Dental appliance reinforcement

Information

  • Patent Grant
  • 11026768
  • Patent Number
    11,026,768
  • Date Filed
    Tuesday, May 13, 2008
    16 years ago
  • Date Issued
    Tuesday, June 8, 2021
    3 years ago
Abstract
Methods, systems, and apparatuses for dental appliance reinforcement are provided. One dental appliance includes a number of tooth apertures for the placement of teeth therein wherein the number of tooth apertures include an interior surface and an exterior surface, and a reinforcement rib positioned along the exterior surface.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is related to commonly-owned U.S. application Ser. No. 10/718,779 filed Nov. 20, 2003, which is a continuation of U.S. application Ser. No. 09/686,190 filed Oct. 10, 2000 (now abandoned), which is a continuation of U.S. application Ser. No. 09/169,276 filed on Oct. 8, 1998, and to U.S. application Ser. No. 09/169,036 filed Oct. 8, 1998 (now U.S. Pat. No. 6,450,807), the full disclosures of which are incorporated herein by reference.


BACKGROUND OF THE DISCLOSURE

The present disclosure relates generally to dental treatment. In some types of dental treatment, a patient's teeth can be moved from an initial to a final position using any of a variety of appliances. An appliance can be used to exert force on the teeth by which one or more of them are moved or held in place, as appropriate to the stage of treatment. In some instances, the appliance may lose some of its ability to impart force due to a relaxation of the materials used to form the appliance. Such relaxation may be due to the application of force over time, may be due to inherent properties in the material, and/or by materials provided in conjunction with or used in parallel with an appliance, among other causes. This relaxation may reduce the effectiveness of the appliance, in some instances.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flowchart of a process of specifying a course of treatment including a subprocess for calculating aligner shapes in accordance with the embodiments of the present disclosure.



FIG. 2 is a flowchart of a process for calculating aligner shapes according to an embodiment of the present disclosure.



FIG. 3 is a flowchart of a subprocess for creating finite element models according to an embodiment of the present disclosure.



FIG. 4 is a flowchart of a subprocess for computing aligner changes according to an embodiment of the present disclosure.



FIG. 5A is a flowchart of a subprocess for calculating changes in aligner shape according to an embodiment of the present disclosure.



FIG. 5B is a flowchart of a subprocess for calculating changes in aligner shape according to an embodiment of the present disclosure.



FIG. 5C is a flowchart of a subprocess for calculating changes in aligner shape according to an embodiment of the present disclosure.



FIG. 5D is a schematic illustrating the operation of the subprocess of FIG. 5B.



FIG. 6 is a flowchart of a process for computing shapes for sets of aligners according to an embodiment of the present disclosure.



FIG. 7 illustrates an embodiment of an appliance and a set of teeth onto which the appliance is to be mounted.



FIG. 8A illustrates an appliance thickness as taken along line 2A-2A of FIG. 7.



FIG. 8B illustrates an appliance thickness as taken along line 2B-2B of FIG. 7.



FIG. 9 illustrates an appliance having an inner and outer generally horizontal rib according to an embodiment of the present disclosure.



FIG. 10 illustrates an appliance cross-section illustrating the ribs as taken along line 10-10 of FIG. 9.





DETAILED DESCRIPTION

In the embodiments of the present disclosure, appliances, systems, and methods are provided for defining appliance configurations or changes to appliance configurations for incrementally moving teeth. For example, in some embodiments, the appliance can include one or more ribs that can be provided, for example, to reinforce the structure of at least a portion of the appliance with respect to various forces that may be applied thereto. In some embodiments, the tooth movements can be those normally associated with orthodontic treatment, including translation in three orthogonal directions relative to a vertical centerline, rotation of the tooth centerline in the two orthodontic directions (“root angulation” and “torque”), as well as rotation about the centerline.



FIG. 1 illustrates the general flow of an example dental process 100 for defining and generating repositioning appliances for orthodontic treatment of a patient. The process 100 includes a method, and is suitable for the apparatus, of embodiments of the present disclosure, as will be described. The computational steps of the process can be advantageously implemented, for example, as computing device program modules for execution on one or more conventional computing devices.


As an initial step, in some embodiments, a mold or a scan of patient's teeth or mouth tissue can be acquired (110). This step can, for example, involve taking one or more casts of one or more of the patient's teeth and/or gums, and may also involve taking wax bites, direct contact scanning, x-ray imaging, tomographic imaging, sonographic imaging, and/or other techniques for obtaining information about the position and structure of the teeth, jaws, gums and/or other orthodontically relevant tissue. From the data so obtained, a digital data set can be derived that represents the initial (e.g., pretreatment) arrangement of the patient's teeth and/or other tissues.


The initial digital data set, which may include both raw data from scanning operations and/or data representing surface models derived from the raw data, can be processed to segment the tissue constituents from each other (step 120). In particular, for example, in this step, data structures that digitally represent individual tooth crowns can be produced. Advantageously, in some embodiments, digital models of entire teeth can be produced, including measured or extrapolated hidden surfaces and root structures.


The desired final position of the teeth, that is, the desired and/or intended end result of orthodontic treatment, can be received from a clinician in the form of a prescription, can be calculated from basic orthodontic principles, and/or can be extrapolated computationally from a clinical prescription (step 130), among other sources of the final position. With a specification of the desired final positions of the teeth and a digital representation of the teeth themselves, the final position and/or surface geometry of each tooth can be specified (step 140) to form a complete model of the teeth at the desired end of treatment. Generally, in this step, the position of every tooth can be specified, in such embodiments. The result of this step is a set of digital data structures that represents an orthodontically correct repositioning of the modeled teeth relative to presumed-stable tissue. In some embodiments, the teeth and tissue are both represented as digital data.


Having both a beginning position and a final position for a tooth, the process next defines a tooth path for the motion of the teeth. The tooth paths can be optimized in the aggregate so that the teeth can be moved in the quickest fashion with the least amount of round-tripping to bring the teeth from their initial positions to their desired final positions. (Round-tripping is any motion of a tooth in any direction other than directly toward the desired final position. Round-tripping is sometimes necessary to allow teeth to move past each other.)


In some processes, the tooth paths are segmented. In such embodiments, the segments are calculated so that each tooth's motion within a segment stays within threshold limits of linear and rotational translation. In this way, the end points of each path segment can constitute a clinically viable repositioning, and the aggregate of segment end points constitute a clinically viable sequence of tooth positions, so that moving from one point to the next in the sequence does not result in a collision of teeth.


In embodiments such as FIG. 1, the threshold limits of linear and rotational translation can be initialized, in one implementation, with default values based on the nature of the appliance to be used. More individually tailored limit values can be calculated using patient-specific data. The limit values can also be updated based on the result of an appliance-calculation (step 170, described later), which may determine that at one or more points along one or more tooth paths, the forces that can be generated by the appliance on the then-existing configuration of teeth and tissue is incapable of effecting the repositioning that is represented by one or more tooth path segments. With this information, the subprocess defining segmented paths (step 150) can recalculate the paths or the affected subpaths.


At various stages of the process, for example, after the segmented paths have been defined, the process can interact with a clinician responsible for the treatment of the patient (step 160). Clinician interaction can be implemented using a client process programmed to receive tooth positions and models, as well as path information from a server computer or process in which other steps of process 100 are implemented. The client process can be advantageously programmed to allow the clinician to display an animation of the positions and paths and to allow the clinician to reset the final positions of one or more of the teeth and to specify constraints to be applied to the segmented paths. If the clinician makes any such changes, the subprocess of defining segmented paths (step 150) can, in some embodiments, be performed again.


The segmented tooth paths and associated tooth position data can be used to calculate clinically acceptable appliance configurations (or successive changes in appliance configuration) that can move the teeth on the defined treatment path in the steps specified by the path segments (step 170). Each appliance configuration represents a step along the treatment path for the patient. The steps can be defined and calculated so that each discrete position can follow by straight-line tooth movement or simple rotation from the tooth positions achieved by the preceding discrete step and so that the amount of repositioning required at each step can involve an orthodontically appropriate amount of force on the patient's dentition. As with the path definition step, this appliance calculation step can include interactions and even iterative interactions with the clinician (step 160). The operation of a process step such as step 200 implementing this calculation step will be described more fully below.


Having calculated appliance definitions, the process 100 can proceed to the manufacturing step (step 180) in which appliances defined by the process are manufactured, or electronic or printed information is produced that can be used by a manual or automated process to define appliance configurations or changes to appliance configurations.



FIG. 2 illustrates a process 200 implementing an appliance-calculation step (FIG. 1, step 170) for polymeric shell aligners of the kind described in U. S. patent application Ser. No. 09/745,825, filed Dec. 21, 2000. Inputs to the process can, for example, include an initial aligner shape 202, various control parameters 204, and a desired end configuration for the teeth at the end of the current treatment path segment 206. Other inputs can include digital models of the teeth in position in the jaw, models of the jaw tissue, and specifications of an initial aligner shape and of the aligner material. Using such input data, the process can create a finite element model of the aligner, teeth, and/or tissue, with the aligner in place on the teeth (step 210). Next, the process can apply a finite element analysis to the composite finite element model of aligner, teeth, and/or tissue (step 220). The analysis can run until an exit condition is reached, at which time, in some embodiments, the process can evaluate whether the teeth have reached the desired end position for the current path segment, or a position sufficiently close to the desired end position (step 230). In such embodiments, if an acceptable end position is not reached by the teeth, the process can, in some instances, calculate a new candidate aligner shape (step 240). If an acceptable end position is reached, in some embodiments, the motions of the teeth can be calculated by the finite elements analysis are evaluated to determine whether they are orthodontically acceptable (step 232). If they are not, in some embodiments, the process also proceeds to calculate a new candidate aligner shape (step 240). If the motions are orthodontically acceptable and the teeth have reached an acceptable position, the current aligner shape is compared to the previously calculated aligner shapes. In various embodiments, if the current shape is determined to be the best solution so far (decision step 250), it can be saved as the best candidate so far (step 260). In some such embodiments, if not, it can be saved in an optional step as a possible intermediate result (step 252). If the current aligner shape is the best candidate so far, the process can be used to determine whether it is good enough to be accepted (decision step 270). If it is, the process exits. Otherwise, the process can continue and calculate another candidate shape (step 240) for analysis.


The finite element models can be created using computer program application software available from a variety of vendors. For creating solid geometry models, computer aided engineering (CAE) or computer aided design (CAD) programs can be used, such as the AutoCAD® software products available from Autodesk, Inc., of San Rafael, Calif. or SolidWorks, discussed below. For creating finite element models and analyzing them, program products from a number of vendors can be used, including the PolyFEM product available from CADSI of Coralville, Iowa, the Pro/Mechanica simulation software available from Parametric Technology Corporation of Needham, Mass., the I-DEAS design software products available from Structural Dynamics Research Corporation (SDRC) of Cincinnati, Ohio, and the MSC/NASTRAN product available from MacNeal-Schwendler Corporation of Los Angeles, Calif. Other programs that can be utilized in various embodiments include SolidWorks® available from SolidWorks Corporation of Concord, Mass. and ProEngineerg available from Parametric Technology Corporation of Needham, Mass., among others.



FIG. 3 shows a process 300 of creating a finite element model that can be used to perform step 210 of the process 200 (FIG. 2). In the illustrated embodiment, input to the model creation process 300 includes input data 302 describing the teeth and tissues and input data 304 describing the aligner. The input data describing the teeth 302 can, for example, include the digital models of the teeth; digital models of rigid tissue structures, if available; shape and viscosity specifications for a highly viscous fluid modeling the substrate tissue in which the teeth are embedded and to which the teeth are connected, in the absence of specific models of those tissues; and/or boundary conditions specifying the immovable boundaries of the model elements. In one implementation, the model elements include only models of the teeth, a model of a highly viscous embedding substrate fluid, and boundary conditions that define, in effect, a rigid container in which the modeled fluid is held.


A finite element model of the initial configuration of the teeth and/or tissue can be created (step 310) and optionally cached for reuse in later iterations of the process (step 320). As was done with the teeth and tissue, a finite element model can be created of the polymeric shell aligner (step 330). The input data for this model can include data specifying the material of which the aligner is made and/or the shape of the aligner (data input 304).


The model aligner can then be computationally manipulated to place it over the modeled teeth in the model jaw to create a composite model of an in-place aligner (step 340). Optionally, the forces required to deform the aligner to fit over the teeth, including any hardware attached to the teeth, can be computed and, for example, used as a figure of merit in measuring the acceptability of the particular aligner configuration. In an alternative, however, the aligner deformation can be modeled by applying enough force to its insides to make it large enough to fit over the teeth, placing the model aligner over the model teeth in the composite model, setting the conditions of the model teeth and tissue to be infinitely rigid, and/or allowing the model aligner to relax into position over the fixed teeth. The surfaces of the aligner and the teeth can be modeled to interact without friction at this stage, so that the aligner model achieves the correct initial configuration over the model teeth before finite element analysis is begun to find a solution to the composite model and/or compute the movement of the teeth under the influence of the distorted aligner.


In various embodiments where a number of ribs are provided, the ribs can be modeled digitally and/or the force calculations can be adjusted or calculated differently to account for the changes in force the ribs may provide. Such changes may allow a tooth to be moved more quickly, a tooth position to be maintained against greater or longer duration force, and/or moved for a longer duration.



