All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Described herein are apparatuses (e.g., devices, systems, etc.) and methods for reliably and easily positioning and placing dental attachments prior to or during a dental treatment, including restorative and/or orthodontic procedures.
Orthodontic procedures may include repositioning misaligned teeth and/or changing bite configurations for improved cosmetic appearance and/or dental function. Orthodontic repositioning can be accomplished, for example, by applying controlled forces to one or more teeth or a jaw of a patient over a period of time. As an example, orthodontic repositioning may be provided through a dental process that uses positioning appliances for realigning teeth. Such appliances may utilize a shell of material having resilient properties, referred to as an “aligner,” that generally conforms to a patient's teeth but is slightly out of alignment with a current tooth configuration.
Placement of such an appliance over the teeth may provide controlled forces in specific locations to gradually move the teeth into a new configuration. Repetition of this process with successive appliances in progressive configurations can move the teeth through a series of intermediate arrangements to a final desired arrangement. Appliances can also be used for other dental conditions, such as application of medications, appliances to help with sleep apnea, and other issues.
Orthodontic treatments may use one or more attachments (dental attachments) that may be affixed to the one or more teeth of the patient, typically with an adhesive material, such as an attachment composite material, or directly cured to the tooth. These attachments may interact with surfaces on the appliance to impart forces on one or more teeth.
The positioning, orientation, and securing of attachments is typically done by a treatment professional at a dentist or orthodontist's office. However, treatment professionals can make one or more errors when mixing, forming, positioning, orienting, or securing one or more of the attachments and as such, the appliance and attachment combination may not fit together correctly or impart the correct one or more forces.
Described herein are methods and apparatuses for positioning one or more dental attachments with respect to one or more corresponding teeth. The apparatuses can include a number of features for orienting and maintaining a dental attachment in a predetermined position on a tooth surface based on a virtual model of at least a portion of a patient's dentition. The apparatuses can be designed to position the attachment to any tooth surface. In some cases, the apparatuses are configured to place the attachment on a buccal tooth surface. The apparatuses can include a body or frame that one or more dental attachments are attached to. Once an attachment is affixed to the tooth surface in the desired location, the attachment can be decoupled from the apparatus. The apparatus can then be removed from the patient's mouth. The attachment may then be used in conjunction with one or more orthodontic appliances, such as an aligner, to apply controlled forces to the patient's teeth in accordance with a dental treatment.
An orthodontic system may utilize a set of appliances that can be used serially such that, as the teeth move, a new appliance from the set can be implemented to further move the teeth without having to take a new impression of the patient's teeth at every increment of tooth movement in order to make each successive appliance. The same attachments (dental attachments) may be utilized with successive appliances or attachments may be added, removed, or replaced with other attachment shapes that may impart different force characteristics than a previous appliance and attachment combination (i.e., appliance and one or more attachments).
Currently, attachments can be formed by hand by a treatment professional (e.g., a doctor or assistant). In this process, a treatment professional selects an attachment material to be used and inserts the material into a well, formed in a sheet of material, to the desired exterior shape of the attachment is provided to the treatment professional and the mixed attachment material is pushed into the well to form the attachment based on the shape of the well.
The attachment may then be removed from the well and then put on a tooth and cured. The mixing of the attachment material and amount of attachment composite put into attachment wells on templates are uncontrolled, and therefore errors can occur.
When manually applied, the absolute position of the attachment on the tooth is also subject to user error. When this occurs, the mismatch between the position and/or orientation of the attachment in relation to a contact surface on the appliance, may make using the appliance difficult or impossible and/or make the appliance less effective (reduction of one or more forces being applied by the combination of the attachment and appliance) or provide an incorrect effect (location and/or orientation of the attachment provides different force characteristics than was intended).
The embodiments of the present disclosure can provide a number of benefits. For example, the embodiments can improve the accuracy of placement and orientation of the attachments on tooth surfaces, allow more ability to create specialized attachment sizes and shapes, improve the experience of the patient and/or treatment professional in creating and/or securing the attachments, and save time and cost in manufacture, among other benefits.
According to some embodiments, a dental attachment placement device includes: a frame configured to extend over at least a portion of a dental arch; an attachment support extending from a buccal side of the frame; a dental attachment frangibly attached to the attachment support; a registration anchor extending from the frame and configured to hold the dental attachment against a tooth surface at a predetermined position; and a retention support extending from a lingual side of the frame and configured to maintain the frame over the dental arch.
The dental attachment may be coupled to the attachment support via one or more frangible portions of the device. The dental attachment may be adapted to break away from the attachment support at an interface region. The dental attachment may be surrounded by an attachment frame and attached to the attachment frame by one or more frangible portions. The dental attachment may include a textured surface to increase a bond strength of the dental attachment to the tooth surface. The registration anchor may have a contoured surface to complement a surface of one or more teeth of the dental arch. The contoured surface of the at least one anchor can corresponds to the surface of one or more of an incisor, canine, premolar, and molar of the dental arch. The dental attachment may be configured to attach to the surface of the same tooth as the registration anchor is configured to complement. The dental attachment may be configured to attach to the surface of a different tooth as the registration anchor is configured to complement. The device can include at least two registration anchors, where the attachment support is between the at least two registration anchors along a length of the base. The retention support can be adapted to contact one or more lingual tooth surfaces. The retention support can be adapted to contact an interproximal region between two teeth. The retention support can be adapted to contact a single lingual tooth surface. The device can include an integrated device identifier for identifying the device. The dental attachment may include one or more auxiliary features that extend from the dental attachment. The one or more auxiliary features may include a power arm, hook, button, spring, brace, bracket, wire, rod, band, blade, coil, elastic, ring, track, link and chain. The attachment support and the retention support may extend with respect to a bottom surface of the frame, where a top surface of the frame is substantially flat.
Also described herein are methods for using the dental attachment placement device described herein. For instance, a method can include: placing the registration anchor on a surface of a first tooth; and placing the retention support on a lingual surface of a second tooth, where placing the registration anchor and the retention support positions the dental attachment against the tooth surface at the predetermined position. The first tooth may be the same as or different than the second tooth. The methods can include affixing the dental attachment to the predetermined position on the tooth surface. The methods can include removing the dental attachment from the attachment support. Removal may be by breaking the dental attachment away from the attachment support at one or more interface regions with or without the use of a tool.
According to some embodiments, a dental attachment placement device includes: a frame configured to extend over a portion of a dental arch; an attachment support extending from a first side of the frame; a dental attachment removably attached to the attachment support and adapted to attach to a tooth surface; a first and second registration anchor extending from the frame such that the first anchor is separated by the second anchor by a gap portion of the frame that spans one or more teeth along the portion of the dental arch, the first and second registration anchors configured to place the dental attachment at a predetermined position on the tooth surface and to suspend the gap portion of the frame over the dental arch; and a retention support extending from a second side of the frame and adapted to maintain the dental attachment at the predetermined position.
The registration anchors can each have a contact surface adapted to contact a corresponding tooth. The contact surface can be a contoured surface corresponding to a surface of at least one tooth of the dental arch. The contoured surface can corresponds to one or more of a lingual, occlusal, buccal and distal tooth surface. The dental attachment can extend from a buccal side of the frame and retention support can extend from a lingual side of the frame. The retention support can be adapted to contact one or more tooth surfaces. The attachment support can extend from the gap portion of the frame and the dental attachment is positioned to attach to one of the one or more spanned teeth. The dental attachment can be configured to attach to the surface of the same tooth as the registration anchor is configured to contact. The device can include a second attachment support having a second dental attachment adapted to attach to a second tooth surface. The attachment support may extend from a first registration anchor. The dental attachment may include one or more auxiliary features that extend from the dental attachment. The one or more auxiliary features can include one or more of a power arm, hook, button, spring, brace, bracket, wire, rod, band, blade, coil, elastic, ring, track, link and chain. The one or more auxiliary features can be supported by an attachment frame. The attachment support and the retention support can extend with respect to a bottom surface of the frame, where a top surface of the frame is (e.g., substantially) flat.
Methods described herein include methods of forming a dental attachment placement device. For example, a method can include: forming a frame configured to extend over at least a portion of a dental arch; forming an attachment support extending from a first side of the frame and having a dental attachment removably attached thereto, the attachment support configured to hold the dental attachment against a tooth surface at a predetermined position; forming a registration anchor extending from the frame; and forming a retention support extending from a second side of the frame, the retention support configured to maintain the frame over the dental arch, where the frame, attachment support, dental attachment, registration anchor, and retention support are formed based on virtual three-dimensional model. The method may include forming a textured surface, e.g., with a grid pattern, to increase a bond strength of the dental attachment to the tooth surface. The frame, attachment support, dental attachment, registration anchor, and retention support may be formed from the same material, or different materials.
Any of the methods may involve an additive manufacturing process. For example, the frame, attachment support, dental attachment, registration anchor, and retention support can be formed together (e.g., in one piece) using an additive manufacturing process. One of the surfaces of the device, e.g., a top surface of the frame, may be formed directly on a build plate during the additive manufacturing process (i.e., without the use of supports). The process can include the printing of one material, or more than one material. For example, an entire dental attachment placement device, including the one or more attachments, may be made of the same material (e.g., same polymer). Alternatively, portions of the dental attachment placement device may be made of different materials (e.g., different polymers).
For example, described herein are dental attachment placement apparatuses (e.g., devices and systems). In some variations a dental attachment placement system may include: a frame configured to extend over at least a portion of a dental arch; an attachment support extending from a first side of the frame (e.g., a side configured to be adjacent to the buccal side of the patient's teeth when the dental attachment placement device is worn on the patient's dental arc); a dental attachment frangibly connected to the attachment support; a registration anchor extending from the frame and configured to hold the dental attachment against a tooth surface at a predetermined position; and a retention support extending from a second side of the frame (e.g., a side configured to be adjacent to the lingual side of the patient's teeth when the dental attachment placement device is worn on the patient's dental arch) and configured to maintain the frame over the dental arch.
The dental attachment (which may be referred to herein as simply an “attachment”) may be coupled directly or indirectly to the attachment support via a plurality of frangible portions. The dental attachment may therefore be adapted to break away from the attachment support at an interface region.
The attachment support may be configured as an attachment frame around (e.g., partially or completely encircling and/or surrounding) the dental attachment, wherein the dental attachment is attached to the attachment frame by one or more frangible portions.
Any of the attachments described herein may include a textured surface on a tooth-facing side to increase a bond strength of the dental attachment to the tooth surface. The textured surface may be a grid, or other set of protrusions that leave gaps between the tooth and the attachment into which adhesive may be held (and subsequently crosslinked). Any of the attachments may permit the passage of a UV or other crosslinking wavelength.
In general the dental attachment placement devices described herein may be minimal dental attachment devices, meaning that the frame may be a curved bar or member from which the attachment support(s), registration anchor(s) and retention support(s) extend. In some variations the frame is flat on the top side and the attachment support(s), registration anchor(s) and retention support(s) extend generally downward, over the sides of the patient's teeth when worn.
In general, the registration anchor may have a contoured surface to complement a surface of one or more teeth of the dental arch. For example, the contoured surface of the registration anchor may correspond to the surface of one or more of an incisor, canine, premolar, and molar of the dental arch. The dental attachment may be configured to attach to the surface of the same tooth that the registration anchor is configured to hold the dental attachment against. Alternatively or additionally, the dental attachment may be configured to attach to the surface of a different tooth than the registration anchor is configured to hold the dental attachment against.
Any of these dental attachment placement devices may include at least two registration anchors. The attachment supports may be between the at least two registration anchors along a length of the frame.
The retention support may be adapted to contact one or more lingual tooth surfaces. The retention support may be adapted to contact an interproximal region between two teeth.
Any of these apparatuses (e.g., dental attachment placement devices) may include an integrated device identifier. The device identified may be formed as a code (e.g., alphanumeric code, bar code, QR code, etc.) on or attached to the apparatus. The device identified may correspond to a particular patient and/or stage of treatment for the patient.
In any of the apparatuses described herein, the dental attachment may be configured to include one or more auxiliary features that extend from the dental attachment. For example, the one or more auxiliary features may include a power arm, hook, button, spring, brace, bracket, wire, rod, band, blade, coil, elastic, ring, track, link and chain.
Any of the frame, attachment support(s), registration anchor(s) and retention support(s) may be configured as a spring, having a sinusoidal (e.g., s-shaped or repeating s-shapes), zig-zag, serpentine, etc. length expending down all or a region of the frame, attachment support(s), registration anchor(s) and/or retention support(s). This spring or spring-like region may provide flexibility when attaching the frame to the teeth of the dental arch, typically by securing the teeth between the attachment support(s) and the registration anchor(s). In general, these apparatuses may be configured so that they may be secured to the patient's teeth without requiring the user (doctor, orthodontist, dental technician) to hold them in place manually. In some variations the apparatus may be configured so that the patient may be able to bite down on the frame to hold it in place while the user anchors (e.g., cross-links) the dental anchors onto the teeth.
A dental attachment placement device may include: a frame configured to extend over a portion of a dental arch; an attachment support extending from a first side of the frame; a dental attachment removably attached to the attachment support and adapted to attach to a tooth surface; a first and second registration anchor extending from the frame such that the first anchor is separated by the second anchor by a gap portion of the frame that spans one or more teeth along the portion of the dental arch, the first and second registration anchors configured to place the dental attachment at a predetermined position on the tooth surface; and a retention support extending from a second side of the frame and adapted to maintain the dental attachment at the predetermined position.
A dental attachment placement device may include: a frame configured to extend over at least a portion of a dental arch, wherein a top of the frame is flat;
a plurality of attachment supports, wherein each attachment support is configured to extend over a buccal surface of the dental arch when the frame is worn over the dental arch; a plurality of dental attachments, wherein each dental attachment is frangibly connected to one of the attachment supports of the plurality of attachment supports; a plurality of registration anchors extending from the frame, wherein each registration anchor is configured to hold the dental attachment against a tooth surface at a predetermined position when the frame is worn over the dental arch; and a plurality of retention supports extending from the frame, wherein each retention support is configured to extend over a lingual surface of the dental arch when the frame is worn over the dental arch, further wherein each retention support is configured to maintain the frame over the dental arch when the frame is worn over the dental arch.
Also described herein are methods of attaching a dental attachment using any of these dental attachment placement devices. For example a method of attaching a dental attachment may include: placing a dental attachment placement device onto a dental arch, wherein the dental attachment placement device includes: a frame, an attachment support extending from the frame over a buccal surface of the dental arch, a dental attachment connected to the attachment support; a registration anchor extending from the frame, and a retention support extending over a lingual side of the frame; maintaining the frame over the dental arch with the retention support on a lingual surface of the dental arch and the registration anchor on a buccal surface of the dental arch; and affixing the dental attachment to a predetermined position on a tooth surface of the dental arch.
Any of these methods may include removing the dental attachment from the attachment support. Removing the dental attachment may comprise breaking the dental attachment away from the attachment support at one or more break-away interface regions.
Also described herein are methods of forming a dental attachment placement device. For example, a method of forming a dental attachment placement device may include: forming a frame configured to extend over at least a portion of a dental arch; forming an attachment support extending from a first side of the frame and having a dental attachment removably attached thereto, the attachment support configured to hold the dental attachment against a tooth surface at a predetermined position; forming a registration anchor extending from the frame; and forming a retention support extending from a second side of the frame, the retention support configured to maintain the frame over the dental arch, wherein the frame, attachment support, dental attachment, registration anchor, and retention support are formed based on virtual three-dimensional model.
Forming the dental attachment may comprise forming a textured surface on the dental attachment to increase a bond strength of the dental attachment to the tooth surface. The frame, attachment support, dental attachment, registration anchor, and retention support may be formed from the same material. In some variations, at least two of the frame, attachment support, dental attachment, registration anchor, and retention support are formed from different materials. In general, forming the frame, attachment support, dental attachment, registration anchor, and retention support may comprises using an additive manufacturing process. In some variations, a top surface of the frame is formed directly on a build plate during the additive manufacturing process.
The present disclosure provides methods, computing device readable medium, devices, and systems having a dental attachment placement structure (also referred to herein as a dental attachment placement device, apparatus or template). Such solutions should make positioning, orienting, securing, and forming attachments easier and quicker, and can make the patient's experience better than use of past procedures.
One dental attachment placement apparatus includes a body having an attachment placement surface that is to be placed on an attachment affixing surface of a tooth and wherein the attachment placement surface includes a portion that is shaped to allow placement of an attachment at a particular position on the affixing surface of the tooth and a portion of the body having a contour that is shaped to correspond with a contour of an alignment surface of a tooth and when the contour of the body and the corresponding contour is aligned, the attachment is located at the particular position and can be secured to the affixing surface of the tooth.
In the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure.
As used herein, the designators “M”, “N”, “P”, “R”, “S”, “T”, and “V”, particularly with respect to reference numerals in the drawings, indicate that any number of the particular feature so designated can be included. As used herein, “a number of” a particular thing can refer to one or more of such things (e.g., a number of teeth can refer to one or more teeth).
The FIGS. herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 101 may reference element “01” in
As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, as will be appreciated, the proportion and the relative scale of the elements provided in the figures are intended to illustrate certain embodiments of the present disclosure, and should not be taken in a limiting sense.
The body 101 also includes an attachment mounting structure 104 including the attachment 106, an aperture 110 to allow placement of the attachment 106 on the surface of a tooth, and a number of supports 108. The structure illustrated in
The securing of the attachment can be accomplished in any suitable manner. For example, the attachment can be cured to the tooth surface, for instance, by use of a light source, such as ultra-violet (UV) light source, which will bond the attachment material directly to the surface of the tooth. In some embodiments, an adhesive material can be applied to the back side of the attachment and the adhesive can be used to secure the attachment to the tooth surface.
In various embodiments, the apparatus can be designed to have one surface shaped to conform to one or more contours of an exterior surface of a tooth (e.g., a surface that conforms to a portion of the front surface of a tooth), such that when the two surfaces are aligned, their contours match, thereby indicating to the treatment professional that the apparatus has been placed correctly.
This correct placement can be with respect to the placement of the apparatus with respect to the tooth in one or more dimensions (e.g., up, down, right, left, rotationally, etc. with respect to the tooth surface upon which the attachment will be applied). If the apparatus is correctly placed, then the attachment will also be correctly placed with respect to the tooth surface.
As used herein, “positioning” is the locating of the attachment at a particular point on the surface of a tooth and “orienting” is the movement of the attachment in a manner that does not change its position on the surface of the tooth (e.g., a rotation of the attachment about an axis or movement of the attachment in one or more directions that does not change its position on the surface of the tooth). For example, an attachment can be positioned at a particular point on the surface of a tooth and then can be oriented by rotating it, for example, parallel to the tooth surface, or along an axis perpendicular to the surface of the tooth. Other angles of rotation can also be used to orient the attachment without changing the attachment's position.
