Dental appliance with cavity for an unerupted or erupting tooth

Information

  • Patent Grant
  • 10537405
  • Patent Number
    10,537,405
  • Date Filed
    Monday, August 14, 2017
    7 years ago
  • Date Issued
    Tuesday, January 21, 2020
    4 years ago
Abstract
A method includes to receive, via a computing device, data representing a plurality of teeth, identify data indicating which of the plurality of teeth are unerupted or erupting, predict at least one characteristic of a tooth of the unerupted or erupting teeth after they have fully erupted using one or more tooth eruption prediction factors, generate new data representing the unerupted or erupting teeth in multiple states of eruption based upon the predicted at least one characteristic of the fully erupted teeth, and generate a series of incremental tooth arrangements with the new data to define a proposed orthodontic treatment based on the new data representing the unerupted or erupting teeth in multiple states of eruption.
Description
BACKGROUND

The present disclosure is related generally to the field of dental treatment. More particularly, the present disclosure is related to systems, methods, computing device readable media, and devices for creating a dental appliance having a cavity for an unerupted or erupting tooth.


Dental treatments may involve, for instance, restorative and/or orthodontic procedures. Restorative procedures may be designed to implant a dental prosthesis (e.g., a crown, bridge inlay, onlay, veneer, etc.) intraorally in a patient. Orthodontic procedures may include repositioning misaligned teeth and changing bite configurations for improved cosmetic appearance and/or dental function. Orthodontic repositioning can be accomplished, for example, by applying controlled forces to one or more teeth over a period of time.


As an example, orthodontic repositioning may be provided through a dental process that uses positioning dental appliances for realigning teeth. Such appliances may utilize a thin shell of light weight and/or transparent material having resilient properties, referred to as an “aligner,” that generally conforms to a user's teeth but is slightly out of alignment with a current tooth configuration.


An example of orthodontic repositioning that can occur through a dental process is a process that uses one or more positioning dental appliances for realigning teeth. Placement of an appliance over the teeth can provide controlled forces in specific locations to gradually move the teeth into a new configuration. Repetition of this process with successive appliances in progressive configurations can move the teeth through a series of intermediate arrangements toward a final desired arrangement.


In some applications, one or more teeth may not have fully emerged from the gingiva into their final position in the patient's mouth. This process is often referred to as eruption of a tooth. As used herein, a tooth that has not emerged from the gingiva is referred to as not erupted, a tooth that has emerged from the gingiva and is moving toward its final position is referred to as partially erupted, and a tooth in its final position, when discussing eruption, is referred to herein as fully erupted.


Such dental appliances have cavities formed in the shell of the appliance into which one or more teeth will be positioned. Further, dental appliances used as aligners rely on resilient properties of the aligner material to impart force on one or more teeth to move the teeth and as such a space in the shell for an erupting tooth has to be provided for the shell and also has to be designed to provide whatever force is desired by the treatment plan. Therefore, design of the space on the shell cannot be done in a trivial manner.


When designing dental appliances for patients with erupting teeth, it can be difficult to provide an appropriately shaped appliance when little or nothing may be known about the tooth that is emerging or has yet to emerge. For example, orthodontic patients at growing ages often start their treatment when permanent canines and/or bicuspids are not fully erupted.


Natural eruption of these teeth is utilized to erupt the teeth. This process provides enough space in the arch and prevents interference with aligner structure during eruption, since even small magnitude of consistent or repeated force can impede or stop eruption.


Further, in some instances, the cavity for the erupting tooth may be sized incorrectly for the erupting tooth (e.g., based upon the space within the patient's mouth prior to the tooth erupting or in the early stages of eruption). Additionally, it may be difficult to predict the speed at which the tooth may erupt and, therefore, the shell may be designed such that it does not accommodate the tooth properly as it erupts. In some such instances, the tooth may contact one or more surfaces of the cavity which may slow the eruption process, cause discomfort to the patient, and/or unintentionally change the positioning of the appliance, among other possible issues.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates examples of virtual geometries of several types of teeth according to one or more embodiments of the present disclosure.



FIG. 2 illustrates examples of standard virtual geometries of several types of teeth that can be created according to one or more embodiments of the present disclosure.



FIG. 3 illustrates an example view of a portion of a virtual model of an upper jaw and lower jaw of a patient that can be used in creating an appliance according to one or more embodiments of the present disclosure.



FIG. 4 illustrates an example of a process for treatment planning of the present disclosure.



FIG. 5 provides an example of a prior art cavity for an erupting tooth in the left image and an example of a cavity for an erupting tooth according to one or more embodiments of the present disclosure in the right image.



FIG. 6 provides an example of a straight line placement for an erupting tooth in the left image and an example of an arch line placement for an erupting tooth according to one or more embodiments of the present disclosure in the right image.



FIG. 7 illustrates examples of erupted canine teeth that are positioned with buccal displacement and palatal displacement.



FIG. 8 illustrates a system for treatment planning according to one or more embodiments of the present disclosure.



FIG. 9 illustrates an example of a method embodiment of the present disclosure for creating a dental appliance having a cavity for an unerupted or erupting tooth.





DETAILED DESCRIPTION

The present disclosure is related to systems, methods, computing device readable media, and devices for creating a dental appliance having a cavity for an unerupted or erupting tooth. Currently, some of the most often heard clinical barriers for teen utilization of dental appliances are the challenges due to unerupted teeth.


Doctors have a hard time predicting eruption time, rate, size of the tooth, orientation, and/or location during the course of a dental treatment process. Embodiments of the present disclosure can more closely predict tooth dimension and/or position. Embodiments of the present disclosure also can utilize a bubbled space to form a cavity in the shell of the device for placement of the erupting tooth to better ensure natural eruption with reduced or minimized potential interference with surfaces of the dental appliance. However, it is not just about making the cavity bigger, the cavity has to be sized to be accommodated by the other items around the cavity (e.g., adjacent teeth, gingiva, teeth of the opposing jaw, the tongue of the patient, etc.).


Such features can lessen a treatment professional's concerns of eruption during treatment, among other benefits. Reducing the above mentioned clinical barrier for teen utilization can enable treatment professionals to treat more patients. Also, current virtual geometry analysis may require a treatment professional to manually adjust the model of the patient's teeth, which can result in treatment inconsistency. Embodiments of the present disclosure include embodiments that can be largely based on an automated procedure thus reducing technician process time and maximizing protocol consistency.


The present disclosure also includes device embodiments. For example, in some embodiments, the device is appliance designed to implement at least a portion of a treatment plan, comprising a shell having a plurality of cavities therein designed to receive teeth of a jaw with at least one of the plurality of cavities being a cavity for accommodating an unerupted or erupting tooth therein, wherein at least one of a size, shape, location, and orientation of at least one of the cavities for accommodating an unerupted or erupting tooth are based upon a prediction of at least one of a size, shape, location, or orientation of the unerupted or erupting tooth.


Additionally, embodiments of the present disclosure can include system embodiments wherein multiple dental appliances can be used in sequence to move one or more teeth according to a treatment plan developed by a treatment professional. For example, in some embodiments, the dental appliance system can include a first appliance of a series of appliances designed to incrementally implement a treatment plan, comprising a first shell having a plurality of cavities therein designed to receive teeth of a jaw in a first stage of the treatment plan with at least one of the plurality of cavities being a cavity for accommodating an unerupted or erupting tooth therein.


The system can also include a second appliance of the series of appliances, comprising a second shell having a plurality of cavities therein designed to receive teeth of the jaw in a second stage of the treatment plan the second shell having a cavity that corresponds with the cavity for accommodating an unerupted or erupting tooth of the first shell and wherein the cavities for accommodating an unerupted or erupting tooth are sized, shaped, located, and/or oriented based upon a prediction of the size, shape, location, and/or orientation of the unerupted or erupting tooth according to each shell's respective treatment stage. In this manner, as one or more of the teeth erupt, the cavities of the shell can be adjusted to more accurately fit each tooth as it erupts.


In various embodiments, the cavities for accommodating an unerupted or erupting tooth each differ in at least one tooth eruption prediction factor (e.g., size, shape, location, and orientation). This can be accomplished, for example, by utilizing data representing the unerupted or erupting teeth in multiple states of eruption that is based upon the predicted size, shape, location, and/or orientation of the fully erupted teeth to adjust one or more of the size, shape, location, and orientation of the cavity.


At least one of the size, shape, location, and orientation can also be determined and/or adjusted based upon other tooth eruption prediction factors, as discussed in more detail herein. For example, the cavities for accommodating an unerupted or erupting tooth can be sized, shaped, located, and oriented based on data including: a size, shape, location, and orientation of a tooth adjacent to the unerupted or erupting tooth and/or based on data including: a size, shape, location, and orientation of an opposing tooth (i.e., a tooth on the opposing jaw of the patient that may interact with the unerupted or erupted tooth) to the unerupted or erupting tooth. The cavities for accommodating an unerupted or erupting tooth can also, alternatively or additionally be sized, shaped, located, and/or oriented based on data including: a size, shape, location, and/or orientation of a tooth that is the same type of tooth as the unerupted or erupting tooth (i.e., canine, premolar, etc.).


In some embodiments, the cavities for accommodating an unerupted or erupting tooth include a gingival edge and wherein the gingival edge is located and shaped based upon a prediction of the location and shape of the gingiva that will be adjacent to the gingival edge according to each shell's respective treatment stage. In this manner, the cavity gingival edge location and shape can be adjusted to provide more specialized force characteristics due to the adjustability between dental appliances. For example, as a tooth emerges during the stages of a treatment plan in which dental appliances are used, the gingival edge of each appliance can be shaped different to accommodate the different shape of the gingiva as the tooth emerges from it.


In some such embodiments, a predicted characteristic, such as the predicted orientation of the erupting tooth can be made more precise, for example, by using additional information from the patient, such as, for example, if the crown and/or root of the erupting tooth is visible from a 2-dimensional (2D) scanning technique, such as an x-ray image, (e.g., the long axis orientation of the erupting tooth could be measured in the plane of the x-ray image), this information could be used as a predictor of the orientation of the crown of the erupting tooth.


In another example, if the crown of the erupting tooth or the root is visible from the output of a 3-dimensional (3D) scanning technique, such as Cone Beam Computed Tomography (CBCT), a characteristic can be predicted. For example, the long axis orientation of the erupting tooth could be measured in three dimensions, relative to the adjacent neighboring teeth that are visible the virtual treatment data. Then, this information could be used as a predictor of a characteristic, such as the orientation of the crown of the erupting tooth.


There are also many other aspects of the embodiments of the present disclosure that will be discussed in more detail below, in reference to the examples provided in the drawings. In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how a number of embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process and/or structural changes may be made without departing from the scope of the present disclosure. As used herein, “a number of” a particular thing can refer to one or more of such things (e.g., a number of forces can refer to one or more forces).


As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, as will be appreciated, the proportion and the relative scale of the elements provided in the figures are intended to illustrate certain embodiments of the present invention, and should not be taken in a limiting sense.



FIG. 1 illustrates examples of virtual geometries of several types of teeth according to one or more embodiments of the present disclosure. In the embodiment illustrated in FIG. 1, a number of tooth anatomies (e.g., ten, twenty, one-hundred, etc.) were selected and were compared to each other (e.g., overlaid over each other) to create a tooth shape (a generic dimensional tooth design) that includes that maximum possible dimensions of the target tooth. For example, a first tooth shape has a particular shape and when compared to a second tooth, of the same type, the second tooth will have a different shape with a different outer contour in multiple dimensions such that it may, for example have a larger mesiodistal (MD) length than the first tooth, but a smaller buccolingual (BL) length.


In such an embodiment, the comparison can overlay the two data sets and take the data points that are furthest from a reference point (e.g., a center point in the tooth) to create a tooth shape that is the maximum dimensions of the two combined data sets. This methodology can be accomplished with data sets of more than two teeth (e.g., tens, hundreds, thousands, millions, etc. of data sets of teeth can be used).


This created generic dimensional tooth design information can be used for each target tooth to aid in predicting at least one of the size, location, shape, and/or orientation of the target tooth and to provide a general tooth shape that can be utilized for any patient's target tooth.


The anatomies can be provided from a variety of resources. For example, anatomies can be provided from other patient cases, one or more pontic galleries, typodonts, and/or other teeth of the patient, among other resources. Further, the selection can, for example, be made automatically (e.g., based upon computing executable instructions that compare the anatomies to each other, as discussed above, and/or to a predicted shape, size, location, and/or orientation of the unerupted or erupting tooth based on the compared anatomies) or by a treatment professional of computing device operator.


From these selections, a generic dimensional design that envelops the outermost surface of the overlaid geometries can be created, as discussed above. The generic envelope can, for example, be represented as a custom-designed parametric 3D surface model, approximating tooth geometry. For instance, in some simpler embodiments, the generic surface is a fixed, custom-designed geometric shape, and parameters allow for scaling each dimension (e.g., mesiodistal, buccolingual, coronal-apical) independently. In other embodiments, the surface may be represented by a set of parametric surfaces (e.g., non-uniform rational B-splines). In such embodiments, control points and any other parameters of the surface can, for instance, be adjusted to approximate the outermost surface of the overlaid geometries.


In other embodiments, such as that illustrated in the embodiment of FIG. 1, two tooth envelopes (i.e., 100 and 102 show a first envelope 101 around a canine tooth 103 and 104 and 106 show a second envelope 105 around a bicuspid tooth 107) are shown from two perspectives. In some embodiments, this information can be displayed, such as on a display of a computing device, as illustrated in FIG. 1. However, in some embodiments, the information is data that is used within the process of creating one or more dental appliances and is not displayed.