FIG. 4 shows a process 400 for calculating the shape of a next aligner that can be used in the aligner calculations, step 240 of process 200 (FIG. 2). A variety of inputs can be used to calculate the next candidate aligner shape. These include inputs 402 of data generated by the finite element analysis solution of the composite model and/or data 404 defined by the current tooth path, among other information. The data 402 derived from the finite element analysis can, for example, include the amount of real elapsed time over which the simulated repositioning of the teeth took place; the actual end tooth positions calculated by the analysis; the maximum linear and torsional force applied to each tooth; and/or the maximum linear and angular velocity of each tooth. From the input path information, the input data 404 can, for example, include the initial tooth positions for the current path segment, the desired tooth positions at the end of the current path segment, the maximum allowable displacement velocity for each tooth, and/or the maximum allowable force of each kind for each tooth.


If a previously evaluated aligner was found to violate one or more constraints, additional input data 406 can be used by the process 400. This data 406 can include information identifying the constraints violated by, and any identified suboptimal performance of, the previously evaluated aligner.


Having received initial input data (step 420), the process can iterate over the movable teeth in the model. (Some of the teeth may be identified as, and constrained to be, immobile.) If the end position and/or dynamics of motion of the currently selected tooth by the previously selected aligner are acceptable (“yes” branch of decision step 440), the process can continue, for example, by selecting for consideration a next tooth (step 430) until all teeth have been considered (“done” branch from step 430 to step 470). Otherwise (“no” branch from step 440), a change in the aligner can be calculated in the region of the currently selected tooth (step 450). The process then can move back to select the next current tooth (step 430) as has been described.


In some embodiments, when all of the teeth have been considered, the aggregate changes made to the aligner can be evaluated against previously defined constraints (step 470), examples of which have already been mentioned. Constraints can be defined with reference to a variety of further considerations, such as manufacturability. For example, constraints can be defined to set a maximum and/or minimum thickness of the aligner material, and/or to set a maximum and/or minimum coverage of the aligner over the crowns of the teeth. In such embodiments, if the aligner constraints are satisfied, the changes are applied to define a new aligner shape (step 490). In some such embodiments, the changes to the aligner are revised to satisfy the constraints (step 480), and the revised changes are applied to define the new aligner shape (step 490).



FIG. 5A illustrates one implementation of the step of computing an aligner change in a region of a current tooth (step 450). In this implementation, a rule-based inference engine 456 can be used to process the input data previously described (input 454) and/or a set of rules 452a-452n in a rule base of rules 452. The inference engine 456 and the rules 452 can be used to define a production system which, when applied to the factual input data, can be used to produce a set of output conclusions that specify the changes to be made to the aligner in the region of the current tooth (output 458).


Rules 452 have the conventional two-part form: an if-part defining a condition and a then-part defining a conclusion or action that is asserted if the condition is satisfied. Conditions can be simple or they can be complex conjunctions or disjunctions of multiple assertions. An example set of rules, which defines changes to be made to the aligner, can, for example, include the following: if the motion of the tooth is too slow, add driving material to the aligner opposite the desired direction of motion; if the motion of the tooth is too slow, add driving material to overcorrect the position of the tooth; if the tooth is too far short of the desired end position, add material to overcorrect; if the tooth has been moved too far past the desired end position, add material to stiffen the aligner where the tooth moves to meet it; if a maximum amount of driving material has been added, add material to overcorrect the repositioning of the tooth and do not add driving material; and/or if the motion of the tooth is in a direction other than the desired direction, remove and add material so as to redirect the tooth, among other rules.


In another embodiment, illustrated in FIGS. 5B and 5C, an absolute configuration of the aligner can be computed, rather than an incremental difference. As shown in FIG. 5B, a process 460 can be used to compute an absolute configuration for an aligner in a region of a current tooth. Using input data that has already been described, such a process can compute the difference between the desired end position and the achieved end position of the current tooth (462). Using the intersection of the tooth center line with the level of the gum tissue as the point of reference, such a process can compute the complement of the difference in any or all six degrees of freedom of motion, namely three degrees of translation and/or three degrees of rotation (step 464). Next, in some embodiments, the model tooth can be displaced from its desired end position by the amounts of the complement differences (step 466), which is illustrated in FIG. 5D.



FIG. 5D shows a planar view of an illustrative model aligner 60 over an illustrative model tooth 62. The tooth is illustrated in its desired end position and the aligner shape is illustrated as being defined by the tooth in this end position. The actual motion of the tooth calculated by the finite element analysis can be illustrated as placing the tooth in position 64 rather than in the desired position 62. A complement of the computed end position can be illustrated as position 66. The next step of process 460 (FIG. 5B) defines the aligner in the region of the current tooth in this iteration of the process by the position of the displaced model tooth (step 468) calculated in the preceding step (466). This computed aligner configuration in the region of the current tooth is illustrated in FIG. 5D as shape 68 which is defined by the repositioned model tooth in position 66.


A step in process 460, which can also be implemented as a rule 452 (FIG. 5A), is shown in FIG. 5C. To move the current tooth in the direction of its central axis, the size of the model tooth defining that region of the aligner, or the amount of room allowed in the aligner for the tooth, can be made smaller in the area away from which the process has decided to move the tooth (step 465).


As shown in FIG. 6, the process 200 of computing the shape for an aligner for a step in a treatment path can be one step in an overall process 600 of computing the shapes of a series of aligners. This overall process 600 can, for example, begin with an initialization step 602 in which initial data, control, and/or constraint values can be obtained.


In some embodiments, when an aligner configuration has been found for each step or segment of the treatment path (step 604), the overall process 600 can be used to determine whether one or more of the aligners are acceptable (step 606). In some embodiments, if they are, the process exits and is complete. In some embodiments, the process can undertake a set of steps 610 in an attempt to calculate a set of acceptable aligners. In such embodiments the process can, relax one or more of the constraints on the aligners (step 612). Then, for each path segment with an unacceptable aligner, the process 200 of shaping an aligner can be performed with the new constraints (step 614). If the aligners are now acceptable, the overall process 600 can be exited (step 616).


Aligners may be unacceptable for a variety of reasons, some of which can be handled by the overall process in such embodiments. For example, if any impossible movements were required (decision step 620), that is, if the shape calculation process 200 was required to effect a motion for which no rule or adjustment was available, the process 600 can proceed to execute a module that can calculate the configuration of a hardware attachment to the subject tooth to which forces can be applied to effect such a required motion (step 640). Because adding hardware can have an effect that is more than local, when hardware is added to the model, in such instances, the outer loop of the overall process 600 can be executed again (step 642).


If no impossible movements were required (“no” branch from step 620), the process can transfer control to a path definition process (such as step 150, FIG. 1) to redefine those parts of the treatment path having unacceptable aligners (step 630). This step can include both changing the increments of tooth motion, i.e., changing the segmentation, on the treatment path, changing the path followed by one or more teeth in the treatment path, or both. In such embodiments, after the treatment path has been redefined, the outer loop of the overall process can be executed again (step 632). In some embodiments, the recalculation can be advantageously limited to recalculating only those aligners on the redefined portions of the treatment path. If all the aligners are now acceptable, the overall process can be exited (step 634). If unacceptable aligners still remain, the overall process can be repeated until an acceptable set of aligners is found or an iteration limit is exceeded (step 650). At this point, as well as at other points in the processes that are described in this specification, such as at the computation of additional hardware (step 640), the process can interact with a human operator, such as a clinician or technician, to request assistance (step 652). Assistance that an operator provides can include, for example, defining or selecting suitable attachments to be attached to a tooth and/or a bone, defining an added elastic element to provide a needed force for one or more segments of the treatment path, suggesting an alteration to the treatment path, either in the motion path of a tooth and/or in the segmentation of the treatment path, and/or approving a deviation from or relaxation of an operative constraint.


As was mentioned above, the overall process 600 can be defined and parameterized by various items of input data (step 602). In one implementation, this initializing and defining data includes the following items: an iteration limit for the outer loop of the overall process; specification of figures of merit that are calculated to determine whether an aligner is good enough (see FIG. 2, step 270); a specification of the aligner material; a specification of the constraints that the shape or configuration of an aligner must satisfy to be acceptable; a specification of the forces and positioning motions and velocities that are orthodontically acceptable; an initial treatment path, which includes the motion path for each tooth and a segmentation of the treatment path into segments, each segment to be accomplished by one aligner; a specification of the shapes and positions of any anchors installed on the teeth or otherwise; and a specification of a model for the jaw bone and other tissues in or on which the teeth are situated (in the implementation being described, this model includes of a model of a viscous substrate fluid in which the teeth are embedded and which has boundary conditions that essentially define a container for the fluid).


In various embodiments, other features can be added to the tooth model data sets to produce desired features in the aligners. For example, it may be desirable to add digital wax patches to define cavities or recesses to maintain a space between the aligner and particular regions of the teeth or jaw. It may also be desirable to add digital wax patches to define corrugated and/or other structural forms to create regions having particular stiffness and/or other structural properties. In manufacturing processes that rely on generation of positive models to produce the repositioning appliance, adding a wax patch to the digital model can be used to generate a positive mold that has the same added wax patch geometry. This can be done globally in defining the base shape of the aligners or in the calculation of particular aligner shapes. One feature that can be added, for example, is a rim around the gumline, which can be produced by adding a digital model wire at the gumline of the digital model teeth from which the aligner is manufactured. When an aligner is manufactured by pressure fitting polymeric material over a positive physical model of the digital teeth, the wire along the gumlines can be used to cause the aligner to have a rim around it providing additional stiffness along the gumline. Such an embodiment is illustrated in FIGS. 9 and 10.


In another optional manufacturing technique, two sheets of material can be pressure fit over the positive tooth model, where one of the sheets is cut along the apex arch of the aligner and the other is overlaid on top. Such an embodiment can provide a double thickness of aligner material along the vertical walls of the teeth, among other benefits.


The changes that can be made to the design of an aligner are, in many instances, constrained by the manufacturing technique that will be used to produce it. For example, if the aligner will be made by pressure fitting a polymeric sheet over a positive model, the thickness of the aligner is often determined by the thickness of the sheet. As a consequence, a system embodiment may generally adjust the performance of the aligner by changing the orientation of the model teeth, the sizes of parts of the model teeth, the position and/or selection of attachments, and/or the addition and/or removal of material (e.g., adding wires or creating dimples) to change the structure of the aligner. In such embodiments, the system can be designed to adjust the aligner by specifying that one or more of the aligners are to be made of a sheet of a thickness other than the standard one, to provide more or less force to the teeth. On the other hand, if the aligner will be made by a rapid prototyping technique (e.g., additive manufacturing process), such as by a stereo lithography process, photo lithography process, fused deposition modeling, selective laser sintering, or other such process, the thickness of the aligner can be varied locally, and structural features such as rims, dimples, and corrugations can be added without modifying the digital model of the teeth. Such methods can be used to form ribs as described in further detail herein, for example.


Such a system can also be designed to be used to model the effects of more traditional appliances such as retainers and braces and therefore be used to generate optimal designs and treatment programs for particular patients.


The data processing aspects of one or more of the embodiments of the present disclosure can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. Data processing apparatus of one or more of the embodiments of the present disclosure can be implemented in a computer program product tangibly embodied in a machine-readable storage device for execution by a programmable processor; and data processing method steps of one or more of the embodiments of the present disclosure can be performed by a programmable processor executing a program of instructions to perform functions of one or more embodiments of the present disclosure by operating on input data and/or generating output. The data processing aspects of one or more of the embodiments of the present disclosure can be implemented advantageously in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and/or instructions from and/or to transmit data and/or instructions to a data storage system, at least one input device, and/or at least one output device. Each computer program can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly and/or machine language, if desired; and, in any case, the language can be a compiled and/or interpreted language. Suitable processors include, by way of example, general and special purpose microprocessors, among other logic processing structures. Generally, a processor can receive instructions and/or data from a read-only memory and/or a random access memory. Storage devices suitable for tangibly embodying computer program instructions and/or data include all forms of nonvolatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM disks, and other such media types.


Any of the foregoing can be supplemented by, or incorporated in, ASICs (application-specific integrated circuits).


To provide for interaction with a user, one or more of the embodiments of the present disclosure can be implemented using a computer system having a display device such as a monitor or LCD (liquid crystal display) screen for displaying information to the user and input devices by which the user can provide input to the computer system such as a keyboard, a two-dimensional pointing device such as a mouse or a trackball, or a three-dimensional pointing device such as a data glove or a gyroscopic mouse. The computer system can be programmed to provide a graphical user interface through which computer programs interact with users. The computer system can be programmed to provide a virtual reality, three-dimensional display interface, for use in some embodiments.


The present disclosure includes a number of appliance and system embodiments that include a number of ribs thereon. For example, embodiments can include a number of ribs for reinforcing the dental appliance regarding one or more forces (e.g., torsional, translational, and other types of force) as are discussed in more detail below.


For example, in various embodiments, the number of ribs can include a number of torsional reinforcing ribs for reinforcing the dental appliance regarding one or more torsional (i.e., twisting or rotational) forces. For instance, in some embodiments, the number of ribs includes a number of torsional reinforcing ribs that each provide reinforcing for the dental appliance regarding one or more torsional forces with respect to a line at the center of one of the number of apertures and elongate in a direction of a center of an adjacent tooth aperture.


As discussed above, embodiments can also be designed with respect to translational forces, such as side to side, front to back, back to front, up and down, and/or down and up with respect to the appliance shape and orientation. For example, in various embodiments, the number of ribs can include a number of perpendicular force reinforcing ribs for reinforcing the dental appliance regarding one or more forces perpendicular to a line at the center of one of the number of apertures and elongate in a direction of a center of an adjacent tooth aperture, among other forces. In some embodiments, the number of ribs includes a number of perpendicular force reinforcing ribs for reinforcing the dental appliance regarding one or more forces substantially perpendicular to a line at the center of one of the number of apertures and elongate in a direction of a center of an adjacent tooth aperture (e.g., the direction of elongation of the appliance).