In the embodiment of
Generally, the more surfaces used, the more accurate the positioning and/or orientation of the attachment, in relation to the tooth, can be to the desired correct placement. Also, when attaching multiple attachments, these surfaces can be used to accurately position and orient the attachments in relation to each other.
Once an attachment is placed on the tooth, it has to be secured to the tooth and the apparatus has to be removed. In some embodiments, such as that shown in
In such embodiments, the one or more supports can be made from a material that allows the support material 108 to be separated from the material of the attachment 106. For example, the support can be made from a material that can be broken at or near the location where the support and attachment are connected.
In some embodiments, the attachment between the support and the attachment can be released by a release agent, such as a chemical, heat, moisture, or other type of release agent. The release agent may, for example, dissolve a portion of the support and/or attachment in order to release the support and/or attachment from each other.
In various embodiments, the support and attachment can be fabricated from the same material, but the structure of the support can be such that it can be broken at a point to disconnect it from the attachment. Any suitable technique can be used to achieve the breaking or release of the support and/or attachment material in order to release the support from the attachment.
For example, the support structure may include a narrow section that is conducive to breaking at that location. In another embodiment, the support structure may include a scored section that is conducive to breaking at that location.
In various embodiments, the attachment can be mechanically mounted to the supports such that the attachment can be released from the supports once the attachment is secured to the surface of the tooth. This can be accomplished by any suitable releasable attachment structure. For example, one suitable structure is a groove located on each support and corresponding mating flanges on the attachment surface that can be slid out of the grooves to release the attachment from the supports.
As used herein, a surface that is shaped to conform to a contour of an exterior surface of a tooth (i.e., an alignment surface) can be used to accurately position and/or orient the attachment on the tooth. For example, if surface of the apparatus is shaped to conform to a contour of the front surface of the tooth (e.g., surface 102-1 shown in
In the view shown in
For instance, when the side 112-1 is positioned along the corresponding side of the tooth such that their contours align, then the attachment should be the correct distance from the side of the tooth and will be correctly oriented with respect to the angle of the back side of the attachment to the surface of the tooth.
When more surfaces are utilized, the position and/or orientation of the attachment can be more precise. For example, the body 101 includes side surfaces 112-1, 112-3 of a first tooth, and side surfaces 116-1 and 116-3 of a second tooth. The body 101 also includes surfaces that are shaped to conform to the gingival line on a tooth 112-M and 116-N, and surfaces 112-2 and 116-2 that conform to the bottom edge of a tooth (and/or the bottom of the front and/or back side of the tooth).
Additionally, the embodiment of
In this manner, the attachment 106 has been correctly positioned on the surface 136-1 of tooth 134-2 and oriented such that it can provide the desired force to the teeth of the patient (e.g., 134-1, 134-2, 134-3, 134-R, and/or other teeth of the patient) when combined with the dental appliance that will attach to the attachment.
In some embodiments, such as that shown in
Direct fabrication also allows for the design to be more easily and readily changed because the design can be altered via a computing device and direct printed from the modified design stored in memory on the computing device or a connected network or memory. Further, direct fabrication allows for creation of components of different material without substantial changes to equipment that may be used at a manufacturing facility, among other benefits.
For example, a dental attachment placement apparatus can be formed by printing, using a three-dimensional printing apparatus, an attachment, out of an attachment material and printing, using a three-dimensional printing apparatus, a dental attachment placement structure, connected to the attachment to hold the attachment in a particular position. In some embodiments, the dental attachment placement structure and the attachment can be fabricated from the same material. Material, examples include: polymers such as, polyester, a co-polyester, a polycarbonate, a thermoplastic polyurethane, a polypropylene, a polyethylene, a polypropylene and polyethylene copolymer, an acrylic, a cyclic block copolymer, a polyetheretherketone, a polyamide, a polyethylene terephthalate, a polybutylene terephthalate, a polyetherimide, a polyethersulfone, a polytrimethylene terephthalate, or a combination thereof, which can be used to make dental appliances, such as aligners, or curable composite (e.g., a resin material) that can be used to attach orthodontic appliances to teeth or create orthodontic structures.
In some embodiments, the dental attachment placement structure can be fabricated out of a second material that is different than the attachment material. For example, the attachment can be fabricated from a composite material and the dental attachment placement structure can be fabricated from a polymer, such as those discussed above. In some embodiments, the attachment and dental attachment placement structure can be constructed such that they are connected to each other. As discussed herein, this connection can be designed to be cut, broken, or otherwise released to allow the dental attachment placement structure to be removed while the attachment is positioned on the tooth.
As discussed herein, one other benefit to direct fabrication is that one or more surfaces that will be used to attach the attachment to a tooth and/or to position an attachment with respect to one or more teeth can be fabricated with surfaces that will mate with the corresponding surface of the one or more teeth to accomplish these functionalities (attachment and/or positioning of the attachment). This can be accomplished by virtual design of these surfaces and then using these virtual designs to fabricate the attachment and/or the dental attachment placement structure directly.
Attachments 206-2, 206-3, 206-4, and 206-S are also positioned in apertures 232-2, 232-3, 232-4, and 232-V on surface 236-1 of tooth 234-2, 236-2 of tooth 234-3, and 236-T of tooth 234-R. In such an embodiment, one or more of the teeth can have multiple attachments affixed thereon.
In order to save fabrication time and materials cost, the apparatus may include multiple attachment locations and only some may be used at any given time. In such applications, the apparatus 240 can, for example, be used to affix attachment 206-2 at one point in time and can be reused to attach 206-S at aperture 232-V or an attachment at one or more of the other locations on the apparatus (e.g., apertures 232-1, 232-2, and/or 232-3) at a different time.
Another feature of the embodiment of
Further, in prior concepts, treatment professionals may only have had access to a few, standardized attachment shapes. In this manner, the options for treatment may have been restricted based on the limited forces that could be provided by the standardized attachments. If any other attachment shape was desired, the treatment professional could file or grind the attachment surfaces to change its shape, but a treatment plan would not take these modifications into account and therefore the actual result would be different than the treatment plan result. This resulted in additional time spent in getting the proper shape, misshapen attachments that did not fit or function correctly, and other issues.
Although embodiments of the present disclosure can be used to form such standardized attachments, since the apparatus can be fabricated to be used with a specific patient's teeth positioning, specialized attachments can also be designed and can be made available to a treatment professional.
Such specialization can also, for example, include the size of the attachment, shape of the attachment, and other suitable specialized characteristics. Accordingly, the patient will be able to get a more customized treatment based on use of such embodiments. This can allow the apparatus to be specialized to the patient, but not be onerous on the treatment professional who, for example, may not have attachment design skills or capabilities.
In some embodiments, the treatment professional may also select one or more attachment materials or attachment types and/or select the location upon which they should be applied. Such embodiments can allow further customization of the apparatus and can be taken into account when the manufacture of the attachment templates are created. Further, in various embodiments, this customization can be made for each appliance (or for multiple appliances) in a set of appliances of a treatment plan.
In some embodiments, a computing device (such as that described in relation to
A computing device can be used to create such devices or molds to fabricate such dental appliances, attachments, and/or attachment placement structures. In some embodiments, a computing device can be used to virtually model such dental appliances, attachments, and/or attachment placement structures.
For example, through use of a treatment plan and/or virtual modeling, a dental appliance (e.g., an aligner for aligning teeth or jaws of a patient) or attachment placement structure can be made, for example, by thermal-forming a sheet of plastic over a physical dental mold. The physical dental mold, for instance, can represent an incremental position to which a patient's teeth are to be moved and can include attachment shapes formed in the mold.
In this manner, one or more surfaces of the dental appliance can engage with one or more surfaces of the one or more attachments (when the finished dental appliance is placed in the patient's mouth with the actual attachments). By having the attachments on the mold, the dental appliance is formed with the surfaces that will interact with the attachments.
The physical dental mold can be manufactured, for example, by downloading a computer-aided design (CAD) virtual dental model to a rapid prototyping process, such as, for example, a computer-aided manufacturing (CAM) milling, stereolithography, and/or photolithography process.
The dental mold (e.g., set of molded teeth and/or jaw) can be created from a virtual model of a number of teeth and/or jaw of a patient. A virtual model, for example, can include an initial virtual dental model and/or intermediate virtual dental model (wherein the teeth of the patient have been moved with respect to their actual physical position). A dental mold can be formed in accordance with a unique treatment file that, for example, identifies a patient, a stage of a treatment plan, the virtual model of the number of teeth and/or jaw, and/or whether the dental mold is of the upper and/or lower dental arch.
In some computing device system processes, a treatment file can be accessed by a rapid prototyping apparatus machine or direct fabrication device, such as a SLA or 3D printing machine, to form and/or create the dental mold. As discussed above, the result of the dental mold can include a set of molded teeth.
The set of molded teeth can include at least a replica of a number of teeth of the patient, but can also include other features such as gingival and jaw structures, among others. The dental mold can be used to make a dental appliance, for example, by creating a negative impression of the dental mold using polymeric sheets of material and vacuum forming the sheets over the dental mold, as discussed above.
For instance, a dental appliance or attachment placement structure can be formed by layering a thermoformable sheet of material and/or multiple sheets of one or more materials over the dental mold. The materials can include a polymeric material, for instance.
Generally, the dental appliance or attachment placement structure is produced and/or formed by heating the polymeric thermoformable sheet and vacuum or pressure forming the sheet over the dental mold (e.g., a number of molded teeth). A dental appliance or attachment placement structure can, for example, include a negative impression of the dental mold. Such molding techniques can be used to create the dental appliances and attachment placement structures.
In some instances, it may be beneficial to prepare the surface of the tooth for adhering of a dental attachment thereto. It is ideal if the preparation of the surface of the tooth takes place only at the area in which the attachment is to be attached.
Such preparation can include etching of the surface of the tooth which improves the adhesion between the tooth surface and the attachment or adhesive material used to adhere the attachment to the tooth. In embodiments such as that illustrated in
Similar to the apparatus of
In the embodiment of
Similar to
In such an embodiment, the surface of the tooth can be etched with an etching material that can, for example be brushed onto the surface of the tooth by the treatment professional through the aperture 324. In the embodiment of
When shaped like the surface of the attachment that is to be placed in the tooth the treatment professional can align the shape of the attachment with the shape of the etched area such that the attachment is at the correct location and in the correct orientation with respect to the surface of the tooth. Although a particular attachment shape and aperture shape are illustrated, any suitable attachment shape and corresponding aperture shape can be utilized in the embodiments of the present disclosure.
The present example also includes a portion of the body (e.g., surfaces 212-1, 212-2, 212-3, 212-M, and/or the inner surface of 202-1) having a contour that is shaped to correspond with a contour of an alignment surface of a tooth (e.g., front surface, back surface, side surface, edge surface, etc.) and when the contour of the body and the corresponding contour is aligned, the etching area is located at the particular position.
In another example embodiment, a dental attachment placement apparatus includes a body that has an attachment mounting structure. The body also includes a surface (e.g., surfaces 212-1, 212-2, 212-3, 212-M, and/or the inner surface of 202-1) having a contour that is shaped to correspond with a contour of an alignment surface (e.g., front surface, back surface, side surface, edge surface, etc.) of a tooth and when the contour of the body and the corresponding contour of the tooth are aligned, a dental attachment, when placed in the attachment mounting structure, is located at the particular position with respect to an exterior surface of the tooth.
In some embodiments, the body includes at least a second surface (e.g., inner surface of 102-2) shaped to correspond with a contour of an alignment surface of a second tooth. Further, the body can include a second attachment mounting structure (e.g., as shown in
Another example embodiment provides a dental attachment placement apparatus having a body that includes an attachment mounting structure having an aperture that allows an attachment to be placed through the body and onto an exterior surface of the tooth. The body also includes a surface having a contour that is shaped to correspond with a contour of an alignment surface of a tooth and when the contour of the body and the corresponding contour of the tooth are aligned, a dental attachment, when placed in the aperture, is located at the particular position with respect to an exterior surface of the tooth.
As illustrated in
In some embodiments, the body can include multiple attachment mounting structures each having an aperture that allows an attachment to be placed through the body and onto an exterior surface of the tooth. For example, in the embodiment shown in
In this manner, the surface of the tooth can be etched at an area that is large enough to secure an attachment, but not un-necessarily large. Also, in this manner, an attachment can be correctly positioned on the surface of tooth 334-3 and oriented such that it can provide the desired force to the teeth of the patient (e.g., 334-1, 334-2, 334-3, 334-R, and/or other teeth of the patient) when combined with the dental appliance that will attach to the attachment.
In order to save fabrication time and materials cost, the apparatus may include multiple etch locations and only some may be used at any given time. In such applications, the apparatus 440 can, for example, be used to etch a location on a tooth at one point in time and can be reused to etch another location on a tooth at another point in time.
Similar to the embodiment of
In the embodiment of
In the embodiment illustrated in
The releasable portion can be released by any suitable release mechanism. For example, a series of perforations can be cut into the body 501 to allow the portion 570 to be torn away from the rest of the body 501. This can allow the dental attachment placement structure to also be used as a guide for the placement of an attachment to be placed in the correct position.
For example, once the area is etched as shown in
As can be seen from this figure, the attachment 506 is positioned and oriented on the surface of the tooth 535-1 in the same position and orientation as the etched area 574, thereby allowing better adhesion of the attachment 506 to the surface of the tooth 535-1. This is because the attachment was placed in the aperture of body 501 while it was positioned on tooth surfaces 535-1 and 535-2, then removed after the attachment 506 was adhered to etched area 574.
For instance,
As can be seen from
In the embodiment of
As with other embodiments discussed herein, some embodiments may have one or more other surfaces similar to those shown in
In the embodiment illustrated in
The removable portion can be held in place by any suitable mechanism. For example, the removable portion can be shaped like a puzzle piece that mates with the rest of the body 701 in a particular orientation based on the removable portion 770 having an irregular shape. As used herein, an irregular shape is a shape that can only be positioned in one way with the rest of the body 501 such that the aperture has a desired shape for etching and/or positioning of an attachment therein. This can allow the dental attachment placement structure to be used for etching of the surface of a tooth and/or to be used as a guide for the placement of an attachment to be placed in the correct position.
For example, once the area is etched as shown in
In some embodiments, the edges of the removable portion and the edges on the body that correspond to the edges of the removable portion can be slanted such that when the removable portion is positioned into the rest of the body, it can be held in place. This can allow the treatment professional the ability to use their hands to do other things without having to hold the removable portion in place.
Also, in embodiments such as that shown in
As illustrated in this figure, the attachment 706 is positioned and oriented on the surface of the tooth 735-1 in the same position and orientation as the etched area 774, thereby allowing better adhesion of the attachment 706 to the surface of the tooth 735-1. As with the embodiment of
As shown and described in the embodiments of
Such an arch may be beneficial, for example, because the treatment professional may not have to maneuver a detachment tool as close to the tooth as an embodiment where the support or the connection between the support and the attachment touch the tooth surface. In some such embodiments, the support can be connected to the attachment such that it can be released from the attachment.
For example, in some embodiments, the junction between the attachment and the support can include a feature to assist in the detachment of the attachment from the support. This feature can be located at or near the transition between the support material and the attachment material.
The feature can, for example, be a physical feature provided at the junction, such as one or more perforations, a portion that is thinner than the rest of the support and/or attachment, or a different material than the attachment and/or the support, among other attachment separation structures discussed herein. The feature can also be the use of a particular material at the junction that allows for a stimulant to be applied to that material that allows the attachment to be more easily removed. Such materials could, for example, make the material more brittle, thereby allowing it to be more easily broken, or cause the material to dissolve or disintegrate. Examples, of stimulants include wavelengths of light, such as UV, or chemical materials that cause the above affects based on interaction with the support material at the junction between the attachment and the one or more supports.
Once the attachment 806 is separated from the body 801, the attachment will remain on the tooth (e.g., attachment is affixed via adhesive to the surface of the tooth) during a portion or all of one or more treatment periods and the dental attachment placement structure body will be removed from the teeth of the patient. For example, this can be accomplished by lifting parts of the body over the attachment or by cutting/breaking the body into pieces and removing it in that manner.
The embodiment also includes a dental attachment placement structure, connected to a dental attachment to hold the attachment in a particular position. A portion of the body has a contour that is shaped to correspond with a contour of an alignment surface of a tooth such that when the contour of the body and the corresponding contour of the tooth are aligned, the aperture is located over the particular position on the surface of the tooth.
The attachment placement surface can include the portion of the body that is shaped to conform to corresponding contours of an alignment surface of the tooth. As stated herein, the alignment surface of the tooth is any shape on the surface of the tooth that can be used in connection of the attachment placement surface to more precisely position an attachment in the surface of the tooth. In this manner, when the contour of the body and the corresponding contour of the tooth are aligned, the aperture is located over the particular position in three dimensions on the surface of the tooth. For example, a ridge on the tooth can mate with a corresponding, but complementary surface of the attachment placement surface.
In some embodiments, a dental attachment placement structure, can include a body that includes a dental attachment placement structure, connected to a dental attachment to hold the attachment in a particular position, the body also can include a surface having a contour that is shaped to correspond with a contour of an alignment surface of a tooth. As used herein, an alignment surface of a tooth is any surface that when mirrored in the shape of a corresponding surface on the body can be used to properly locate the body with respect to the tooth. For example, when the contour of the body that mirrors the contour of the tooth and the corresponding contour of the tooth are aligned, a dental attachment, when placed in the attachment mounting structure, is located at the particular position with respect to an exterior surface of the tooth. Examples, of alignment surfaces on a tooth include: a ridge on a front surface of a tooth, a valley in a front surface, an edge of a tooth, a corner of a tooth, a contour of the gingival line of a tooth, a ridge or valley on a back surface of a tooth, among other such features that can be used to more precisely locate the dental attachment placement structure in relation to the tooth to aid in the correct placement of the attachment.
As discussed elsewhere in the specification the body can include at least a second surface shaped to correspond with a contour of an alignment surface of a second tooth. Such additional surfaces allow for greater accuracy in the placement of the attachment.
This can be beneficial for a number of reasons. For example, being farther away from the tooth reduces the potential for the support to be adhered to the tooth by stray adhesive that has leaked from between the tooth and the attachment during the securing process or that was sloppily applied during application of the adhesive to the surface of the attachment.
Additionally, the spaced nature of the arched support from the tooth may also allow separation of the attachment from the supports in a manner that reduces the potential for damage of the tooth during separation. For example, if the support is to be cut away from the attachment to form the separation, the tip of the cutting device may have space to pass between the support and the tooth during separation where there would be no space if the support were in contact with the tooth.