The outermost surface of the overlaid geometries creates a bubble-like form 101 that represents the maximum extent to which a tooth should extend outward from a reference point in three dimensions (at least, based upon the selected anatomies used in the calculation above). In this manner, a dental appliance cavity having a size, shape, location, and/or orientation similar to that of the bubble-like form with respect to that particular tooth type should not contact any surface of the erupting tooth. Embodiments of the present disclosure can take this information into account when designing the dental appliances.


From this calculation of one or more of the predicted tooth shapes, locations, orientations, and sizes and the potential bubble-like forms, one or more standard geometries can be created, as discussed in more detail with respect to FIG. 2. FIG. 2 illustrates examples of standard virtual geometries for several types of teeth that can be created according to one or more embodiments of the present disclosure. Shown in FIG. 2 are shapes based on the generic dimensional design information, for example, from FIG. 1. The shapes in FIG. 2 are designed to universally envelop the maximum data points from a reference point in a comparison of multiple data sets.


In some embodiments, the virtual geometry shape of the tooth and/or the bubble can be made more precise, using additional information from the patient of the target tooth. For example, if the crown of the unerupted or erupting tooth is visible from a 2D scanning technique (e.g., an x-ray image), the mesiodistal and coronal-apical size of the crown can be measured in the x-ray image, (e.g., proportionally to one or more neighboring fully-erupted teeth and used to compute the size of the geometry of the tooth to be erupted). This patient specific information can be used to modify the generic dimensional design shape to make the shape more precise to the patient's mouth.


For example, the size could be measured manually and entered in the software by a user, it could be detected semi-automatically by selected one or more landmark points (e.g., four points: mesial, distal, coronal, and apical could be selected and then the process could be done automatically, via computing device executable instructions using these points) on an unerupted or erupting tooth crown and neighboring teeth, or could be detected automatically, for example, by contour detection and other image processing techniques and this information could be used in creating the generic dimensional design and/or modifying a generic dimensional design shape created from non-patient data sets.


In a further example, if the crown of the erupting tooth that has not emerged from the gingiva is visible from the output of a 3D scanning technique, such as CBCT, the crown surface of the unerupted tooth could be reconstructed partially or completely. In case of a partial reconstruction, the crown could, for example, be completed using generic crown data (for an example of generic crown data, see patent: U.S. Pat. No. 7,865,259). Then, the size of the crown to be erupted can be measured from the reconstructed 3D data. In addition, the 3D shape of the virtual geometry to be reconstructed can be derived from the scanned geometry. Such methods can be complementary to or used as an alternative to a tooth size regression model as discussed elsewhere herein.


In the examples of FIG. 2, standard virtual geometries are shown for four tooth types. Geometry 208 represents a lower 2nd bicuspid, geometry 210 represents an upper 2nd bicuspid, geometry 212 represents a lower canine, and geometry 214 represents an upper canine.


As these geometries were created by utilizing data from multiple, and in some cases many, tooth anatomies, these standard virtual geometries may be able to be utilized on a tooth of that type in many patients. In patients in which such standard geometries may not fit or where further precision is desired, further refinement processes are discussed in more detail herein. The geometries shown represent a bubble-like form that can be used to determine that shape of a cavity to be formed within a shell of a dental appliance.



FIG. 3 illustrates an example view of a portion of a virtual model of an upper jaw and lower jaw of a patient that can be used in creating an appliance according to one or more embodiments of the present disclosure. As discussed herein, one or more of the neighboring teeth can be used to help predict the size, shape, location, and/or orientation of an unerupted or erupting tooth. For example, if the unerupted or erupting tooth is in tooth position #6 on the upper jaw 316, then one or more teeth in positions #5 and #7 (adjacent teeth) and #27 and #28 (opposing teeth) can be utilized.


Additionally, a tooth in another part of the mouth that has already erupted (partially or fully) that is of the same tooth type can be utilized, in some embodiments. For example, if one upper canine is unerupted, but the other canine tooth, sometimes referred to as a “counterpart tooth”, has erupted, one or more of the tooth eruption prediction factors may be present in the counterpart tooth (e.g., the characteristics: size, location, shape, and/or orientation) which can be used to predict the size, shape, location, and/or orientation of the erupting or unerupted tooth, alone or in combination with one or more neighboring teeth of an unerupted or erupting tooth.


As discussed above, in some embodiments, the expected dimensions of a partially-erupted or unerupted tooth can be extrapolated from the known characteristics of one or more neighboring teeth (adjacent, opposing, and/or counterpart tooth). For instance, one or more of the tooth eruption prediction factors, such as, Buccolingual (BL) widths and/or Mesiodistal (MD) widths of partially erupted or fully erupted neighboring teeth can be used as regressors in a multivariate regression model, as discussed in more detail below. Such an analysis can, for example be used in a tooth size prediction.



FIG. 4 illustrates an example of a process for treatment planning of the present disclosure. In this example, the case is first checked to determine whether or not the patient has erupting teeth at 409. If the patient does have erupting teeth, those one or more teeth are identified. These processes can be accomplished by executable instructions that, for example, check tooth size, location, shape, and/or orientation to determine substantial matches to the size, location, shape, and/or orientation of a tooth in a typodont, pontic gallery or a standard virtual geometry, as discussed herein.


In the embodiment of FIG. 4, the method analyzes the data of the counterpart, adjacent, and/or opposing teeth to determine at least one dimension (e.g., X, Y, and/or Z dimension data in a three dimensional coordinate system) of each of the counterpart, adjacent, or opposing teeth to be utilized in the prediction of the size, shape, location, and/or orientation of the erupting or unerupted tooth and/or the size, shape, location, and/or orientation of the cavity to be created on the shell of one or more dental appliances at 411


In some embodiments, such as that shown in the embodiment of FIG. 4, a multivariate regression model or other suitable model, such as others described herein can be utilized to further refine the dimension of the erupting or unerupted tooth and/or the size, shape, location, and/or orientation of the cavity to be created on the shell of one or more dental appliances at 413. This type of model can, for example, be utilized where there are multiple adjacent, opposite, or counterpart teeth that are being used in such analysis.


For instance, multiple teeth can be used in a prediction model. In such an implementation, the number of teeth to be used in modeling can, for example, be identified, a model that can use that number of teeth can be selected, the regression process can be applied to the tooth data through use of the selected regression model. This analysis can be used to determine one or more projected tooth dimensions as illustrated in FIG. 4.


In some embodiments, one or more standard virtual geometry and/or pre-defined virtual geometry (e.g., from pontic gallery, partially erupted or fully erupted counterpart tooth) dimensions, for example, as discussed with respect to FIGS. 1 and 2 above, can be customized to match the one or more projected tooth dimensions. Once such a virtual geometry is selected, data can be used to determine how to scale the virtual geometry size up or down to better fit with the size of the teeth of the patient. In some embodiments, a scaling factor can be applied to one or more virtual geometry dimensions to match the one or more projected tooth dimensions or create a bubbled virtual geometry. A scaling factor can be used to scale a dimension up or down. For example, in order to ensure that the erupting tooth does not contact a surface of the cavity, a Z dimension of the projected tooth dimensions could be scaled up such that the tooth would not extend that far from the patient's gingiva or other reference point.


In some embodiments, each dimension could be scaled differently. For example, the X dimension scaled up by 5%, the Y dimension by 3%, and the Z dimension by 7%. In some embodiments, a scaling factor can also be applied to one or more of the standard virtual geometry dimensions. This can be done to change the dimensions of virtual geometries from various sources before they are compared to the projected dimensions of the erupting or unerupted tooth or to adjust the virtual geometry dimensions so that their dimensions will be different going forward as applied to the next patient.


These various processes can be used to calculate one or more projected dimensions of the target tooth (e.g., as illustrated at 415) and to create a customized virtual geometry for a particular tooth of a particular patient, and/or at a particular time in a treatment process, for example as shown at 417. Alternatively or additionally, a bubbled virtual geometry can also be calculated (e.g., at 419 of FIG. 4), in some embodiments. In these ways, each patient may have a customized fit for their dental appliances based on the individualized analysis done utilizing one or more of the processes described above.


As illustrated in FIG. 4, the virtual geometry can then be inserted into a virtual model of the patient's jaw for planning of the movement of the teeth of the patient and/or design of one or more dental appliances, as shown at 421. The virtual geometry can then be positioned and oriented to provide a treatment plan for treating the patient based on the modified geometry provided by the embodiments of the present disclosure, as illustrated at 423.


In various embodiments, the number of regressors and/or models can vary depending on the availability of partially or fully erupted neighboring teeth. For example, 5-regressor model can be chosen if two adjacent teeth, two opposing teeth, and the counterpart tooth on the other side of the patient's arch are all fully erupted.


A 3-regressor model could be selected if, for example, two adjacent teeth and one opposing tooth are fully erupted. Then, a standard virtual geometry that has been refined based on such a regression can be scaled up/down accordingly to contain the projected unerupted tooth with an appropriately sized and shaped bubbled space. As discussed herein, the scaling can be different for different dimensions of the virtual geometry.


Bubble thickness for each virtual geometry can be constant or varying, for example, in MD and BL directions. All of the numerical calculations including expected tooth dimension and/or scaling factor can be automated (e.g., via executable instructions) in order to reduce or minimize manual adjustment by treatment professionals or computing device operators and to improve treatment protocol consistency, among other potential benefits. Embodiments that create virtual geometries of a customized tooth size with a bubbled space can, for example, minimize potential size mismatch of virtual geometries with the real tooth during/after eruption, among other potential benefits.


In some embodiments, a placed virtual geometry, (especially those with a bubbled geometry) might collide with a tooth (e.g., virtual geometry) in the opposing arch (i.e., an inter-arch collision), which could result in an open bite (where the jaws do not mate or close fully) upon occlusion. One solution for this is to reshape the virtual geometry by removing the volume of the cavity that will collide with the opposing arch.


The volume can, for example, be dynamically adjusted according to the staged position of the opposing teeth during the treatment to ensure desired occlusion. The volume to be removed, can be identified by, for example, in a virtual model, moving the jaws to a fully closed position and then reviewing the data to identify where teeth may be overlapping. Once overlapped areas are identified, modifying the virtual geometry in one or more dimensions to remove any overlapping areas and/or modifying one or more surfaces to better mate the surfaces of opposing teeth together.



FIG. 5 provides an example of a cavity for an erupting tooth in the left image and an example of a cavity for an erupting tooth according to one or more embodiments of the present disclosure in the right image. As discussed above, in some embodiments, the gingival edge (e.g., 524 and 530 of the images of FIG. 5) of the dental appliance can be shaped to provide greater force distribution to the rest of the appliance, among other benefits. In devices, such as that shown in the left image of FIG. 5, gingival edge 524 for virtual geometries is, in many cases, virtually bypassed which can result in a short crown height of the cavity 520 in manufactured aligners. The goal of such implementations is to prevent unwanted contact with erupting tooth 522.


In embodiments of the present disclosure, the gingival edge 530 of the cavity 526 having the erupting tooth 528 therein can be shaped similarly to when the tooth is fully erupted and thus aligner mechanical integrity is not compromised and there are fewer chances for distortion and breakage. In some embodiments, the gingival edge can be adjusted from one appliance to a subsequent appliance worn during a later stage in treatment as the tooth continues to erupt and, therefore, one or more appliances in a series of appliances for implementing a treatment plan may have differently shaped gingival edges.



FIG. 6 provides an example of a straight line placement for an erupting tooth in the left image and an example of an arch line placement for an erupting tooth according to one or more embodiments of the present disclosure in the right image. In the prior art implementation illustrated in the left image of FIG. 6, virtual geometries were placed in the arch based on a tooth placement algorithm where the virtual geometry was positioned in the mid-point 639 of a straight line 637 connecting the contact points (i.e., the points at which two adjacent teeth contact each other or would contact each other if they were moved into contact) of two adjacent teeth. Therefore, prior art virtual geometry placement algorithm can result in inherent errors where virtual geometries may be positioned more lingually than where the naturally erupting tooth would be. This shortcoming can be more pronounced with canines than premolars, since canine location in the arch typically is in the most convex curvature area.


Embodiments of the present disclosure can utilize a placement methodology that is based on an arch form analysis (i.e., accounting for the arched shape of the jaws of a patient and the arched pattern in which the teeth are positioned thereon) rather than a straight line methodology to reduce such inherent placement errors. The right image of FIG. 6 provides such an embodiment. In the right image, the arch form is illustrated by line 635. In such an embodiment, instead of taking the mid-point of a straight line 637, the methodology takes into account the location of the arch form 635.


In some embodiments, the arch form concept is incorporated into the computation used to position teeth. For example, historical data from one or more patients (in some instances, this analysis can include, for example, tens, hundreds, thousands, or millions of patients) can be analyzed and a distance or numerical value, between a naturally erupted tooth position and a tooth position placed at the mid-point of a straight line, can be determined. This predetermined distance or amount can then be applied to any patient and used to adjust the patient's tooth such that it gets closer to the arch form.


In such embodiments, the arch form information can be utilized to identify, where the tooth will be positioned such that it contacts the two adjacent teeth (e.g., that dots at the end of the straight line 637) and the line of the arch form (e.g., at point 641). As can be seen from this illustration, the tooth is therefore moved out a distance from mid-point of the straight line which should place the tooth in a more desirable position.



FIG. 7 illustrates examples of canine teeth that are naturally erupted with buccal displacement and palatal displacement. In FIG. 7, the images illustrate the different positions of two teeth 731 and 733. The left image provides an example of buccally displaced canine teeth and the the right image provides an example of palatally displaced canine teeth. Although these teeth are erupted, FIG. 7 is provided to allow the reader to better understand the concepts of buccal displacement and palatal displacement.