FIG. 7 illustrates an embodiment of an appliance and a set of teeth onto which the appliance is to be mounted. In the embodiment of FIG. 7, the appliance 700 includes a number of apertures for the positioning of one or more teeth (e.g., teeth 714 on jaw 716 of patient 710) therein and a number of vertical ribs 718. As illustrated in FIG. 7, the number of tooth apertures can each include an interior surface and an exterior surface. In some embodiments one or more reinforcement ribs can be positioned along the exterior surface.


In various embodiments, the thickness of the ribs can vary from one portion of a rib to the next and/or can vary from one rib to the next. For example, in some embodiments, some ribs can be thicker where more force may be needed and thinner where less force may be needed. Additionally, although shown positioned in a spaced manner all along the length of elongation of the appliance, in some embodiments, the ribs can be positioned in one or more places along the length of the appliance rather than all along the length.


The ribs can have a number of sizes and/or shapes and can be sized and/or shaped differently from one portion of the rib to the next. In some embodiments, one or more of the ribs can be sized to not interfere with an interface surface of a dental appliance that is to abut a portion of the exterior surface of one of the number of tooth apertures.


In the embodiment of FIG. 7, the number of apertures each define an aperture for a single tooth, however, the embodiments of the present disclosure may have apertures to accommodate more than one tooth. Also, in the embodiment of FIG. 7, the number of ribs are each generally aligned vertically with respect to the direction of elongation of the appliance and are generally provided at or near the junction between apertures, however, the embodiments of the present disclosure may have ribs that are oriented horizontally or diagonally to the direction of elongation and/or are not positioned at or near the junctions between the apertures.



FIGS. 8A and 8B may aid in identifying one embodiment of a structure of a rib of an embodiment of the present disclosure. FIG. 8A illustrates an appliance thickness as taken along line 8A-8A of FIG. 7. This illustration provides a first thickness that in the embodiment of FIG. 7 provides the thickness for the majority of the appliance 812.



FIG. 8B illustrates an appliance thickness as taken along line 2B-2B of FIG. 7. This illustration provides a second thickness that in the embodiment of FIG. 7 provides the thickness for the ribs of the appliance 818. FIGS. 8A and 8B illustrate that the rib 818 has a thickness that is larger than the thickness of the 812.


Ribs can also be provided that have the same or smaller thickness than the other portions of the appliance. For example, a material or shape that is stiffer could be used as a rib material, in some embodiments, and may be thinner than the material used for other portions of the appliance.


As illustrated in the embodiment of FIG. 8B, at least a portion of one or more of the ribs can be positioned substantially vertically, along the height of the exterior surface of one of the number of tooth apertures. In some embodiments, one or more of the ribs can be positioned on the exterior surface of the dental appliance between two tooth apertures as is also illustrated in FIG. 8B.


In various embodiments, at least a portion of one or more of the ribs can be positioned, across a width of the exterior surface of one or more of the number of tooth apertures (e.g., along the outside surface of the appliance). In some embodiments, a rib can be positioned across the top of the aperture formed to accommodate a tooth (e.g., top portion of the U-shaped rib illustrated in FIG. 8B).


In some embodiments, at least a portion of one or more of the ribs can be positioned substantially vertically, along the height of the exterior surface of one or more of the number of tooth apertures (e.g., the side portions of the U-shaped rib illustrated in FIG. 8B) and/or across a top of the exterior surface of one or more of the number of tooth apertures (e.g., side portions and top portion of the U-shaped rib illustrated in FIG. 8B). In various embodiments, one or more of the ribs is positioned on the exterior surface of the dental appliance between two teeth apertures as illustrated in the embodiment of FIG. 8B.



FIG. 9 illustrates an appliance having inner and outer generally horizontal ribs according to an embodiment of the present disclosure. As stated above, appliances can have one or more vertical, diagonal, and/or horizontal ribs or rib portions in such orientations (e.g., ribs having non-linear shapes) and the one or more ribs can be positioned on the inside, top, and/or outside of the exterior surface of the appliance. As shown in FIG. 8B a rib can include portions that are in one or more of those positions on the appliance (e.g., inside, top, and outside).


As illustrated in the embodiment of FIG. 9, in various embodiments, at least a portion of one or more of the ribs can be positioned substantially laterally, across a length of at least one exterior surface of the number of tooth apertures. As illustrated in the embodiment of FIG. 9, in some embodiments, one or more of the ribs can be positioned to span across at least the exterior surfaces of more than one tooth apertures. Such embodiments can provide extra reinforcement in some embodiments due to the rib working with the force of a neighboring portion of the appliance and/or the tooth housed therein.



FIG. 10 illustrates an appliance cross-section illustrating the ribs as taken along line 10-10 of FIG. 9. The embodiment of FIG. 10 includes ribs 1022 provided at various positions on the exterior surface of the appliance 1012.


Ribs can be provided in various shapes. As illustrated in the embodiment of FIG. 10, a rib can have a semicircular cross-section among other cross-sectional shapes. Other cross-sectional shapes can include, for instance, circle, ellipse, polygon, or irregular based shapes, among others. The different shapes can provide different characteristics with regard to reinforcement and other benefits that ribs provide to an appliance. And, accordingly, ribs can have different shapes and sizes as discussed above and/or portions of ribs can have different shapes and sizes.


The present disclosure also includes a number of method embodiments. For example, in some embodiments a method includes forming a virtual teeth model of one or more of a patient's teeth on a computing device. The method also includes forming a virtual dental appliance based upon information from the virtual teeth model. Method embodiments can also include forming a number of ribs on the virtual dental appliance based upon the shape of the virtual dental appliance.


The number of ribs are formed based upon information about force that the dental appliance may experience in a patient's mouth.


An actual appliance to be positioned within a patient's mouth can be formed based upon the virtual dental appliance forming in the computing device. In some such embodiments, the appliance including the number of ribs can be formed using a rapid prototyping process, such as stereo lithography process, as discussed herein.


In various embodiments, the appliance can be formed using a rapid prototyping process and a number of ribs can be attached to the appliance. Such attachment can be accomplished, for example, by weaving the rib through a number of apertures formed in the appliance, by attaching the rib at two or more points along its length with an adhesive (e.g., a UV curable adhesive), or through a thermoforming process where multiple layers are pressed together with at least a portion of the rib material in between two of the layers, among other mechanisms for attaching the rib to the appliance.


In various embodiments, the one or more ribs can be attached to the mold used to make the appliance and then the rib can be used to provide a shape on the appliance. In such embodiments, the rib on the appliance would be a raised portion that is shaped in the form of the rib that was attached to the mold. This attachment to the mold can be accomplished in any suitable manner including, but not limited to, frictional attachment, physical attachment (e.g., weaving, a locking arrangement of parts, etc.), adhesive attachment, or other attachment mechanisms.


In some embodiments, the number of ribs can all be made from one material. In various embodiments, the ribs and the appliance can be formed from the same material. In some embodiments, the actual appliance and the number of ribs are formed from different materials.


Unless explicitly stated, the method embodiments described herein are not constrained to a particular order or sequence. Additionally, some of the described method embodiments, or elements thereof, can occur or be performed at the same, or at least substantially the same, point in time.


Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.


It is to be understood that the use of the terms “a”, “an”, “one or more”, “a number of”, or “at least one” are all to be interpreted as meaning one or more of an item is present. Additionally, it is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.


The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.


In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.


Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A dental appliance system, comprising: a series of dental appliances adapted to apply forces to a patient's teeth for moving the patient's teeth in accordance with a treatment path, the series of dental appliances including a first dental appliance associated with a first segment of the treatment path and a second dental appliance associated with a second segment of the treatment path, wherein each of the first and second dental appliances includes:a shell formed from a polymeric material having tooth apertures arranged in an arch shape based at least in part on the patient's dental arch, the shell comprising:at least one first arch-shaped rib integrally formed with the shell from the polymeric material and located on a lingual exterior surface of the shell, the at least one first arch-shaped rib following a contour of the lingual exterior surface of the shell along a first height of the shell; andat least one second arch-shaped rib integrally formed with the shell from the polymeric material and located on a labial exterior surface of the shell, the at least one second arch-shaped rib following a contour of the labial exterior surface of the shell along a second height of the shell different than the first height,wherein a thickness of the polymeric material of the shell at a location of the first arch-shaped rib or the second arch-shaped rib is larger than a thickness of the polymeric material of remaining portions of the shell that do not include the first or second arch-shaped rib;wherein the first and second arch-shaped ribs of the first dental appliance cooperate and are digitally modelled with the shell of the first dental appliance to determine and apply a first set of forces onto the patient's teeth to achieve a first pre-calculated displacement of the patient's teeth in accordance with the first segment of the treatment path, wherein the first and second arch-shaped ribs of the second dental appliance cooperate and are digitally modelled with the shell of the second dental appliance to determine and apply a second set of forces onto the patient's teeth to achieve a second pre-calculated displacement of the patient's teeth in accordance with the second segment of the treatment path, wherein the first pre-calculated displacement is different than the second pre-calculated displacement.
  • 2. The dental appliance system of claim 1, wherein at least one of the first and second arch-shaped ribs is positioned on the lingual and labial exterior surfaces of the dental appliance between two tooth apertures.
  • 3. The dental appliance system of claim 1, wherein at least part of the at least one of the first and second arch-shaped ribs is positioned laterally and across a width of the tooth apertures.
  • 4. The dental appliance system of claim 1, wherein a first part of the at least one of the first and second arch-shaped ribs has a first shape, and a second part of the at least one of the first and second arch-shaped ribs has a second shape that is different than the first shape.
  • 5. The dental appliance system of claim 4, wherein the first and second arch-shaped ribs are positioned on the lingual and labial exterior surfaces of the dental appliance between two teeth apertures.
  • 6. The dental appliance system of claim 1, wherein at least one of the first and second arch-shaped ribs is sized to not interfere with an interface surface of the dental appliance that is to abut a portion of an exterior surface of one of the tooth apertures.
  • 7. A dental appliance system, comprising: a series of dental appliances adapted to apply forces to a patient's teeth for moving the patient's teeth in accordance with a treatment path, the series of dental appliances including a first dental appliance associated with a first segment of the treatment path and a second dental appliance associated with a second segment of the treatment path, wherein each of the first and second dental appliances includes:a shell formed from a polymeric material and having a number of tooth apertures formed in an arch shape, the shell comprising:a first arch-shaped rib integrally formed as part of the shell, the first arch-shaped rib following a contour of a lingual exterior surface of the shell along a first height of the dental appliance; anda second arch-shaped rib integrally formed as part of the shell, the second arch-shaped rib follows a contour of a labial exterior surface of the shell along a second height of the dental appliance different than the first height,wherein a thickness of the shell at a location of the first arch-shaped rib or the second arch-shaped rib is larger than a thickness of remaining portions of the dental appliance that do not include the first or second arch-shaped ribs; andwherein the first and second arch-shaped ribs of the first dental appliance cooperate and are digitally modelled with the shell of the first dental appliance to determine and apply a first set of forces onto the patient's teeth to achieve a first pre-calculated displacement of the patient's teeth in accordance with the first segment of the treatment path, wherein the first and second arch-shaped ribs of the second dental appliance cooperate and are digitally modelled with the shell of the second dental appliance to determine and apply a second set of forces onto the patient's teeth to achieve a second pre-calculated displacement of the patient's teeth in accordance with the second segment of the treatment path, wherein the first pre-calculated displacement is different than the second pre-calculated displacement.
  • 8. The dental appliance system of claim 7, wherein at least one of the first and second arch-shaped ribs includes a number of torsional reinforcing ribs for reinforcing the dental appliance regarding one or more torsional forces.
  • 9. The dental appliance system of claim 7, further comprising one or more perpendicular force reinforcing ribs for reinforcing the dental appliance.
  • 10. The dental appliance system of claim 7, wherein at least one of the first and second arch-shaped ribs includes a reinforcing rib that provides reinforcing for the dental appliance regarding one or more torsional forces or one or more forces perpendicular to a line defined by two points comprising a center of one of the number of tooth apertures and a center of an adjacent tooth aperture.
  • 11. The dental appliance system of claim 7, wherein at least one of the first and second arch-shaped ribs has a semicircular cross-section.
  • 12. The dental appliance system of claim 7, wherein at least one of the first and second arch-shaped ribs includes a number of lateral reinforcing ribs for reinforcing the dental appliance regarding one or more translational forces.
  • 13. A dental appliance system, comprising: a series of dental appliances adapted to apply forces to a patient's teeth for moving the patient's teeth in accordance with a treatment path, the series of dental appliances including a first dental appliance associated with a first segment of the treatment path and a second dental appliance associated with a second segment of the treatment path, wherein each of the first and second dental appliances includes:a shell formed from a polymeric material and having tooth apertures formed in an arch shape for a placement of teeth therein, the shell comprising:a first arch-shaped rib integrally formed from the polymeric material on a lingual exterior surface of the shell and configured to reinforce the shell, anda second arch-shaped rib integrally formed from the polymeric material on a labial exterior surface of the shell and configured to reinforce the shell, wherein a thickness of the shell at a location of the first arch-shaped rib or the second arch-shaped rib is larger than a thickness of remaining portions of the shell that do not include the first or second arch-shaped ribs, wherein the first arch-shaped rib follows a contour of the lingual exterior surface along a first height of the shell, and wherein the second arch-shaped rib follows a contour of the labial exterior surface along a second height of the shell different than the first height; andwherein the first and second arch-shaped ribs of the first dental appliance cooperate and are digitally modelled with the shell of the first dental appliance to determine and apply a first set of forces onto the patient's teeth to achieve a first pre-calculated displacement of the patient's teeth in accordance with the first segment of the treatment path, wherein the first and second arch-shaped ribs of the second dental appliance cooperate and are digitally modelled with the shell of the second dental appliance to determine and apply a second set of forces onto the patient's teeth to achieve a second pre-calculated displacement of the patient's teeth in accordance with the second segment of the treatment path, wherein the first pre-calculated displacement is different than the second pre-calculated.
  • 14. The dental appliance system of claim 1, wherein the at least one of the first and second arch-shaped ribs includes a semicircle cross-section.
  • 15. The dental appliance system of claim 1, wherein one of the first and second arch-shaped ribs is positioned around a rim of the shell and is adapted to be positioned around a gum line of the patient.
US Referenced Citations (842)
Number Name Date Kind
2171695 Harper Sep 1939 A
2194790 Gluck Mar 1940 A
2467432 Kesling Apr 1949 A
2531222 Kesling Nov 1950 A
3089487 Enicks et al. May 1963 A
3178820 Kesling Apr 1965 A
3211143 Grossberg Oct 1965 A
3247844 Berghash Apr 1966 A
3379193 Monsghan Apr 1968 A
3385291 Martin May 1968 A
3407500 Kesling Oct 1968 A
3478742 Bohlmann Nov 1969 A
3496936 Gores Feb 1970 A
3533163 Kirschenbaum Oct 1970 A
3556093 Quick Jan 1971 A
3600808 Reeve Aug 1971 A
3660900 Andrews May 1972 A
3683502 Wallshein Aug 1972 A
3724075 Kesling Apr 1973 A
3738005 Cohen et al. Jun 1973 A
3860803 Levine Jan 1975 A
3885310 Northcutt May 1975 A
3916526 Schudy Nov 1975 A
3922786 Lavin Dec 1975 A
3949477 Cohen et al. Apr 1976 A
3950851 Bergersen Apr 1976 A
3955282 McNall May 1976 A
3983628 Acevedo Oct 1976 A
4014096 Dellinger Mar 1977 A
4055895 Huge Nov 1977 A
4117596 Wallshein Oct 1978 A
4139944 Bergersen Feb 1979 A
4179811 Hinz Dec 1979 A
4183141 Dellinger Jan 1980 A
4195046 Kesling Mar 1980 A
4253828 Coles et al. Mar 1981 A
4255138 Frohn Mar 1981 A
4299568 Crowley Nov 1981 A
4324546 Heitlinger et al. Apr 1982 A
4324547 Arcan et al. Apr 1982 A
4348178 Kurz Sep 1982 A
4419992 Chorbajian Dec 1983 A
4433956 Witzig Feb 1984 A
4433960 Garito et al. Feb 1984 A
4439154 Mayclin Mar 1984 A
4449928 von Weissenfluh May 1984 A
4478580 Barrut Oct 1984 A
4500294 Lewis Feb 1985 A
4526540 Dellinger Feb 1985 A
4504225 Yoshii Mar 1985 A
4505673 Yoshii Mar 1985 A
4519386 Sullivan May 1985 A
4553936 Wang Nov 1985 A
4575330 Hull Mar 1986 A
4575805 Moermann et al. Mar 1986 A
4591341 Andrews May 1986 A
4608021 Barrett Aug 1986 A
4609349 Cain Sep 1986 A
4611288 Duret et al. Sep 1986 A
4629424 Lauks et al. Dec 1986 A
4638145 Sakuma et al. Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4663720 Duret et al. May 1987 A
4664626 Kesling May 1987 A
4665621 Ackerman et al. May 1987 A
4676747 Kesling Jun 1987 A
4742464 Duret et al. May 1988 A
4755139 Abbatte et al. Jul 1988 A
4757824 Chaumet Jul 1988 A
4763791 Halverson et al. Aug 1988 A
4764111 Knierim Aug 1988 A
4790752 Cheslak Dec 1988 A
4793803 Martz Dec 1988 A
4798534 Breads Jan 1989 A
4830612 Bergersen May 1989 A
4836778 Baumrind Jun 1989 A
4837732 Brandestini et al. Jun 1989 A
4850864 Diamond Jul 1989 A
4850865 Napolitano Jul 1989 A
4856991 Breads et al. Aug 1989 A
4877398 Kesling Oct 1989 A
4880380 Martz Nov 1989 A
4886451 Cetlin Dec 1989 A
4889238 Batchelor Dec 1989 A
4890608 Steer Jan 1990 A
4932866 Guis Jun 1990 A
4935635 O'Harra Jun 1990 A
4936862 Walker et al. Jun 1990 A
4937928 van der Zel Jul 1990 A
4941826 Loran et al. Jul 1990 A
4952928 Carroll et al. Aug 1990 A
4964770 Steinbichler Oct 1990 A
4975052 Spencer et al. Dec 1990 A
4983334 Adell Jan 1991 A
4997369 Shafir Mar 1991 A
5002485 Aagesen Mar 1991 A
5011405 Lemchen Apr 1991 A
5015183 Fenick May 1991 A
5017133 Miura May 1991 A
5018969 Andreiko et al. May 1991 A
5027281 Rekow et al. Jun 1991 A
5035613 Breads et al. Jul 1991 A
5037295 Bergersen Aug 1991 A
5055039 Abatte et al. Oct 1991 A
5059118 Breads et al. Oct 1991 A
5061839 Matsuno et al. Oct 1991 A
5083919 Quachi Jan 1992 A
100316 Wildman Mar 1992 A
5094614 Wildman Mar 1992 A
5103838 Yousif Apr 1992 A
5114339 Guis May 1992 A
5121333 Riley et al. Jun 1992 A
5123425 Shannon et al. Jun 1992 A
5125832 Kesling Jun 1992 A
5128870 Erdman et al. Jul 1992 A
5130064 Smalley et al. Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5131844 Marinaccio et al. Jul 1992 A
5139419 Andreiko et al. Aug 1992 A
5145364 Martz et al. Sep 1992 A
5176517 Truax Jan 1993 A
5184306 Erdman et al. Feb 1993 A
5186623 Breads et al. Feb 1993 A