Further, as can be seen in the embodiment of
This can be beneficial in that when the structure is placed on the teeth of the patient, force may be applied to the supports and the thicker portion can resist the potential for the support to break during the placement of the structure. This could affect the positioning of the attachment or render the dental attachment placement structure ineffective to assist in placement of the attachment (e.g., the structure may not be able to hold the attachment in proper position for attachment at the correct location or orientation).
The tapering also makes separation of the attachment from the dental attachment placement structure body easier. For example, when a cutting tool is used to separate the attachment from the body, it must cut completely through the support to accomplish the separation.
A thinner support means that less cutting needs to be done. Furthermore, a tapered support may negate the need for a cutting tool and separation of the attachment from the support may only require the user to apply a compressive or tensile force on the thinner support end to initiate the break. Additionally, when the separation between the body and the attachment is accomplished, there may be a little of the support material still attached to the attachment (e.g., if the treatment professional did not cut exactly at the junction between the attachment and the support).
This may leave non-biocompatible material on the attachment and may make the attachment not fit with the dental appliance that is placed over the attachment (the attachment is a different shape in one or more dimensions than the cavity into which the attachment is to be placed). By using a thinner support end at the junction between the attachment and the support, the likelihood that extra support material is left on the attachment is reduced.
The illustration of the embodiment in
Having more or less material on the adjacent tooth surfaces provides several benefits and these can be weighed when designing various implementations. For example, having more material will increase the strength of the body which may be beneficial in some implementations, such as where the installation of the dental attachment placement structure may be difficult.
Having more material will increase the rigidity of the body which may be beneficial in some implementations, such as where accurate positioning is important. Further, having used less material for the body may be beneficial for reasons of reducing weight of the structure, reducing cost of manufacture as less materials and time may be used, and improving flexibility of the structure to aid in removal, among other benefits.
Each cavity is formed from a number of surfaces of the structure that are used to contact a corresponding surface of the tooth onto which the cavity is placed. As shown in
The apparatus includes a body 801 having a tooth-shaped surface that is shaped to conform to the front surface of a tooth and is to be placed against the front surface of the tooth. This tooth-shaped surface of the body can include an aperture (e.g., aperture 810) to allow placement of an attachment at a particular position on the tooth surface. It will be understood that, in some embodiments, the aperture may not be completely closed around its edge. Such designs should be considered to be within the embodiments of the present disclosure.
As shown in
Also, it should be noted by the reader that the surface on which the line for element number 806 is positioned is the surface on the attachment that is to be attached to the tooth. It is on this surface that an adhesive material is to be placed (the adhesive is not shown). The adhesive can be applied to the entire surface or to a part thereof. The adhesive can be ultra-violet (UV) curable adhesive or any other suitable type of adhesive that can be used to affix the attachment to the tooth surface.
In some embodiments, the attachment can, for example, include an adhesive layer positioned to secure the attachment to an affixing surface of a tooth. In some embodiments, the adhesive is only located on the portion of the attachment that will contact the tooth. In this manner, it is unlikely that the adhesive will secure other parts of the apparatus to the tooth or create excess dried adhesive that may need to be removed from the tooth.
In some embodiments, the surface of the attachment that contacts the tooth may contain a recessed well or pocket in which an adhesive can be applied. This controls the location of where the adhesive is applied and avoids issues surrounding excess adhesive, for example, unwanted flash, unwanted adherence of the positioning structure supports to the tooth.
In some implementations, a release layer is provided over the adhesive. The release layer can be a thin film of plastic, wax paper, or other suitable covering that can be removable by the treatment professional when it is time for the attachment to be placed on the tooth of the patient. This can be beneficial, for example, to allow the adhesive to be applied at or shortly after fabrication of the apparatus, does not expose the adhesive to contaminants that may harden or make the adhesive less effective (e.g., dust).
The use of surfaces (e.g., 814, 818, and/or 812 of
As discussed above with respect to
In
For example, the connection is a single connection allowing the detachment to be made with only one breaking of the connection with the attachment. Also, with a single connection, any residual material from the single connection member is located in one area of the attachment making removal of the extra material easier.
Additionally, in the embodiment shown in
Any suitable number of supports can be utilized. For example, in
In some embodiments, the support functionality can be provided by a material that spans across at least part of the area covering the front surface of tooth. In such an embodiment, the attachment can be attached to the material or to one or more connection members such as the type shown at 905 in
In such embodiments, the material may, for example, be cut away to allow access to the connection between the connection member and the attachment in order to detach the attachment. In some embodiments, a stimulant that can be applied as discussed above. In such embodiments, the stimulant can be used, for example, to make the material (or a portion thereof) and/or connection member brittle or dissolve the material and/or connection to detach the attachment therefrom.
As shown in the embodiment illustrated in
For instance, in
The body can also include an additional attachment mounting structure (e.g., a second attachment mounting structure) for attaching one or more dental attachments to an exterior surface of another tooth. This allows further elements of the patient's mouth to be used to further corroborate the position of the appliance. This is, for example, because the surfaces and edges of the apparatus when they contact the mouth of the patient, at surfaces and edges of the tooth or teeth that those surface and/or edges of the apparatus.
For example, as shown in
In some embodiments, having more support material (e.g., the support structure of
In one method of forming a structure as discussed in embodiments disclosed herein, the method includes forming an attachment out of an attachment material and a dental attachment placement structure body, connected to the attachment to hold the attachment in a particular position wherein there is a single connection area between the attachment and the attachment placement structure. In some embodiments, the dental attachment placement structure can be printed using the three-dimensional printing apparatus.
Another strategy method can include printing the dental attachment placement structure out of a second material that is different than the attachment material. Such embodiments can be beneficial in several ways. For example, the body can be made from a material that is easier to break, thereby making the separation occur on the body rather than on the attachment (which could deform the attachment in a manner that would make it unusable). The body material could also be made from a less expensive material or a non-biocompatible material (it could be compatible for the short time it is in the mouth of the patient, but may not be biocompatible over the course of a longer period, such as the treatment period).
In some embodiments, printing the attachment and dental attachment placement structure is done such that they are connected to each other at least one point when printed. For instance, the attachment is connected by three points in
In another method of forming a dental attachment placement structure, the method includes receiving dental data of a patient's teeth to form a virtual dental model of a patient's dentition. From this dental data, a treatment plan for moving one or more of a patient's teeth, that includes the use of at least one attachment that is affixed to a tooth of the patient, can be created.
In this treatment planning process, the process further includes, locating a position and orientation of an attachment on the surface of a tooth of the patient. Then, a dental attachment placement structure can be designed, including a body, a number of supports, and an attachment connected to the number of supports, wherein the shape of the body is based on the virtual dental model.
In various embodiments, the attachment can be printed to include one surface of the attachment with a contour that will mate with a corresponding contour of an exterior surface of a tooth. In this manner, the attachment can be fitted closely to the surface of the tooth which may increase its ability to be secured to the surface of the tooth. In such implementations, more force may be applied to the attachment without it coming loose from the surface of the tooth, among other benefits.
Some embodiments can provide printing one surface of the dental attachment placement structure with a contour that will mate with a corresponding contour of an exterior surface of a tooth. Such embodiments may be able to more accurately place the attachment on the tooth surface due to the mating nature of the surface of the structure and the tooth surface, among other benefits.
As shown in
As can be appreciated by the discussion of the different embodiments described herein, in can be noted that each of these types of attachment mounting structures can provide an accurate mechanism for positioning and orienting the attachment with respect to the surface of the tooth to which the attachment is to be secured, but one type may have benefits over another in some applications based on one or more characteristics (e.g., whether etching is desired, space available for placement of the attachment, number of attachments to be placed on a single tooth, type of securement that will be used, etc.).
As discussed herein, the dental attachments are structures that are specifically shaped to provide particular forces to move one or more teeth of a patient. They can be used to move a tooth directly (e.g., to move a tooth to which they are attached) or indirectly (e.g., to act as an anchor and to direct force elsewhere to move a tooth toward another location in a patient's mouth). As described herein, the attachment can be used to apply a force to one or more teeth when used in conjunction with, for example, a cavity formed in an aligner. The cavity can be shaped to have at least one surface that contacts a surface of the attachment, with the aligner providing the force to the attachment, which is then used to move the one or more teeth. In order to impart a force accurately, the attachment should be placed at a precise position on a surface of a tooth and in a particular orientation to the tooth, such that when the aligner is placed over the teeth, the specialized cavity having the surface therein will contact the desired surface of the attachment in a manner that will accurately impart the desired force at the desired force vector.
In some cases, the attachment is configured to be used in conjunction with an alignment device instead of, or in addition to, an aligner. For example, the attachment may be adapted to engage with an elastic band or brace to provide more leverage and more force on the teeth. In a specific example, the attachment includes a hook or groove that an elastic band can hook around. Such attachment features are sometimes referred to as power arms or buttons. The elastic band can hook around two of the attachments to apply a pulling force that applies a force pulling the two attachments together. Accurate positioning and orientation of such attachment features on the tooth surfaces can be important in order to apply the forces in a desired direction.
The accurate positioning of an attachment is referred to herein as registration, which describes a condition of correct alignment or proper relative position and orientation with respect to a surface of a tooth. This term can be used to describe the proper positioning of an attachment, but can also be used to describe the proper fit between an attachment placement structure and a surface or edge of a tooth used to assure proper positioning and orientation of the attachment placement structure. As described herein, this can involve the use of a contoured surface on the attachment placement structure having unique undulations or grooves that match the unique undulations or grooves on the surface of a particular tooth of a patient, wherein registration refers to the alignment of the undulations or grooves of the surface of the attachment placement structure with those of the tooth surface and when aligned, and which indicates that the attachment placement structure is in the correct position and orientation for placement of the one or more attachments. This contoured surface can be formed based on a computer model (e.g., 3D or 2D) of at least a portion of a patient's dentition. In some cases, the more features (e.g., undulations, grooves, surfaces of a tooth, edges of a tooth, number of surfaces or edges of other teeth), the more accurate the positioning and orientation of the attachment can be.
In some embodiments, the attachment placement structure is formed with the one or more attachments attached thereto. Such technologies can be particularly useful in some such embodiments as the two can be fabricated during the same process. For example, the attachment placement structure and attachments can be formed together using one or more of an additive manufacturing (3D printing) process, a subtractive manufacturing process (e.g., machining, cutting, milling, drilling, or etching), and a molding process.
In some embodiments, the body of the attachment placement structure can be in the form of a frame with the one or more attachments extending from the frame. In addition to the attachment(s), the frame can support other features for placing and aligning the attachment placement device on a dental arch. For example, one or more registration anchors used to register the position of the attachment(s) can also extend from the frame. In some embodiments, one or more retention supports used to support the position of the attachment placement device extend off the frame.
An advantage of a such a frame structure is that the attachment placement device can be made of a minimal amount of material and may be more easily fabricated. In some cases, the attachment placement device can be 3D printed without the use of supports used in conventional 3D printing processes. This can eliminate the need to remove such supports after the printing process, thereby decreasing the time and cost of manufacture. Thus, a portion of the attachment placement device may have a surface having a shape corresponding to a build plate used during a 3D printing process. In some cases, this surface is (e.g., substantially) flat. The frame structure may also allow for easier access to the parts of the dental arch during placement of the attachment as the frame may take up less space around the teeth compared to an attachment placement structure that covers and occludes more of the dental arch. Thus, the treatment professional can access portions of the teeth and/or gums that would not be accessible using a higher coverage placement apparatus.
The dental attachment may be removably attached to the attachment support such that the attachment can be detached from the dental attachment placement structure, for example, after the attachment is affixed to the tooth surface. An attachment may be attached to an attachment support at an interface region between the attachment and attachment support. This interface region may be configured for easy detachment. For example, the attachment support may have a thicker end close to the frame that tapers to a lesser thickness at the interface region for easier detachment. In some embodiments, detachment is accomplished using a detachment tool, as described herein. In a number of embodiments, the interface region is sufficiently frangible to allow the attachment to break away from the attachment support without the use of detachment tool. In some cases, a user may be able to detach the attachment by applying a compressive, tensile or pressing force on the attachment (e.g., by the user's hand).
The frame may also include one or more registration anchors (examples of which are identified as 1201-2, 1201-3, and 1201-4) that extend from the frame and that include contact surfaces that register with corresponding one or more teeth. When the contact surfaces of the registration anchor(s) register with corresponding teeth, the dental attachments can also register with the corresponding tooth surfaces. In some cases, the registration anchor contact surface is contoured to complement the undulations and/or grooves of a corresponding surface of one or more teeth. The contoured surface may be adapted to complement the surfaces of any type of one or more teeth, such as one or more incisors, canines, premolars, and molars. The contoured surface may be adapted to complement any side of a tooth, such as one or more lingual, occlusal, buccal, and distal tooth surfaces. In some embodiments, the registration anchor may at least partially encapsulate an incisal edge of a tooth. The registration anchor may and extend over more than one side of a tooth, such as portions of the top (e.g., crown), buccal and/or lingual sides of the corresponding tooth. In the example shown in
In some cases, the dental attachment is configured to attach to the same tooth as the tooth that the registration anchor is configured to contact. For instance, attachment 1202-4 is aligned with a surface of tooth 1211-4, which is the same tooth that registration anchor 1201-4 is registered with. In some cases, the registration anchor is configured to registered with a different tooth that the tooth that the dental attachment is configured to attach to. For instance, attachment 1202-1 is aligned with a surface of tooth 1211-1, which is different than tooth 1211-2 that registration anchor 1201-3 is registered with. The registration anchor may be configured to registered with multiple teeth. For instance, registration anchor 1201-3 can adapted to registered with surfaces of tooth 1211-2 and tooth 1211-3. When the one or more registration anchors are correctly placed on and registered with corresponding tooth surface(s), the dental attachment placement structure can be properly aligned with the dental arch, and the attachment(s) can be precisely positioned with respect to the tooth surface(s).
In addition to extending the attachment in a downward or upward direction away from the frame and toward the tooth, the attachment support may also align an attachment surface (e.g., 1230) of the attachment with respect to the tooth surface. In some cases, the attachment support points the attachment surface (e.g., 1230) in a direction toward the midline of the frame. For example, the attachment support may have an arched shape that orients the attachment such that the attachment surface is substantially parallel to the target tooth surface. In other embodiments, the attachment support has an angled shape. This arched or angled shape may also provide room for the user's hand or a detachment tool to access the attachment for detachment as the arched shape can bow outward. The shape and size of the dental attachment 1202 can vary depending on desired force characteristics and the shape and type of corresponding dental appliance (e.g., aligner), as described herein.
In some embodiments, the dental attachment placement structure includes one or more retention supports that extends from the frame and is configured to maintain the dental attachment(s) at the predetermined position(s).
In some cases, the retention support extends from a different side of the frame than the attachment support. For example, the retention support can extend from a first side of the frame and the attachment support may extend from a second side of the frame. In the example shown in
The frame (e.g., 1210) can be shaped and sized for following at least a portion of the dental arch. In some instances, the frame has an arched shape (e.g., U-shaped) in accordance with the dental arch. In other embodiments, the frame covers only a portion of the dental arch. The frame may be one continuous piece or may include multiple pieces that are joined together. Such sections may be have a curved (e.g., arched) shape or be straight and joined together to provide a generally curved (e.g., arched) shape. Although the example shown shows frame 1210 that is adapted to follow along occlusal sides of the teeth (e.g., top of the dental arch), other variations are encompassed by the instant disclosure. For example, the frame may be adapted to follow along the lingual and/or buccal sides of the teeth (e.g. inside of the dental arch and/or outside of the dental arch). In some embodiments the frame is adapted to follow along multiple sides of the teeth (e.g., two or more of the occlusal, lingual and buccal sides). In some cases, the dental attachment placement structure includes more than one frame. For example, two or more frames may be adapted to follow along one or more of the occlusal, lingual and buccal sides of the teeth. Such variations may be included in any of the dental attachment placement structures described herein.
In some embodiments, the registration anchors register with only a subset of the teeth of the dental arch. In some examples, two or more registration anchors are used to span the frame over one or more teeth. For instance, registration anchors 1201-4 and 1201-5 extend from the frame 1210 such that they are separated by a gap portion 1210-1 of the frame. The registration anchors 1201-4 and 1201-5 are configured to register with non-adjacent teeth such that the gap portion 1210-1 of the frame spans teeth 1211-5 and 1211-6. This can allow the gap portion 1210-1 of the frame to suspend over the dental arch and allow dental attachments 1202-5, 1202-6 and retention supports 1206-2, 1206-3, 1206-4 to be positioned over their respective target teeth. This allows the dental attachment placement structure to occlude less of the dental arch than a dental attachment placement structure that covers more tooth surfaces. For instance, the treatment professional can more easily access regions around the intervening teeth 1211-5 and 1211-6 for attaching the attachments 1202-5 and 1202-6.
As described herein, the dental attachment placement structure can be formed using additive manufacturing techniques. In some cases, this involves printing portions of the dental attachment placement structure on a build plate (sometimes referred to as a build platform or base plate) of an additive manufacturing machine without the use of supports. As known, manufacturing supports are often used in 3D printing to support the 3D object on a build plate during the printing process. Such manufacturing supports are typically used to support portions of the 3D object, such as overhangs, that tend to deform during the printing process and are generally removed from the 3D object after the printing process is complete. Such manufacturing supports adds extra material, and adds extra manufacturing time and expense for removing the supports. In some embodiments, the dental attachment placement structure is printed without the use of manufacturing supports, thereby saving material, time and money. In the example shown in
To use the dental attachment placement apparatus, a treatment professional can position the one or more registration anchors on corresponding tooth surfaces. In the embodiment shown in
In some embodiments, one or more portions of the dental attachment placement structure is flexible in order to reduce stress concentrations in portions of the structure. Since the dental attachment placement structure may be made of brittle material (e.g., some composite materials), such flexible features can allow the structure to be more resilient and less prone to breakage while still being made of material(s) having desirable properties such as stiffness. The flexible features can reduce the occurrence of breakage during handling (e.g., during manufacture and shipping) of the structure. Having flexible features may allow more structures to be printed (e.g., on a build plate) per 3D printing run. The flexible features may also allow the structures to bend in ways that reduce the dimensions of the structures for more efficient packaging. The flexible features may also provide some tolerance so that the structure can fit on the patient's dental arch more easily.
The dental attachment placement structure may have flexible portions other than the frame.
According to some embodiments, the material forming the one or more features of the dental attachment placement structure provides flexibility.
A dental attachment placement structure may include any combination of the flexible features of
As described herein, the dental attachment placement structure can be formed based on a virtual model. According to some embodiments, the location and orientation of the frame and other features of the structure are determined based on the location of the dental attachments in the virtual model.