In some situations, the available arch space is not sufficiently large for the erupting tooth. In such situations, the normal eruption of the tooth can be hindered such that the tooth may not erupt into a location along the arch form, as shown in the examples of FIG. 7.


Therefore, the tooth may erupt at deviated locations to avoid collision with neighboring teeth, resulting in namely buccal displacement or palatal displacement of the erupting tooth, as defined in the current disclosure. As used herein, buccal displacement occurs when a tooth erupts in a more buccal position than its adjacent teeth and/or arch form, and palatal displacement occurs when a tooth erupts in more lingual position than its adjacent teeth and/or arch form. Such displacements may become a challenge for tooth placement algorithms and therefore, a treatment professional may have to provide input to make sure that the dental model accurately represents the patient's dentition.


In such situations, various embodiments of the present disclosure can be utilized to use available space size in the arch and the predicted dimension of erupting tooth in a single- or multi-variate regression model (e.g., a buccal displacement canine (BDC) prediction model) to determine a potential displacement magnitude of the erupting tooth for buccally displaced canines in upper and/or lower jaws. The potential displacement magnitude can be determined, for example, by determining the difference in available space size and predicted tooth Mesioddistal (MD) width as a first regressor in the BDC prediction model. The larger the Buccolingual (BL) width of erupting tooth is, the more pronounced the buccal-displacement may be. Therefore, the predicted BL width of the erupting tooth can be used as an additional regressor in the BDC prediction model.


Once it is decided that a buccally displaced eruption of one of the patient's canines is expected from clinical assessment, the BDC prediction model can, for example, be additionally applied to the tooth placement algorithm to improve accuracy of virtual geomtry location for an erupting tooth. Clinical assessment can be made by treatment professionals, for example, by using gingival palpation, visual inspection, X-ray, CBCT scan, etc. In this manner, the displacement of one or more teeth can be accounted for in design of one or more of the dental appliances fabricated for a patient.


As discussed above, appliances according to the present disclosure can include, in some embodiments, a plurality of incremental dental position adjustment appliances. The appliances can be utilized to incrementally implement a treatment plan such as by affecting incremental repositioning of individual teeth in the jaw, among other suitable uses. In some implementations, appliances can be fabricated according to a virtual dental model that has had positions of a number of teeth adjusted according to one or more embodiments of the present disclosure.


Appliances can also include any positioners, retainers, and/or other removable appliances for finishing and/or maintaining teeth positioning in connection with a dental treatment. These appliances may be utilized by the treatment professional in performing a treatment plan. For example, a treatment plan can include the use of a set of appliances, created according to models described herein.


An appliance can, for example, be fabricated from a polymeric shell, and/or formed from other material, having a plurality of cavities therein. The cavities can be designed (e.g., shaped) to receive one or more teeth and/or apply force to reposition one or more teeth of a jaw from one teeth arrangement to a successive teeth arrangement. The shell may be designed to fit over a number of, or in many instances all, teeth present in the upper or lower jaw.


A cavity can be shaped to mate with a particular tooth. For example, a particular cavity can be shaped to mate with three surfaces of a corresponding tooth to be received therein. The cavity may be slightly out of alignment with a current configuration of the particular tooth (e.g., to facilitate aligning the particular tooth to a desired configuration), but the cavity can generally conform to the shape of the particular tooth such that there is not much space between the cavity and the particular tooth when the appliance is worn.


As used herein, a “first stage” does not necessarily mean the original stage of a treatment plan, but is a relative term with respect to other stages. For example, the “first stage” may be a second stage of a 25 stage treatment plan, while the “second stage” may be a tenth stage of the 25 stage treatment plan, with the “third stage”, for example, being a 15th stage of the 25 stage treatment plan, and the “fourth stage” may be a 24th stage of the 25 stage treatment plan.


Although not specifically illustrated, in some embodiments, for a particular stage in a treatment plan, both an upper appliance (an appliance designed to fit over teeth of a user's upper jaw) and lower appliance (an appliance designed to fit over teeth of a user's lower jaw) can be designed to interface with each other.



FIG. 8 illustrates a system for treatment planning according to one or more embodiments of the present disclosure. A number of embodiments of the present disclosure include instructions that are executable by a processor (e.g., software), which can be fixed in a non-transitory computing device readable medium, to model, for example, a user's jaws (e.g., including teeth, roots, gingiva, and/or supporting structure, etc.).


The instructions can be executed to create and/or modify a treatment plan to incrementally adjust the user's teeth and/or bite, among other adjustments, via application of a series of appliances as described herein. The instructions can be executed to provide modified models of the user's jaws for each of the various stages of the treatment plan for fabrication (e.g., via rapid prototyping such as stereolithography) of physical models corresponding to the virtual models. The physical models can be used for the fabrication (e.g., via thermoforming) of appliances thereover. In some embodiments, executable instructions can create the appliances directly from the virtual model without the use of a mold.



FIG. 8 illustrates a system for treatment planning according to one or more embodiments of the present disclosure. In the system illustrated in FIG. 8, the system includes a computing device 832 having a number of components coupled thereto. The computing device 832 includes a processor 834 and memory 836.


The memory 836 can include various types of information including data 838 and executable instructions 840, as discussed herein. The memory can be a non-transitory computing device readable medium having instructions stored thereon that are executable by a processor to cause a computing device perform various functions as described herein. Additionally, memory can hold data that can be used in the performance of the executable instructions (e.g., data regarding the dimensions of a neighboring tooth).


Memory and/or the processor may be located on the computing device 832 or off the device, in some embodiments. As such, as illustrated in the embodiment of FIG. 8, a system can include a network interface 842. Such an interface can allow for processing on another networked computing device or such devices can be used to obtain information about the patient or executable instructions for use with various embodiments provided herein.


As illustrated in the embodiment of FIG. 8, a system can include one or more input and/or output interfaces 844. Such interfaces can be used to connect the computing device with one or more input or output devices.


For example, in the embodiment illustrated in FIG. 8, the system includes connectivity to a scanning device 846, a camera dock 848, an input device 850 (e.g., a keyboard, mouse, etc.), a display device 852 (e.g., a monitor), and a printer 854. The processor 834 can be configured to provide a visual indication of a virtual model on the display 852 (e.g., on a GUI running on the processor 834 and visible on the display 852). The input/output interface 844 can receive data, storable in the data storage device (e.g., memory 836), representing the virtual model (e.g., corresponding to the patient's upper jaw and the patient's lower jaw).


In some embodiments, the scanning device 846 can be configured to scan a physical mold of a patient's upper jaw and a physical mold of a patient's lower jaw. In one or more embodiments, the scanning device 846 can be configured to scan the patient's upper and/or lower jaws directly (e.g., intraorally).


The camera dock 848 can receive an input from an imaging device (e.g., a 2D imaging device) such as a digital camera or a printed photograph scanner. The input from the imaging device can be stored in the memory 836.


Such connectivity can allow for the input and/or output of virtual model information or instructions (e.g., input via keyboard) among other types of information. Although some embodiments may be distributed among various computing devices within one or more networks, such systems as illustrated in FIG. 8 can be beneficial in allowing for the capture, calculation, and/or analysis of information discussed herein.


The processor 834, in association with the memory 836, can be associated with data and/or application modules. The processor 834, in association with the memory 836, can store and/or utilize data and/or execute instructions to provide treatment planning that includes an attachment structure.


Such data can include the virtual model described herein (e.g., including a first jaw, a second jaw, a number of appliances, etc.). Such executable instructions can include instructions for attachment structure design and/or placement, force calculation, engagement force calculation, and/or treatment planning, among other functions.


Instructions for appliance design and/or cavity size, shape, and positioning can be configured to create at least one cavity into which an erupting tooth will be positioned on a virtual model of a patient's jaw. In some embodiments, the executable instructions can, for example, be executed to perform a method including to: receive, via a computing device, data representing a plurality of teeth, identify data indicating which of the plurality of teeth are unerupted or erupting, evaluate the data for tooth size information, predict size and orientation of the unerupted or erupting teeth after they have fully erupted using the tooth size information, generate new data representing the unerupted or erupting teeth in multiple states of eruption based upon the predicted size and orientation of the fully erupted teeth, and generate a series of incremental tooth arrangements with the new data to define a proposed orthodontic treatment based on the new data representing the unerupted or erupting teeth in multiple states of eruption.


In some embodiments, executable instructions can be utilized, for example, wherein evaluating the data for tooth size information includes obtaining dimensional data for at least one dimension of at least one of a tooth adjacent to the unerupted or erupting tooth or an opposing tooth to the unerupted or erupting tooth. Evaluating the data for tooth size information can also include determining a first projected dimension for the unerupted or erupting tooth based on the dimensional tooth data.


Generating new data representing the plurality of teeth in a fully erupted state can, for example, include determining a scaling factor for the first projected dimension of a cavity of a virtual dental appliance positioned to accommodate the unerupted or erupting tooth as the tooth erupts. As discussed above, the scaling factor can, for instance, be based on a calculation of available space in a corresponding dimension around the unerupted or erupting tooth and sized such that the unerupted or erupting tooth will not contact a surface of the cavity as the tooth erupts during a period of treatment. The period of treatment can, for example, be from a current state of the plurality of the teeth through the end of a treatment plan or one period in a treatment plan that is divided into multiple, sequential periods of treatment, among other suitable periods of treatment.



FIG. 9 illustrates an example of a method embodiment of the present disclosure for creating a dental appliance having a cavity for an unerupted or erupting tooth. The method of FIG. 9 is utilized for defining an unerupted or erupting tooth during a proposed orthodontic treatment and includes identifying, via a computing device, whether a patient's arch contains an unerupted or erupting tooth, at block 960.


The method also includes, obtaining dimensional data for at least one dimension of at least one tooth of the patient, at block 962. Obtaining dimensional data for at least one dimension of at least one tooth of the patient can, for example, include obtaining dimensional data for at least one dimension of at least one of a tooth adjacent to the unerupted or erupting tooth or an opposing tooth to the unerupted or erupting tooth.


At block 964, the method provides, determining a first projected dimension for the unerupted or erupting tooth based on the dimensional tooth data. The method also provides that determining a scaling factor for the first projected dimension of a cavity of a dental appliance positioned to accommodate the unerupted or erupting tooth as the tooth erupts, at block 966. In some embodiments, the scaling factor can, for example, be based on a calculation of available space in a corresponding dimension around the unerupted or erupting tooth and sized such that the unerupted or erupting tooth will not contact a surface of the cavity as the tooth erupts during a period of treatment.


And, at block 968, creating the dental appliance configured to reposition at least one tooth of the patient, the dental appliance including the cavity sized according to the determined scaled first projected dimension for the unerupted or erupting tooth. The cavity sized according to the determined scaled first projected dimension for the unerupted or erupting tooth can, for example, be positioned to accommodate the unerupted or erupting tooth as the tooth erupts during the period of treatment.


As discussed herein the dental appliance configured to reposition at least one tooth of the patient can be a virtual dental appliance (e.g., for use in treatment planning and/or dental appliance design) or a physical dental appliance (e.g., to be worn by a patient to, for example, implement a portion or an entire treatment plan.


Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.


It is to be understood that the use of the terms “a”, “an”, “one or more”, “a number of”, or “at least one” are all to be interpreted as meaning one or more of an item is present. Additionally, it is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.


It will be understood that when an element is referred to as being “on,” “connected to” or “coupled with” another element, it can be directly on, connected, or coupled with the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled with” another element, there are no intervening elements or layers present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements and that these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, a first element could be termed a second element without departing from the teachings of the present disclosure.


The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.


In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.


Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A method for defining an unerupted or erupting tooth during a proposed orthodontic treatment, comprising: identifying, via a computing device, whether a patient's arch contains an unerupted or erupting tooth;obtaining dimensional tooth data for at least one dimension of at least one tooth based on one or more tooth eruption prediction factors;determining a first projected dimension for the unerupted or erupting tooth based on the dimensional tooth data;determining a scaling factor for the first projected dimension of a cavity of a dental appliance positioned to accommodate the unrequited or erupting tooth as the tooth erupts; andcreating the dental appliance having multiple cavities formed therein, wherein each cavity is used to receive one or more teeth of the patient therein, the dental appliance including the cavity sized according to the determined scaled first projected dimension for the unerupted or erupting tooth.
  • 2. The method of claim 1, wherein the scaling factor is based on a calculation of available space in a corresponding dimension around the unerupted or erupting tooth and sized such that the unerupted or erupting tooth will not contact a surface of the cavity as the tooth erupts during a period of treatment.
  • 3. The method of claim 1, wherein the cavity sized according to the determined scaled first projected dimension for the unerupted or erupting tooth is positioned to accommodate the unerupted or erupting tooth as the tooth erupts during the period of treatment.
  • 4. The method of claim 1, wherein the dental appliance configured to reposition at least one tooth of the patient is a virtual dental appliance.
  • 5. The method of claim 1, wherein the dental appliance configured to reposition at least one tooth of the patient is a physical dental appliance.
  • 6. The method of claim 1, wherein obtaining dimensional tooth data for at least one dimension of at least one tooth of the patient includes obtaining dimensional tooth data for at least one dimension of: at least one of a tooth adjacent to the unerupted or erupting tooth, an opposing tooth to the unerupted or erupting tooth, or a counterpart tooth to the unerupted or erupting tooth.
  • 7. A method for accommodating an unerupted or erupting tooth during at least a portion of a treatment plan, comprising: predicting at least one of a size, shape, location, and orientation of an unerupted or erupting tooth;determining a scaling factor for a first projected dimension of a cavity for accommodating the unerupted or erupting tooth as the tooth erupts; andcreating a vitual shell on a computing device having a plurality of cavities to receive teeth of a jaw, wherein at least one of the plurality of cavities created is the cavity for accommodating the unerupted or erupting tooth.
  • 8. The method of claim 7, wherein the cavities for accommodating an unerupted or erupting tooth include a gingival edge and wherein the gingival edge is oriented and shaped based upon a prediction of at least one of the orientation and shape of the gingiva that will be adjacent to the gingival edge.
  • 9. The method of claim 7, wherein the cavities for accommodating an unerupted or erupting tooth each differ in at least one of: size, shape, location, or orientation.
  • 10. The method of claim 7, wherein the cavities for accommodating an unerupted or erupting tooth have at least one characteristic of: size, shape, location, or orientation based on data representing the unerupted or erupting teeth in multiple states of eruption that is based upon one or more tooth eruption prediction factors of at least one fully erupted tooth of a patient.
  • 11. The method of claim 7, wherein the cavities for accommodating an unerupted or erupting tooth have at least one characteristic of: size, shape, location, or orientation based on data including at least one of: a size, shape, location, and orientation of a tooth adjacent to the unerupted or erupting tooth.
  • 12. A non-transitory computing device readable medium having instructions stored thereon that are executable by a processor to cause a computing device to: identify, via a computing device, whether a patient's arch contains an unerupted or erupting tooth;obtain dimensional tooth data for at least on dimension of at least one tooth based on one or more tooth eruption prediction factors;determine a first projected dimension for the unerupted or erupting tooth based on the dimensional tooth data;determine a scaling factor for the first projected dimension of a cavity of a dental appliance positioned to accommodate the unerupted or erupting tooth as the tooth erupts; andcreate the dental appliance configured to reposition at least one tooth of the patient based on the one or more tooth eruption prediction factors and the dimensional tooth data, wherein the dental appliance includes the cavity sized according to the determined scaled first projected dimension for the unerupted or erupting tooth.
  • 13. The medium of claim 12, wherein the cavity sized according to the determined scaled first projected dimension for the unerupted or erupting tooth is positioned to accommodate the unerupted or erupting tooth as the tooth erupts during a period of treatment.
  • 14. The medium of claim 13, wherein the period of treatment is from a current state of the plurality of the teeth through the end of a treatment plan.
  • 15. The medium of claim 13, wherein the period of treatment is one period in a treatment plan that is divided into multiple, sequential periods of treatment.
  • 16. The medium of claim 12, wherein the dental appliance configured to reposition at least one tooth of the patient is a virtual dental appliance.
  • 17. The medium of claim 12, wherein the dental appliance configured to reposition at least one tooth of the patient is a physical dental appliance.
  • 18. The medium of claim 12, wherein obtaining dimensional tooth data for at least one dimension of at least one tooth of the patient includes obtaining dimensional tooth data for at least one dimension of: at least one of a tooth adjacent to the unerupted or erupting tooth, an opposing tooth to the unerupted or erupting tooth, or a counterpart tooth to the unerupted or erupting tooth.
  • 19. The medium of claim 12, wherein the one or more tooth eruption prediction factors includes obtaining dimensional data for at least one dimension of at least one of: a tooth adjacent to the unerupted or erupting tooth, an opposing tooth to the unerupted or erupting tooth, or a counterpart tooth to the unerupted or erupting tooth.
  • 20. The medium of claim 12, wherein the cavities for accommodating an unerupted or erupting tooth include a gingival edge and wherein the gingival edge is oriented and shaped based upon a prediction of at least one of the orientation and shape of the gingiva that will be adjacent to the gingival edge.
PRIORITY INFORMATION

This application is a Continuation of U.S. Application Ser. No. 14/541,021, now U.S. Pat. No. 9,744,001 filed Nov. 13, 2014, the contents of which are incorporated herein by reference.