5194003 Garay et al. Mar 1993 A
5204670 Stinton Apr 1993 A
5222499 Allen et al. Jun 1993 A
5224049 Mushabac Jun 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5245592 Kuemmel et al. Sep 1993 A
5257203 Riley et al. Oct 1993 A
5273429 Rekow et al. Dec 1993 A
5278756 Lemchen et al. Jan 1994 A
5306144 Hibst et al. Apr 1994 A
5314335 Fung May 1994 A
5324186 Bakanowski Jun 1994 A
5328362 Watson et al. Jul 1994 A
5335657 Terry et al. Aug 1994 A
5338198 Wu et al. Aug 1994 A
5340309 Robertson Aug 1994 A
5342202 Deshayes Aug 1994 A
5344315 Hanson Sep 1994 A
5368478 Andreiko et al. Nov 1994 A
5372502 Massen et al. Dec 1994 A
D354355 Hilgers Jan 1995 S
5382164 Stern Jan 1995 A
5395238 Andreiko et al. Mar 1995 A
5415542 Kesling May 1995 A
5431562 Andreiko et al. Jul 1995 A
5440326 Quinn Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5447432 Andreiko et al. Sep 1995 A
5449703 Mitra et al. Sep 1995 A
5452219 Dehoff et al. Sep 1995 A
5454717 Andreiko et al. Oct 1995 A
5456600 Andreiko et al. Oct 1995 A
5474448 Andreiko et al. Dec 1995 A
5487662 Kipke et al. Jan 1996 A
RE35169 Lemchen et al. Mar 1996 E
5499633 Fenton Mar 1996 A
5518397 Andreiko et al. May 1996 A
5522725 Jordan et al. Jun 1996 A
5528735 Strasnick et al. Jun 1996 A
5533895 Andreiko et al. Jul 1996 A
5540732 Testerman Jul 1996 A
5542842 Andreiko et al. Aug 1996 A
5543780 McAuley et al. Aug 1996 A
5549476 Stern Aug 1996 A
5562448 Mushabac Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5575655 Darnell Nov 1996 A
5583977 Seidl Dec 1996 A
5587912 Andersson et al. Dec 1996 A
5588098 Chen et al. Dec 1996 A
5605459 Kuroda et al. Feb 1997 A
5607305 Andersson et al. Mar 1997 A
5614075 Andre Mar 1997 A
5621648 Crump Apr 1997 A
5626537 Danyo et al. May 1997 A
5645420 Bergersen Jul 1997 A
5645421 Slootsky Jul 1997 A
5651671 Seay et al. Jul 1997 A
5655653 Chester Aug 1997 A
5659420 Wakai et al. Aug 1997 A
5683243 Andreiko et al. Nov 1997 A
5683244 Truax Nov 1997 A
5691539 Pfeiffer Nov 1997 A
5692894 Schwartz et al. Dec 1997 A
5711665 Adam et al. Jan 1998 A
5711666 Hanson Jan 1998 A
5725376 Poirier Mar 1998 A
5725378 Wang Mar 1998 A
5730151 Summer et al. Mar 1998 A
5733126 Andersson et al. Mar 1998 A
5737084 Ishihara Apr 1998 A
5740267 Echerer et al. Apr 1998 A
5742700 Yoon et al. Apr 1998 A
5769631 Williams Jun 1998 A
5774425 Ivanov et al. Jun 1998 A
5790242 Stern et al. Aug 1998 A
5799100 Clarke et al. Aug 1998 A
5800162 Shimodaira Sep 1998 A
5800174 Andersson Sep 1998 A
5813854 Nikodem Sep 1998 A
5816800 Brehm et al. Oct 1998 A
5818587 Devaraj et al. Oct 1998 A
5823778 Schmitt et al. Oct 1998 A
5848115 Little et al. Dec 1998 A
5857853 van Nifterick et al. Jan 1999 A
5866058 Batchelder et al. Feb 1999 A
5876199 Bergersen Mar 1999 A
5879158 Doyle et al. Mar 1999 A
5880961 Crump Mar 1999 A
5880962 Andersson et al. Mar 1999 A
5882192 Bergersen Mar 1999 A
5886702 Migdal et al. Mar 1999 A
5890896 Padial Apr 1999 A
5904479 Staples May 1999 A
5934288 Avila et al. Aug 1999 A
5957686 Anthony Sep 1999 A
5964587 Sato Oct 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti Nov 1999 A
5975906 Knutson Nov 1999 A
5980246 Ramsay et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
6002706 Staver et al. Dec 1999 A
6015289 Andreiko et al. Jan 2000 A
6018713 Coli et al. Jan 2000 A
6044309 Honda Mar 2000 A
6049743 Baba Apr 2000 A
6053731 Heckenberger Apr 2000 A
6062861 Andersson May 2000 A
6068482 Snow May 2000 A
6070140 Tran May 2000 A
6099303 Gibbs et al. Aug 2000 A
6099314 Kopelman et al. Aug 2000 A
6123544 Cleary Sep 2000 A
6152731 Jordan et al. Nov 2000 A
6154676 Levine Nov 2000 A
6183248 Chishti et al. Feb 2001 B1
6183249 Brennan et al. Feb 2001 B1
6186780 Hibst et al. Feb 2001 B1
6190165 Andreiko et al. Feb 2001 B1
6200133 Kittelsen Mar 2001 B1
6201880 Elbaum et al. Mar 2001 B1
6212435 Lattner et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6231338 de Josselin de Jong et al. May 2001 B1
6239705 Glen May 2001 B1
6243601 Wist Jun 2001 B1
6244861 Andreiko et al. Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6283761 Joao Sep 2001 B1
6288138 Yamamoto Sep 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6313432 Nagata et al. Nov 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6322359 Jordan et al. Nov 2001 B1
6328745 Ascherman Dec 2001 B1
6332774 Chikami Dec 2001 B1
6334073 Levine Dec 2001 B1
6350120 Sachdeva et al. Feb 2002 B1
6364660 Durbin et al. Apr 2002 B1
6382975 Poirier May 2002 B1
6386878 Pavlovskaia et al. May 2002 B1
6394802 Hahn May 2002 B1
6398548 Muhammad et al. Jun 2002 B1
6402510 Williams Jun 2002 B1
6402707 Ernst Jun 2002 B1
6405729 Thornton Jun 2002 B1
6406292 Chishti et al. Jun 2002 B1
6409504 Jones et al. Jun 2002 B1
6413086 Womack Jul 2002 B1
6414264 von Falkenhausen Jul 2002 B1
6414708 Carmeli et al. Jul 2002 B1
6435871 Inman Aug 2002 B1
6436058 Krahner et al. Aug 2002 B1
6441354 Seghatol et al. Aug 2002 B1
6450167 David et al. Sep 2002 B1
6450807 Chishti et al. Sep 2002 B1
6462301 Scott et al. Oct 2002 B1
6470338 Rizzo et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6471970 Fanara et al. Oct 2002 B1
6482002 Jordan et al. Nov 2002 B2
6482298 Bhatnagar Nov 2002 B1
6496814 Busche Dec 2002 B1
6496816 Thiesson et al. Dec 2002 B1
6499026 Rivette et al. Dec 2002 B1
6499995 Schwartz Dec 2002 B1
6507832 Evans et al. Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6515593 Stark et al. Feb 2003 B1
6516288 Bagne Feb 2003 B2
6516805 Thornton Feb 2003 B1
6520772 Williams Feb 2003 B2
6523009 Wilkins Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6524101 Phan et al. Feb 2003 B1
6526168 Ornes et al. Feb 2003 B1
6526982 Strong Mar 2003 B1
6529891 Heckerman Mar 2003 B1
6529902 Kanevsky et al. Mar 2003 B1
6532455 Martin et al. Mar 2003 B1
6535865 Skaaning et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6540707 Stark et al. Apr 2003 B1
6542593 Bowman Amuah Apr 2003 B1
6542881 Meidan et al. Apr 2003 B1
6542894 Lee et al. Apr 2003 B1
6542903 Hull et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6554611 Chishti et al. Apr 2003 B2
6554837 Hauri et al. Apr 2003 B1
6556659 Bowman Amuah Apr 2003 B1
6556977 Lapointe et al. Apr 2003 B1
6560592 Reid et al. May 2003 B1
6564209 Dempski et al. May 2003 B1
6567814 Bankier et al. May 2003 B1
6571227 Agrafiotis et al. May 2003 B1
6572372 Phan et al. Jun 2003 B1
6573998 Cohen Sabban Jun 2003 B2
6574561 Alexander et al. Jun 2003 B2
6578003 Camarda et al. Jun 2003 B1
6580948 Haupert et al. Jun 2003 B2
6587529 Staszewski et al. Jul 2003 B1
6587828 Sachdeva Jul 2003 B1
6592368 Weathers Jul 2003 B1
6594539 Geng Jul 2003 B1
6595342 Maritzen et al. Jul 2003 B1
6597934 de Jong et al. Jul 2003 B1
6598043 Baclawski Jul 2003 B1
6599250 Webb et al. Jul 2003 B2
6602070 Miller et al. Aug 2003 B2
6604527 Palmisano Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6607382 Kuo et al. Aug 2003 B1
6611783 Kelly et al. Aug 2003 B2
6611867 Bowman Amuah Aug 2003 B1
6613001 Dworkin Sep 2003 B1
6615158 Wenzel et al. Sep 2003 B2
6616447 Rizoiu et al. Sep 2003 B1
6616579 Reinbold et al. Sep 2003 B1
6621491 Baumrind et al. Sep 2003 B1
6623698 Kuo Sep 2003 B2
6624752 Klitsgaard et al. Sep 2003 B2
6626180 Kittelsen et al. Sep 2003 B1
6626569 Reinstein et al. Sep 2003 B2
6626669 Zegarelli Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6640128 Vilsmeier et al. Oct 2003 B2
6643646 Su et al. Nov 2003 B2
6647383 August et al. Nov 2003 B1
6650944 Goedeke et al. Nov 2003 B2
6671818 Mikurak Dec 2003 B1
6675104 Paulse et al. Jan 2004 B2
6678669 Lapointe et al. Jan 2004 B2
6682346 Chishti et al. Jan 2004 B2
6685469 Chishti et al. Feb 2004 B2
6689055 Mullen et al. Feb 2004 B1
6690761 Lang et al. Feb 2004 B2
6691110 Wang et al. Feb 2004 B2
6694234 Lockwood et al. Feb 2004 B2
6697164 Babayoff et al. Feb 2004 B1
6697793 McGreevy Feb 2004 B2
6702765 Robbins et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6705863 Phan et al. Mar 2004 B2
6729876 Chishti et al. May 2004 B2
6733289 Manemann et al. May 2004 B2
6739869 Taub et al. May 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6749414 Hanson et al. Jun 2004 B1
6772026 Bradbury et al. Aug 2004 B2
6790036 Graham Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6814574 Abolfathi et al. Nov 2004 B2
6830450 Knopp et al. Dec 2004 B2
6832912 Mao Dec 2004 B2
6832914 Bonnet et al. Dec 2004 B1
6845175 Kopelman et al. Jan 2005 B2
6885464 Pfeiffer et al. Apr 2005 B1
6890285 Rahman et al. May 2005 B2
6951254 Morrison Oct 2005 B2
6976841 Osterwalder Dec 2005 B1
6978268 Thomas et al. Dec 2005 B2
6984128 Breining et al. Jan 2006 B2
7016952 Mullen et al. Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7036514 Heck May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7106233 Schroeder et al. Sep 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7134874 Chishti et al. Nov 2006 B2
7137812 Cleary et al. Nov 2006 B2
7138640 Delgado et al. Nov 2006 B1
7140877 Kaza Nov 2006 B2
7142312 Quadling et al. Nov 2006 B2
7155373 Jordan et al. Dec 2006 B2
7156655 Sachdeva et al. Jan 2007 B2
7156661 Choi et al. Jan 2007 B2
7166063 Rahman et al. Jan 2007 B2
7184150 Quadling et al. Feb 2007 B2
7191451 Nakagawa Mar 2007 B2
7192273 McSurdy Mar 2007 B2
7217131 Vuillemot May 2007 B2
7220122 Chishti May 2007 B2
7220124 Taub et al. May 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7241142 Abolfathi et al. Jul 2007 B2
7244230 Duggirala et al. Jul 2007 B2
7245753 Squilla et al. Jul 2007 B2
7257136 Mori et al. Aug 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7302842 Biester et al. Dec 2007 B2
7320592 Chishti et al. Jan 2008 B2
7328706 Barach et al. Feb 2008 B2
7329122 Scott Feb 2008 B1
7338327 Sticker et al. Mar 2008 B2
D565509 Fechner et al. Apr 2008 S
7351116 Dold Apr 2008 B2
7354270 Abolfathi et al. Apr 2008 B2
7357637 Liechtung Apr 2008 B2
7435083 Chishti et al. Oct 2008 B2
7450231 Johs et al. Nov 2008 B2
7460230 Johs et al. Dec 2008 B2
7462076 Walter et al. Dec 2008 B2
7463929 Simmons Dec 2008 B2
7476100 Kuo Jan 2009 B2
7500851 Williams Mar 2009 B2
D594413 Palka et al. Jun 2009 S
7544103 Walter et al. Jun 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7561273 Stautmeister et al. Jul 2009 B2
7577284 Wong et al. Aug 2009 B2
7596253 Wong et al. Sep 2009 B2
7597594 Stadler et al. Oct 2009 B2
7609875 Liu et al. Oct 2009 B2
D603796 Sticker et al. Nov 2009 S
7616319 Woollam et al. Nov 2009 B1
7626705 Altendorf Dec 2009 B2
7632216 Rahman et al. Dec 2009 B2
7633625 Woollam et al. Dec 2009 B1
7637262 Bailey Dec 2009 B2
7668355 Wong et al. Feb 2010 B2
7670179 Müller Mar 2010 B2
7695327 Bäuerle et al. Apr 2010 B2
7698068 Babayoff Apr 2010 B2
7711447 Lu et al. May 2010 B2
7724378 Babayoff May 2010 B2
D618619 Walter Jun 2010 S
7728848 Petrov et al. Jun 2010 B2
7731508 Borst Jun 2010 B2
7735217 Borst Jun 2010 B2
7740476 Rubbert et al. Jun 2010 B2
7744369 Imgrund et al. Jun 2010 B2
7746339 Matov et al. Jun 2010 B2
7780460 Walter Aug 2010 B2
7787132 Körner et al. Aug 2010 B2
7791810 Powell Sep 2010 B2
7796243 Choo-Smith et al. Sep 2010 B2
7806687 Minagi et al. Oct 2010 B2
7806727 Dold et al. Oct 2010 B2
7813787 de Josselin de Jong et al. Oct 2010 B2
7824180 Abolfathi et al. Nov 2010 B2
7831322 Liu et al. Nov 2010 B2
7845969 Stadler et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7862336 Kopelman et al. Jan 2011 B2
7872760 Ertl Jan 2011 B2
7874836 McSurdy Jan 2011 B2
7874837 Chishti et al. Jan 2011 B2
7874849 Sticker et al. Jan 2011 B2
7878801 Abolfathi et al. Feb 2011 B2
7878805 Moss et al. Feb 2011 B2
7880751 Kuo et al. Feb 2011 B2
7892474 Shkolnik et al. Feb 2011 B2
7904308 Arnone et al. Mar 2011 B2
7907280 Johs et al. Mar 2011 B2
7929151 Liang et al. Apr 2011 B2
7930189 Kuo Apr 2011 B2
7947508 Tricca et al. May 2011 B2
7959308 Freeman et al. Jun 2011 B2
7963766 Cronauer Jun 2011 B2
7970627 Kuo et al. Jun 2011 B2
7985414 Knaack et al. Jul 2011 B2
7986415 Thiel et al. Jul 2011 B2
7987099 Kuo et al. Jul 2011 B2
7991485 Zakim Aug 2011 B2
8017891 Nevin Sep 2011 B2
8026916 Wen Sep 2011 B2
8027709 Arnone et al. Sep 2011 B2
8038444 Kitching et al. Oct 2011 B2
8045772 Kosuge et al. Oct 2011 B2
8077949 Liang et al. Dec 2011 B2
8092215 Stone-Collonge et al. Jan 2012 B2
8095383 Arnone et al. Jan 2012 B2
8099268 Kitching et al. Jan 2012 B2
8099305 Kuo et al. Jan 2012 B2
8108189 Chelnokov et al. Jan 2012 B2
8118592 Tortorici Feb 2012 B2
8126025 Takeda Feb 2012 B2
8144954 Quadling et al. Mar 2012 B2
8152518 Kuo Apr 2012 B2
8160334 Thiel et al. Apr 2012 B2
8172569 Matty et al. May 2012 B2
8201560 Dembro Jun 2012 B2
8240018 Walter et al. Aug 2012 B2
8275180 Kuo Sep 2012 B2
8294657 Kim et al. Oct 2012 B2
8296952 Greenberg Oct 2012 B2
8306608 Mandelis et al. Nov 2012 B2
8314764 Kim et al. Nov 2012 B2
8332015 Ertl Dec 2012 B2
8433083 Abolfathi et al. Apr 2013 B2
8439672 Matov et al. May 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8488113 Thiel et al. Jul 2013 B2
8523565 Matty et al. Sep 2013 B2
8545221 Stone-Collonge et al. Oct 2013 B2
8556625 Lovely Oct 2013 B2
8639477 Chelnokov et al. Jan 2014 B2
8650586 Lee et al. Feb 2014 B2
8738394 Kuo May 2014 B2