To determine the location and orientation of the frame 1210, a center of the attachment 1202-3 can be located and projected vertically until it intersects with the plane of the frame 1210. This point can be used as a reference (e.g., correspond to the center of a circle) used to create the base portion 1209-5, thereby informing the location and orientation of the frame 1210. The bridge portion 1209-5 can be formed to connect the base portion 1209-5 to the frame or registration anchor. The dental attachments 1202-4 and 1202-5 can likewise be used to create corresponding base portions and bridge portions for connecting the attachment supports 1204-4 and 1204-5 to the frame or a registration anchor, as well as the remaining dental attachments and attachment supports, until the location and orientation of the entire frame 2101 is determined. During, for example a 3D printing process, the attachment support may be centered under the dental attachment.
As illustrated in Figured 13A, an attachment may be supported by an attachment frame (e.g., 1320) attached to the attachment support (e.g., 1303-1) and which may at least partially surround a perimeter of the attachment (e.g., 1302-1). The attachment may be connected to the attachment frame via one or more struts (e.g., 1325), which may correspond to a frangible portion of the attachment frame. For example, an interface region between a strut and the attachment may be sufficiently frangible such that the attachment can be detached from the attachment frame without the use of a detachment tool (e.g., by the user's hands). In some instances, the struts have a tapered geometry, whereby a thickness of the strut tapers down from the attachment frame to the attachment. The attachment frame can include any number of struts (e.g., 1, 2, 3, 4, 5, 10, 20). I some cases, the struts at least partially surround the perimeter of the attachment to maintain the attachment in position within the attachment frame. The attachment frame may be configured to protect the attachments and/or struts from being detached and/or damaged during manufacturing, handling and shipping.
As illustrated in Figured 13B, the one or more retention supports (e.g., 1306-1 and 1306-2) can be configured to contact a tooth surface between interproximal regions (e.g., a single tooth). In some cases, the one or more retention supports is configured to contact a crown surface of one or more teeth. This non-interproximal regions contact configuration can provide greater retention through increased surface contact with the one or more teeth. Further, this may provide a more accurate registration surface for the contact portion (e.g., 1312-3) since in some cases a digital scan of the interproximal region may be less accurate than a scan of a tooth surface between interproximal regions. In some embodiments, the dental attachment placement structure includes a combination of one or more retentions supports configured to contact one or more interproximal regions and one or more retentions supports configured to contact a tooth surface between one or more interproximal regions.
In some embodiments, one or more of the dental attachments includes an auxiliary feature to provide a particular function according to a treatment plan. The one or more auxiliary features may be used in conjunction with one or more orthodontic appliances, such as an aligner, elastic band, brace and/or bracket, to apply prescribed forces to the patient's teeth. According to some embodiments, the dental attachment placement structure includes attachments with integrated auxiliary features for easier and more accurate placement of the auxiliary features on the dental arch. Examples of auxiliary features can include one or more of a power arm, hook, button, spring, brace, bracket, wire, rod, band, blade, coil, elastic, ring, track, link and chain.
Once the dental attachment placement structure is formed, it may be positioned on the patient's dental arch, such as shown in Figured 14A. For example registration anchors 1442 and 1444 can be placed on and adjusted to register with corresponding teeth 1470 and 1472, respectively. The retention supports (if any) may also be positioned on an opposing (e.g., lingual) side of the dental arch for support. Once registered in the predetermined position of a tooth, the attachment can be affixed to the tooth using methods described herein, such as using an adhesive. The attachment and auxiliary feature can be detached from the dental attachment placement structure at an interface region (e.g., 1462 or 1464) between the attachment and an attachment support (e.g., 1465 or 1466). In some embodiments, the interface region may be frangible such that the attachment may be removed without a detachment tool. In some embodiments, the attachment is configured to be removed using a detachment tool.
In some embodiments, the auxiliary feature and attachment are supported by an attachment frame, such as illustrated in in the example of
As described herein, the dental attachment placement structures described herein can be made of one material or a combination of materials. In some cases, the dental attachment placement structures can formed of one or more polymers (e.g., polyester, a co-polyester, a polycarbonate, a thermoplastic polyurethane, a polypropylene, a polyethylene, a polypropylene and polyethylene copolymer, an acrylic, a cyclic block copolymer, a polyetheretherketone, a polyamide, a polyethylene terephthalate, a polybutylene terephthalate, a polyetherimide, a polyethersulfone, a polytrimethylene terephthalate, or a combination thereof). In some embodiments, the dental attachment placement structure can be fabricated out of a second material that is different than the attachment material. For example, the attachment can be fabricated from a composite material and the dental attachment placement structure can be fabricated from a polymer, such as those discussed above. In some embodiments, the attachment and dental attachment placement structure can be constructed such that they are connected to each other. As discussed herein, this connection can be designed to be cut, broken, or otherwise released to allow the dental attachment placement structure to be removed while the attachment is positioned on the tooth.
Memory 1146 and/or the processor 1144 may be located on the computing device 1142 or off of the computing device 1142, in some embodiments. As such, as illustrated in the embodiment of
As illustrated in the embodiment of
In some embodiments, the scanning device 1156 can be configured to scan one or more physical dental molds of a patient's dentition. In one or more embodiments, the scanning device 1156 can be configured to scan the patient's dentition, a dental appliance, and/or attachment placement structure directly. The scanning device 1156 can be configured to input data into the computing device 1142. In some embodiments, the camera dock 1158 can receive an input from an imaging device (e.g., a 2D or 3D imaging device) such as a digital camera, a printed photograph scanner, and/or other suitable imaging device. The input from the imaging device can, for example, be stored in memory 1146.
The processor 1144 can execute instructions to provide a visual indication of a treatment plan, a dental appliance, and/or a one or more attachments on the display 1142. The computing device 1142 can be configured to allow a treatment professional or other user to input treatment goals. Input received can be sent to the processor 1144 as data 1148 and/or can be stored in memory 1146. Such connectivity can allow for the input and/or output of data and/or instructions among other types of information. Some embodiments may be distributed among various computing devices within one or more networks, and such systems as illustrated in FIG. 11 can be beneficial in allowing for the capture, calculation, and/or analysis of information discussed herein.
The processor 1144, in association with the data storage device (e.g., memory 1146), can be associated with the data 1148. The processor 1144, in association with the memory 1146, can store and/or utilize data 1148 and/or execute instructions 1150 for creating and/or modeling interactions between an attachment and a tooth; interactions between an attachment and an appliance; and/or combinations of interactions between one or more attachments, one or more teeth and/or other structure in the mouth of the patient, and/or one or more appliances for moving teeth.
The processor 1144, in association with the memory 1146 can, in addition to or alternatively, store and/or utilize data 1148 and/or execute instructions 1150 for creating and/or modeling attachment placement structures and/or attachments, and/or adhesive and/or releasable materials, as well as a virtual modeling of such items with or without an appliance for moving teeth, and/or one or more teeth. The virtual model of the attachment placement structure and/or attachments to attach a dental appliance to the teeth of a patient can be used to create a physical dental appliance, attachment placement structure and/or attachments, for instance, as discussed further herein.
The processor 1144 coupled to the memory 1146 can, for example, include instructions to cause the computing device 1142 to perform a method including, for example, creating a treatment plan based on a virtual model of a jaw of a patient, wherein the treatment plan includes use of an attachment.
In some embodiments, the processor 1144 coupled to the memory 1146 can cause the computing device 1142 to perform the method comprising modeling a virtual dental attachment based on the treatment plan, wherein the virtual dental attachment is constructed to provide one or more forces desired by the treatment plan.
In various embodiments, the processor 1144 coupled to the memory 1146 can cause the computing device 1142 to perform the method comprising creating a virtual dental attachment placement apparatus that includes a surface (e.g., contoured surface) configured to register in accordance with a scan of the patient's dental arch. The computing device 1142 may be configured to determine (e.g., calculate) a desired position of one or more attachments on corresponding teeth based on the virtual dental attachment placement apparatus and the scan of the patient's dental arch. Such analysis can be also be accomplished one or more times for a treatment plan. For example, if a treatment plan has 30 stages, it would be possible to have different attachments for each stage or possibly more, if desired. However, in many instances the attachment type, position, and/or orientation may be changed a few times during the treatment plan.
Through use of virtual modeling, attachments can be virtually tested and the best attachment type, shape, position, and/or orientation can be selected without inconveniencing the patient with trial and error of attachments during treatment. Additionally, use of virtual modeling can also allow for custom design of attachment shapes that will be suitable for a specific patient's needs and/or a specific function within an area of a patient's mouth. From such analysis, different physical dental attachment placement apparatuses can be created from the virtual dental attachment placement apparatus data that would be utilized to create the attachments needed for the different stages.
Further, the specialized nature of the design of such attachments can also allow the attachments to be made from different materials. In this manner, attachments during a treatment plan or even during one stage can be of a different material that may provide more specialized force distribution than was possible with standard attachments.
In some embodiments, the printer 1144 can be a three dimensional or direct fabrication device that can create a dental appliance directly from instructions from the computing device 1142. Embodiments of the present disclosure utilizing such technology can be particularly beneficial for a variety of reasons. For example, such direct manufacture allows for less waste of materials due to less processing steps and increased specialization of the attachment placement structure, attachment materials, and/or other components of the appliances described herein.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.
It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the FIGS. for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
Any of the methods (including user interfaces) described herein may be implemented as software, hardware or firmware, and may be described as a non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a processor (e.g., computer, tablet, smartphone, etc.), that when executed by the processor causes the processor to control perform any of the steps, including but not limited to: displaying, communicating with the user, analyzing, modifying parameters (including timing, frequency, intensity, etc.), determining, alerting, or the like.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
In general, any of the apparatuses and methods described herein should be understood to be inclusive, but all or a sub-set of the components and/or steps may alternatively be exclusive, and may be expressed as “consisting of” or alternatively “consisting essentially of” the various components, steps, sub-components or sub-steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application claims priority to U.S. Provisional Patent Application No. 62/648,698, filed on Mar. 27, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2171695 | Harper | Sep 1939 | A |
2194790 | Gluck | Mar 1940 | A |
2467432 | Kesling | Apr 1949 | A |
2531222 | Kesling | Nov 1950 | A |
2835628 | Saffir | May 1958 | A |
3089487 | Enicks et al. | May 1963 | A |
3092907 | Traiger | Jun 1963 | A |
3178820 | Kesling | Apr 1965 | A |
3211143 | Grossberg | Oct 1965 | A |
3379193 | Monsghan | Apr 1968 | A |
3385291 | Martin | May 1968 | A |
3407500 | Kesling | Oct 1968 | A |
3478742 | Bohlmann | Nov 1969 | A |
3496936 | Gores | Feb 1970 | A |
3503127 | Kasdin et al. | Mar 1970 | A |
3521355 | Pearlman | Jul 1970 | A |
3533163 | Kirschenbaum | Oct 1970 | A |
3556093 | Quick | Jan 1971 | A |
3600808 | Reeve | Aug 1971 | A |
3660900 | Andrews | May 1972 | A |
3683502 | Wallshein | Aug 1972 | A |
3724075 | Kesling | Apr 1973 | A |
3738005 | Cohen et al. | Jun 1973 | A |
3797115 | Cohen et al. | Mar 1974 | A |
3813781 | Forgione et al. | Jun 1974 | A |
3860803 | Levine | Jan 1975 | A |
3885310 | Northcutt | May 1975 | A |
3916526 | Schudy | Nov 1975 | A |
3922786 | Lavin | Dec 1975 | A |
3949477 | Cohen et al. | Apr 1976 | A |
3950851 | Bergersen | Apr 1976 | A |
3955282 | McNall | May 1976 | A |
3983628 | Acevedo | Oct 1976 | A |
4014096 | Dellinger | Mar 1977 | A |
4039653 | DeFoney et al. | Aug 1977 | A |
4055895 | Huge | Nov 1977 | A |
4094068 | Schinhammer | Jun 1978 | A |
4117596 | Wallshein | Oct 1978 | A |
4129946 | Kennedy | Dec 1978 | A |
4134208 | Pearlman | Jan 1979 | A |
4139944 | Bergersen | Feb 1979 | A |
4179811 | Hinz | Dec 1979 | A |
4179812 | White | Dec 1979 | A |
4183141 | Dellinger | Jan 1980 | A |
4195046 | Kesling | Mar 1980 | A |
4204325 | Kaelble | May 1980 | A |
4253828 | Coles et al. | Mar 1981 | A |
4255138 | Frohn | Mar 1981 | A |
4278087 | Theeuwes | Jul 1981 | A |
4299568 | Crowley | Nov 1981 | A |
4324546 | Heitlinger et al. | Apr 1982 | A |
4324547 | Arcan et al. | Apr 1982 | A |
4348178 | Kurz | Sep 1982 | A |
4360341 | Dellinger | Nov 1982 | A |
4368040 | Weissman | Jan 1983 | A |
4419992 | Chorbajian | Dec 1983 | A |
4433956 | Witzig | Feb 1984 | A |
4433960 | Garito et al. | Feb 1984 | A |
4439154 | Mayclin | Mar 1984 | A |
4449928 | von Weissenfluh | May 1984 | A |
4450150 | Sidman | May 1984 | A |
4478580 | Barrut | Oct 1984 | A |