US Referenced Citations (1007)
Number Name Date Kind
2171695 Harper Sep 1939 A
2194790 Gluck Mar 1940 A
2467432 Kesling Apr 1949 A
2531222 Kesling Nov 1950 A
3089487 Enicks et al. May 1963 A
3178820 Kesling Apr 1965 A
3211143 Grossberg Oct 1965 A
3379193 Monsghan Apr 1968 A
3385291 Martin May 1968 A
3407500 Kesling Oct 1968 A
3478742 Bohlmann Nov 1969 A
3496936 Gores Feb 1970 A
3533163 Kirschenbaum Oct 1970 A
3556093 Quick Jan 1971 A
3600808 Reeve Aug 1971 A
3660900 Andrews May 1972 A
3683502 Wallshein Aug 1972 A
3724075 Kesling Apr 1973 A
3738005 Cohen et al. Jun 1973 A
3860803 Levine Jan 1975 A
3885310 Northcutt May 1975 A
3916526 Schudy Nov 1975 A
3922786 Lavin Dec 1975 A
3949477 Cohen et al. Apr 1976 A
3950851 Bergersen Apr 1976 A
3955282 McNall May 1976 A
3983628 Acevedo Oct 1976 A
4014096 Dellinger Mar 1977 A
4055895 Huge Nov 1977 A
4117596 Wallshein Oct 1978 A
4139944 Bergersen Feb 1979 A
4179811 Hinz Dec 1979 A
4183141 Dellinger Jan 1980 A
4195046 Kesling Mar 1980 A
4253828 Coles et al. Mar 1981 A
4255138 Frohn Mar 1981 A
4299568 Crowley Nov 1981 A
4324546 Heitlinger et al. Apr 1982 A
4324547 Arcan et al. Apr 1982 A
4348178 Kurz Sep 1982 A
4419992 Chorbajian Dec 1983 A
4433956 Witzig Feb 1984 A
4433960 Garito et al. Feb 1984 A
4439154 Mayclin Mar 1984 A
4449928 von Weissenfluh May 1984 A
4478580 Barrut Oct 1984 A
4500294 Lewis Feb 1985 A
4505673 Yoshii Mar 1985 A
4519386 Sullivan May 1985 A
4526540 Dellinger Jul 1985 A
4553936 Wang Nov 1985 A
4575330 Hull Mar 1986 A
4575805 Moermann et al. Mar 1986 A
4591341 Andrews May 1986 A
4608021 Barrett Aug 1986 A
4609349 Cain Sep 1986 A
4611288 Duret et al. Sep 1986 A
4629424 Lauks et al. Dec 1986 A
4638145 Sakuma et al. Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4663720 Duret et al. May 1987 A
4664626 Kesling May 1987 A
4665621 Ackerman et al. May 1987 A
4676747 Kesling Jun 1987 A
4755139 Abbatte et al. Jul 1988 A
4757824 Chaumet Jul 1988 A
4763791 Halverson et al. Aug 1988 A
4764111 Knierim Aug 1988 A
4790752 Cheslak Dec 1988 A
4793803 Martz Dec 1988 A
4798534 Breads Jan 1989 A
4830612 Bergersen May 1989 A
4836778 Baumrind et al. Jun 1989 A
4837732 Brandestini et al. Jun 1989 A
4850864 Diamond Jul 1989 A
4850865 Napolitano Jul 1989 A
4856991 Breads et al. Aug 1989 A
4877398 Kesling Oct 1989 A
4880380 Martz Nov 1989 A
4886451 Cetlin Dec 1989 A
4889238 Batchelor Dec 1989 A
4890608 Steer Jan 1990 A
4932866 Guis Jun 1990 A
4935635 O'Harra Jun 1990 A
4936862 Walker et al. Jun 1990 A
4937928 van der Zel Jul 1990 A
4941826 Loran et al. Jul 1990 A
4952928 Carroll et al. Aug 1990 A
4964770 Steinbichler et al. Oct 1990 A
4975052 Spencer et al. Dec 1990 A
4983334 Adell Jan 1991 A
4997369 Shafir Mar 1991 A
5002485 Aagesen Mar 1991 A
5011405 Lemchen Apr 1991 A
5015183 Fenick May 1991 A
5017133 Miura May 1991 A
5018969 Andreiko et al. May 1991 A
5027281 Rekow et al. Jun 1991 A
5035613 Breads et al. Jul 1991 A
5037295 Bergersen Aug 1991 A
5055039 Abbatte et al. Oct 1991 A
5061839 Matsuno et al. Oct 1991 A
5083919 Quachi Jan 1992 A
5094614 Wildman Mar 1992 A
5100316 Wildman Mar 1992 A
5103838 Yousif Apr 1992 A
5114339 Guis May 1992 A
5121333 Riley et al. Jun 1992 A
5123425 Shannon et al. Jun 1992 A
5128870 Erdman et al. Jul 1992 A
5130064 Smalley et al. Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5131844 Marinaccio et al. Jul 1992 A
5139419 Andreiko et al. Aug 1992 A
5145364 Martz et al. Sep 1992 A
5176517 Truax Jan 1993 A
5194003 Garay et al. Mar 1993 A
5204670 Stinton Apr 1993 A
5222499 Allen et al. Jun 1993 A
5224049 Mushabac Jun 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5245592 Kuemmel et al. Sep 1993 A
5273429 Rekow et al. Dec 1993 A
5278756 Lemchen et al. Jan 1994 A
5306144 Hibst et al. Apr 1994 A
5314335 Fung May 1994 A
5324186 Bakanowski Jun 1994 A
5328362 Watson et al. Jul 1994 A
5335657 Terry et al. Aug 1994 A
5338198 Wu et al. Aug 1994 A
5340309 Robertson Aug 1994 A
5342202 Deshayes Aug 1994 A
5344315 Hanson Sep 1994 A
5368478 Andreiko et al. Nov 1994 A
5372502 Massen et al. Dec 1994 A
D354355 Hilgers Jan 1995 S
5382164 Stern Jan 1995 A
5395238 Andreiko et al. Mar 1995 A
5415542 Kesling May 1995 A
5431562 Andreiko et al. Jul 1995 A
5440326 Quinn Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5447432 Andreiko et al. Sep 1995 A
5449703 Mitra et al. Sep 1995 A
5452219 Dehoff et al. Sep 1995 A
5454717 Andreiko et al. Oct 1995 A
5456600 Andreiko et al. Oct 1995 A
5474448 Andreiko et al. Dec 1995 A
5487662 Kipke et al. Jan 1996 A
RE35169 Lemchen et al. Mar 1996 E
5499633 Fenton Mar 1996 A
5522725 Jordan et al. Jun 1996 A
5528735 Strasnick et al. Jun 1996 A
5533895 Andreiko et al. Jul 1996 A
5540732 Testerman Jul 1996 A
5542842 Andreiko et al. Aug 1996 A
5543780 McAuley et al. Aug 1996 A
5549476 Stern Aug 1996 A
5562448 Mushabac Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5575655 Darnell Nov 1996 A
5583977 Seidl Dec 1996 A
5587912 Andersson et al. Dec 1996 A
5588098 Chen et al. Dec 1996 A
5605459 Kuroda et al. Feb 1997 A
5607305 Andersson et al. Mar 1997 A
5614075 Andre Mar 1997 A
5621648 Crump Apr 1997 A
5626537 Danyo et al. May 1997 A
5645420 Bergersen Jul 1997 A
5645421 Slootsky Jul 1997 A
5651671 Seay et al. Jul 1997 A
5655653 Chester Aug 1997 A
5659420 Wakai et al. Aug 1997 A
5683243 Andreiko et al. Nov 1997 A
5683244 Truax Nov 1997 A
5691539 Pfeiffer Nov 1997 A
5692894 Schwartz et al. Dec 1997 A
5711665 Adam et al. Jan 1998 A
5711666 Hanson Jan 1998 A
5725376 Poirier Mar 1998 A
5725378 Wang Mar 1998 A
5730151 Summer et al. Mar 1998 A
5737084 Ishihara Apr 1998 A
5740267 Echerer et al. Apr 1998 A
5742700 Yoon et al. Apr 1998 A
5769631 Williams Jun 1998 A
5774425 Ivanov et al. Jun 1998 A
5790242 Stern et al. Aug 1998 A
5799100 Clarke et al. Aug 1998 A
5800162 Shimodaira et al. Sep 1998 A
5800174 Andersson Sep 1998 A
5813854 Nikodem Sep 1998 A
5816800 Brehm et al. Oct 1998 A
5818587 Devaraj et al. Oct 1998 A
5823778 Schmitt et al. Oct 1998 A
5848115 Little et al. Dec 1998 A
5857853 van Nifterick et al. Jan 1999 A
5866058 Batchelder et al. Feb 1999 A
5876199 Bergersen Mar 1999 A
5879158 Doyle et al. Mar 1999 A
5880961 Crump Mar 1999 A
5880962 Andersson et al. Mar 1999 A
5882192 Bergersen Mar 1999 A
5886702 Migdal et al. Mar 1999 A
5890896 Padial Apr 1999 A
5904479 Staples May 1999 A
5934288 Avila et al. Aug 1999 A
5957686 Anthony Sep 1999 A
5964587 Sato Oct 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti et al. Nov 1999 A
5975906 Knutson Nov 1999 A
5980246 Ramsay et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
6002706 Staver et al. Dec 1999 A
6018713 Coli et al. Jan 2000 A
6044309 Honda Mar 2000 A
6049743 Baba Apr 2000 A
6053731 Heckenberger Apr 2000 A
6068482 Snow May 2000 A
6070140 Tran May 2000 A
6099303 Gibbs et al. Aug 2000 A
6099314 Kopelman et al. Aug 2000 A
6120287 Chen Sep 2000 A
6123544 Cleary Sep 2000 A
6152731 Jordan et al. Nov 2000 A
6154676 Levine Nov 2000 A
6183248 Chishti et al. Feb 2001 B1
6183249 Brennan et al. Feb 2001 B1
6186780 Hibst et al. Feb 2001 B1
6190165 Andreiko et al. Feb 2001 B1
6200133 Kittelsen Mar 2001 B1
6201880 Elbaum et al. Mar 2001 B1
6210162 Chishti et al. Apr 2001 B1
6212435 Lattner et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6231338 de Josselin de Jong et al. May 2001 B1
6239705 Glen May 2001 B1
6243601 Wist Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6283761 Joao Sep 2001 B1
6288138 Yamamoto Sep 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6313432 Nagata et al. Nov 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6328745 Ascherman Dec 2001 B1
6332774 Chikami Dec 2001 B1
6334073 Levine Dec 2001 B1
6350120 Sachdeva et al. Feb 2002 B1
6364660 Durbin et al. Apr 2002 B1
6382975 Poirier May 2002 B1
6386878 Pavlovskaia et al. May 2002 B1
6394802 Hahn May 2002 B1
6402510 Williams Jun 2002 B1
6402707 Ernst Jun 2002 B1
6405729 Thornton Jun 2002 B1
6406292 Chishti et al. Jun 2002 B1
6409504 Jones et al. Jun 2002 B1
6413086 Womack Jul 2002 B1
6414264 von Falkenhausen Jul 2002 B1
6414708 Carmeli et al. Jul 2002 B1
6435871 Inman Aug 2002 B1
6436058 Krahner et al. Aug 2002 B1
6441354 Seghatol et al. Aug 2002 B1
6450167 David et al. Sep 2002 B1
6450807 Chishti et al. Sep 2002 B1
6462301 Scott et al. Oct 2002 B1
6470338 Rizzo et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6471970 Fanara et al. Oct 2002 B1
6482002 Jordan et al. Nov 2002 B2
6482298 Bhatnagar Nov 2002 B1
6496814 Busche Dec 2002 B1
6496816 Thiesson et al. Dec 2002 B1
6499026 Rivette et al. Dec 2002 B1
6499995 Schwartz Dec 2002 B1
6507832 Evans et al. Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6515593 Stark et al. Feb 2003 B1
6516288 Bagne Feb 2003 B2
6516805 Thornton Feb 2003 B1
6520772 Williams Feb 2003 B2
6523009 Wilkins Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6524101 Phan et al. Feb 2003 B1
6526168 Ornes et al. Feb 2003 B1
6526982 Strong Mar 2003 B1
6529891 Heckerman Mar 2003 B1
6529902 Kanevsky et al. Mar 2003 B1
6532455 Martin et al. Mar 2003 B1
6535865 Skaaning et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6540707 Stark et al. Apr 2003 B1
6542593 Bowman Amuah Apr 2003 B1
6542881 Meidan et al. Apr 2003 B1
6542894 Lee et al. Apr 2003 B1
6542903 Hull et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6554837 Hauri et al. Apr 2003 B1
6556659 Bowman Amuah Apr 2003 B1
6556977 Lapointe et al. Apr 2003 B1
6560592 Reid et al. May 2003 B1
6564209 Dempski et al. May 2003 B1
6567814 Bankier et al. May 2003 B1
6571227 Agrafiotis et al. May 2003 B1
6572372 Phan et al. Jun 2003 B1
6573998 Cohen Sabban Jun 2003 B2
6574561 Alexander et al. Jun 2003 B2
6578003 Camarda et al. Jun 2003 B1
6580948 Haupert et al. Jun 2003 B2
6587529 Staszewski et al. Jul 2003 B1
6587828 Sachdeva Jul 2003 B1
6592368 Weathers Jul 2003 B1
6594539 Geng Jul 2003 B1
6595342 Maritzen et al. Jul 2003 B1
6597934 de Jong et al. Jul 2003 B1
6598043 Baclawski Jul 2003 B1
6599250 Webb et al. Jul 2003 B2
6602070 Miller et al. Aug 2003 B2
6604527 Palmisano Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6607382 Kuo et al. Aug 2003 B1
6611783 Kelly et al. Aug 2003 B2
6611867 Bowman Amuah Aug 2003 B1
6613001 Dworkin Sep 2003 B1
6615158 Wenzel et al. Sep 2003 B2
6616447 Rizoiu et al. Sep 2003 B1
6616579 Reinbold et al. Sep 2003 B1
6621491 Baumrind et al. Sep 2003 B1
6623698 Kuo Sep 2003 B2
6624752 Klitsgaard et al. Sep 2003 B2
6626180 Kittelsen et al. Sep 2003 B1
6626569 Reinstein et al. Sep 2003 B2
6626669 Zegarelli Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6640128 Vilsmeier et al. Oct 2003 B2
6643646 Su et al. Nov 2003 B2
6647383 August et al. Nov 2003 B1
6650944 Goedeke et al. Nov 2003 B2
6671818 Mikurak Dec 2003 B1
6675104 Paulse et al. Jan 2004 B2
6678669 Lapointe et al. Jan 2004 B2
6682346 Chishti et al. Jan 2004 B2
6685469 Chishti et al. Feb 2004 B2
6689055 Mullen et al. Feb 2004 B1
6690761 Lang et al. Feb 2004 B2
6691110 Wang et al. Feb 2004 B2
6694234 Lockwood et al. Feb 2004 B2
6697164 Babayoff et al. Feb 2004 B1
6697793 McGreevy Feb 2004 B2
6702765 Robbins et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6705863 Phan et al. Mar 2004 B2
6729876 Chishti et al. May 2004 B2
6733289 Manemann et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6749414 Hanson et al. Jun 2004 B1
6772026 Bradbury et al. Aug 2004 B2
6790036 Graham Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6814574 Abolfathi et al. Nov 2004 B2
6830450 Knopp et al. Dec 2004 B2
6832912 Mao Dec 2004 B2
6832914 Bonnet et al. Dec 2004 B1
6845175 Kopelman et al. Jan 2005 B2
6885464 Pfeiffer et al. Apr 2005 B1
6890285 Rahman et al. May 2005 B2
6951254 Morrison Oct 2005 B2
6976841 Osterwalder Dec 2005 B1
6978268 Thomas et al. Dec 2005 B2
6984128 Breining et al. Jan 2006 B2
7016952 Mullen et al. Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7036514 Heck May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7106233 Schroeder et al. Sep 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7121825 Chishti et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7137812 Cleary et al. Nov 2006 B2
7138640 Delgado et al. Nov 2006 B1
7140877 Kaza Nov 2006 B2
7142312 Quadling et al. Nov 2006 B2
7155373 Jordan et al. Dec 2006 B2
7156655 Sachdeva et al. Jan 2007 B2
7156661 Choi et al. Jan 2007 B2
7166063 Rahman et al. Jan 2007 B2
7184150 Quadling et al. Feb 2007 B2
7191451 Nakagawa Mar 2007 B2
7192273 McSurdy Mar 2007 B2
7217131 Vuillemot May 2007 B2
7220122 Chishti May 2007 B2
7220124 Taub et al. May 2007 B2
7229282 Andreiko et al. Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7241142 Abolfathi et al. Jul 2007 B2
7244230 Duggirala et al. Jul 2007 B2
7245753 Squilla et al. Jul 2007 B2
7257136 Mori et al. Aug 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7294141 Bergersen Nov 2007 B2
7302842 Biester et al. Dec 2007 B2
7320592 Chishti et al. Jan 2008 B2
7328706 Barach et al. Feb 2008 B2
7329122 Scott Feb 2008 B1
7338327 Sticker et al. Mar 2008 B2
D565509 Fechner et al. Apr 2008 S
7351116 Dold Apr 2008 B2
7354270 Abolfathi et al. Apr 2008 B2
7357637 Liechtung Apr 2008 B2
7435083 Chishti et al. Oct 2008 B2
7450231 Johs et al. Nov 2008 B2
7458810 Bergersen Dec 2008 B2
7460230 Johs et al. Dec 2008 B2
7462076 Walter et al. Dec 2008 B2
7463929 Simmons Dec 2008 B2
7476100 Kuo Jan 2009 B2
7500851 Williams Mar 2009 B2
D594413 Palka et al. Jun 2009 S
7543511 Kimura et al. Jun 2009 B2
7544103 Walter et al. Jun 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7561273 Stautmeister et al. Jul 2009 B2
7577284 Wong et al. Aug 2009 B2
7596253 Wong et al. Sep 2009 B2
7597594 Stadler et al. Oct 2009 B2
7609875 Liu et al. Oct 2009 B2
D603796 Sticker et al. Nov 2009 S
7616319 Woollam et al. Nov 2009 B1
7626705 Altendorf Dec 2009 B2
7632216 Rahman et al. Dec 2009 B2
7633625 Woollam et al. Dec 2009 B1
7637262 Bailey Dec 2009 B2
7637740 Nopp Dec 2009 B2
7641473 Sporbert et al. Jan 2010 B2
7668355 Wong et al. Feb 2010 B2
7670179 Müller Mar 2010 B2
7695327 Bäuerle et al. Apr 2010 B2
7698068 Babayoff Apr 2010 B2
7711447 Lu et al. May 2010 B2
7724378 Babayoff May 2010 B2
D618619 Walter Jun 2010 S
7728848 Petrov et al. Jun 2010 B2
7731508 Borst Jun 2010 B2
7735217 Borst Jun 2010 B2
7740476 Rubbert et al. Jun 2010 B2
7744369 Imgrund et al. Jun 2010 B2
7746339 Matov et al. Jun 2010 B2
7780460 Walter Aug 2010 B2
7787132 Körner et al. Aug 2010 B2
7791810 Powell Sep 2010 B2
7796243 Choo-Smith et al. Sep 2010 B2
7806687 Minagi et al. Oct 2010 B2
7806727 Dold et al. Oct 2010 B2
7813787 de Josselin de Jong et al. Oct 2010 B2
7824180 Abolfathi et al. Nov 2010 B2
7828601 Pyczak Nov 2010 B2
7845969 Stadler et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7862336 Kopelman et al. Jan 2011 B2
7869983 Raby et al. Jan 2011 B2
