. Appl. No. 15/998,883 entitled “Buccal corridor assessment and computation,” filed Aug. 15, 2018.
Bernabe et al.; Are the lower incisors the best predictors for the unerupted canine and premolars sums? An analysis of peruvian sample; The Angle Orthodontist; 75(2); pp. 202-207; Mar. 2005.
Collins English Dictionary; Teeth (definition); 9 pages; retrieved from the internet (https:www.collinsdictionary.com/us/dictionary/english/teeth) on May 13, 2019.
Dental Monitoring; Basics: How to put the cheek retractor?; 1 page (Screenshot); retrieved from the interenet (https://www.youtube.com/watch?v=6K1HXw4Kq3c); May 27, 2016.
Dental Monitoring; Dental monitoring tutorial; 1 page (Screenshot); retrieved from the internet (https:www.youtube.com/watch?v=Dbe3udOf9_c); Mar. 18, 2015.
dictionary.com; Plural (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/plural#) on May 13, 2019.
dictionary.com; Quadrant (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/quadrant?s=t) on May 13, 2019.
Ecligner Selfie; Change your smile; 1 page (screenshot); retrieved from the internet (https:play.google.com/store/apps/details?id=parklict.ecligner); on Feb. 13, 2018.
Martinelli et al.; Prediction of lower permanent canine and premolars width by correlation methods; The Angle Orthodontist; 75(5); pp. 805-808; Sep. 2005.
Nourallah et al.; New regression equations for prediciting the size of unerupted canines and premolars in a contemporary population; The Angle Orthodontist; 72(3); pp. 216-221; Jun. 2002.
Paredes et al.; A new, accurate and fast digital method to predict unerupted tooth size; The Angle Orthodontist; 76(1); pp. 14-19; Jan. 2006.
Levin; U.S. Appl. No. 16/282,431 entitled “Estimating a surface texture of a tooth,” filed Feb. 2, 2019.
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993.
Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981.
Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(1); pp. 28-36; Jan. 1970.
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004.
Dummer et al.; Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays; International Society for Optics and Photonics; vol. 7557; p. 75570H; 7 pages; (Author Manuscript); Feb. 24, 2010.
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented reality; pp. 267-271; Jun. 12, 2001.
Kamada et.al.; Case Reports on Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984.
Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982.
Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984.
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984.
Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994.
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977.
Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992.
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984.
Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972.
Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993.
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998.
Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987.
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001.
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998.
Cramer; U.S. Appl. No. 15/937,569 entitled “Apparatuses and methods assisting in dental therapies,” filed Mar. 27, 2018.
Cramer et al.; U.S. Appl. No. 15/942,341 entitled “Orthodontic appliances including at least partially un-erupted teeth and method of forming them,” filed Mar. 30, 2018.
Farooq et al.; Relationship between tooth dimensions and malocclusion; JPMA: The Journal of the Pakistan Medical Association; 64(6); pp. 670-674; Jun. 2014.
Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.pdf; on Dec. 2011.
ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the Internet (http://www.konsident.com/wp-content/files_mf/1295385693http_ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019.
Video of DICOM to Surgical Guides; Can be viewed at <URL:https://youtu.be/47KtOmCEFQk; Published Apr. 4, 2016.
Sabina et al., U.S. Appl. No. 16/258,516 entitled “Diagnostic intraoral scanning” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,523 entitled “Diagnostic intraoral tracking” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,527 entitled “Diagnostic intraoral methods and apparatuses” filed Jan. 25, 2019.
Li et al.; U.S. Appl. No. 16/171,159 entitled “Alternative bite adjustment structures,” filed Oct. 25, 2018.
Culp; U.S. Appl. No. 16/236,220 entitled “Laser cutting,” filed Dec. 28, 2018.
Culp; U.S. Appl. No. 16/265,287 entitled “Laser cutting,” filed Feb. 1, 2019.
Related Publications (1)
Number Date Country
20180153733 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
62429548 Dec 2016 US