4500294 | Lewis | Feb 1985 | A |
4505672 | Kurz | Mar 1985 | A |
4505673 | Yoshii | Mar 1985 | A |
4519386 | Sullivan | May 1985 | A |
4523908 | Drisaldi et al. | Jun 1985 | A |
4526540 | Dellinger | Jul 1985 | A |
4553936 | Wang | Nov 1985 | A |
4575330 | Hull | Mar 1986 | A |
4575805 | Moermann et al. | Mar 1986 | A |
4591341 | Andrews | May 1986 | A |
4608021 | Barrett | Aug 1986 | A |
4609349 | Cain | Sep 1986 | A |
4611288 | Duret et al. | Sep 1986 | A |
4629424 | Lauks et al. | Dec 1986 | A |
4638145 | Sakuma et al. | Jan 1987 | A |
4656860 | Orthuber et al. | Apr 1987 | A |
4663720 | Duret et al. | May 1987 | A |
4664626 | Kesling | May 1987 | A |
4665621 | Ackerman et al. | May 1987 | A |
4676747 | Kesling | Jun 1987 | A |
4741700 | Barabe | May 1988 | A |
4755139 | Abbatte et al. | Jul 1988 | A |
4757824 | Chaumet | Jul 1988 | A |
4763791 | Halverson et al. | Aug 1988 | A |
4764111 | Knierim | Aug 1988 | A |
4790752 | Cheslak | Dec 1988 | A |
4793803 | Martz | Dec 1988 | A |
4798534 | Breads | Jan 1989 | A |
4818542 | DeLuca et al. | Apr 1989 | A |
4830612 | Bergersen | May 1989 | A |
4836778 | Baumrind et al. | Jun 1989 | A |
4837732 | Brandestini et al. | Jun 1989 | A |
4850864 | Diamond | Jul 1989 | A |
4850865 | Napolitano | Jul 1989 | A |
4856991 | Breads et al. | Aug 1989 | A |
4861268 | Garay et al. | Aug 1989 | A |
4877398 | Kesling | Oct 1989 | A |
4880380 | Martz | Nov 1989 | A |
4886451 | Cetlin | Dec 1989 | A |
4889238 | Batchelor | Dec 1989 | A |
4890608 | Steer | Jan 1990 | A |
4932866 | Guis | Jun 1990 | A |
4935635 | O'Harra | Jun 1990 | A |
4936862 | Walker et al. | Jun 1990 | A |
4937928 | van der Zel | Jul 1990 | A |
4941826 | Loran et al. | Jul 1990 | A |
4952928 | Carroll et al. | Aug 1990 | A |
4964770 | Steinbichler et al. | Oct 1990 | A |
4971557 | Martin | Nov 1990 | A |
4975052 | Spencer et al. | Dec 1990 | A |
4983334 | Adell | Jan 1991 | A |
4997369 | Shafir | Mar 1991 | A |
5002485 | Aagesen | Mar 1991 | A |
5011405 | Lemchen | Apr 1991 | A |
5015183 | Fenick | May 1991 | A |
5017133 | Miura | May 1991 | A |
5018969 | Andreiko et al. | May 1991 | A |
5027281 | Rekow et al. | Jun 1991 | A |
5035613 | Breads et al. | Jul 1991 | A |
5037295 | Bergersen | Aug 1991 | A |
5049077 | Goldin et al. | Sep 1991 | A |
5055039 | Abbatte et al. | Oct 1991 | A |
5061839 | Matsuno et al. | Oct 1991 | A |
5083919 | Quach | Jan 1992 | A |
5094614 | Wildman | Mar 1992 | A |
5100316 | Wildman | Mar 1992 | A |
5103838 | Yousif | Apr 1992 | A |
5114339 | Guis | May 1992 | A |
5121333 | Riley et al. | Jun 1992 | A |
5123425 | Shannon et al. | Jun 1992 | A |
5128870 | Erdman et al. | Jul 1992 | A |
5130064 | Smalley et al. | Jul 1992 | A |
5131843 | Hilgers et al. | Jul 1992 | A |
5131844 | Marinaccio et al. | Jul 1992 | A |
5139419 | Andreiko et al. | Aug 1992 | A |
5145364 | Martz et al. | Sep 1992 | A |
5176517 | Truax | Jan 1993 | A |
5194003 | Garay et al. | Mar 1993 | A |
5204670 | Stinton | Apr 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
5224049 | Mushabac | Jun 1993 | A |
5238404 | Andreiko | Aug 1993 | A |
5242304 | Truax et al. | Sep 1993 | A |
5245592 | Kuemmel et al. | Sep 1993 | A |
5273429 | Rekow et al. | Dec 1993 | A |
5278756 | Lemchen et al. | Jan 1994 | A |
5306144 | Hibst et al. | Apr 1994 | A |
5314335 | Fung | May 1994 | A |
5324186 | Bakanowski | Jun 1994 | A |
5328362 | Watson et al. | Jul 1994 | A |
5335657 | Terry et al. | Aug 1994 | A |
5338198 | Wu et al. | Aug 1994 | A |
5340309 | Robertson | Aug 1994 | A |
5342202 | Deshayes | Aug 1994 | A |
5344315 | Hanson | Sep 1994 | A |
5368478 | Andreiko et al. | Nov 1994 | A |
5372502 | Massen et al. | Dec 1994 | A |
D354355 | Hilgers | Jan 1995 | S |
5382164 | Stern | Jan 1995 | A |
5395238 | Andreiko et al. | Mar 1995 | A |
5415542 | Kesling | May 1995 | A |
5431562 | Andreiko et al. | Jul 1995 | A |
5440326 | Quinn | Aug 1995 | A |
5440496 | Andersson et al. | Aug 1995 | A |
5447432 | Andreiko et al. | Sep 1995 | A |
5449703 | Mitra et al. | Sep 1995 | A |
5452219 | Dehoff et al. | Sep 1995 | A |
5454717 | Andreiko et al. | Oct 1995 | A |
5456600 | Andreiko et al. | Oct 1995 | A |
5474448 | Andreiko et al. | Dec 1995 | A |
5487662 | Kipke et al. | Jan 1996 | A |
RE35169 | Lemchen et al. | Mar 1996 | E |
5499633 | Fenton | Mar 1996 | A |
5522725 | Jordan et al. | Jun 1996 | A |
5528735 | Strasnick et al. | Jun 1996 | A |
5533895 | Andreiko et al. | Jul 1996 | A |
5540732 | Testerman | Jul 1996 | A |
5542842 | Andreiko et al. | Aug 1996 | A |
5543780 | McAuley et al. | Aug 1996 | A |
5549476 | Stern | Aug 1996 | A |
5562448 | Mushabac | Oct 1996 | A |
5570182 | Nathel et al. | Oct 1996 | A |
5575649 | Lee | Nov 1996 | A |
5575655 | Darnell | Nov 1996 | A |
5583977 | Seidl | Dec 1996 | A |
5587912 | Andersson et al. | Dec 1996 | A |
5588098 | Chen et al. | Dec 1996 | A |
5605459 | Kuroda et al. | Feb 1997 | A |
5607305 | Andersson et al. | Mar 1997 | A |
5614075 | Andre | Mar 1997 | A |
5621648 | Crump | Apr 1997 | A |
5626537 | Danyo et al. | May 1997 | A |
5636736 | Jacobs et al. | Jun 1997 | A |
5645420 | Bergersen | Jul 1997 | A |
5645421 | Slootsky | Jul 1997 | A |
5651671 | Seay et al. | Jul 1997 | A |
5655653 | Chester | Aug 1997 | A |
5659420 | Wakai et al. | Aug 1997 | A |
5683243 | Andreiko et al. | Nov 1997 | A |
5683244 | Truax | Nov 1997 | A |
5691539 | Pfeiffer | Nov 1997 | A |
5692894 | Schwartz et al. | Dec 1997 | A |
5711665 | Adam et al. | Jan 1998 | A |
5711666 | Hanson | Jan 1998 | A |
5725376 | Poirier | Mar 1998 | A |
5725378 | Wang | Mar 1998 | A |
5730151 | Summer et al. | Mar 1998 | A |
5737084 | Ishihara | Apr 1998 | A |
5740267 | Echerer et al. | Apr 1998 | A |
5742700 | Yoon et al. | Apr 1998 | A |
5769631 | Williams | Jun 1998 | A |
5774425 | Ivanov et al. | Jun 1998 | A |
5790242 | Stern et al. | Aug 1998 | A |
5791896 | Ipenburg | Aug 1998 | A |
5799100 | Clarke et al. | Aug 1998 | A |
5800162 | Shimodaira et al. | Sep 1998 | A |
5800174 | Andersson | Sep 1998 | A |
5813854 | Nikodem | Sep 1998 | A |
5816800 | Brehm et al. | Oct 1998 | A |
5818587 | Devaraj et al. | Oct 1998 | A |
5823778 | Schmitt et al. | Oct 1998 | A |
5848115 | Little et al. | Dec 1998 | A |
5857853 | van Nifterick et al. | Jan 1999 | A |
5866058 | Batchelder et al. | Feb 1999 | A |
5876199 | Bergersen | Mar 1999 | A |
5879158 | Doyle et al. | Mar 1999 | A |
5880961 | Crump | Mar 1999 | A |
5880962 | Andersson et al. | Mar 1999 | A |
5882192 | Bergersen | Mar 1999 | A |
5886702 | Migdal et al. | Mar 1999 | A |
5890896 | Padial | Apr 1999 | A |
5904479 | Staples | May 1999 | A |
5911576 | Ulrich et al. | Jun 1999 | A |
5934288 | Avila et al. | Aug 1999 | A |
5957686 | Anthony | Sep 1999 | A |
5964587 | Sato | Oct 1999 | A |
5971754 | Sondhi et al. | Oct 1999 | A |
5975893 | Chishti et al. | Nov 1999 | A |
5975906 | Knutson | Nov 1999 | A |
5980246 | Ramsay et al. | Nov 1999 | A |
5989023 | Summer et al. | Nov 1999 | A |
5993413 | Aaltonen et al. | Nov 1999 | A |
6002706 | Staver et al. | Dec 1999 | A |
6018713 | Coli et al. | Jan 2000 | A |
6044309 | Honda | Mar 2000 | A |
6049743 | Baba | Apr 2000 | A |
6053731 | Heckenberger | Apr 2000 | A |
6068482 | Snow | May 2000 | A |
6070140 | Tran | May 2000 | A |
6099303 | Gibbs et al. | Aug 2000 | A |
6099314 | Kopelman et al. | Aug 2000 | A |
6102701 | Engeron | Aug 2000 | A |
6120287 | Chen | Sep 2000 | A |
6123544 | Cleary | Sep 2000 | A |
6152731 | Jordan et al. | Nov 2000 | A |
6154676 | Levine | Nov 2000 | A |
6183248 | Chishti et al. | Feb 2001 | B1 |
6183249 | Brennan et al. | Feb 2001 | B1 |
6186780 | Hibst et al. | Feb 2001 | B1 |
6190165 | Andreiko et al. | Feb 2001 | B1 |
6200133 | Kittelsen | Mar 2001 | B1 |
6201880 | Elbaum et al. | Mar 2001 | B1 |
6210162 | Chishti et al. | Apr 2001 | B1 |
6212435 | Lattner et al. | Apr 2001 | B1 |
6213767 | Dixon et al. | Apr 2001 | B1 |
6217334 | Hultgren | Apr 2001 | B1 |
6227850 | Chishti et al. | May 2001 | B1 |
6230142 | Benigno et al. | May 2001 | B1 |
6231338 | de Josselin de Jong et al. | May 2001 | B1 |
6239705 | Glen | May 2001 | B1 |
6243601 | Wist | Jun 2001 | B1 |
6263234 | Engelhardt et al. | Jul 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6288138 | Yamamoto | Sep 2001 | B1 |
6299438 | Sahagian et al. | Oct 2001 | B1 |
6309215 | Phan et al. | Oct 2001 | B1 |
6313432 | Nagata et al. | Nov 2001 | B1 |
6315553 | Sachdeva et al. | Nov 2001 | B1 |
6328745 | Ascherman | Dec 2001 | B1 |
6332774 | Chikami | Dec 2001 | B1 |
6334073 | Levine | Dec 2001 | B1 |
6350120 | Sachdeva et al. | Feb 2002 | B1 |
6364660 | Durbin et al. | Apr 2002 | B1 |
6382975 | Poirier | May 2002 | B1 |
6386878 | Pavlovskaia et al. | May 2002 | B1 |
6394802 | Hahn | May 2002 | B1 |
6402510 | Williams | Jun 2002 | B1 |
6402707 | Ernst | Jun 2002 | B1 |
6405729 | Thornton | Jun 2002 | B1 |
6406292 | Chishti et al. | Jun 2002 | B1 |
6409504 | Jones et al. | Jun 2002 | B1 |
6413086 | Womack | Jul 2002 | B1 |
6414264 | von Falkenhausen | Jul 2002 | B1 |
6414708 | Carmeli et al. | Jul 2002 | B1 |
6435871 | Inman | Aug 2002 | B1 |
6436058 | Krahner et al. | Aug 2002 | B1 |
6441354 | Seghatol et al. | Aug 2002 | B1 |
6450167 | David et al. | Sep 2002 | B1 |
6450807 | Chishti et al. | Sep 2002 | B1 |
6462301 | Scott et al. | Oct 2002 | B1 |
6470338 | Rizzo et al. | Oct 2002 | B1 |
6471511 | Chishti et al. | Oct 2002 | B1 |
6471512 | Sachdeva et al. | Oct 2002 | B1 |
6471970 | Fanara et al. | Oct 2002 | B1 |
6482002 | Jordan et al. | Nov 2002 | B2 |
6482298 | Bhatnagar | Nov 2002 | B1 |
6496814 | Busche | Dec 2002 | B1 |
6496816 | Thiesson et al. | Dec 2002 | B1 |
6499026 | Rivette et al. | Dec 2002 | B1 |
6499995 | Schwartz | Dec 2002 | B1 |
6507832 | Evans et al. | Jan 2003 | B1 |
6514074 | Chishti et al. | Feb 2003 | B1 |
6515593 | Stark et al. | Feb 2003 | B1 |
6516288 | Bagne | Feb 2003 | B2 |
6516805 | Thornton | Feb 2003 | B1 |
6520772 | Williams | Feb 2003 | B2 |
6523009 | Wilkins | Feb 2003 | B1 |
6523019 | Borthwick | Feb 2003 | B1 |
6524101 | Phan et al. | Feb 2003 | B1 |
6526168 | Ornes et al. | Feb 2003 | B1 |
6526982 | Strong | Mar 2003 | B1 |
6529891 | Heckerman | Mar 2003 | B1 |
6529902 | Kanevsky et al. | Mar 2003 | B1 |
6532455 | Martin et al. | Mar 2003 | B1 |
6535865 | Skaaning et al. | Mar 2003 | B1 |
6540512 | Sachdeva et al. | Apr 2003 | B1 |
6540707 | Stark et al. | Apr 2003 | B1 |
6542593 | Bowman Amuah | Apr 2003 | B1 |
6542881 | Meidan et al. | Apr 2003 | B1 |
6542894 | Lee et al. | Apr 2003 | B1 |
6542903 | Hull et al. | Apr 2003 | B2 |
6551243 | Bocionek et al. | Apr 2003 | B2 |
6554837 | Hauri et al. | Apr 2003 | B1 |
6556659 | Bowman Amuah | Apr 2003 | B1 |
6556977 | Lapointe et al. | Apr 2003 | B1 |
6560592 | Reid et al. | May 2003 | B1 |
6564209 | Dempski et al. | May 2003 | B1 |
6567814 | Bankier et al. | May 2003 | B1 |
6571227 | Agrafiotis et al. | May 2003 | B1 |
6572372 | Phan et al. | Jun 2003 | B1 |
6573998 | Cohen Sabban | Jun 2003 | B2 |
6574561 | Alexander et al. | Jun 2003 | B2 |
6578003 | Camarda et al. | Jun 2003 | B1 |
6580948 | Haupert et al. | Jun 2003 | B2 |
6587529 | Staszewski et al. | Jul 2003 | B1 |
6587828 | Sachdeva | Jul 2003 | B1 |
6592368 | Weathers | Jul 2003 | B1 |
6594539 | Geng | Jul 2003 | B1 |
6595342 | Maritzen et al. | Jul 2003 | B1 |
6597934 | de Jong et al. | Jul 2003 | B1 |
6598043 | Baclawski | Jul 2003 | B1 |
6599250 | Webb et al. | Jul 2003 | B2 |
6602070 | Miller et al. | Aug 2003 | B2 |
6604527 | Palmisano | Aug 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6607382 | Kuo et al. | Aug 2003 | B1 |
6611783 | Kelly et al. | Aug 2003 | B2 |
6611867 | Bowman Amuah | Aug 2003 | B1 |
6613001 | Dworkin | Sep 2003 | B1 |
6615158 | Wenzel et al. | Sep 2003 | B2 |
6616447 | Rizoiu et al. | Sep 2003 | B1 |
6616579 | Reinbold et al. | Sep 2003 | B1 |
6621491 | Baumrind et al. | Sep 2003 | B1 |
6623698 | Kuo | Sep 2003 | B2 |
6624752 | Klitsgaard et al. | Sep 2003 | B2 |
6626180 | Kittelsen et al. | Sep 2003 | B1 |
6626569 | Reinstein et al. | Sep 2003 | B2 |
6626669 | Zegarelli | Sep 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6640128 | Vilsmeier et al. | Oct 2003 | B2 |
6643646 | Su et al. | Nov 2003 | B2 |
6647383 | August et al. | Nov 2003 | B1 |
6650944 | Goedeke et al. | Nov 2003 | B2 |
6671818 | Mikurak | Dec 2003 | B1 |
6675104 | Paulse et al. | Jan 2004 | B2 |
6678669 | Lapointe et al. | Jan 2004 | B2 |
6682346 | Chishti et al. | Jan 2004 | B2 |
6685469 | Chishti et al. | Feb 2004 | B2 |
6689055 | Mullen et al. | Feb 2004 | B1 |
6690761 | Lang et al. | Feb 2004 | B2 |
6691110 | Wang et al. | Feb 2004 | B2 |
6694234 | Lockwood et al. | Feb 2004 | B2 |
6697164 | Babayoff et al. | Feb 2004 | B1 |
6697793 | McGreevy | Feb 2004 | B2 |
6702765 | Robbins et al. | Mar 2004 | B2 |
6702804 | Ritter et al. | Mar 2004 | B1 |
6705863 | Phan et al. | Mar 2004 | B2 |
6729876 | Chishti et al. | May 2004 | B2 |
6733289 | Manemann et al. | May 2004 | B2 |
6736638 | Sachdeva et al. | May 2004 | B1 |
6739869 | Taub et al. | May 2004 | B1 |
6744932 | Rubbert et al. | Jun 2004 | B1 |
6749414 | Hanson et al. | Jun 2004 | B1 |
6769913 | Hurson | Aug 2004 | B2 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6790036 | Graham | Sep 2004 | B2 |
6802713 | Chishti et al. | Oct 2004 | B1 |
6814574 | Abolfathi et al. | Nov 2004 | B2 |
6830450 | Knopp et al. | Dec 2004 | B2 |
6832912 | Mao | Dec 2004 | B2 |
6832914 | Bonnet et al. | Dec 2004 | B1 |
6843370 | Tuneberg | Jan 2005 | B2 |
6845175 | Kopelman et al. | Jan 2005 | B2 |
6885464 | Pfeiffer et al. | Apr 2005 | B1 |
6890285 | Rahman et al. | May 2005 | B2 |
6951254 | Morrison | Oct 2005 | B2 |
6976841 | Osterwalder | Dec 2005 | B1 |
6978268 | Thomas et al. | Dec 2005 | B2 |
6983752 | Garabadian | Jan 2006 | B2 |
6984128 | Breining et al. | Jan 2006 | B2 |
6988893 | Haywood | Jan 2006 | B2 |
7016952 | Mullen et al. | Mar 2006 | B2 |
7020963 | Cleary et al. | Apr 2006 | B2 |
7036514 | Heck | May 2006 | B2 |
7040896 | Pavlovskaia et al. | May 2006 | B2 |
7106233 | Schroeder et al. | Sep 2006 | B2 |
7112065 | Kopelman et al. | Sep 2006 | B2 |
7121825 | Chishti et al. | Oct 2006 | B2 |
7134874 | Chishti et al. | Nov 2006 | B2 |
7137812 | Cleary et al. | Nov 2006 | B2 |
7138640 | Delgado et al. | Nov 2006 | B1 |
7140877 | Kaza | Nov 2006 | B2 |
7142312 | Quadling et al. | Nov 2006 | B2 |
7155373 | Jordan et al. | Dec 2006 | B2 |
7156655 | Sachdeva et al. | Jan 2007 | B2 |
7156661 | Choi et al. | Jan 2007 | B2 |
7166063 | Rahman et al. | Jan 2007 | B2 |
7184150 | Quadling et al. | Feb 2007 | B2 |
7191451 | Nakagawa | Mar 2007 | B2 |
7192273 | McSurdy | Mar 2007 | B2 |
7194781 | Orjela | Mar 2007 | B1 |
7217131 | Vuillemot | May 2007 | B2 |
7220122 | Chishti | May 2007 | B2 |
7220124 | Taub et al. | May 2007 | B2 |
7229282 | Andreiko et al. | Jun 2007 | B2 |
7234937 | Sachdeva et al. | Jun 2007 | B2 |
7241142 | Abolfathi et al. | Jul 2007 | B2 |
7244230 | Duggirala et al. | Jul 2007 | B2 |
7245753 | Squilla et al. | Jul 2007 | B2 |
7257136 | Mori et al. | Aug 2007 | B2 |
7286954 | Kopelman et al. | Oct 2007 | B2 |
7292759 | Boutoussov et al. | Nov 2007 | B2 |
7294141 | Bergersen | Nov 2007 | B2 |
7302842 | Biester et al. | Dec 2007 | B2 |
7320592 | Chishti et al. | Jan 2008 | B2 |
7328706 | Barach et al. | Feb 2008 | B2 |
7329122 | Scott | Feb 2008 | B1 |
7338327 | Sticker et al. | Mar 2008 | B2 |
D565509 | Fechner et al. | Apr 2008 | S |
7351116 | Dold | Apr 2008 | B2 |
7354270 | Abolfathi et al. | Apr 2008 | B2 |
7357637 | Liechtung | Apr 2008 | B2 |
7435083 | Chishti et al. | Oct 2008 | B2 |
7450231 | Johs et al. | Nov 2008 | B2 |
7458810 | Bergersen | Dec 2008 | B2 |
7460230 | Johs et al. | Dec 2008 | B2 |
7462076 | Walter et al. | Dec 2008 | B2 |
7463929 | Simmons | Dec 2008 | B2 |
7476100 | Kuo | Jan 2009 | B2 |
7500851 | Williams | Mar 2009 | B2 |
D594413 | Palka et al. | Jun 2009 | S |
7543511 | Kimura et al. | Jun 2009 | B2 |