7872760 Ertl Jan 2011 B2
7874836 McSurdy Jan 2011 B2
7874837 Chishti et al. Jan 2011 B2
7874849 Sticker et al. Jan 2011 B2
7878801 Abolfathi et al. Feb 2011 B2
7880751 Kuo et al. Feb 2011 B2
7892474 Shkolnik et al. Feb 2011 B2
7904308 Arnone et al. Mar 2011 B2
7907280 Johs et al. Mar 2011 B2
7929151 Liang et al. Apr 2011 B2
7930189 Kuo Apr 2011 B2
7947508 Tricca et al. May 2011 B2
7959308 Freeman et al. Jun 2011 B2
7963766 Cronauer Jun 2011 B2
7970627 Kuo et al. Jun 2011 B2
7985414 Knaack et al. Jul 2011 B2
7986415 Thiel et al. Jul 2011 B2
7987099 Kuo et al. Jul 2011 B2
7991485 Zakim Aug 2011 B2
8017891 Nevin Sep 2011 B2
8026916 Wen Sep 2011 B2
8027709 Arnone et al. Sep 2011 B2
8029277 Imgrund et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8045772 Kosuge et al. Oct 2011 B2
8054556 Chen et al. Nov 2011 B2
8070490 Roetzer et al. Dec 2011 B1
8075306 Kitching et al. Dec 2011 B2
8077949 Liang et al. Dec 2011 B2
8083556 Stadler et al. Dec 2011 B2
D652799 Mueller Jan 2012 S
8092215 Stone-Collonge et al. Jan 2012 B2
8095383 Arnone et al. Jan 2012 B2
8099268 Kitching et al. Jan 2012 B2
8099305 Kuo et al. Jan 2012 B2
8108189 Chelnokov et al. Jan 2012 B2
8118592 Tortorici Feb 2012 B2
8126025 Takeda Feb 2012 B2
8144954 Quadling et al. Mar 2012 B2
8152518 Kuo Apr 2012 B2
8160334 Thiel et al. Apr 2012 B2
8172569 Matty et al. May 2012 B2
8201560 Dembro Jun 2012 B2
8215312 Garabadian et al. Jul 2012 B2
8240018 Walter et al. Aug 2012 B2
8275180 Kuo Sep 2012 B2
8279450 Oota et al. Oct 2012 B2
8292617 Brandt et al. Oct 2012 B2
8294657 Kim et al. Oct 2012 B2
8296952 Greenberg Oct 2012 B2
8297286 Smernoff Oct 2012 B2
8306608 Mandelis et al. Nov 2012 B2
8314764 Kim et al. Nov 2012 B2
8332015 Ertl Dec 2012 B2
8354588 Sticker et al. Jan 2013 B2
8366479 Borst et al. Feb 2013 B2
8401826 Cheng et al. Mar 2013 B2
8433083 Abolfathi et al. Apr 2013 B2
8439672 Matov et al. May 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8477320 Stock et al. Jul 2013 B2
8488113 Thiel et al. Jul 2013 B2
8520922 Wang et al. Aug 2013 B2
8520925 Duret et al. Aug 2013 B2
8523565 Matty et al. Sep 2013 B2
8545221 Stone-Collonge et al. Oct 2013 B2
8556625 Lovely Oct 2013 B2
8570530 Liang Oct 2013 B2
8573224 Thornton Nov 2013 B2
8577212 Thiel Nov 2013 B2
8601925 Coto Dec 2013 B1
8639477 Chelnokov et al. Jan 2014 B2
8650586 Lee et al. Feb 2014 B2
8675706 Seurin et al. Mar 2014 B2
8723029 Pyczak et al. May 2014 B2
8738394 Kuo May 2014 B2
8743923 Geske et al. Jun 2014 B2
8767270 Curry et al. Jul 2014 B2
8768016 Pan et al. Jul 2014 B2
8771149 Rahman et al. Jul 2014 B2
8839476 Adachi Sep 2014 B2
8843381 Kuo et al. Sep 2014 B2
8856053 Mah Oct 2014 B2
8874452 Kuo Oct 2014 B2
8878905 Fisker et al. Nov 2014 B2
8899976 Chen et al. Dec 2014 B2
8936463 Mason et al. Jan 2015 B2
8944812 Kou Feb 2015 B2
8948482 Levin Feb 2015 B2
8956058 Rösch Feb 2015 B2
8992216 Karazivan Mar 2015 B2
9004915 Moss et al. Apr 2015 B2
9022792 Sticker et al. May 2015 B2
9039418 Rubbert May 2015 B1
9084535 Girkin et al. Jul 2015 B2
9084657 Matty et al. Jul 2015 B2
9108338 Sirovskiy et al. Aug 2015 B2
9144512 Wagner Sep 2015 B2
9192305 Levin Nov 2015 B2
9204952 Lampalzer Dec 2015 B2
9211166 Kuo et al. Dec 2015 B2
9214014 Levin Dec 2015 B2
9220580 Borovinskih et al. Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9242118 Brawn Jan 2016 B2
9261358 Atiya et al. Feb 2016 B2
9277972 Brandt et al. Mar 2016 B2
9336336 Deichmann et al. May 2016 B2
9351810 Moon May 2016 B2
9375300 Matov et al. Jun 2016 B2
9403238 Culp Aug 2016 B2
9408743 Wagner Aug 2016 B1
9414897 Wu et al. Aug 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9439568 Atiya et al. Sep 2016 B2
9444981 Bellis et al. Sep 2016 B2
9463287 Lorberbaum et al. Oct 2016 B1
9492243 Kuo Nov 2016 B2
9500635 Islam Nov 2016 B2
9506808 Jeon et al. Nov 2016 B2
9510918 Sanchez Dec 2016 B2
9545331 Ingemarsson-Matzen Jan 2017 B2
9566132 Stone-Collonge et al. Feb 2017 B2
9584771 Mandelis et al. Feb 2017 B2
9589329 Levin Mar 2017 B2
9675430 Verker et al. Jun 2017 B2
9693839 Atiya et al. Jul 2017 B2
9820829 Kuo Nov 2017 B2
9830688 Levin Nov 2017 B2
9844421 Moss et al. Dec 2017 B2
9848985 Yang et al. Dec 2017 B2
9861451 Davis Jan 2018 B1
9936186 Jesenko et al. Apr 2018 B2
10123706 Elbaz et al. Nov 2018 B2
10123853 Moss et al. Nov 2018 B2
10172693 Brandt et al. Jan 2019 B2
10195690 Culp Feb 2019 B2
10231801 Korytov et al. Mar 2019 B2
10238472 Levin Mar 2019 B2
10248883 Borovinskih et al. Apr 2019 B2
10258432 Webber Apr 2019 B2
10275862 Levin Apr 2019 B2
20010002310 Chishti et al. May 2001 A1
20010032100 Mahmud et al. Oct 2001 A1
20010038705 Rubbert et al. Nov 2001 A1
20010041320 Phan et al. Nov 2001 A1
20020004727 Knaus et al. Jan 2002 A1
20020007284 Schurenberg et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020015934 Rubbert et al. Feb 2002 A1
20020025503 Chapoulaud et al. Feb 2002 A1
20020026105 Drazen Feb 2002 A1
20020028417 Chapoulaud et al. Mar 2002 A1
20020035572 Takatori et al. Mar 2002 A1
20020064752 Durbin et al. May 2002 A1
20020064759 Durbin et al. May 2002 A1
20020087551 Hickey et al. Jul 2002 A1
20020107853 Hofmann et al. Aug 2002 A1
20020188478 Breeland et al. Dec 2002 A1
20020192617 Phan et al. Dec 2002 A1
20030000927 Kanaya et al. Jan 2003 A1
20030009252 Pavlovskaia et al. Jan 2003 A1
20030019848 Nicholas et al. Jan 2003 A1
20030021453 Weise et al. Jan 2003 A1
20030035061 Iwaki et al. Feb 2003 A1
20030049581 Deluke Mar 2003 A1
20030057192 Patel Mar 2003 A1
20030059736 Lai et al. Mar 2003 A1
20030068598 Vallittu et al. Apr 2003 A1
20030095697 Wood et al. May 2003 A1
20030101079 McLaughlin May 2003 A1
20030103060 Anderson et al. Jun 2003 A1
20030120517 Eida et al. Jun 2003 A1
20030139834 Nikolskiy et al. Jul 2003 A1
20030144886 Taira Jul 2003 A1
20030172043 Guyon et al. Sep 2003 A1
20030190575 Hilliard Oct 2003 A1
20030192867 Yamazaki et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20030215764 Kopelman et al. Nov 2003 A1
20030224311 Cronauer Dec 2003 A1
20030224312 Bergersen Dec 2003 A1
20030224313 Bergersen Dec 2003 A1
20030224314 Bergersen Dec 2003 A1
20040002873 Sachdeva Jan 2004 A1
20040009449 Mah et al. Jan 2004 A1
20040013994 Goldberg et al. Jan 2004 A1
20040019262 Perelgut Jan 2004 A1
20040029078 Marshall Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040054304 Raby Mar 2004 A1
20040054358 Cox et al. Mar 2004 A1
20040058295 Bergersen Mar 2004 A1
20040068199 Echauz et al. Apr 2004 A1
20040078222 Khan et al. Apr 2004 A1
20040080621 Fisher et al. Apr 2004 A1
20040094165 Cook May 2004 A1
20040107118 Harnsberger et al. Jun 2004 A1
20040133083 Comaniciu et al. Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040158194 Wolff et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040167646 Jelonek et al. Aug 2004 A1
20040170941 Phan et al. Sep 2004 A1
20040193036 Zhou et al. Sep 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040214128 Sachdeva et al. Oct 2004 A1
20040219479 Malin et al. Nov 2004 A1
20040220691 Hofmeister et al. Nov 2004 A1
20040259049 Kopelman et al. Dec 2004 A1
20050003318 Choi et al. Jan 2005 A1
20050023356 Wiklof et al. Feb 2005 A1
20050031196 Moghaddam et al. Feb 2005 A1
20050037312 Uchida Feb 2005 A1
20050038669 Sachdeva et al. Feb 2005 A1
20050042569 Plan et al. Feb 2005 A1
20050048433 Hilliard Mar 2005 A1
20050074717 Cleary et al. Apr 2005 A1
20050089822 Geng Apr 2005 A1
20050100333 Kerschbaumer et al. May 2005 A1
20050108052 Omaboe May 2005 A1
20050131738 Morris Jun 2005 A1
20050144150 Ramamurthy et al. Jun 2005 A1
20050171594 Machan et al. Aug 2005 A1
20050171630 Dinauer et al. Aug 2005 A1
20050181333 Karazivan et al. Aug 2005 A1
20050186524 Abolfathi et al. Aug 2005 A1
20050186526 Stewart et al. Aug 2005 A1
20050216314 Secor Sep 2005 A1
20050233276 Kopelman et al. Oct 2005 A1
20050239013 Sachdeva Oct 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244791 Davis et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060056670 Hamadeh Mar 2006 A1
20060057533 McGann Mar 2006 A1
20060063135 Mehl Mar 2006 A1
20060078842 Sachdeva et al. Apr 2006 A1
20060084024 Farrell Apr 2006 A1
20060093982 Wen May 2006 A1
20060098007 Rouet et al. May 2006 A1
20060099545 Lia et al. May 2006 A1
20060099546 Bergersen May 2006 A1
20060110698 Robson May 2006 A1
20060111631 Kelliher et al. May 2006 A1
20060115785 Li et al. Jun 2006 A1
20060137813 Robrecht et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060154198 Durbin et al. Jul 2006 A1
20060154207 Kuo Jul 2006 A1
20060173715 Wang Aug 2006 A1
20060183082 Quadling et al. Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060188848 Tricca et al. Aug 2006 A1
20060194163 Tricca et al. Aug 2006 A1
20060199153 Liu et al. Sep 2006 A1
20060204078 Orth et al. Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223023 Lai et al. Oct 2006 A1
20060223032 Fried et al. Oct 2006 A1
20060223342 Borst et al. Oct 2006 A1
20060234179 Wen et al. Oct 2006 A1
20060257815 De Dominicis Nov 2006 A1
20060275729 Fornoff Dec 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen et al. Dec 2006 A1
20060277075 Salwan Dec 2006 A1
20060290693 Zhou et al. Dec 2006 A1
20060292520 Dillon et al. Dec 2006 A1
20070031775 Andreiko Feb 2007 A1
20070046865 Umeda et al. Mar 2007 A1
20070053048 Kumar et al. Mar 2007 A1
20070054237 Neuschafer Mar 2007 A1
20070087300 Willison et al. Apr 2007 A1
20070087302 Reising et al. Apr 2007 A1
20070106138 Beiski et al. May 2007 A1
20070122592 Anderson et al. May 2007 A1
20070128574 Kuo et al. Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070141526 Eisenberg et al. Jun 2007 A1
20070143135 Lindquist et al. Jun 2007 A1
20070168152 Matov et al. Jul 2007 A1
20070172112 Paley et al. Jul 2007 A1
20070172291 Yokoyama Jul 2007 A1
20070178420 Keski-Nisula et al. Aug 2007 A1
20070183633 Hoffmann Aug 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070185732 Hicks et al. Aug 2007 A1
20070192137 Ombrellaro Aug 2007 A1
20070199929 Rippl et al. Aug 2007 A1
20070215582 Roeper et al. Sep 2007 A1
20070231765 Phan et al. Oct 2007 A1
20070238065 Sherwood et al. Oct 2007 A1
20070239488 DeRosso Oct 2007 A1
20070263226 Kurtz et al. Nov 2007 A1
20080013727 Uemura Jan 2008 A1
20080020350 Matov et al. Jan 2008 A1
20080045053 Stadler et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057467 Gittelson Mar 2008 A1
20080057479 Grenness Mar 2008 A1
20080059238 Park et al. Mar 2008 A1
20080090208 Rubbert Apr 2008 A1
20080094389 Rouet et al. Apr 2008 A1
20080113317 Kemp et al. May 2008 A1
20080115791 Heine May 2008 A1
20080118886 Liang et al. May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080176448 Muller et al. Jul 2008 A1
20080233530 Cinader Sep 2008 A1
20080242144 Dietz Oct 2008 A1
20080248443 Chishti et al. Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080293003 Moss et al. Nov 2008 A1
20080294405 Kitching et al. Nov 2008 A1
20080306724 Kitching et al. Dec 2008 A1
20090029310 Pumphrey et al. Jan 2009 A1
20090030290 Kozuch et al. Jan 2009 A1
20090030347 Cao Jan 2009 A1
20090040740 Muller et al. Feb 2009 A1
20090061379 Yamamoto et al. Mar 2009 A1
20090061381 Durbin et al. Mar 2009 A1
20090075228 Kumada et al. Mar 2009 A1
20090087050 Gandyra Apr 2009 A1
20090098502 Andreiko Apr 2009 A1
20090099445 Burger Apr 2009 A1
20090103579 Ushimaru et al. Apr 2009 A1
20090105523 Kassayan et al. Apr 2009 A1
20090130620 Yazdi et al. May 2009 A1
20090136890 Kang et al. May 2009 A1
20090136893 Zegarelli May 2009 A1
20090148809 Kuo et al. Jun 2009 A1
20090181346 Orth Jul 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090210032 Beiski et al. Aug 2009 A1
20090218514 Klunder et al. Sep 2009 A1
20090281433 Saadat et al. Nov 2009 A1
20090286195 Sears et al. Nov 2009 A1
20090298017 Boerjes et al. Dec 2009 A1
20090305540 Stadler et al. Dec 2009 A1
20090316966 Marshall et al. Dec 2009 A1
20090317757 Lemchen Dec 2009 A1
20100019170 Hart et al. Jan 2010 A1
20100028825 Lemchen Feb 2010 A1
20100045902 Ikeda et al. Feb 2010 A1
20100068676 Mason et al. Mar 2010 A1
20100138025 Morton et al. Jun 2010 A1
20100142789 Chang et al. Jun 2010 A1
20100145664 Hultgren et al. Jun 2010 A1
20100145898 Malfliet et al. Jun 2010 A1
20100152599 DuHamel et al. Jun 2010 A1
20100165275 Tsukamoto et al. Jul 2010 A1
20100167225 Kuo Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193482 Ow et al. Aug 2010 A1
20100196837 Farrell Aug 2010 A1
20100216085 Kopelman Aug 2010 A1
20100231577 Kim et al. Sep 2010 A1
20100268363 Karim et al. Oct 2010 A1
20100268515 Vogt et al. Oct 2010 A1
20100279243 Cinader et al. Nov 2010 A1
20100280798 Pattijn Nov 2010 A1
20100281370 Rohaly et al. Nov 2010 A1
20100303316 Bullis et al. Dec 2010 A1
20100312484 DuHamel et al. Dec 2010 A1
20100327461 Co et al. Dec 2010 A1
20110007920 Abolfathi et al. Jan 2011 A1
20110012901 Kaplanyan Jan 2011 A1
20110045428 Boltunov et al. Feb 2011 A1
20110056350 Gale et al. Mar 2011 A1
20110081625 Fuh Apr 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110102549 Takahashi May 2011 A1
20110102566 Zakian et al. May 2011 A1
20110104630 Matov et al. May 2011 A1
20110136072 Li et al. Jun 2011 A1
20110143300 Villaalba Jun 2011 A1
20110143673 Landesman et al. Jun 2011 A1
20110159452 Huang Jun 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110207072 Schiemann Aug 2011 A1
20110220623 Beutler Sep 2011 A1
20110235045 Koerner et al. Sep 2011 A1
20110269092 Kuo et al. Nov 2011 A1
20110316994 Lemchen Dec 2011 A1
20120029883 Heinz et al. Feb 2012 A1
20120040311 Nilsson Feb 2012 A1
20120064477 Schmitt Mar 2012 A1
20120081786 Mizuyama et al. Apr 2012 A1
20120086681 Kim et al. Apr 2012 A1
20120115107 Adams May 2012 A1
20120129117 McCance May 2012 A1
20120147912 Moench et al. Jun 2012 A1
20120150494 Anderson et al. Jun 2012 A1
20120166213 Arnone et al. Jun 2012 A1
20120172678 Logan et al. Jul 2012 A1
20120281293 Gronenborn et al. Nov 2012 A1
20120295216 Dykes et al. Nov 2012 A1
20120322025 Ozawa et al. Dec 2012 A1
20130029284 Teasdale Jan 2013 A1
20130081272 Johnson et al. Apr 2013 A1
20130089828 Borovinskih et al. Apr 2013 A1
20130095446 Andreiko et al. Apr 2013 A1
20130103176 Kopelman et al. Apr 2013 A1
20130110469 Kopelman May 2013 A1
20130163627 Seurin et al. Jun 2013 A1
20130201488 Ishihara Aug 2013 A1
20130204599 Matov et al. Aug 2013 A1
20130209952 Kuo et al. Aug 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130252195 Popat Sep 2013 A1
20130266326 Joseph et al. Oct 2013 A1
20130278396 Kimmel Oct 2013 A1
20130280671 Brawn et al. Oct 2013 A1
20130286174 Urakabe Oct 2013 A1
20130293824 Yoneyama et al. Nov 2013 A1
20130323664 Parker Dec 2013 A1
20130323671 Dillon et al. Dec 2013 A1
20130323674 Hakomori et al. Dec 2013 A1
20130325431 See et al. Dec 2013 A1
20130337412 Kwon Dec 2013 A1