8771149 Rahman et al. Jul 2014 B2
8843381 Kuo et al. Sep 2014 B2
8870566 Bergersen Oct 2014 B2
8874452 Kuo Oct 2014 B2
8899976 Chen et al. Dec 2014 B2
8944812 Kou Feb 2015 B2
8992216 Karazivan Mar 2015 B2
9004915 Moss et al. Apr 2015 B2
9039418 Rubbert May 2015 B1
9084535 Girkin et al. Jul 2015 B2
9084657 Matty et al. Jul 2015 B2
9211166 Kuo et al. Dec 2015 B2
9214014 Levin Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9277972 Brandt et al. Mar 2016 B2
9403238 Culp Aug 2016 B2
9414897 Wu et al. Aug 2016 B2
9463287 Lorberbaum et al. Oct 2016 B1
9492243 Kuo Nov 2016 B2
9566132 Stone-Collonge et al. Feb 2017 B2
9589329 Levin Mar 2017 B2
9820829 Kuo Nov 2017 B2
9830688 Levin Nov 2017 B2
9844421 Moss et al. Dec 2017 B2
9848985 Yang et al. Dec 2017 B2
10123706 Elbaz et al. Nov 2018 B2
10123853 Moss et al. Nov 2018 B2
10172693 Brandt et al. Jan 2019 B2
10195690 Culp Feb 2019 B2
10231801 Korytov et al. Mar 2019 B2
10238472 Levin Mar 2019 B2
10248883 Borovinskih et al. Apr 2019 B2
10258432 Webber Apr 2019 B2
10275862 Levin Apr 2019 B2
20010002310 Chishti et al. May 2001 A1
20010032100 Mahmud et al. Oct 2001 A1
20010038705 Rubbert et al. Nov 2001 A1
20010041320 Phan et al. Nov 2001 A1
20020004727 Knaus et al. Jan 2002 A1
20020006597 Andreiko et al. Jan 2002 A1
20020007284 Schurenberg et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020015934 Rubbert et al. Feb 2002 A1
20020025503 Chapoulaud et al. Feb 2002 A1
20020026105 Drazen Feb 2002 A1
20020028417 Chapoulaud et al. Mar 2002 A1
20020035572 Takatori et al. Mar 2002 A1
20020064752 Durbin et al. May 2002 A1
20020064759 Durbin et al. May 2002 A1
20020087551 Hickey et al. Jul 2002 A1
20020107853 Hofmann et al. Aug 2002 A1
20020188478 Breeland et al. Dec 2002 A1
20020192617 Phan et al. Dec 2002 A1
20030000927 Kanaya et al. Jan 2003 A1
20030009252 Pavlovskaia et al. Jan 2003 A1
20030019848 Nicholas et al. Jan 2003 A1
20030021453 Weise et al. Jan 2003 A1
20030035061 Iwaki et al. Feb 2003 A1
20030049581 Deluke Mar 2003 A1
20030057192 Patel Mar 2003 A1
20030068598 Vallittu et al. Apr 2003 A1
20030095697 Wood et al. May 2003 A1
20030103060 Anderson et al. Jun 2003 A1
20030120517 Eida et al. Jun 2003 A1
20030139834 Nikolskiy et al. Jul 2003 A1
20030144886 Taira Jul 2003 A1
20030172043 Guyon et al. Sep 2003 A1
20030190575 Hilliard Oct 2003 A1
20030192867 Yamazaki et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20030215764 Kopelman et al. Nov 2003 A1
20030224311 Cronauer Dec 2003 A1
20030224313 Bergersen Dec 2003 A1
20030224314 Bergersen Dec 2003 A1
20040002873 Sachdeva Jan 2004 A1
20040009449 Mah et al. Jan 2004 A1
20040013994 Goldberg Jan 2004 A1
20040019262 Perelgut Jan 2004 A1
20040029078 Marshall Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040054304 Raby Mar 2004 A1
20040054358 Cox et al. Mar 2004 A1
20040058295 Bergersen Mar 2004 A1
20040068199 Echauz et al. Apr 2004 A1
20040078222 Khan et al. Apr 2004 A1
20040080621 Fisher et al. Apr 2004 A1
20040094165 Cook May 2004 A1
20040107118 Harnsberger et al. Jun 2004 A1
20040133083 Comaniciu et al. Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040158194 Wolff et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040167646 Jelonek et al. Aug 2004 A1
20040170941 Phan et al. Sep 2004 A1
20040193036 Zhou et al. Sep 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040209218 Chishti et al. Oct 2004 A1
20040214128 Sachdeva et al. Oct 2004 A1
20040219479 Malin et al. Nov 2004 A1
20040220691 Hofmeister et al. Nov 2004 A1
20040259049 Kopelman et al. Dec 2004 A1
20050003318 Choi et al. Jan 2005 A1
20050023356 Wiklof et al. Feb 2005 A1
20050031196 Moghaddam et al. Feb 2005 A1
20050037311 Bergersen Feb 2005 A1
20050037312 Uchida Feb 2005 A1
20050038669 Sachdeva et al. Feb 2005 A1
20050042569 Plan et al. Feb 2005 A1
20050048433 Hilliard Mar 2005 A1
20050074717 Cleary et al. Apr 2005 A1
20050089822 Geng Apr 2005 A1
20050100333 Kerschbaumer et al. May 2005 A1
20050108052 Omaboe May 2005 A1
20050131738 Morris Jun 2005 A1
20050144150 Ramamurthy et al. Jun 2005 A1
20050171594 Machan et al. Aug 2005 A1
20050171630 Dinauer et al. Aug 2005 A1
20050181333 Karazivan et al. Aug 2005 A1
20050186524 Abolfathi et al. Aug 2005 A1
20050186526 Stewart et al. Aug 2005 A1
20050216314 Secor Sep 2005 A1
20050233276 Kopelman et al. Oct 2005 A1
20050239013 Sachdeva Oct 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060056670 Hamadeh Mar 2006 A1
20060057533 McGann Mar 2006 A1
20060063135 Mehl Mar 2006 A1
20060078842 Sachdeva et al. Apr 2006 A1
20060084024 Farrell Apr 2006 A1
20060093982 Wen May 2006 A1
20060098007 Rouet et al. May 2006 A1
20060099545 Lia et al. May 2006 A1
20060099546 Bergersen May 2006 A1
20060110698 Robson May 2006 A1
20060111631 Kelliher et al. May 2006 A1
20060115785 Li et al. Jun 2006 A1
20060137813 Robrecht et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060154198 Durbin et al. Jul 2006 A1
20060154207 Kuo Jul 2006 A1
20060173715 Wang Aug 2006 A1
20060183082 Quadling et al. Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060188848 Tricca et al. Aug 2006 A1
20060194163 Tricca et al. Aug 2006 A1
20060204078 Orth et al. Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223032 Fried et al. Oct 2006 A1
20060223342 Borst et al. Oct 2006 A1
20060234179 Wen et al. Oct 2006 A1
20060257815 De Dominicis Nov 2006 A1
20060275729 Fornoff Dec 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen et al. Dec 2006 A1
20060277075 Salwan Dec 2006 A1
20060290693 Zhou et al. Dec 2006 A1
20060292520 Dillon et al. Dec 2006 A1
20070031775 Andreiko Feb 2007 A1
20070046865 Umeda et al. Mar 2007 A1
20070053048 Kumar et al. Mar 2007 A1
20070054237 Neuschafer Mar 2007 A1
20070087300 Willison et al. Apr 2007 A1
20070087302 Reising et al. Apr 2007 A1
20070106138 Beiski et al. May 2007 A1
20070122592 Anderson et al. May 2007 A1
20070128574 Kuo et al. Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070141526 Eisenberg et al. Jun 2007 A1
20070143135 Lindquist et al. Jun 2007 A1
20070168152 Matov et al. Jul 2007 A1
20070172112 Paley et al. Jul 2007 A1
20070172291 Yokoyama Jul 2007 A1
20070178420 Keski-Nisula et al. Aug 2007 A1
20070183633 Hoffmann Aug 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070185732 Hicks et al. Aug 2007 A1
20070192137 Ombrellaro Aug 2007 A1
20070199929 Rippl et al. Aug 2007 A1
20070215582 Roeper et al. Sep 2007 A1
20070231765 Phan et al. Oct 2007 A1
20070238065 Sherwood et al. Oct 2007 A1
20070239488 DeRosso Oct 2007 A1
20080013727 Uemura Jan 2008 A1
20080020350 Matov et al. Jan 2008 A1
20080045053 Stadler et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057467 Gittelson Mar 2008 A1
20080057479 Grenness Mar 2008 A1
20080059238 Park et al. Mar 2008 A1
20080090208 Rubbert Apr 2008 A1
20080094389 Rouet et al. Apr 2008 A1
20080113317 Kemp et al. May 2008 A1
20080115791 Heine May 2008 A1
20080118886 Liang et al. May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080176448 Muller et al. Jul 2008 A1
20080233530 Cinader Sep 2008 A1
20080242144 Dietz Oct 2008 A1
20080248443 Chishti et al. Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20090029310 Pumphrey et al. Jan 2009 A1
20090030290 Kozuch et al. Jan 2009 A1
20090030347 Cao Jan 2009 A1
20090040740 Muller et al. Feb 2009 A1
20090061379 Yamamoto et al. Mar 2009 A1
20090061381 Durbin et al. Mar 2009 A1
20090075228 Kumada et al. Mar 2009 A1
20090087050 Gandyra Apr 2009 A1
20090098502 Andreiko Apr 2009 A1
20090099445 Burger Apr 2009 A1
20090103579 Ushimaru et al. Apr 2009 A1
20090105523 Kassayan et al. Apr 2009 A1
20090130620 Yazdi et al. May 2009 A1
20090136890 Kang et al. May 2009 A1
20090136893 Zegarelli May 2009 A1
20090148809 Kuo et al. Jun 2009 A1
20090181346 Orth Jul 2009 A1
20090210032 Beiski et al. Aug 2009 A1
20090218514 Klunder et al. Sep 2009 A1
20090281433 Saadat et al. Nov 2009 A1
20090286195 Sears et al. Nov 2009 A1
20090298017 Boerjes et al. Dec 2009 A1
20100019170 Hart et al. Jan 2010 A1
20100045902 Ikeda et al. Feb 2010 A1
20100068676 Mason et al. Mar 2010 A1
20100145664 Hultgren et al. Jun 2010 A1
20100145898 Malfliet et al. Jun 2010 A1
20100165275 Tsukamoto et al. Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100231577 Kim et al. Sep 2010 A1
20100268363 Karim et al. Oct 2010 A1
20100279243 Cinader et al. Nov 2010 A1
20100280798 Pattijn Nov 2010 A1
20100281370 Rohaly et al. Nov 2010 A1
20110102549 Takahashi May 2011 A1
20110102566 Zakian et al. May 2011 A1
20110104630 Matov et al. May 2011 A1
20110164810 Zang et al. Jul 2011 A1
20120148972 Lewis Jun 2012 A1
20120166213 Arnone et al. Jun 2012 A1
20130103176 Kopelman et al. Apr 2013 A1
20140081091 Abolfathi et al. Mar 2014 A1
20140136222 Arnone et al. May 2014 A1
20140142902 Chelnokov et al. May 2014 A1
20140280376 Kuo Sep 2014 A1
20150004553 Li et al. Jan 2015 A1
20150132708 Kuo May 2015 A1
20150173856 Iowe et al. Jun 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150320320 Kopelman et al. Nov 2015 A1
20150320532 Matty et al. Nov 2015 A1
20160003610 Lampert et al. Jan 2016 A1
20160051345 Levin Feb 2016 A1
20160064898 Atiya et al. Mar 2016 A1
20160081768 Kopelman et al. Mar 2016 A1
20160081769 Kimura et al. Mar 2016 A1
20160095668 Kuo et al. Apr 2016 A1
20160120621 Li et al. May 2016 A1
20160135924 Choi et al. May 2016 A1
20160135925 Mason et al. May 2016 A1
20160163115 Furst Jun 2016 A1
20160217708 Levin et al. Jul 2016 A1
20160338799 Wu et al. Nov 2016 A1
20160367339 Khardekar et al. Dec 2016 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170007368 Boronkay Jan 2017 A1
20170020633 Stone-Collonge et al. Jan 2017 A1
20170071705 Kuo Mar 2017 A1
20170100212 Sherwood et al. Apr 2017 A1
20170100213 Kuo Apr 2017 A1
20170105815 Matov et al. Apr 2017 A1
20170135792 Webber May 2017 A1
20170135793 Webber et al. May 2017 A1
20170156821 Kopelman et al. Jun 2017 A1
20170165032 Webber et al. Jun 2017 A1
20170319296 Webber et al. Nov 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180000565 Shanjani et al. Jan 2018 A1
20180028064 Elbaz et al. Feb 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180055602 Kopelman et al. Mar 2018 A1
20180071055 Kuo Mar 2018 A1
20180125610 Carrier, Jr. et al. May 2018 A1
20180153648 Shanjani et al. Jun 2018 A1
20180153649 Wu et al. Jun 2018 A1
20180153733 Kuo Jun 2018 A1
20180168788 Fernie Jun 2018 A1
20180192877 Atiya et al. Jul 2018 A1
20180280118 Cramer Oct 2018 A1
20180284727 Cramer et al. Oct 2018 A1
20180318043 Li et al. Nov 2018 A1
20180353264 Riley et al. Dec 2018 A1
20180360567 Xue et al. Dec 2018 A1
20180368944 Sato et al. Dec 2018 A1
20180368961 Shanjani et al. Dec 2018 A1
20190019187 Miller et al. Jan 2019 A1
20190021817 Sato et al. Jan 2019 A1
20190029522 Sato et al. Jan 2019 A1
20190029784 Moalem et al. Jan 2019 A1
20190046296 Kopelman et al. Feb 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190069975 Cam et al. Mar 2019 A1
20190076026 Elbaz et al. Mar 2019 A1
20190076214 Nyukhtikov et al. Mar 2019 A1
20190076216 Moss et al. Mar 2019 A1
20190090983 Webber et al. Mar 2019 A1
20190095539 Elbaz et al. Mar 2019 A1
20190099129 Kopelman et al. Apr 2019 A1
20190105130 Grove et al. Apr 2019 A1
20190125494 Li et al. May 2019 A1
Foreign Referenced Citations (80)
Number Date Country
3031677 May 1979 AU
517102 Jul 1981 AU
5598894 Jun 1994 AU
1121955 Apr 1982 CA
1575782 Feb 2005 CN
1655732 Aug 2005 CN
1655733 Aug 2005 CN
102017658 Apr 2011 CN
2749802 May 1978 DE
3526198 Feb 1986 DE
4207169 Sep 1993 DE
69327661 Jul 2000 DE
102005043627 Mar 2007 DE
0091876 Oct 1983 EP
0299490 Jan 1989 EP
0376873 Jul 1990 EP
0428152 May 1991 EP
0490848 Jun 1992 EP
0541500 May 1993 EP
0667753 Aug 1995 EP
0731673 Sep 1996 EP
714632 May 1997 EP
0774933 May 1997 EP
1941843 Jul 2008 EP
1989764 Jul 2012 EP
463897 Jan 1980 ES
2369828 Jun 1978 FR
2652256 Mar 1991 FR
2867377 Sep 2005 FR
2930334 Oct 2009 FR
1550777 Aug 1979 GB
53-058191 May 1978 JP
53-058191 May 1978 JP
04-028359 Jan 1992 JP
04-028359 Jan 1992 JP
08-508174 Sep 1996 JP
08-508174 Sep 1996 JP
09-19443 Jan 1997 JP
2003245289 Sep 2003 JP
2000339468 Sep 2004 JP
2005527320 Sep 2005 JP
2005527321 Sep 2005 JP
2006043121 Feb 2006 JP
2007151614 Jun 2007 JP
2007260158 Oct 2007 JP
2008067732 Mar 2008 JP
2008523370 Jul 2008 JP
2009000412 Jan 2009 JP
2009018173 Jan 2009 JP
2009078133 Apr 2009 JP
2009101386 May 2009 JP
2009205330 Sep 2009 JP
10-20020062793 Jul 2002 KR
10-20090065778 Jun 2009 KR
WO 1998032394 Jul 1988 WO
WO 1990008512 Aug 1990 WO
WO91004713 Apr 1991 WO
WO 1991004713 Apr 1991 WO
WO9203102 Mar 1992 WO
WO94010935 May 1994 WO
WO 1994010935 May 1994 WO
WO9623452 Aug 1996 WO
WO 1998044865 Oct 1998 WO
WO 1998058596 Dec 1998 WO
0108592 Feb 2001 WO
0280762 Nov 2001 WO
WO02017776 Mar 2002 WO
WO02062252 Aug 2002 WO
WO02095475 Nov 2002 WO
WO03003932 Jan 2003 WO
WO2006096558 Sep 2006 WO
WO2006100700 Sep 2006 WO
WO2006133548 Dec 2006 WO
WO2007019709 Feb 2007 WO
WO2007071341 Jun 2007 WO
WO2007103377 Sep 2007 WO
WO2008115654 Sep 2008 WO
WO2009016645 Feb 2009 WO
WO2009085752 Jul 2009 WO
WO2009089129 Jul 2009 WO
Non-Patent Literature Citations (227)
Entry