7544103 | Walter et al. | Jun 2009 | B2 |
7553157 | Abolfathi et al. | Jun 2009 | B2 |
7561273 | Stautmeister et al. | Jul 2009 | B2 |
7577284 | Wong et al. | Aug 2009 | B2 |
7596253 | Wong et al. | Sep 2009 | B2 |
7597594 | Stadler et al. | Oct 2009 | B2 |
7609875 | Liu et al. | Oct 2009 | B2 |
D603796 | Sticker et al. | Nov 2009 | S |
7616319 | Woollam et al. | Nov 2009 | B1 |
7626705 | Altendorf | Dec 2009 | B2 |
7632216 | Rahman et al. | Dec 2009 | B2 |
7633625 | Woollam et al. | Dec 2009 | B1 |
7637262 | Bailey | Dec 2009 | B2 |
7637740 | Knopp | Dec 2009 | B2 |
7641473 | Sporbert et al. | Jan 2010 | B2 |
7668355 | Wong et al. | Feb 2010 | B2 |
7670179 | Müller | Mar 2010 | B2 |
7695327 | Bäuerle et al. | Apr 2010 | B2 |
7698068 | Babayoff | Apr 2010 | B2 |
7711447 | Lu et al. | May 2010 | B2 |
7724378 | Babayoff | May 2010 | B2 |
D618619 | Walter | Jun 2010 | S |
7728848 | Petrov et al. | Jun 2010 | B2 |
7731508 | Borst | Jun 2010 | B2 |
7735217 | Borst | Jun 2010 | B2 |
7740476 | Rubbert et al. | Jun 2010 | B2 |
7744369 | Imgrund et al. | Jun 2010 | B2 |
7746339 | Matov et al. | Jun 2010 | B2 |
7780460 | Walter | Aug 2010 | B2 |
7787132 | Körner et al. | Aug 2010 | B2 |
7791810 | Powell | Sep 2010 | B2 |
7796243 | Choo-Smith et al. | Sep 2010 | B2 |
7806687 | Minagi et al. | Oct 2010 | B2 |
7806727 | Dold et al. | Oct 2010 | B2 |
7813787 | de Josselin de Jong et al. | Oct 2010 | B2 |
7824180 | Abolfathi et al. | Nov 2010 | B2 |
7828601 | Pyczak | Nov 2010 | B2 |
7841464 | Cinader, Jr. et al. | Nov 2010 | B2 |
7845969 | Stadler et al. | Dec 2010 | B2 |
7854609 | Chen et al. | Dec 2010 | B2 |
7862336 | Kopelman et al. | Jan 2011 | B2 |
7869983 | Raby et al. | Jan 2011 | B2 |
7872760 | Ertl | Jan 2011 | B2 |
7874836 | McSurdy | Jan 2011 | B2 |
7874837 | Chishti et al. | Jan 2011 | B2 |
7874849 | Sticker et al. | Jan 2011 | B2 |
7878801 | Abolfathi et al. | Feb 2011 | B2 |
7878805 | Moss et al. | Feb 2011 | B2 |
7880751 | Kuo et al. | Feb 2011 | B2 |
7892474 | Shkolnik et al. | Feb 2011 | B2 |
7904308 | Arnone et al. | Mar 2011 | B2 |
7907280 | Johs et al. | Mar 2011 | B2 |
7929151 | Liang et al. | Apr 2011 | B2 |
7930189 | Kuo | Apr 2011 | B2 |
7947508 | Tricca et al. | May 2011 | B2 |
7959308 | Freeman et al. | Jun 2011 | B2 |
7963766 | Cronauer | Jun 2011 | B2 |
7970627 | Kuo et al. | Jun 2011 | B2 |
7970628 | Kuo et al. | Jun 2011 | B2 |
7985414 | Knaack et al. | Jul 2011 | B2 |
7986415 | Thiel et al. | Jul 2011 | B2 |
7987099 | Kuo et al. | Jul 2011 | B2 |
7991485 | Zakim | Aug 2011 | B2 |
8017891 | Nevin | Sep 2011 | B2 |
8026916 | Wen | Sep 2011 | B2 |
8027709 | Arnone et al. | Sep 2011 | B2 |
8029277 | Imgrund et al. | Oct 2011 | B2 |
8038444 | Kitching et al. | Oct 2011 | B2 |
8045772 | Kosuge et al. | Oct 2011 | B2 |
8054556 | Chen et al. | Nov 2011 | B2 |
8070490 | Roetzer et al. | Dec 2011 | B1 |
8075306 | Kitching et al. | Dec 2011 | B2 |
8077949 | Liang et al. | Dec 2011 | B2 |
8083556 | Stadler et al. | Dec 2011 | B2 |
D652799 | Mueller | Jan 2012 | S |
8092215 | Stone-Collonge et al. | Jan 2012 | B2 |
8095383 | Arnone et al. | Jan 2012 | B2 |
8099268 | Kitching et al. | Jan 2012 | B2 |
8099305 | Kuo et al. | Jan 2012 | B2 |
8108189 | Chelnokov et al. | Jan 2012 | B2 |
8118592 | Tortorici | Feb 2012 | B2 |
8126025 | Takeda | Feb 2012 | B2 |
8126726 | Matov et al. | Feb 2012 | B2 |
8136529 | Kelly | Mar 2012 | B2 |
8144954 | Quadling et al. | Mar 2012 | B2 |
8152518 | Kuo | Apr 2012 | B2 |
8160334 | Thiel et al. | Apr 2012 | B2 |
8172569 | Matty et al. | May 2012 | B2 |
8197252 | Harrison, III | Jun 2012 | B1 |
8201560 | Dembro | Jun 2012 | B2 |
8215312 | Garabadian et al. | Jul 2012 | B2 |
8240018 | Walter et al. | Aug 2012 | B2 |
8275180 | Kuo | Sep 2012 | B2 |
8279450 | Oota et al. | Oct 2012 | B2 |
8292617 | Brandt et al. | Oct 2012 | B2 |
8294657 | Kim et al. | Oct 2012 | B2 |
8296952 | Greenberg | Oct 2012 | B2 |
8297286 | Smernoff | Oct 2012 | B2 |
8306608 | Mandelis et al. | Nov 2012 | B2 |
8314764 | Kim et al. | Nov 2012 | B2 |
8332015 | Ertl | Dec 2012 | B2 |
8354588 | Sticker et al. | Jan 2013 | B2 |
8366479 | Borst et al. | Feb 2013 | B2 |
8401826 | Cheng et al. | Mar 2013 | B2 |
8419428 | Lawrence | Apr 2013 | B2 |
8433083 | Abolfathi et al. | Apr 2013 | B2 |
8439672 | Matov et al. | May 2013 | B2 |
8465280 | Sachdeva et al. | Jun 2013 | B2 |
8477320 | Stock et al. | Jul 2013 | B2 |
8488113 | Thiel et al. | Jul 2013 | B2 |
8517726 | Kakavand et al. | Aug 2013 | B2 |
8520922 | Wang et al. | Aug 2013 | B2 |
8520925 | Duret et al. | Aug 2013 | B2 |
8523565 | Matty et al. | Sep 2013 | B2 |
8545221 | Stone-Collonge et al. | Oct 2013 | B2 |
8556625 | Lovely | Oct 2013 | B2 |
8570530 | Liang | Oct 2013 | B2 |
8573224 | Thornton | Nov 2013 | B2 |
8577212 | Thiel | Nov 2013 | B2 |
8587582 | Matov et al. | Nov 2013 | B2 |
8601925 | Coto | Dec 2013 | B1 |
8639477 | Chelnokov et al. | Jan 2014 | B2 |
8650586 | Lee et al. | Feb 2014 | B2 |
8675706 | Seurin et al. | Mar 2014 | B2 |
8723029 | Pyczak et al. | May 2014 | B2 |
8738394 | Kuo | May 2014 | B2 |
8743923 | Geske et al. | Jun 2014 | B2 |
8767270 | Curry et al. | Jul 2014 | B2 |
8768016 | Pan et al. | Jul 2014 | B2 |
8771149 | Rahman et al. | Jul 2014 | B2 |
8839476 | Adachi | Sep 2014 | B2 |
8843381 | Kuo et al. | Sep 2014 | B2 |
8856053 | Mah | Oct 2014 | B2 |
8870566 | Bergersen | Oct 2014 | B2 |
8874452 | Kuo | Oct 2014 | B2 |
8878905 | Fisker et al. | Nov 2014 | B2 |
8896592 | Boltunov et al. | Nov 2014 | B2 |
8899976 | Chen et al. | Dec 2014 | B2 |
8936463 | Mason et al. | Jan 2015 | B2 |
8944812 | Kuo | Feb 2015 | B2 |
8948482 | Levin | Feb 2015 | B2 |
8956058 | Rösch | Feb 2015 | B2 |
8992216 | Karazivan | Mar 2015 | B2 |
9004915 | Moss et al. | Apr 2015 | B2 |
9022792 | Sticker et al. | May 2015 | B2 |
9039418 | Rubbert | May 2015 | B1 |
9084535 | Girkin et al. | Jul 2015 | B2 |
9084657 | Matty et al. | Jul 2015 | B2 |
9108338 | Sirovskiy et al. | Aug 2015 | B2 |
9144512 | Wagner | Sep 2015 | B2 |
9192305 | Levin | Nov 2015 | B2 |
9204952 | Lampalzer | Dec 2015 | B2 |
9211166 | Kuo et al. | Dec 2015 | B2 |
9214014 | Levin | Dec 2015 | B2 |
9220580 | Borovinskih et al. | Dec 2015 | B2 |
9241774 | Li et al. | Jan 2016 | B2 |
9242118 | Brawn | Jan 2016 | B2 |
9256710 | Boltunov et al. | Feb 2016 | B2 |
9261358 | Atiya et al. | Feb 2016 | B2 |
9277972 | Brandt et al. | Mar 2016 | B2 |
9336336 | Deichmann et al. | May 2016 | B2 |
9351810 | Moon | May 2016 | B2 |
9375300 | Matov et al. | Jun 2016 | B2 |
9403238 | Culp | Aug 2016 | B2 |
9408743 | Wagner | Aug 2016 | B1 |
9414897 | Wu et al. | Aug 2016 | B2 |
9433476 | Khardekar et al. | Sep 2016 | B2 |
9439568 | Atiya et al. | Sep 2016 | B2 |
9444981 | Bellis et al. | Sep 2016 | B2 |
9463287 | Lorberbaum et al. | Oct 2016 | B1 |
9492243 | Kuo | Nov 2016 | B2 |
9500635 | Islam | Nov 2016 | B2 |
9506808 | Jeon et al. | Nov 2016 | B2 |
9510918 | Sanchez | Dec 2016 | B2 |
9545331 | Ingemarsson-Matzen | Jan 2017 | B2 |
9566132 | Stone-Collonge et al. | Feb 2017 | B2 |
9584771 | Mandelis et al. | Feb 2017 | B2 |
9589329 | Levin | Mar 2017 | B2 |
9610141 | Kopelman et al. | Apr 2017 | B2 |
9675427 | Kopelman | Jun 2017 | B2 |
9675430 | Verker et al. | Jun 2017 | B2 |
9693839 | Atiya et al. | Jul 2017 | B2 |
9744006 | Ross | Aug 2017 | B2 |
9795461 | Kopelman et al. | Oct 2017 | B2 |
9820829 | Kuo | Nov 2017 | B2 |
9830688 | Levin | Nov 2017 | B2 |
9844421 | Moss et al. | Dec 2017 | B2 |
9848985 | Yang et al. | Dec 2017 | B2 |
9861451 | Davis | Jan 2018 | B1 |
9936186 | Jesenko et al. | Apr 2018 | B2 |
9962238 | Boltunov et al. | May 2018 | B2 |
10123706 | Elbaz et al. | Nov 2018 | B2 |
10123853 | Moss et al. | Nov 2018 | B2 |
10130445 | Kopelman et al. | Nov 2018 | B2 |
10159541 | Bindayel | Dec 2018 | B2 |
10172693 | Brandt et al. | Jan 2019 | B2 |
10195690 | Culp | Feb 2019 | B2 |
10231801 | Korytov et al. | Mar 2019 | B2 |
10238472 | Levin | Mar 2019 | B2 |
10248883 | Borovinskih et al. | Apr 2019 | B2 |
10258432 | Webber | Apr 2019 | B2 |
10275862 | Levin | Apr 2019 | B2 |
10390913 | Sabina et al. | Aug 2019 | B2 |
10413385 | Sherwood et al. | Sep 2019 | B2 |
10421152 | Culp | Sep 2019 | B2 |
10449016 | Kimura et al. | Oct 2019 | B2 |
10470847 | Shanjani et al. | Nov 2019 | B2 |
10504386 | Levin et al. | Dec 2019 | B2 |
10517482 | Sato et al. | Dec 2019 | B2 |
10528636 | Elbaz et al. | Jan 2020 | B2 |
10537405 | Choi et al. | Jan 2020 | B2 |
10543064 | Kuo | Jan 2020 | B2 |
10548700 | Fernie | Feb 2020 | B2 |
10561476 | Matov et al. | Feb 2020 | B2 |
10585958 | Elbaz et al. | Mar 2020 | B2 |
10595965 | Khardekar et al. | Mar 2020 | B2 |
10595966 | Carrier et al. | Mar 2020 | B2 |
10606911 | Elbaz et al. | Mar 2020 | B2 |
10610332 | Wu et al. | Apr 2020 | B2 |
10613515 | Cramer et al. | Apr 2020 | B2 |
10639134 | Shanjani et al. | May 2020 | B2 |
10653502 | Kuo | May 2020 | B2 |
20010002310 | Chishti et al. | May 2001 | A1 |
20010032100 | Mahmud et al. | Oct 2001 | A1 |
20010038705 | Rubbert et al. | Nov 2001 | A1 |
20010041320 | Phan et al. | Nov 2001 | A1 |
20020004727 | Knaus et al. | Jan 2002 | A1 |
20020007284 | Schurenberg et al. | Jan 2002 | A1 |
20020010568 | Rubbert et al. | Jan 2002 | A1 |
20020015934 | Rubbert et al. | Feb 2002 | A1 |
20020025503 | Chapoulaud et al. | Feb 2002 | A1 |
20020026105 | Drazen | Feb 2002 | A1 |
20020028417 | Chapoulaud et al. | Mar 2002 | A1 |
20020035572 | Takatori et al. | Mar 2002 | A1 |
20020064752 | Durbin et al. | May 2002 | A1 |
20020064759 | Durbin et al. | May 2002 | A1 |
20020087551 | Hickey et al. | Jul 2002 | A1 |
20020107853 | Hofmann et al. | Aug 2002 | A1 |
20020188478 | Breeland et al. | Dec 2002 | A1 |
20020192617 | Phan et al. | Dec 2002 | A1 |
20030000927 | Kanaya et al. | Jan 2003 | A1 |
20030008259 | Kuo et al. | Jan 2003 | A1 |
20030009252 | Pavlovskaia et al. | Jan 2003 | A1 |
20030019848 | Nicholas et al. | Jan 2003 | A1 |
20030021453 | Weise et al. | Jan 2003 | A1 |
20030035061 | Iwaki et al. | Feb 2003 | A1 |
20030049581 | Deluke | Mar 2003 | A1 |
20030057192 | Patel | Mar 2003 | A1 |
20030059736 | Lai et al. | Mar 2003 | A1 |
20030060532 | Subelka et al. | Mar 2003 | A1 |
20030068598 | Vallittu et al. | Apr 2003 | A1 |
20030095697 | Wood et al. | May 2003 | A1 |
20030101079 | McLaughlin | May 2003 | A1 |
20030103060 | Anderson et al. | Jun 2003 | A1 |
20030120517 | Eida et al. | Jun 2003 | A1 |
20030139834 | Nikolskiy et al. | Jul 2003 | A1 |
20030144886 | Taira | Jul 2003 | A1 |
20030172043 | Guyon et al. | Sep 2003 | A1 |
20030190575 | Hilliard | Oct 2003 | A1 |
20030192867 | Yamazaki et al. | Oct 2003 | A1 |
20030207224 | Lotte | Nov 2003 | A1 |
20030215764 | Kopelman et al. | Nov 2003 | A1 |
20030224311 | Cronauer | Dec 2003 | A1 |
20030224313 | Bergersen | Dec 2003 | A1 |
20030224314 | Bergersen | Dec 2003 | A1 |
20040002873 | Sachdeva | Jan 2004 | A1 |
20040009449 | Mah et al. | Jan 2004 | A1 |
20040013994 | Goldberg et al. | Jan 2004 | A1 |
20040019262 | Perelgut | Jan 2004 | A1 |
20040029078 | Marshall | Feb 2004 | A1 |
20040038168 | Choi et al. | Feb 2004 | A1 |
20040054304 | Raby | Mar 2004 | A1 |
20040054358 | Cox et al. | Mar 2004 | A1 |
20040058295 | Bergersen | Mar 2004 | A1 |
20040068199 | Echauz et al. | Apr 2004 | A1 |
20040078222 | Khan et al. | Apr 2004 | A1 |
20040080621 | Fisher et al. | Apr 2004 | A1 |
20040094165 | Cook | May 2004 | A1 |
20040107118 | Harnsberger et al. | Jun 2004 | A1 |
20040133083 | Comaniciu et al. | Jul 2004 | A1 |
20040152036 | Abolfathi | Aug 2004 | A1 |
20040158194 | Wolff et al. | Aug 2004 | A1 |
20040166463 | Wen et al. | Aug 2004 | A1 |
20040167646 | Jelonek et al. | Aug 2004 | A1 |
20040170941 | Phan et al. | Sep 2004 | A1 |
20040193036 | Zhou et al. | Sep 2004 | A1 |
20040197728 | Abolfathi et al. | Oct 2004 | A1 |
20040214128 | Sachdeva et al. | Oct 2004 | A1 |
20040219479 | Malin et al. | Nov 2004 | A1 |
20040220691 | Hofmeister et al. | Nov 2004 | A1 |
20040229185 | Knopp | Nov 2004 | A1 |
20040259049 | Kopelman et al. | Dec 2004 | A1 |
20050003318 | Choi et al. | Jan 2005 | A1 |
20050023356 | Wiklof et al. | Feb 2005 | A1 |
20050031196 | Moghaddam et al. | Feb 2005 | A1 |
20050037312 | Uchida | Feb 2005 | A1 |
20050038669 | Sachdeva et al. | Feb 2005 | A1 |
20050040551 | Biegler et al. | Feb 2005 | A1 |
20050042569 | Plan et al. | Feb 2005 | A1 |
20050042577 | Kvitrud et al. | Feb 2005 | A1 |
20050048433 | Hilliard | Mar 2005 | A1 |
20050074717 | Cleary et al. | Apr 2005 | A1 |
20050089822 | Geng | Apr 2005 | A1 |
20050100333 | Kerschbaumer et al. | May 2005 | A1 |
20050108052 | Omaboe | May 2005 | A1 |
20050131738 | Morris | Jun 2005 | A1 |
20050144150 | Ramamurthy et al. | Jun 2005 | A1 |
20050171594 | Machan et al. | Aug 2005 | A1 |
20050171630 | Dinauer et al. | Aug 2005 | A1 |
20050181333 | Karazivan et al. | Aug 2005 | A1 |
20050186524 | Abolfathi et al. | Aug 2005 | A1 |
20050186526 | Stewart et al. | Aug 2005 | A1 |
20050216314 | Secor | Sep 2005 | A1 |
20050233276 | Kopelman et al. | Oct 2005 | A1 |
20050239013 | Sachdeva | Oct 2005 | A1 |
20050244781 | Abels et al. | Nov 2005 | A1 |
20050244791 | Davis et al. | Nov 2005 | A1 |
20050271996 | Sporbert et al. | Dec 2005 | A1 |
20060040235 | Davis | Feb 2006 | A1 |
20060056670 | Hamadeh | Mar 2006 | A1 |
20060057533 | McGann | Mar 2006 | A1 |
20060063135 | Mehl | Mar 2006 | A1 |
20060078842 | Sachdeva et al. | Apr 2006 | A1 |
20060084024 | Farrell | Apr 2006 | A1 |
20060093982 | Wen | May 2006 | A1 |
20060093984 | Rosenberg | May 2006 | A1 |
20060098007 | Rouet et al. | May 2006 | A1 |
20060099545 | Lia et al. | May 2006 | A1 |
20060099546 | Bergersen | May 2006 | A1 |
20060110698 | Robson | May 2006 | A1 |
20060111631 | Kelliher et al. | May 2006 | A1 |
20060115782 | Li et al. | Jun 2006 | A1 |
20060115785 | Li et al. | Jun 2006 | A1 |
20060137813 | Robrecht et al. | Jun 2006 | A1 |
20060147872 | Andreiko | Jul 2006 | A1 |
20060154198 | Durbin et al. | Jul 2006 | A1 |
20060154207 | Kuo | Jul 2006 | A1 |
20060173715 | Wang | Aug 2006 | A1 |
20060183082 | Quadling et al. | Aug 2006 | A1 |
20060188834 | Hilliard | Aug 2006 | A1 |
20060188848 | Tricca et al. | Aug 2006 | A1 |
20060194163 | Tricca et al. | Aug 2006 | A1 |
20060199153 | Liu et al. | Sep 2006 | A1 |
20060204078 | Orth et al. | Sep 2006 | A1 |
20060223022 | Solomon | Oct 2006 | A1 |
20060223023 | Lai et al. | Oct 2006 | A1 |
20060223032 | Fried et al. | Oct 2006 | A1 |
20060223342 | Borst et al. | Oct 2006 | A1 |
20060234179 | Wen et al. | Oct 2006 | A1 |
20060257815 | De Dominicis | Nov 2006 | A1 |
20060275729 | Fornoff | Dec 2006 | A1 |
20060275731 | Wen et al. | Dec 2006 | A1 |
20060275736 | Wen et al. | Dec 2006 | A1 |
20060277075 | Salwan | Dec 2006 | A1 |
20060290693 | Zhou et al. | Dec 2006 | A1 |
20060292520 | Dillon et al. | Dec 2006 | A1 |
20070031775 | Andreiko | Feb 2007 | A1 |
20070046865 | Umeda et al. | Mar 2007 | A1 |
20070053048 | Kumar et al. | Mar 2007 | A1 |
20070054237 | Neuschafer | Mar 2007 | A1 |
20070065768 | Nadav | Mar 2007 | A1 |
20070087300 | Willison et al. | Apr 2007 | A1 |
20070087302 | Reising et al. | Apr 2007 | A1 |
20070106138 | Beiski et al. | May 2007 | A1 |
20070122592 | Anderson et al. | May 2007 | A1 |
20070141525 | Cinader, Jr. | Jun 2007 | A1 |
20070141526 | Eisenberg et al. | Jun 2007 | A1 |
20070143135 | Lindquist et al. | Jun 2007 | A1 |
20070172112 | Paley et al. | Jul 2007 | A1 |
20070172291 | Yokoyama | Jul 2007 | A1 |
20070178420 | Keski-Nisula et al. | Aug 2007 | A1 |
20070183633 | Hoffmann | Aug 2007 | A1 |
20070184402 | Boutoussov et al. | Aug 2007 | A1 |
20070185732 | Hicks et al. | Aug 2007 | A1 |
20070190476 | Dellinger | Aug 2007 | A1 |
20070192137 | Ombrellaro | Aug 2007 | A1 |
20070199929 | Rippl et al. | Aug 2007 | A1 |
20070215582 | Roeper et al. | Sep 2007 | A1 |
20070218422 | Ehrenfeld | Sep 2007 | A1 |
20070231765 | Phan et al. | Oct 2007 | A1 |
20070238065 | Sherwood et al. | Oct 2007 | A1 |