20140061974 Tyler Mar 2014 A1
20140081091 Abolfathi et al. Mar 2014 A1
20140093160 Porikli et al. Apr 2014 A1
20140106289 Kozlowski Apr 2014 A1
20140122027 Andreiko et al. May 2014 A1
20140136222 Arnone et al. May 2014 A1
20140142902 Chelnokov et al. May 2014 A1
20140265034 Dudley Sep 2014 A1
20140272774 Dillon et al. Sep 2014 A1
20140280376 Kuo Sep 2014 A1
20140294273 Jaisson Oct 2014 A1
20140313299 Gebhardt et al. Oct 2014 A1
20140329194 Sachdeva et al. Nov 2014 A1
20140342301 Fleer et al. Nov 2014 A1
20140350354 Stenzler et al. Nov 2014 A1
20140363778 Parker Dec 2014 A1
20150002649 Nowak et al. Jan 2015 A1
20150004553 Li et al. Jan 2015 A1
20150021210 Kesling Jan 2015 A1
20150079531 Heine Mar 2015 A1
20150094564 Tashman et al. Apr 2015 A1
20150097315 DeSimone et al. Apr 2015 A1
20150097316 DeSimone et al. Apr 2015 A1
20150102532 DeSimone et al. Apr 2015 A1
20150132708 Kuo May 2015 A1
20150140502 Brawn et al. May 2015 A1
20150150501 George et al. Jun 2015 A1
20150164335 Van Der Poel et al. Jun 2015 A1
20150173856 Iowe et al. Jun 2015 A1
20150182303 Abraham et al. Jul 2015 A1
20150216626 Ranjbar Aug 2015 A1
20150230885 Wucher Aug 2015 A1
20150238280 Wu et al. Aug 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150306486 Logan et al. Oct 2015 A1
20150320320 Kopelman et al. Nov 2015 A1
20150320532 Matty et al. Nov 2015 A1
20150325044 Lebovitz Nov 2015 A1
20150338209 Knüttel Nov 2015 A1
20150351638 Amato Dec 2015 A1
20150374469 Konno et al. Dec 2015 A1
20160000332 Atiya et al. Jan 2016 A1
20160003610 Lampert et al. Jan 2016 A1
20160042509 Andreiko et al. Feb 2016 A1
20160051345 Levin Feb 2016 A1
20160064898 Atiya et al. Mar 2016 A1
20160067013 Morton et al. Mar 2016 A1
20160081768 Kopelman et al. Mar 2016 A1
20160081769 Kimura et al. Mar 2016 A1
20160095668 Kuo et al. Apr 2016 A1
20160100924 Wilson et al. Apr 2016 A1
20160106520 Borovinskih et al. Apr 2016 A1
20160120621 Li et al. May 2016 A1
20160135924 Choi et al. May 2016 A1
20160135925 Mason et al. May 2016 A1
20160163115 Furst Jun 2016 A1
20160217708 Levin et al. Jul 2016 A1
20160228213 Tod et al. Aug 2016 A1
20160246936 Kahn Aug 2016 A1
20160287358 Nowak et al. Oct 2016 A1
20160302885 Matov et al. Oct 2016 A1
20160338799 Wu et al. Nov 2016 A1
20160367339 Khardekar et al. Dec 2016 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170007368 Boronkay Jan 2017 A1
20170020633 Stone-Collonge et al. Jan 2017 A1
20170071705 Kuo Mar 2017 A1
20170086943 Mah Mar 2017 A1
20170100212 Sherwood et al. Apr 2017 A1
20170100213 Kuo Apr 2017 A1
20170105815 Matov et al. Apr 2017 A1
20170135792 Webber May 2017 A1
20170135793 Webber et al. May 2017 A1
20170156821 Kopelman et al. Jun 2017 A1
20170165032 Webber et al. Jun 2017 A1
20170215739 Miyasato Aug 2017 A1
20170265970 Verker Sep 2017 A1
20170319054 Miller et al. Nov 2017 A1
20170319296 Webber et al. Nov 2017 A1
20170325690 Salah et al. Nov 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180000565 Shanjani et al. Jan 2018 A1
20180028064 Elbaz et al. Feb 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180055602 Kopelman et al. Mar 2018 A1
20180071055 Kuo Mar 2018 A1
20180125610 Carrier et al. May 2018 A1
20180153648 Shanjani et al. Jun 2018 A1
20180153649 Wu et al. Jun 2018 A1
20180153733 Kuo Jun 2018 A1
20180168788 Fernie Jun 2018 A1
20180192877 Atiya et al. Jul 2018 A1
20180280118 Cramer Oct 2018 A1
20180284727 Cramer et al. Oct 2018 A1
20180318043 Li et al. Nov 2018 A1
20180353264 Riley et al. Dec 2018 A1
20180360567 Xue et al. Dec 2018 A1
20180368944 Sato et al. Dec 2018 A1
20180368961 Shanjani et al. Dec 2018 A1
20190019187 Miller et al. Jan 2019 A1
20190021817 Sato et al. Jan 2019 A1
20190029522 Sato et al. Jan 2019 A1
20190029784 Moalem et al. Jan 2019 A1
20190046296 Kopelman et al. Feb 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190069975 Cam et al. Mar 2019 A1
20190076026 Elbaz et al. Mar 2019 A1
20190076214 Nyukhtikov et al. Mar 2019 A1
20190076216 Moss et al. Mar 2019 A1
20190090983 Webber et al. Mar 2019 A1
20190095539 Elbaz et al. Mar 2019 A1
20190099129 Kopelman et al. Apr 2019 A1
20190105130 Grove et al. Apr 2019 A1
20190125494 Li et al. May 2019 A1
Foreign Referenced Citations (107)
Number Date Country
517102 Nov 1977 AU
3031677 Nov 1977 AU
1121955 Apr 1982 CA
1655732 Aug 2005 CN
1655733 Aug 2005 CN
102017658 Apr 2011 CN
103889364 Jun 2014 CN
204092220 Jan 2015 CN
2749802 May 1978 DE
3526198 Feb 1986 DE
4207169 Sep 1993 DE
69327661 Jul 2000 DE
102005043627 Mar 2007 DE
202010017014 Mar 2011 DE
102011051443 Jan 2013 DE
0428152 May 1991 EP
490848 Jun 1992 EP
541500 May 1993 EP
714632 May 1997 EP
774933 Dec 2000 EP
731673 May 2001 EP
1941843 Jul 2008 EP
2437027 Apr 2012 EP
2447754 May 2012 EP
1989764 Jul 2012 EP
2332221 Nov 2012 EP
2596553 Dec 2013 EP
2612300 Feb 2015 EP
2848229 Mar 2015 EP
463897 Jan 1980 ES
2455066 Apr 2014 ES
2369828 Jun 1978 FR
2867377 Sep 2005 FR
2930334 Oct 2009 FR
1550777 Aug 1979 GB
53-058191 May 1978 JP
04-028359 Jan 1992 JP
08-508174 Sep 1996 JP
09-19443 Jan 1997 JP
2003245289 Sep 2003 JP
2000339468 Sep 2004 JP
2005527320 Sep 2005 JP
2005527321 Sep 2005 JP
2006043121 Feb 2006 JP
2007151614 Jun 2007 JP
2007260158 Oct 2007 JP
2008067732 Mar 2008 JP
2008523370 Jul 2008 JP
04184427 Nov 2008 JP
2009000412 Jan 2009 JP
2009018173 Jan 2009 JP
2009078133 Apr 2009 JP
2009101386 May 2009 JP
2009205330 Sep 2009 JP
2010017726 Jan 2010 JP
2011087733 May 2011 JP
2012045143 Mar 2012 JP
2013007645 Jan 2013 JP
2013192865 Sep 2013 JP
10-20020062793 Jul 2002 KR
10-20090065778 Jun 2009 KR
10-1266966 May 2013 KR
10-2016-041632 Apr 2016 KR
10-2016-0071127 Jun 2016 KR
480166 Mar 2002 TW
WO91004713 Apr 1991 WO
WO9203102 Mar 1992 WO
WO94010935 May 1994 WO
WO9623452 Aug 1996 WO
WO98032394 Jul 1998 WO
WO98044865 Oct 1998 WO
WO0108592 Feb 2001 WO
WO0185047 Nov 2001 WO
WO02017776 Mar 2002 WO
WO02062252 Aug 2002 WO
WO02095475 Nov 2002 WO
WO03003932 Jan 2003 WO
WO2006096558 Sep 2006 WO
WO2006100700 Sep 2006 WO
WO2006133548 Dec 2006 WO
WO2007019709 Feb 2007 WO
WO2007071341 Jun 2007 WO
WO2007103377 Sep 2007 WO
WO2008115654 Sep 2008 WO
WO2009016645 Feb 2009 WO
WO2009085752 Jul 2009 WO
WO2009089129 Jul 2009 WO
WO2009146788 Dec 2009 WO
WO2009146789 Dec 2009 WO
WO2010059988 May 2010 WO
WO2010123892 Oct 2010 WO
WO2012007003 Jan 2012 WO
WO2012064684 May 2012 WO
WO2012074304 Jun 2012 WO
WO2012078980 Jun 2012 WO
WO2012083968 Jun 2012 WO
WO2012140021 Oct 2012 WO
WO2013058879 Apr 2013 WO
WO2014068107 May 2014 WO
WO2014091865 Jun 2014 WO
WO2015015289 Feb 2015 WO
WO2015063032 May 2015 WO
WO2015112638 Jul 2015 WO
WO2015176004 Nov 2015 WO
WO2016004415 Jan 2016 WO
WO2016042393 Mar 2016 WO
WO2016061279 Apr 2016 WO
Non-Patent Literature Citations (252)
Entry
US 8,553,966 B1, 10/2013, Alpern et al. (withdrawn)
Nourallah et al., “New Regression Equations for Predicting the Size of Unerupted Canines and Premolars in a Contemporary Population,” Angle Orthod 2002: 72:216-221.
Paredes et al., “A New, Accurate and Fast Digital Method to Predict Unerupted Tooth Size,” Angle Orthod 2006; 76: 14-19.
Bernabe et al., “Are the Lower Incisors the Best Predictors for the Unerupted Canine and Premolars Sums? An Analysis of Peruvian Sample,” Angle Orthod 2005; 75: 202-207.
Martinelli et al., “Prediction of Lower Permanent Canine and Premolars Width by Correlation Methods,” Angle Orthod 2005; 75: 805-808.
International Search Report and Written Opinion from related PCT Application No. PCT/IB2015/002134, dated Jun. 1, 2016, 19 pp.
“What is Ortho-Tain®?” OrthoTain™, A World Leader in Orthodontic Appliances, http://www.orthotain.com/what-is-ortho-tain®/, accessed Jul. 2, 2014, 2 pp.
International Search Report and Written Opinion from related PCT Application No. PCT/IB2015/002134, dated Nov. 2016, 22 pp.
AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA; p. 195; Mar. 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Alcaniz et al; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996.
Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990.
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017.
Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances—Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998.
Allesee Orthodontic Appliances: DuraClearTM; Product information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997.
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; (product information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003.
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979.
Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981.
Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979.
Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989.
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989.
Barone et al.; Creation of 3D multi-body orthodontic models by using independent imaging sensors; Sensors; 13(2); pp. 2033-2050; Feb. 5, 2013.
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987.
Baumrind et al, “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972.
Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978.
Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975.
Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001.
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004.
Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981.
Berland; The use of smile libraries for cosmetic dentistry; Dental Tribune: Asia Pacific Edition; pp. 16-18; Mar. 29, 2006.
Bernard et al; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988.
Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984.
Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972.
Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(I); pp. 28-36; Jan. 1970.
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive,Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004.
Bookstein; Principal warps: Thin-plate splines and decomposition of deformations; IEEE Transactions on pattern analysis and machine intelligence; 11(6); pp. 567-585; Jun. 1989.
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/′ pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996.
Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001.
Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985.
Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986.
Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981.
Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979.
Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979.
Cadent Inc.; OrthoCAD ABO user guide; 38 pages; Dec. 21, 2005.
Cadent Inc.; Reviewing and modifying an orthoCAD case; 4 pages; Feb. 14, 2005.
Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000.
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993.
Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990.
Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985.
Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980.
Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997.
Collins English Dictionary; Teeth (definition); 9 pages; retrieved from the internet (https:www.collinsdictionary.com/us/dictionary/english/teeth) on May 13, 2019.
Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969.
Crawford; CAD/CAM in the Dental Office: Does It Work?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991.
Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. Duret A Man With a Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes 'N Bites the Computer Moves From the Front Desk to the Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988.
Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990.
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010.
Cureton; Correcting Malaligned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996.
Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001.
Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986.
Daniels et al.; The development of the index of complexity outcome and need (ICON); British Journal of Orthodontics; 27(2); pp. 149-162; Jun. 2000.
DCS Dental AG; The CAD/CAM ‘DCS Titan System’ for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992.
Defranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976.
Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method; 2 pages; May 1991.
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Dentrix; Dentrix G3, new features; 2 pages; retrieved from the internet (http://www.dentrix.com/g3/new_features/index.asp); on Jun. 6, 2008.
Dent-X; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998.
Di Giacomo et al.; Clinical application of sterolithographic surgical guides for implant placement: Preliminary results; Journal Periodontolgy; 76(4); pp. 503-507; Apr. 2005.
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018.
Dicom to surgical guides; (Screenshot)1 page; retrieved from the internet at YouTube (https://youtu.be/47KtOmCEFQk);Published Apr. 4, 2016.
dictionary.com; Plural (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/plural#) on May 13, 2019.
dictionary.com; Quadrant (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/guadrant?s=t) on May 13, 2019.
Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004.
Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000.
Dummer et al.; Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays; International Society for Optics and Photonics; vol. 7557; p. 75570H; 7 pages; (Author Manuscript); Feb. 24, 2010.
Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1(2); pp. 150-154; Apr. 1991.
Duret et al; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988.
Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986.
Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985.
Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979.
Ellias et al.; Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement; The Scientific World Journal; vol. 2012; Article ID 647240; dio:10.1100/2012/647240; 7 pages; Jul. 2012.
Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950.
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7.
Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978.
Farooq et al.; Relationship between tooth dimensions and malocclusion; JPMA: The Journal of the Pakistan Medical Association; 64(6); pp. 670-674; Jun. 2014.
Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form; American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987.
Florez-Moreno; Time-related changes in salivary levels of the osteotropic factors sRANKL and OPG through orthodontic tooth movement; American Journal of Orthodontics and Dentofacial Orthopedics; 143(1); pp. 92-100; Jan. 2013.
Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987.
Friedrich et al; Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy; J. Biomech.; 32(1); pp. 81-85; (Abstract Only) Jan. 1999.
Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98—Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.cz/bitstream/11025/15851/1/Strasser_98.pdf); on Aug. 21, 2018.
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003.
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001.
Geomagic; Dental reconstruction; 1 page; retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008.
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002.
Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982.
Gottschalk et al.; OBBTree: A hierarchical structure for rapid interference detection; 12 pages; (http://www.cs.unc.edu/?geom/OBB/OBBT.html); retieved from to internet (https://www.cse.iitk.ac.in/users/amit/courses/RMP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019.
gpsdentaire.com; Get a realistic smile simulation in 4 steps with GPS; a smile management software; 10 pages; retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008.
Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990.
Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis; 171 pages; Dec. 2007.
Guess et al.; Computer Treatment Estimates in Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262- 268; 11 pages; (Author Manuscript); Apr. 1989.
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991.
Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressputonfa..); on Nov. 5, 2004.
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Included); Feb. 1987.
Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; Informatbnen, pp. 375-396; (English Abstract Included); Mar. 1991.
Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990.
Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999.
Invisalign; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world'; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017.
JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994.
JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983.
Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998.
Jia et al.; Epidermal biofuel cells: energy harvesting from human perspiration; Angewandle Chemie International Edition; 52(28); pp. 7233-7236; Jul. 8, 2013.
Jia et al.; Wearable textile biofuel cells for powering electronics; Journal of Materials Chemistry A; 2(43); pp. 18184-18189; Oct. 14, 2014.
Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989.
Kamada et.al.; Case Reports on Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984.
Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982.
Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984.
Karaman et al.; A practical method of fabricating a lingual retainer; Am. Journal of Orthodontic and Dentofacial Orthopedics; 124(3); pp. 327-330; Sep. 2003.
Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945.
Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946.
Kim et al.; Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites; Analyst; 139(7); pp. 1632-1636; Apr. 7, 2014.
Kleeman et al.; The Speed Positioner; J. Clin. Orthod.; 30(12); pp. 673-680; Dec. 1996.
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984.
Kumar et al.; Rapid maxillary expansion: A unique treatment modality in dentistry; J. Clin. Diagn. Res.; 5(4); pp. 906-911; Aug. 2011.
Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994.
Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996.
Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991.
Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989.
Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983.
Mantzikos et al.; Case report: Forced eruption and implant site development; The Angle Orthodontist; 68(2); pp. 179-186; Apr. 1998.
McCann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989.
McNamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985.
McNamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993.
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006.
Moermann et al, Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987.
Moles; Correcting Mild Malalignments—As Easy as One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Machine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985.
Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964.
Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990.
Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.pdf; on Dec. 2011.
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977.
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004.
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002.
ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the internet (http://www.konsident.com/wp-content/files_mf/1295385693http_ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019.
OrthoCAD downloads; retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp); 2 pages; Feb. 14, 2005.
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002.
Patterson Dental; Cosmetic imaging; 2 pages retrieved from the internet (http://patterson.eaglesoft.net/cnt_di_cosimg.html) on Jun. 6, 2008.
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998.
Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages , Jan./Feb. 1989.
Pinkham; Inventor's CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990.
Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971.
Procera Research Projects; Procera Research Projects 1993 Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993.
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000.
Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993.
Raintree Essix & Ars Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997.
Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000.
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991.
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991.
Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992.
Rekow; CAD/CAM in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992.
Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987.
Rekow; Dental CAD-CAM Systems: What is the State of the Art?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991.
Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988.
Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992.
Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986.
Richmond; Recording The Dental Cast in Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987.
Rose et al.; The role of orthodontics in implant dentistry; British Dental Journal; 201(12); pp. 753-764; Dec. 23, 2006.
Rubin et al.; Stress analysis of the human tooth using a three-dimensional finite element model; Journal of Dental Research; 62(2); pp. 82-86; Feb. 1983.
Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981.
Sahm et al.; “Micro-Electronic Monitoring of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990.
Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 1990.
Sakuda et al.; Integrated Information-Processing System in Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992.
Sarment et al.; Accuracy of implant placement with a sterolithographic surgical guide; journal of Oral and Maxillofacial Implants; 118(4); pp. 571-577; Jul. 2003.
Schafer et al.; “Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation”; Eur J Orthod.; 37(1)pp. 1-8; doi:10.1093/ejo/cju012; Jul. 3, 2014.
Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988.
Schroeder et al; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998.
Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971.
Siemens; CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin; 15 pagesl; (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004.
Sinclair; The Readers' Corner; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992.
Sirona Dental Systems GmbH, CEREC 3D, Manuel utiiisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003.
Smalley; Implants for tooth movement: Determining implant location and orientation: Journal of Esthetic and Restorative Dentistry; 7(2); pp. 62-72; Mar. 1995.
Smart Technology; Smile library II; 1 page; retrieved from the Internet (http://smart-technology.net/) on Jun. 6, 2008.
Smile-Vision_The smile-vision cosmetic imaging system; 2 pages; retrieved from the internet (http://www.smile-vision.net/cos_imaging.php) on Jun. 6, 2008.
Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rztl Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984.
Szeliski; Introduction to computer vision: Structure from motion; 64 pages; retrieved from the internet (http://robots.stanford.edu/cs223b05/notes/CS%20223-B%20L10%structurefrommotion1b.ppt, on Feb. 3, 2005.
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004.
The Dental Company Sirona: Cerc omnicam and cerec bluecam brochure: The first choice in every case; 8 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2014.
Thera Mon; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016.
Thorlabs; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012.
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000.
Truax; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-28; Sep.-Oct. 1992.
Tru-Tatn Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996.
U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973.
U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977.
Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018.
Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972.
Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972.
Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993.
Van Hilsen et al.; Comparing potential early caries assessment methods for teledentistry; BMC Oral Health; 13(16); doi: 10.1186/1472-6831-13-16; 9 pages; Mar. 2013.
Varady et al.; Reverse Engineering of Geometric Models An Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997.
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998.
Vevin et al.; Pose estimation of teeth through crown-shape matching; In Medical Imaging: Image Processing of International Society of Optics and Photonics; vol. 4684; pp. 955-965; May 9, 2002.
Virtual Orthodontics; Our innovative software; 2 pages; (http://www.virtualorthodontics.com/innovativesoftware.html); retrieved from the internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2005.
Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989.
Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23(10); pp. 694-700; Oct. 1989.
Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987.
Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970.
Wiedmann; According to the laws of harmony to find the right tooth shape with assistance of the computer; Digital Dental News; 2nd vol.; pp. 0005-0008; (English Version Included); Apr. 2008.
Wikipedia; Palatal expansion; 3 pages; retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018.
Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987.
Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987.
Windmiller et al.; Wearable electrochemical sensors and biosensors: a review; Electroanalysis; 25(1); pp. 29-46; Jan. 2013.
Wireless Sensor Networks Magazine; Embedded Teeth for Oral Activity Recognition; 2 pages; retrieved on Sep. 19, 2016 from the internet (www.wsnmagazine.com/embedded-teeth/); Jul. 29, 2013.
Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990.
Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop.; 52(3); pp. 117-125; (Translation Included) Jun. 1991.
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969.
Wong et al.; Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants: Case report; Implant Dentistry; 16(2); pp. 123-130; Sep. 2007.
Wong et al.; The uses of orthodontic study models in diagnosis and treatment planning; Hong Kong Dental Journal; 3(2); pp. 107-115; Dec. 2006.
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998.
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001.
Yaltara Software; Visual planner; 1 page; retrieved from the internet (http://yaltara.com/vp/) on Jun. 6, 2008.
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993.
Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Biol. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988.
Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990.
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164; 43 pages; (Author Manuscript); Nov. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 page; (Author Manuscript); Dec. 1980.
Zhang et al.; Visual speech features extraction for improved speech recognition; 2002 IEEE International conference on Acoustics, Speech and Signal Processing; vol. 2; 4 pages; May 13-17, 2002.
Zhou et al.; Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review; Electroanalysis; 24(2); pp. 197-209; Feb. 2012.
Zhou et al.; Bio-logic analysis of injury biomarker patterns in human serum samples; Talanta; 83(3); pp. 955-959; Jan. 15, 2011.
Morton et al.; U.S. Appl. No. 16/177,067 entitled “Dental appliance having selective occlusal loading and controlled intercuspation,” filed Oct. 31, 2018.
Akopov et al.; U.S. Appl. No. 16/178,491 entitled “Automatic treatment planning,” filed Nov. 1, 2018.
O'Leary et al.; U.S. Appl. No. 16/195,701 entitled “Orthodontic retainers,” filed Nov. 19, 2018.
Shanjani et al., U.S. Appl. No. 16/206,894 entitled “Sensors for monitoring oral appliances,” filed Nov. 28, 2019.
Shanjani et al., U.S. Appl. No. 16/231,906 entitled “Augmented reality enhancements for dental practitioners.” filed Dec. 24, 2018.
Kopleman et al., U.S. Appl. No. 16/220,381 entitled “Closed loop adaptive orthodontic treatment methods and apparatuses,” filed Dec. 14, 2018.
Sabina et al., U.S. Appl. No. 16/258,516 entitled “Diagnostic intraoral scanning” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,523 entitled “Diagnostic intraoral tracking” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,527 entitled “Diagnostic intraoral methods and apparatuses” filed Jan. 25, 2019.
Culp; U.S. Appl. No. 16/236,220 entitled “Laser cutting,” filed Dec. 28, 2018.
Culp; U.S. Appl. No. 16/265,287 entitled “Laser cutting,” filed Feb. 1, 2019.
Arnone et al.; U.S. Appl. No. 16/235,449 entitled “Method and system for providing indexing and cataloguing of orthodontic related treatment profiles and options,” filed Dec. 28, 2018.
Mason et al.; U.S. Appl. No. 16/374,648 entitled “Dental condition evaluation and treatment,” filed Apr. 3, 2019.
Brandt et al.; U.S. Appl. No. 16/235,490 entitled “Dental wire attachment,” filed Dec. 28, 2018.
Kuo; U.S. Appl. No. 16/270,891 entitled “Personal data file,” filed Feb. 8, 2019.
Related Publications (1)
Number Date Country
20170340415 A1 Nov 2017 US
Continuations (1)
Number Date Country
Parent 14541021 Nov 2014 US
Child 15676819 US