Alexander, et al. “The DigiGraph Work Station Part 2, Clinical Management”. JCO (Jul. 1990), pp. 402-407.
Altschuler et al. “Measuring Surfaces Space-Coded by a . . . ”, SPIE Imaging Applications for Automated Industrial Inspection and Assembly, vol. 182 (1979), pp. 187-191.
Altschuler et al. “Analysis of 3-D Data . . . ”, IADR Abstracts, Program and Abstracts of Papers, J.of Dental Research, vol. 58, Jan. 1979, Special Issue A, p. 221.
Altschuler et al. “Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces”, Optical Engineering, vol. 20 (6) (1981) pp. 953-961.
Altschuler. “3D Mapping of Maxillo-Facial Prosthesis”, AADR Abstract #607, 1980, 1 pg.
American Association for Dental Research, Summary of Activities, Mar. 20-23, 1980, Los Angeles, CA, p. 195.
Andersson et al. “Clinical Results with Titanium Crowns Fabricated with Machine Duplication . . . ”, Acta Odontological Scandinavia, vol. 47 (1989), pp. 279-286.
Baumrind, et al. “A Stereophotogrammetric System for the Detection of . . . ” NATO Symposium on Applications of Human Biostereometrics, Jul. 9-13, 1978, SPIE vol. 166, pp. 112-123.
Baumrind, et al. “Mapping the Skull in 3-D”, Reprinted from The Journal, California Dental Association, vol. 48, No. 2 (1972 Fall Issue), 11 pgs.
Baumrind. “A System for Craniofacial Mapping . . . ”, An invited paper submitted to the 1975 Am. Soc. of Photogram . . . Systems, University of III., Aug. 26-30, 1975, pp. 142-166.
Baumrind. “Integrated Three-Dimensional Craniofacial Mapping: Background . . . ”. Seminars in Orthodontics, vol. 7, No. 4 (Dec. 2001), pp. 223-232.
Begole, et al. “A Computer System for the Analysis of Dental Casts”, The Angle Orthodontist, vol. 51, No. 3 (Jul. 1981), pp. 253-259.
Bernard, et al. “Computerized Diagnosis in Orthodontics for . . . ”, Abstracts of Papers, Journal of Dental Research, vol. 67, Special Issue Mar. 9-13, 1988, p. 169.
Bhatia, et al. “A Computer-Aided Design for Orthognathic Surgery”, British Journal of Oral and Maxillofacial Surgery, vol. 22, (1984), pp. 237-253.
Biggerstaff, et al. “Computerized Analysis of Occlusion in the Postcanine Dentition”, American Journal of Orthodontics, vol. 61, Mo. 3 (Mar. 1972), pp. 245-254.
Biggerstaff, “Computerized Diagnostic Setups and Simulations”, The Angle Orthodontist, vol. 40, No. 1 (Jan. 1970), pp. 28-36.
Boyd, et al. “Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions . . . ”, Seminars in Orthodontics, vol. 7, No. 4 (Dec. 2001), pp. 274-293.
Brandestini, et al. “Computer Machined Ceramic Inlays; In Vitro . . .”. Journal of Dental Research, vol. 64/Special Issues/Abstracts, IADR/AADR Abstracts 1985, p. 208.
Brook, et al. “An Image Analysis System for the Determination of Tooth Dimensions from Study Casts; . . . ”, J. Dent. Res., vol. 65, No. 3, Mar. 1986, pp. 428-431.
Burstone (interview), “Dr. Charles J. Burstone on the . . . ”, Journal of Clinical Orthodontics, (Part1), vol. 8, No. 7, Jul. 1979, (Part 2) Aug. 1979, vol. 8, No. 8, pp. 539-551.
Burstone, et al. “Precision Adjustment of the Transpalatal Lingual . . . ”,Am. Journal of Orthodontics, vol. 79, No. 2 (Feb. 1981), pp. 115-133.
Cardinal Industrial Finishes, Powder Coatings information posted www.cardinalpaint.com on Aug. 25, 2005 (2 pgs.).
Chaconas, et al. “The DIgiGraph Work Station, Part 1, Basic Concepts”, JCO (Jun. 1990), pp. 1-20.
Chafetz, et al. “Subsidence of the Femoral Prosthesis . . . ” Clinical Orthopaedics and Related Research, No. 201 (Dec. 1985), pp. 60-67.
Chiappone, “Constructing the Gnathologic Setup and Positioner”, J. Clin. Orthod., vol. 14 (1980), pp. 121-133.
Cottingham, “Gnathologic Clear Plastic Positioner”, Am. J. Orthod. vol. 55, No. 1 (Jan. 1969), pp. 23-31.
Crawford, “Computers in Dentistry: Part 1 . . . ”, Canadian Dental Journal, vol. 54 No. 9 (1988), pp. 661-666.
Crawford, “CAD/CAM in the Dental Office: Does it Work?” Canadian Dental Journal, vol. 57 No. 2 (Feb. 1991), pp. 121-123.
Crooks, “CAD/CAM Comes to USC”, USC Dentistry (Spring 1990), pp. 14-17.
Cureton, “Correcting Malaligned Mandibular Incisors with Removable Retainers”, J. Clin. Orthod. vol. 30 (Jul. 1996), pp. 390-395.
Curry, et al. “Integrated Three-Dimensional Craniofacial Mapping at the . . . ”, Seminars in Orthodontics, vol. 7, No. 4 (Dec. 2001) pp. 258-265.
Cutting, et al. “Three-Dimensional Computer-Assisted Design of Craniofacial . . . ”, Plastic and Reconstructive Surgery, vol. 77, No. 6 (Jun. 1986), pp. 877-885.
DCS Dental AG, “The CAD/CAM ‘DCS Titan System’ for Production of Crowns/Bridges”, DCS Production AG, Jan. 1992, pp. 1-7.
Defranco, et al. “Three-Dimensional Large Displacement Analysis of Orthodontic Applicances”, J. Biomechanics, vol. 9 (1976), pp. 793-801.
Dental Institute of Zurich, Switzerland, Program for International Symposium on Computer Restorations: State of the Art of the CERAC-Method, May 1991, 2 pgs.
Dent-X posted at http://www.dent-x.com/DentSim.htm Sep. 24, 1998 (6 pgs.).
Doyle, Digital Dentistry, Computer Graphics World, Oct. 2000, pp. 50-52, 54.
Duret, “The Dental CAD/CAM General Description of the Project”, Hennson International Product Brochure, Jan. 1986, 18 pgs.
Duret, “Vers une posthese informatisee”, (English translation also attached), Tonus, vol. 75 (Nov. 15, 1985), pp. 55-57.
Duret, et al. “CAD/CAM Imaging in Dentistry”, Current Opinion in Dentistry, vol. 1 (1991), pp. 150-154.
Duret, et al. “CAD-CAM in Dentistry”, Journal of the American Dental Association, vol. 117 (Nov. 1988), pp. 715-720.
Economides, “The Microcomputer in the Orthodontic Office”, JCO (Nov. 1979), pp. 767-772.
Elsasser, “Some Observations on the History and Uses of the Kesling Positioner”, Am. J. Orthod., vol. 36, No. 5 (May 1950), pp. 368-374.
Faber, et al. “Computerized interactive orthodontic treatment planning”, Am. J. Orthod., vol. 73, No. 1 (Jan. 1978), pp. 36-46.
Felton, et al. “A computerized analysis of the shape and stability . . . ”, Am. Journal of Orthodontics and Dentofacial Orthopedics, vol. 92, No. 6 (1987), pp. 478-483.
Friede, et al. “Accuracy of Cephalometric Prediction in Orthognathic Surgery”, Abstract of Papers, Journal of Dental Research, vol. 70 (1987), pp. 754-760.
Futterling, et al. “Automated finite element modeling of a human . . . ,” The 6th Int'l Conf. in Central Europe on Comp. Graphics and Visualization '98 (WSCG '98). Feb. 13, 1998.
Gottleib, et al. “JCO Interviews Dr. James A. McNamura, Jr. on the Frankel Appliance: Part 2: Clinical Management,” Journal of Clinical Orthodontics, vol. 16, No. 6 (Jun. 1982.
Grayson, “New Methods . . . ”, Symposium: Comp. Fac. Ima. in Oral and Max. Surgery Presented Sep. 13, 1990, J. of Oral and Max. Surg. vol. 48, No. 8, Supp. 1, (Aug. 1990), pp. 5-6.
Guess, et al. “Computer Treatment Estimates in Orthodontics and Orthognathic Surgery”, JCO (Apr. 1989), pp. 1-11.
Hoffmann, et al. “Role of Cephalometry for Planning of Jaw . . . ”, (article summary in English, article in German), Informationen, (Mar. 1991) pp. 375-396.
Hojjatie, et al. Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns, J Biomech. (1990) vol. 23, No. 11, pp. 1157-1166.
Huckins, “CAD-CAM Generated Mandibular Model Prototype from MRI Data”, Aaoms (1999), p. 96.
JCO Interviews. “Craig Andreiko, DDS, MS on the Elan and Orthos Systems”, JCO (Aug. 1994), pp. 459-468.
JCO Interviews. “Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2”, JCO (Dec. 1983), pp. 819-831.
Jerrold, “The Problem, Electronic Data Transmission and the Law”, AJO-DO (Apr. 1988), pp. 478-479.
Jones, et al. “An Assessment of the Fit of a . . . ”, British Journal of Orthodontics, vol. 16 (1989), pp. 85-93.
Kamada, et al. “Case Reports on Tooth Positioners Using LTV Vinyl Silicone Rubber”, J. Nihon Univ. School of Dentistry, vol. 26, No. 1, (1984), pp. 11-29.
Kamada, et al. “Construction of Tooth Positioners with LTV Vinyl Silicone Rubber . . . ”, J. Nihon Univ. School of Dentistry, vol. 24, No. 1 (1982), pp. 1-27.
Kanazawa, et al. “Three-Dimensional Measurements of the Occlusial Surfaces of Upper . . . ”, J. Dent. Res., vol. 63, No. 11 (Nov. 1984), pp. 1298-1301.
Kesling, “Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment”, Am. J. Orthod. Oral Surg., vol. 32 (1946), pp. 285-293.
Kesling, “The Philosophy of the Tooth Positioning Appliance”, Am. J. Orthod. Oral Surg., vol. 31, No. 6 (Jun. 1945), pp. 297-304.
Kleemann, et al. “The Speed Positioner”, J. Clin. Orthod., vol. 30 (1996), pp. 673-680.
Kunii, et al. Articulation Simulation for an Intelligent Dental Care System, Displays (1994) 15: 181-188.
Kuroda, et al. “Three-Dimensional dental cast analyzing system using laser scanning”, Am. J. Orthod. Dentofac. Orthop., vol. 110, No. 4 (Oct. 1996), pp. 365-369.
Laurendeau, et al. “A Computer-Vision Technique for the Acquisition and Processing . . . ”, IEEE Transactions on Medical Imaging, vol. 10, No. 3 (Sep. 1991), pp. 453-461.
Leinfelder, et al. “A new method for generating ceramic restorations: a CAD-CAM system”, J. of the Am. Dental Assoc., vol. 118, No. 5 (Jun. 1989), pp. 703-707.
Manetti, et al. “Computer-aided Cefalometry and New Mechanics . . . ”, (Article Summary in English, article in German), Fortschr, Kieferorthop. vol. 44, No. 5 (1983), pp. 370-376.
McCann, “Inside the ADA”, Journal of the American Dental Association, vol. 118, (Mar. 1989), pp. 286-294.
McNamara, et al. “Invisible Retainers”, J. Clin. Orthodontics, (Aug. 1985), pp. 570-578.
Moermann, et al. “Computer Machined Adhesive Porcelain Inlays . . . ”, IADR Abstract 339, Journal of Dental Research, vol. 66(a) (1987), p. 763.
Moermann, et al. “Marginal Adaptation von adhasiven Porzellaninlyays in vitro”, Schwizerische Monatsshrift fur Zahnmedizin, vol. 85 (1985), p. 1118-1129.
Nahoum, “The Vacuum Formed Dental Contour Appliance”, The New York State Dental Journal, vol. 30, No. 9 (Nov. 1964), pp. 385-390.
Nash, “CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment”, Dentistry Today, vol. 54 (Oct. 1990), pp. 20, 22-23, 54.
Nippon Dental Review “New Orthodontic device-dynamic positioner (D.P.)—I. Approach to the proposal of D.P. and transparent silicone rubber” (1980) 452: 61-74.
Nippon Dental Review “New Orthodontic device-dynamic positioner (D.P.)—II. Practical Application and construction of D.P.” (1980) 454: 107-130.
Nippon Dental Review “New Orthodontic device-dynamic positioner (D.P.)—III. Case reports of reversed occlusion” (1980) 457: 146-164.
Nippon Dental Review “New Orthodontic device-dynamic positioner (D.P.)—Case reports of reversed occlusion” (1980) 458: 112-129.
Nishiyama, et al. “A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber”, J. Nihon U. School of Dentistry, vol. 19 No. 2, (1977), pp. 93-102.
Pinkham, “‘Foolish’ Concept Propels Technology”, Dentist (Jan./Feb. 1989), 3 pgs.
Pinkham, “Inventor's CAD/CAM May Transform Dentistry”, Dentist (Sep. 1990), 3 pgs.
Ponitz, “Invisible Retainers”, Am. J. Orthodontics, vol. 59, No. 3 (Mar. 1971), pp. 266-272.
PROCERA Research Projects, “PROCERA Research Projects 1993”, Abstract CollectiOn, (1993), pp. 3-24.
Proffit, et al. Contemporary Orthodontics (Second Ed.), Chapter 15, Mosby Inc, (Oct. 1992), pp. 470-533.
Raintree Essix, downloaded from internet Aug. 13, 1997 Essix™ Appliances, 7 pages total.
Redmond, et al. (2000) Clinical Implications of Digital Orthodontics, Am J. Orthodont. Dentofacial Orthopedics 117(2):240-242.
Rekow, “A Review of the Developments in Dental CAD/CAM Systems”, Dental Clinics: Prosthodontics and Endodontics (1992), pp. 25-33.
Rekow, “CAD/CAM in Dentistry: A Historical Perspective and View of the Future”, Journal, vol. 58, No. 4 (Apr. 1992), pp. 283, 287-288.
Rekow, “Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art”, The J. of Prosthetic Dentistry, vol. 58, No. 4 (Oct. 1987), pp. 512-516.
Rekow, “CAD/CAM Systems: What is the State of the Art?”, J. of the Am. Dental Assoc., vol. 122 (1991), pp. 43-48.
Rekow, “Feasibility of an Automated System for Production of Dental Restorations”, PhD Thesis, U. of Minnesota (Nov. 1988), 244 pages.
Richmond, et al. The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity, European Journal of Orthodontics (1992) 14:125-139.
Richmond, et al. Research Reports, “The Devolopment of a 3D Cast Analysis System”, British Journal of Orth., vol. 13, No. 1 (Jan. 1986), pp. 53-54.
Richmond, “Recording the Dental Cast in Three Dimensions”, Am. J. Orthod. Dentofac. Orthop., vol. 92, No. 3 (Sep. 1987), pp. 199-206.
Rubin, et al. “Stress Analysis of the Human Tooth Using a Three-Dimensional Finite Element Model,” J Dent Res, pp. 82-86. (Feb. 1983).
Rudge, “Dental arch analysis: Arch Form, A review of the literature”, European J. of Orthod., vol. 3, No. 4 (1981), pp. 279-284.
Sakuda, et al. “Integrated information-processing system in clinical orthodontics: An approach . . . ”, Am. J. Orthod. Dentofac. Ortho., vol. 101, No. 3 (Mar. 1992), pp. 210-220.
Schellhas, et al. “Three-Dimensional Computed Tomography in Maxilliofacial . . . ”, Arch Otolamgol Head Neck Surg. vol. 114, (Apr. 1988), pp. 438-442.
Schroeder, et al. Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey (1998) Chapters 6, 8 & 9, (pp. 153-210, 309-354, and 355-428, respectively).