20070239488 | DeRosso | Oct 2007 | A1 |
20070263226 | Kurtz et al. | Nov 2007 | A1 |
20080013727 | Uemura | Jan 2008 | A1 |
20080020350 | Matov et al. | Jan 2008 | A1 |
20080045053 | Stadler et al. | Feb 2008 | A1 |
20080057461 | Cheng et al. | Mar 2008 | A1 |
20080057467 | Gittelson | Mar 2008 | A1 |
20080057479 | Grenness | Mar 2008 | A1 |
20080059238 | Park et al. | Mar 2008 | A1 |
20080062429 | Liang et al. | Mar 2008 | A1 |
20080090208 | Rubbert | Apr 2008 | A1 |
20080094389 | Rouet et al. | Apr 2008 | A1 |
20080113317 | Kemp et al. | May 2008 | A1 |
20080115791 | Heine | May 2008 | A1 |
20080118882 | Su | May 2008 | A1 |
20080118886 | Liang et al. | May 2008 | A1 |
20080141534 | Hilliard | Jun 2008 | A1 |
20080169122 | Shiraishi et al. | Jul 2008 | A1 |
20080171934 | Greenan et al. | Jul 2008 | A1 |
20080176448 | Muller et al. | Jul 2008 | A1 |
20080233530 | Cinader | Sep 2008 | A1 |
20080242144 | Dietz | Oct 2008 | A1 |
20080248443 | Chishti et al. | Oct 2008 | A1 |
20080254403 | Hilliard | Oct 2008 | A1 |
20080268400 | Moss et al. | Oct 2008 | A1 |
20080306724 | Kitching et al. | Dec 2008 | A1 |
20090029310 | Pumphrey et al. | Jan 2009 | A1 |
20090030290 | Kozuch et al. | Jan 2009 | A1 |
20090030347 | Cao | Jan 2009 | A1 |
20090040740 | Muller et al. | Feb 2009 | A1 |
20090061379 | Yamamoto et al. | Mar 2009 | A1 |
20090061381 | Durbin et al. | Mar 2009 | A1 |
20090075228 | Kumada et al. | Mar 2009 | A1 |
20090087050 | Gandyra | Apr 2009 | A1 |
20090098502 | Andreiko | Apr 2009 | A1 |
20090099445 | Burger | Apr 2009 | A1 |
20090103579 | Ushimaru et al. | Apr 2009 | A1 |
20090105523 | Kassayan et al. | Apr 2009 | A1 |
20090130620 | Yazdi et al. | May 2009 | A1 |
20090136890 | Kang et al. | May 2009 | A1 |
20090136893 | Zegarelli | May 2009 | A1 |
20090148809 | Kuo et al. | Jun 2009 | A1 |
20090170050 | Marcus | Jul 2009 | A1 |
20090181346 | Orth | Jul 2009 | A1 |
20090191502 | Cao et al. | Jul 2009 | A1 |
20090210032 | Beiski et al. | Aug 2009 | A1 |
20090218514 | Klunder et al. | Sep 2009 | A1 |
20090220920 | Primus | Sep 2009 | A1 |
20090281433 | Saadat et al. | Nov 2009 | A1 |
20090286195 | Sears et al. | Nov 2009 | A1 |
20090298017 | Boerjes et al. | Dec 2009 | A1 |
20090305540 | Stadler et al. | Dec 2009 | A1 |
20090316966 | Marshall et al. | Dec 2009 | A1 |
20090317757 | Lemchen | Dec 2009 | A1 |
20100015565 | Carrillo Gonzalez et al. | Jan 2010 | A1 |
20100019170 | Hart et al. | Jan 2010 | A1 |
20100028825 | Lemchen | Feb 2010 | A1 |
20100045902 | Ikeda et al. | Feb 2010 | A1 |
20100062394 | Jones et al. | Mar 2010 | A1 |
20100068676 | Mason et al. | Mar 2010 | A1 |
20100138025 | Morton et al. | Jun 2010 | A1 |
20100142789 | Chang et al. | Jun 2010 | A1 |
20100145664 | Hultgren et al. | Jun 2010 | A1 |
20100145898 | Malfliet et al. | Jun 2010 | A1 |
20100152599 | DuHamel et al. | Jun 2010 | A1 |
20100165275 | Tsukamoto et al. | Jul 2010 | A1 |
20100167225 | Kuo | Jul 2010 | A1 |
20100179789 | Sachdeva et al. | Jul 2010 | A1 |
20100193482 | Ow et al. | Aug 2010 | A1 |
20100196837 | Farrell | Aug 2010 | A1 |
20100216083 | Grobbee | Aug 2010 | A1 |
20100216085 | Kopelman | Aug 2010 | A1 |
20100217130 | Weinlaender | Aug 2010 | A1 |
20100231577 | Kim et al. | Sep 2010 | A1 |
20100268363 | Karim et al. | Oct 2010 | A1 |
20100268515 | Vogt et al. | Oct 2010 | A1 |
20100279243 | Cinader et al. | Nov 2010 | A1 |
20100280798 | Pattijn | Nov 2010 | A1 |
20100281370 | Rohaly et al. | Nov 2010 | A1 |
20100303316 | Bullis et al. | Dec 2010 | A1 |
20100312484 | DuHamel et al. | Dec 2010 | A1 |
20100327461 | Co et al. | Dec 2010 | A1 |
20110007920 | Abolfathi et al. | Jan 2011 | A1 |
20110012901 | Kaplanyan | Jan 2011 | A1 |
20110056350 | Gale et al. | Mar 2011 | A1 |
20110065060 | Teixeira et al. | Mar 2011 | A1 |
20110081625 | Fuh | Apr 2011 | A1 |
20110091832 | Kim | Apr 2011 | A1 |
20110102549 | Takahashi | May 2011 | A1 |
20110102566 | Zakian et al. | May 2011 | A1 |
20110136072 | Li et al. | Jun 2011 | A1 |
20110136090 | Kazemi | Jun 2011 | A1 |
20110143300 | Villaalba | Jun 2011 | A1 |
20110143673 | Landesman et al. | Jun 2011 | A1 |
20110159452 | Huang | Jun 2011 | A1 |
20110164810 | Zang et al. | Jul 2011 | A1 |
20110207072 | Schiemann | Aug 2011 | A1 |
20110212420 | Vuillemot | Sep 2011 | A1 |
20110220623 | Beutler | Sep 2011 | A1 |
20110235045 | Koerner et al. | Sep 2011 | A1 |
20110269092 | Kuo et al. | Nov 2011 | A1 |
20110316994 | Lemchen | Dec 2011 | A1 |
20120028210 | Hegyi et al. | Feb 2012 | A1 |
20120029883 | Heinz et al. | Feb 2012 | A1 |
20120040311 | Nilsson | Feb 2012 | A1 |
20120064477 | Schmitt | Mar 2012 | A1 |
20120081786 | Mizuyama et al. | Apr 2012 | A1 |
20120086681 | Kim et al. | Apr 2012 | A1 |
20120115107 | Adams | May 2012 | A1 |
20120129117 | McCance | May 2012 | A1 |
20120147912 | Moench et al. | Jun 2012 | A1 |
20120150494 | Anderson et al. | Jun 2012 | A1 |
20120166213 | Arnone et al. | Jun 2012 | A1 |
20120172678 | Logan et al. | Jul 2012 | A1 |
20120281293 | Gronenborn et al. | Nov 2012 | A1 |
20120295216 | Dykes et al. | Nov 2012 | A1 |
20120322025 | Ozawa et al. | Dec 2012 | A1 |
20130029284 | Teasdale | Jan 2013 | A1 |
20130081271 | Farzin-Nia et al. | Apr 2013 | A1 |
20130081272 | Johnson et al. | Apr 2013 | A1 |
20130089828 | Borovinskih et al. | Apr 2013 | A1 |
20130095446 | Andreiko et al. | Apr 2013 | A1 |
20130103176 | Kopelman et al. | Apr 2013 | A1 |
20130110469 | Kopelman | May 2013 | A1 |
20130150689 | Shaw-Klein | Jun 2013 | A1 |
20130163627 | Seurin et al. | Jun 2013 | A1 |
20130201488 | Ishihara | Aug 2013 | A1 |
20130204599 | Matov et al. | Aug 2013 | A1 |
20130209952 | Kuo et al. | Aug 2013 | A1 |
20130235165 | Gharib et al. | Sep 2013 | A1 |
20130252195 | Popat | Sep 2013 | A1 |
20130266326 | Joseph et al. | Oct 2013 | A1 |
20130278396 | Kimmel | Oct 2013 | A1 |
20130280671 | Brawn et al. | Oct 2013 | A1 |
20130286174 | Urakabe | Oct 2013 | A1 |
20130293824 | Yoneyama et al. | Nov 2013 | A1 |
20130323664 | Parker | Dec 2013 | A1 |
20130323671 | Dillon et al. | Dec 2013 | A1 |
20130323674 | Hakomori et al. | Dec 2013 | A1 |
20130325431 | See et al. | Dec 2013 | A1 |
20130337412 | Kwon | Dec 2013 | A1 |
20140051039 | Jensen | Feb 2014 | A1 |
20140061974 | Tyler | Mar 2014 | A1 |
20140081091 | Abolfathi et al. | Mar 2014 | A1 |
20140093160 | Porikli et al. | Apr 2014 | A1 |
20140106289 | Kozlowski | Apr 2014 | A1 |
20140122027 | Andreiko et al. | May 2014 | A1 |
20140136222 | Arnone et al. | May 2014 | A1 |
20140142902 | Chelnokov et al. | May 2014 | A1 |
20140178829 | Kim | Jun 2014 | A1 |
20140178830 | Widu | Jun 2014 | A1 |
20140186794 | Deichmann et al. | Jul 2014 | A1 |
20140265034 | Dudley | Sep 2014 | A1 |
20140272774 | Dillon et al. | Sep 2014 | A1 |
20140280376 | Kuo | Sep 2014 | A1 |
20140294273 | Jaisson | Oct 2014 | A1 |
20140313299 | Gebhardt et al. | Oct 2014 | A1 |
20140329194 | Sachdeva et al. | Nov 2014 | A1 |
20140342301 | Fleer et al. | Nov 2014 | A1 |
20140350354 | Stenzler et al. | Nov 2014 | A1 |
20140363778 | Parker | Dec 2014 | A1 |
20150002649 | Nowak et al. | Jan 2015 | A1 |
20150004553 | Li et al. | Jan 2015 | A1 |
20150021210 | Kesling | Jan 2015 | A1 |
20150079531 | Heine | Mar 2015 | A1 |
20150094564 | Tashman et al. | Apr 2015 | A1 |
20150097315 | DeSimone et al. | Apr 2015 | A1 |
20150097316 | DeSimone et al. | Apr 2015 | A1 |
20150102532 | DeSimone et al. | Apr 2015 | A1 |
20150140502 | Brawn et al. | May 2015 | A1 |
20150150501 | George et al. | Jun 2015 | A1 |
20150164335 | Van Der Poel et al. | Jun 2015 | A1 |
20150173856 | Iowe et al. | Jun 2015 | A1 |
20150182303 | Abraham et al. | Jul 2015 | A1 |
20150216626 | Ranjbar | Aug 2015 | A1 |
20150216716 | Anitua | Aug 2015 | A1 |
20150230885 | Wucher | Aug 2015 | A1 |
20150238280 | Wu et al. | Aug 2015 | A1 |
20150238283 | Tanugula et al. | Aug 2015 | A1 |
20150306486 | Logan et al. | Oct 2015 | A1 |
20150320320 | Kopelman et al. | Nov 2015 | A1 |
20150320532 | Matty et al. | Nov 2015 | A1 |
20150325044 | Lebovitz | Nov 2015 | A1 |
20150338209 | Knüttel | Nov 2015 | A1 |
20150338844 | Matty | Nov 2015 | A1 |
20150351638 | Amato | Dec 2015 | A1 |
20150374469 | Konno et al. | Dec 2015 | A1 |
20160000332 | Atiya et al. | Jan 2016 | A1 |
20160003610 | Lampert et al. | Jan 2016 | A1 |
20160022185 | Agarwal et al. | Jan 2016 | A1 |
20160042509 | Andreiko et al. | Feb 2016 | A1 |
20160051345 | Levin | Feb 2016 | A1 |
20160064898 | Atiya et al. | Mar 2016 | A1 |
20160067013 | Morton et al. | Mar 2016 | A1 |
20160095668 | Kuo et al. | Apr 2016 | A1 |
20160100924 | Wilson et al. | Apr 2016 | A1 |
20160106520 | Borovinskih et al. | Apr 2016 | A1 |
20160135924 | Choi et al. | May 2016 | A1 |
20160135925 | Mason et al. | May 2016 | A1 |
20160163115 | Furst | Jun 2016 | A1 |
20160220105 | Durent | Aug 2016 | A1 |
20160220200 | Sandholm et al. | Aug 2016 | A1 |
20160225151 | Cocco et al. | Aug 2016 | A1 |
20160228213 | Tod et al. | Aug 2016 | A1 |
20160242871 | Morton et al. | Aug 2016 | A1 |
20160246936 | Kahn | Aug 2016 | A1 |
20160287358 | Nowak et al. | Oct 2016 | A1 |
20160296303 | Parker | Oct 2016 | A1 |
20160302885 | Matov et al. | Oct 2016 | A1 |
20160318247 | Schlachter | Nov 2016 | A1 |
20160328843 | Graham et al. | Nov 2016 | A1 |
20160346063 | Schulhof et al. | Dec 2016 | A1 |
20160346064 | Schulhof et al. | Dec 2016 | A1 |
20160367188 | Malik et al. | Dec 2016 | A1 |
20170007365 | Kopelman et al. | Jan 2017 | A1 |
20170007366 | Kopelman et al. | Jan 2017 | A1 |
20170007367 | Li et al. | Jan 2017 | A1 |
20170007368 | Boronkay | Jan 2017 | A1 |
20170007386 | Mason et al. | Jan 2017 | A1 |
20170020633 | Stone-Collonge et al. | Jan 2017 | A1 |
20170049326 | Alfano et al. | Feb 2017 | A1 |
20170056131 | Alauddin et al. | Mar 2017 | A1 |
20170086943 | Mah | Mar 2017 | A1 |
20170100209 | Wen | Apr 2017 | A1 |
20170100213 | Kuo | Apr 2017 | A1 |
20170100214 | Wen | Apr 2017 | A1 |
20170135792 | Webber | May 2017 | A1 |
20170135793 | Webber et al. | May 2017 | A1 |
20170158803 | Amin et al. | Jun 2017 | A1 |
20170165032 | Webber et al. | Jun 2017 | A1 |
20170215739 | Miyasato | Aug 2017 | A1 |
20170265970 | Verker | Sep 2017 | A1 |
20170319054 | Miller et al. | Nov 2017 | A1 |
20170319296 | Webber | Nov 2017 | A1 |
20170325690 | Salah et al. | Nov 2017 | A1 |
20180000565 | Shanjani et al. | Jan 2018 | A1 |
20180028064 | Elbaz et al. | Feb 2018 | A1 |
20180071055 | Kuo | Mar 2018 | A1 |
20180153648 | Shanjani et al. | Jun 2018 | A1 |
20180153649 | Wu et al. | Jun 2018 | A1 |
20180153733 | Kuo | Jun 2018 | A1 |
20180161126 | Marshall | Jun 2018 | A1 |
20180192877 | Atiya et al. | Jul 2018 | A1 |
20180228359 | Meyer et al. | Aug 2018 | A1 |
20180280118 | Cramer | Oct 2018 | A1 |
20180303583 | Tong | Oct 2018 | A1 |
20180318043 | Li et al. | Nov 2018 | A1 |
20180344431 | Kuo | Dec 2018 | A1 |
20180353264 | Riley et al. | Dec 2018 | A1 |
20180360567 | Xue et al. | Dec 2018 | A1 |
20180368944 | Sato et al. | Dec 2018 | A1 |
20190019187 | Miller et al. | Jan 2019 | A1 |
20190021817 | Sato et al. | Jan 2019 | A1 |
20190029784 | Moalem et al. | Jan 2019 | A1 |
20190046296 | Kopelman et al. | Feb 2019 | A1 |
20190046297 | Kopelman et al. | Feb 2019 | A1 |
20190069975 | Cam et al. | Mar 2019 | A1 |
20190076214 | Nyukhtikov et al. | Mar 2019 | A1 |
20190076216 | Moss et al. | Mar 2019 | A1 |
20190090983 | Webber et al. | Mar 2019 | A1 |
20190099129 | Kopelman et al. | Apr 2019 | A1 |
20190105130 | Grove et al. | Apr 2019 | A1 |
20190125494 | Li et al. | May 2019 | A1 |
20190142551 | Dickenson | May 2019 | A1 |
20190152152 | O'Leary et al. | May 2019 | A1 |
20190171618 | Kuo | Jun 2019 | A1 |
20190175303 | Akopov et al. | Jun 2019 | A1 |
20190175304 | Morton et al. | Jun 2019 | A1 |
20190192259 | Kopleman et al. | Jun 2019 | A1 |
20190223993 | Mason et al. | Jul 2019 | A1 |
20190231477 | Shanjani et al. | Aug 2019 | A1 |
20190231491 | Sabina et al. | Aug 2019 | A1 |
20190231492 | Sabina et al. | Aug 2019 | A1 |
20190239983 | Matty | Aug 2019 | A1 |
20190240771 | Culp | Aug 2019 | A1 |
20190244694 | Amone et al. | Aug 2019 | A1 |
20190254780 | Brandt et al. | Aug 2019 | A1 |
20190269482 | Shanjani et al. | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
517102 | Nov 1977 | AU |
3031677 | Nov 1977 | AU |
1121955 | Apr 1982 | CA |
1655732 | Aug 2005 | CN |
1655733 | Aug 2005 | CN |
1663540 | Sep 2005 | CN |
1867317 | Nov 2006 | CN |
101991465 | Mar 2011 | CN |
102017658 | Apr 2011 | CN |
103889364 | Jun 2014 | CN |
104254297 | Dec 2014 | CN |
204092220 | Jan 2015 | CN |
105496575 | Apr 2016 | CN |
105997274 | Oct 2016 | CN |
2749802 | May 1978 | DE |
3526198 | Feb 1986 | DE |
4207169 | Sep 1993 | DE |
69327661 | Jul 2000 | DE |
102005043627 | Mar 2007 | DE |
202010017014 | Mar 2011 | DE |
102011051443 | Jan 2013 | DE |
202012011899 | Jan 2013 | DE |
102014106151 | Nov 2014 | DE |
102014225457 | Jun 2016 | DE |
0428152 | May 1991 | EP |
490848 | Jun 1992 | EP |
541500 | May 1993 | EP |
714632 | May 1997 | EP |
774933 | Dec 2000 | EP |
731673 | May 2001 | EP |
1941843 | Jul 2008 | EP |
2437027 | Apr 2012 | EP |
2447754 | May 2012 | EP |
1989764 | Jul 2012 | EP |
2332221 | Nov 2012 | EP |
2596553 | Dec 2013 | EP |
2612300 | Feb 2015 | EP |
2848229 | Mar 2015 | EP |
463897 | Jan 1980 | ES |
2455066 | Apr 2014 | ES |
2369828 | Jun 1978 | FR |
2867377 | Sep 2005 | FR |
2930334 | Oct 2009 | FR |
1550777 | Aug 1979 | GB |
53-058191 | May 1978 | JP |
04-028359 | Jan 1992 | JP |
H0919443 | Jan 1997 | JP |
2000339468 | Dec 2000 | JP |
2003245289 | Sep 2003 | JP |
2005527320 | Sep 2005 | JP |
2005527321 | Sep 2005 | JP |
2006043121 | Feb 2006 | JP |
2007151614 | Jun 2007 | JP |
2007260158 | Oct 2007 | JP |
2007537824 | Dec 2007 | JP |
2008067732 | Mar 2008 | JP |
2008523370 | Jul 2008 | JP |
4184427 | Nov 2008 | JP |
2009000412 | Jan 2009 | JP |
2009018173 | Jan 2009 | JP |
2009078133 | Apr 2009 | JP |
2009101386 | May 2009 | JP |
2009205330 | Sep 2009 | JP |
2010017726 | Jan 2010 | JP |
2011087733 | May 2011 | JP |
2012045143 | Mar 2012 | JP |
2013007645 | Jan 2013 | JP |
2013192865 | Sep 2013 | JP |
201735173 | Feb 2017 | JP |
10-20020062793 | Jul 2002 | KR |
10-20090065778 | Jun 2009 | KR |
10-1266966 | May 2013 | KR |
10-2016-041632 | Apr 2016 | KR |
10-2016-0071127 | Jun 2016 | KR |
10-1675089 | Nov 2016 | KR |
480166 | Mar 2002 | TW |
WO91004713 | Apr 1991 | WO |
WO9203102 | Mar 1992 | WO |
WO94010935 | May 1994 | WO |
WO9623452 | Aug 1996 | WO |
WO98032394 | Jul 1998 | WO |
WO98044865 | Oct 1998 | WO |
WO0108592 | Feb 2001 | WO |
WO0185047 | Nov 2001 | WO |
WO02017776 | Mar 2002 | WO |
02058583 | Aug 2002 | WO |
WO02062252 | Aug 2002 | WO |
WO02095475 | Nov 2002 | WO |
WO03003932 | Jan 2003 | WO |
2005114183 | Dec 2005 | WO |
WO2006096558 | Sep 2006 | WO |
WO2006100700 | Sep 2006 | WO |
WO2006133548 | Dec 2006 | WO |
WO2007019709 | Feb 2007 | WO |
WO2007071341 | Jun 2007 | WO |
WO2007103377 | Sep 2007 | WO |
WO2008115654 | Sep 2008 | WO |
WO2009016645 | Feb 2009 | WO |
WO2009085752 | Jul 2009 | WO |
WO2009089129 | Jul 2009 | WO |
WO2009146788 | Dec 2009 | WO |
WO2009146789 | Dec 2009 | WO |
WO2010059988 | May 2010 | WO |
WO2010123892 | Oct 2010 | WO |
WO2012007003 | Jan 2012 | WO |
WO2012064684 | May 2012 | WO |
WO2012074304 | Jun 2012 | WO |
WO2012078980 | Jun 2012 | WO |
WO2012083968 | Jun 2012 | WO |
WO2012140021 | Oct 2012 | WO |
WO2013058879 | Apr 2013 | WO |
WO2014068107 | May 2014 | WO |
WO2014091865 | Jun 2014 | WO |
2014143911 | Sep 2014 | WO |
WO2015015289 | Feb 2015 | WO |
WO2015063032 | May 2015 | WO |
WO2015112638 | Jul 2015 | WO |
WO2015176004 | Nov 2015 | WO |
WO2016004415 | Jan 2016 | WO |
WO2016042393 | Mar 2016 | WO |
WO2016061279 | Apr 2016 | WO |
WO2016084066 | Jun 2016 | WO |
WO2016099471 | Jun 2016 | WO |
WO2016113745 | Jul 2016 | WO |
WO2016116874 | Jul 2016 | WO |
WO2016200177 | Dec 2016 | WO |
WO2017006176 | Jan 2017 | WO |