Shilliday, “Minimizing Finishing Problems with the Mini-Positioner”, Am. J. Orthod., vol. 59 (1971), pp. 596-599.
Sinclair, The Readers' Corner, Journal of Clinical Orthodontics, vol. 26, No. 6 (Jun. 1992) pp. 369-372.
Sirona Dental Systems GmbH, “CEREC 3D, Manuel utiliseur, Version 2.0X” (in French), 2003, 114 pages.
Stoll, et al. “Computer-aided Technologies in Dentistry”, (Article Summary in English, Article in German), Dtsch Zahnarztl, vol. 45 (1990), pp. 314-322.
Truax, “Truax Clasp-Less(TM) Appliance System,” Funct. Orthod., 9(5):22-4, 26-8 (Sep.-Oct. 1992).
U.S. Dept. of Commerce, Nat. Tech. Info. Service, “Automated Crown Reapplication . . . ”, Solid Photography Inc., Melville, NY, Oct. 1977, 20 pgs.
U.S. Dept. of Commerce, Nat. Tech. Info. Service, “Holodontography: An Introduction . . . ”, School of Aerospace Medicine Brooks AFB Tex, Mar. 1973, 37 pg.
U.S. Appl. No. 60/050,342, filed Jun. 20, 1997, 27 pgs.
Van Der Linden, et al. “Three-Dimensional Analysis of Dental Casts by Means of the Optocom”, J. Dent. Res, vol. 51, No. 4 (Jul.-Aug. 1972), pp. 1101.
Van Der Linden, et al. “A New Method to Determine Tooth Positions and Dental Arch Dimensions”, J. Dent. Res, vol. 51, No. 4 (Jul.-Aug. 1972), pp. 1104.
Van Der Zel, “Ceramic-fused-to-metal Restorations with a New CAD/CAM System”, Quintessence International, vol. 24, No. 11 (1993), pp. 769-778.
Varady, et al. “Reverse Engineering of Geometric Models—An Introduction”, Computer-Aided Design, vol. 29, No. 4 (1997), pp. 255-268.
Warunek, et al. “Clinical Use of Silicone Elastomer Appliances”, JCO, (Oct. 1989), pp. 694-700.
Warunek, et al. “Physical and Mechanical Properties of Elastomers in Orthodontic Positioners”, Am. J. ORthod. Dentofac. Ortho., vol. 95 (1989) pp. 389-400.
Wells. “Application of the Positioner Appliance in Orthodontic Treatment”, Am. J. ORthod. vol. 58 (1970), pp. 351-366.
Williams, “Dentistry and CAD/CAM: Another French Revolution”, J. of Dental Practice Admin., (Jan/Mar. 1987), pp. 2-5.
Williams, “The Switzerland and Minnesota Developments in CAD/CAM”, J. of Dental Practice Admin., (Apr./Jun. 1987), pp. 50-55.
Wishan, “New . . . ”, Symposium: Comp. Facial Imaging . . . Presented on Sep. 13, 1990, New Orleans, J. of Oral and Max. Surgery, vol. 48, No. 8, Supp.1 (Aug. 1990), pp. 5.
Yamamoto, et al. “Three-Dimensional Measurement of Dental Cast Profiles . . . ”, Annual INt'l Conf. of IEEE Eng. in Med. and BiologySoc., vol. 12, No. 5 (1990), pp. 2052-2053.
Yamamoto, et al. “Optical Measurement of Dental Cast Profiles . . .”, Frontiers in Med. and Bio. Eng., vol. 1, No. 2 (1988), pp. 119-130.
Communication Pursuant to Article 94(3) EPC from related EP Application No. 09746147, dated Oct. 2, 2017, 8 pages.
Alcaniz et aL; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996.
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017.
Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances—Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing and any foreign priority date); 1998.
Allesee Orthodontic Appliances: DuraClearTM; Product information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; (product information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003.
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989.
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987.
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004.
Berland; The use of smile libraries for cosmetic dentistry; Dental Tribunne: Asia pacfic Edition; pp. 16-18; Mar. 29, 2006.
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive,Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004.
Bookstein; Principal warps: Thin-plate splines and decomposition of deformations; IEEE Transactions on pattern analysis and machine intelligence; 11(6); pp. 567-585; Jun. 1989.
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/'pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996.
Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979.
Cadent Inc.; OrthoCAD ABO user guide; 38 pages; Dec. 21, 2005.
Cadent Inc.; Reviewing and modifying an orthoCAD case; 4 pages; Feb. 14, 2005.
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993.
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010.
Daniels et al.; The development of the index of complexity outcome and need (ICON); British Journal of Orthodontics; 27(2); pp. 149-162; Jun. 2000.
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Dentrix; Dentrix G3, new features; 2 pages; retrieved from the Internet (http://www.dentrix.com/g3/new_features/index.asp); on Jun. 6, 2008.
Dicom to surgical guides; (Screenshot)1 page; retrieved from the internet at YouTube (https://youtu.be/47KtOmCEFQk); Published Apr. 4, 2016.
Di Giacomo et al.; Clinical application of sterolithographic surgical guides for implant placement: Preliminary results; Journal Periodontolgy; 76(4); pp. 503-507; Apr. 2005.
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018.
Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004.
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7.
Friedrich et al; Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy; J. Biomech.; 32(1); pp. 81-85; (Abstract Only) Jan. 1999.
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003.
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001.
Geomagic; Dental reconstruction; 1 page; retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008.
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002.
Gottschalk et al.; OBBTree: A hierarchical structure for rapid interference detection; 12 pages; (http://www.cs.unc.edu/?geom/OBB/OBBT.html); retieved from te internet (https://www.cse.iitk.ac.in/users/amit/courses/RMP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019.
gpsdentaire.com; Get a realistic smile simulation in 4 steps with GPS; a smile management software; 10 pages; retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008.
Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis; 171 pages; Dec. 2007.
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991.
Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressputonfa..); on Nov. 5, 2004.
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Included); Feb. 1987.
Invisalign; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017.
Karaman et al.; A practical method of fabricating a lingual retainer; Am. Journal of Orthodontic and Dentofacial Orthopedics; 124(3); pp. 327-330; Sep. 2003.
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984.
Mantzikos et al.; Case report: Forced eruption and implant site development; The Angle Orthodontist; 68(2); pp. 179-186; Apr. 1998.
McNamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993.
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006.
Moles; Correcting Mild Malalignments—As Easy As One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.Pdf; on Dec. 2011.
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977.
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004.
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002.
ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the internet (http://www.konsident.com/wp-content/files_mf/1295385693http_ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019.
OrthoCAD downloads; retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp); 2 pages; Feb. 14, 2005.
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002.
Patterson Dental; Cosmetic imaging; 2 pages retrieved from the internet (http://patterson.eaglesoft.net/cnt_di_cosimg.html) on Jun. 6, 2008.
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998.
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000.
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991.
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991.
Rose et al.; The role of orthodontics in implant dentistry; British Dental Journal; 201(12); pp. 753-764; Dec. 23, 2006.
Sahm et al.; “Micro-Electronic Monitoring of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990.
Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 1990.
Sarment et al.; Accuracy of implant placement with a sterolithographic surgical guide; journal of Oral and Maxillofacial Implants; 118(4); pp. 571-577; Jul. 2003.
Siemens; CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin; 15 pagesI: (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004.
Smalley; Implants for tooth movement: Determining implant location and orientation: Journal of Esthetic and Restorative Dentistry; 7(2); pp. 62-72; Mar. 1995.
Smart Technology; Smile library II; 1 page; retrieved from the internet (http://smart-technology.net/) on Jun. 6, 2008.
Smile-VISION_The smile-vision cosmetic imaging system; 2 pages; retrieved from the internet (http://www.smile-vision.net/cos_imaging.php) on Jun. 6, 2008.
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984.
Szeliski; Introduction to computer vision: Structure from motion; 64 pages; retrieved from the internet (http://robots.stanford.edu/cs223b05/notes/Cs%20223-B%20L10%structurefrommotion1b.ppt, on Feb. 3, 2005.
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004.
Thera Mon; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016.
Thorlabs; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012.
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000.
Tru-Tatn Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996.
Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018.
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998.
Vevin et al.; Pose estimation of teeth through crown-shape matching; In Medical Imaging: Image Processing of International Society of Optics and Photonics; vol. 4684; pp. 955-965; May 9, 2002.
Virtual Orthodontics; Our innovative software; 2 pages; (http://www.virtualorthodontics.com/innovativesoftware.html); retrieved from the internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2005.
Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987.
Wiedmann; According to the laws of harmony to find the right tooth shape with assistance of the computer; Digital Dental News; 2nd Vol.; pp. 0005-0008; (English Version Included); Apr. 2008.
Wikipedia; Palatal expansion; 3 pages; retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018.
Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop.; 52(3); pp. 117-125; (Translation Included) Jun. 1991.
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969.
Wong et al.; Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants: Case report; Implant Dentistry; 16(2); pp. 123-130; Sep. 2007.
Wong et al.; The uses of orthodontic study models in diagnosis and treatment planning; Hong Knog Dental Journal; 3(2); pp. 107-115; Dec. 2006.
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998.
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001.
Yaltara Software; Visual planner; 1 page; retrieved from the internet (http://yaltara.com/vp/) on Jun. 6, 2008.
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993.
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998.
Zhang et al.; Visual speech features extraction for improved speech recognition; 2002 IEEE International conference on Acoustics, Speech and Signal Processing; vol. 2; 4 pages; May 13-17, 2002.
Morton et al.; U.S. Appl. No. 16/177,067 entitled “Dental appliance having selective occlusal loading and controlled intercuspation,” filed Oct. 31, 2018.
Akopov et al.; U.S. Appl. No. 16/178,491 entitled “Automatic treatment planning,” filed Nov. 1, 2018.
O'Leary et al.; U.S. Appl. No. 16/195,701 entitled “Orthodontic retainers,” filed Nov. 19, 2018.
Shanjani et al., U.S. Appl. No. 16/206,894 entitled “Sensors for monitoring oral appliances,” filed Nov. 28, 2019.
Shanjani et al., U.S. Appl No. 16/231,906 entitled “Augmented reality enhancements for dental practitioners.” filed Dec. 24, 2018.
Kopleman et al., U.S. Appl No. 16/220,381 entitled “Closed loop adaptive orthodontic treatment methods and apparatuses,” filed Dec. 14, 2018.
Sabina et al., U.S. Appl. No. 16/258,516 entitled “Diagnostic intraoral scanning” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,523 entitled “Diagnostic intraoral tracking” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,527 entitled “Diagnostic intraoral methods and apparatuses” filed Jan. 25, 2019.
Culp; U.S. Appl. No. 16/236,220 entitled “Laser cutting,” filed Dec. 28, 2018.
Culp; U.S. Appl. No. 16/265,287 entitled “Laser cutting,” filed Feb. 1, 2019.
Arnone et al.; U.S. Appl. No. 16/235,449 entitled “Method and system for providing indexing and cataloguing of orthodontic related treatment profiles and options,” filed Dec. 28, 2018.
Mason et al.; U.S. Appl. No. 16/374,648 entitled “Dental condition evaluation and treatment,” filed Apr. 3, 2019.
Brandt et al.; U.S. Appl. No. 16/235,490 entitled “Dental wire attachment,” filed Dec. 28, 2018.
Kou; U.S. Appl. No. 16/270,891 entitled “Personal data file,” filed Feb. 8, 2019.
Related Publications (1)
Number Date Country
20080268400 A1 Oct 2008 US