WO2018057547 | Mar 2018 | WO |
WO2018232113 | Dec 2018 | WO |
Entry |
---|
US 8,553,966 B1, 10/2013, Alpern et al. (withdrawn) |
Dental Monitoring, “Basics: How to put your Cheek Retractor? (Dental Monitoring Tutorial)”, https://www.youtube.com/watch?v=6K1HXw4Kq3c, May 27, 2016. |
Dental Monitoring, Dental monitoring tutdrial, 1 page (Screenshot), retrieved from the internet (https:www.youtube.com/watch?v=Dbe3ud0f9_c), Mar. 18, 2015. |
Eclinger Selfie, Change your smile, 1 page (screenshot), retrieved from the internet https://play.google.com/store/apps/details?id=parkelict.ecligner), on Feb. 13, 2018. |
Lawrence, H.P., “Salivary Markers of Systemic Disease: Noninvasive Diagnosis of Disease and Monitorning of General Health,” Journal of the Canadian Dental Association Clinical Parctice, vol. 68, No. 3, Mar. 2002, pp. 170-174. |
Nishanian et al., “Oral Fluids as an Alternative to Serum for Measurement of Markers of Immune Activation,” Clinical and Diagnostic Laboratory Immunology, Jul. 1998, vol. 5, No. 4, pp. 507-512. |
Svec et al.; “Molded rigid monolithic porous polymers: an inexpensive, efficient, and versatile alternative to beads for design of materials for numerous applications”, Industrial and Engineering Chemistry Research; Jan. 4, 1999, vol. 38(1 ); pp. 34-48. |
U.S. Food and Drug Administration; Color additives; 3 pages; retrieved from the internet https://websrchive.org/web/20070502213911/http://www.cfsan.fda.gov/-dms/col.toc.html; last known as May 2, 2007. |
AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA; p. 195; March 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980. |
Alcaniz et aL; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996. |
Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990. |
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017. |
Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances-Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998. |
Allesee Orthodontic Appliances: DuraClearTM; Product information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997. |
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003. |
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; (product information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003. |
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003. |
Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992. |
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002. |
Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979—Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979. |
Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981. |
Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979. |
Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub, sufficiently earlier than effective US filing date and any foreign priority date) 1980. |
Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989. |
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub, sufficiently earlier than effective US filing date and any foreign priority date) 1989. |
Bandodkar et al.; Self-healing inks for autonomous repair of printable electrochemical devices; Advanced Electronic Materials; 1(12); 5 pages; 1500289; Dec. 2015. |
Barone et al.; Creation of 3D multi-body orthodontic models by using independent imaging sensors; Sensors; 13(2); pp. 2033-2050; Feb. 5, 2013. |
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987. |
Baumrind et al, “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972. |
Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978. |
Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975. |
Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001. |
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004. |
Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981. |
Berland; The use of smile libraries for cosmetic dentistry; Dental Tribune: Asia Pacific Edition; pp. 16-18; Mar. 29, 2006. |
Bernabe et al.; Are the lower incisors the best predictors for the unerupted canine and premolars sums? An analysis of peruvian sample; The Angle Orthodontist; 75(2); pp. 202-207; Mar. 2005. |
Bernard et al; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988. |
Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984. |
Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972. |
Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(I); pp. 28-36; Jan. 1970. |
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive, Tonawanda, New York, 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990. |
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004. |
Bookstein; Principal warps: Thin-plate splines and decomposition of deformations; IEEE Transactions on pattern analysis and machine intelligence; 11(6); pp. 567-585; Jun. 1989. |
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/{grave over ( )} pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996. |
Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001. |
Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985. |
Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986. |
Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981. |
Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979. |
Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979. |
Cadent Inc.; OrthoCAD ABO user guide; 38 pages; Dec. 21, 2005. |
Cadent Inc.; Reviewing and modifying an orthoCAD case; 4 pages; Feb. 14, 2005. |
Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000. |
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993. |
Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990. |
Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985. |
Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980. |
Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997. |
Collins English Dictionary; Teeth (definition); 9 pages; retrieved from the internet (https:www.collinsdictionary.com/us/dictionary/english/teeth) on May 13, 2019. |
Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969. |
Crawford; CAD/CAM in the Dental Office: Does It Work?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991. |
Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. Duret {grave over ( )} A Man With a Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes 'N Bites the Computer Moves From the Front Desk to the Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988. |
Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990. |
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010. |
Cureton; Correcting Malaligned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996. |
Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001. |
Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986. |
Daniels et al.; The development of the index of complexity outcome and need (ICON); British Journal of Orthodontics; 27(2); pp. 149-162; Jun. 2000. |
DCS Dental AG; The CAD/CAM ‘DCS Titan System’ for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992. |
DeFranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976. |
Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method; 2 pages; May 1991. |
Dentalwings; I series dental impression scanner; 8 pages; retrieved from the internet (https://web.archive.org/web/20160502145908/http://www.dentalwings.com/products/scan-and-design-systems/iseries/); available as of May 2, 2016. |
Dentalwings; Intraoral scanner; 7 pages; retrieved from the internet (https://web.archive.org/web/20160422114335/http://www.dentalwings.com/products/intraoral-scanner/); available as of Apr. 4, 2016. |
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992. |
Dentrix; Dentrix G3, new features; 2 pages; retrieved from the internet (http://www.dentrix.com/g3/new_features/index.asp); on Jun. 6, 2008. |
Dent-x; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998. |
Di Giacomo et al.; Clinical application of sterolithographic surgical guides for implant placement: Preliminary results; Journal Periodontolgy; 76(4); pp. 503-507; Apr. 2005. |
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018. |
Dicom to surgical guides; (Screenshot)1 page; retrieved from the internet at YouTube (https://youtu.be/47KtOmCEFQk); Published Apr. 4, 2016. |
dictionary.com; Plural (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/plural#) on May 13, 2019. |
dictionary.com; Quadrant (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/quadrant?s=t) on May 13, 2019. |
Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004. |
Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000. |
Dummer et al.; Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays; International Society for Optics and Photonics; vol. 7557; p. 75570H; 7 pages; (Author Manuscript); Feb. 24, 2010. |
Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1(2); pp. 150-154; Apr. 1991. |
Duret et al; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988. |
Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986. |
Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985. |
Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979. |
Ellias et al.; Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement; The Scientific World Journal; vol. 2012; Article ID 647240; dio:10.1100/2012/647240; 7 pages; Jul. 2012. |
Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950. |
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7. |
Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978. |
Farooq et al.; Relationship between tooth dimensions and malocclusion; JPMA: The Journal of the Pakistan Medical Association; 64(6); pp. 670-674; Jun. 2014. |
Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form, American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987. |
Florez-Moreno; Time-related changes in salivary levels of the osteotropic factors sRANKL and OPG through orthodontic tooth movement; American Journal of Orthodontics and Dentofacial Orthopedics; 143(1); pp. 92-100; Jan. 2013. |
Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987. |
Friedrich et al; Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy; J. Biomech.; 32(1); pp. 81-85; (Abstract Only) Jan. 1999. |
Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98-Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.cz/bitstream/11025/15851/1/Strasser_98.pdf); on Aug. 21, 2018. |
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003. |
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001. |
Geomagic; Dental reconstruction; 1 page; retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008. |
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002. |
Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982. |
Gottschalk et al.; OBBTree: A hierarchical structure for rapid interference detection; 12 pages; (http://www.cs.unc.edu/?geom/OBB/OBBT.html); retieved from te internet (https://www.cse.iitk.ac.in/users/amit/courses/RMP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019. |
gpsdentaire.com; Get a realistic smile simulation in 4 steps with GPS; a smile management software; 10 pages; retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008. |
Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990. |
Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PHD Thesis; 171 pages; Dec. 2007. |
Guess et al.; Computer Treatment Estimates in Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262-268; 11 pages; (Author Manuscript); Apr. 1989. |
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991. |
Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.com/t/toolingampproduction/november011996/simulatingstressputonfa . . . ); on Nov. 5, 2004. |
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Included); Feb. 1987. |
Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; Informatbnen, pp. 375-396; (English Abstract Included); Mar. 1991. |
Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990. |
Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999. |
Invisalign; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017. |
JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994. |
JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983. |
Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998. |
Jia et al.; Epidermal biofuel cells: energy harvesting from human perspiration; Angewandle Chemie International Edition; 52(28); pp. 7233-7236; Jul. 8, 2013. |
Jia et al.; Wearable textile biofuel cells for powering electronics; Journal of Materials Chemistry A; 2(43); p. 18184-18189; Oct. 14, 2014. |
Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989. |
Kamada et. al.; Case Reports on Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984. |
Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982. |
Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984. |
Karaman et al.; A practical method of fabricating a lingual retainer; Am. Journal of Orthodontic and Dentofacial Orthopedics; 124(3); pp. 327-330; Sep. 2003. |
Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945. |
Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946. |
Kim et al.; Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites; Analyst; 139(7); pp. 1632-1636; Apr. 7, 2014. |
Kim et al.; Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics; Biosensors and Bioelectronics; 74; pp. 1061-1068; 19 pages; (Author Manuscript); Dec. 2015. |
Kleeman et al.; The Speed Positioner; J. Clin. Orthod.; 30(12); pp. 673-680; Dec. 1996. |
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984. |
Kumar et al.; Biomarkers in orthodontic tooth movement; Journal of Pharmacy Bioallied Sciences; 7(Suppl 2); pp. S325-S330; 12 pages; (Author Manuscript); Aug. 2015. |
Kumar et al.; Rapid maxillary expansion: A unique treatment modality in dentistry; J. Clin. Diagn. Res.; 5(4); pp. 906-911; Aug. 2011. |
Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994. |
Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996. |
Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991. |
Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989. |
Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983. |
Mantzikos et al.; Case report: Forced eruption and implant site development; The Angle Orthodontist; 68(2); pp. 179-186; Apr. 1998. |
Martinelli et al.; Prediction of lower permanent canine and premolars width by correlation methods; The Angle Orthodontist; 75(5); pp. 805-808; Sep. 2005. |
McCann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989. |
McNamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985. |
McNamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993. |
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub, sufficiently earlier than effective US filing date and any foreign priority date) 2006. |
Moermann et al, Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987. |
Moles; Correcting Mild Malalignments—as Easy as One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002. |
Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Machine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985. |
Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964. |
Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990. |
Nedelcu et al.; “Scanning Accuracy and Precision in 4 Intraoral Scanners: An In Vitro Comparison Based on 3-Dimensional Analysis”; J. Prosthet. Dent.; 112(6); pp. 1461-1471; Dec. 2014. |
Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.pdf; on Dec. 2011. |
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977. |
Nourallah et al.; New regression equations for prediciting the size of unerupted canines and premolars in a contemporary population; The Angle Orthodontist; 72(3); pp. 216-221; Jun. 2002. |
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004. |
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002. |
ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the internet (http://www.konsident.com/wp-content/files_mf/1295385693http_ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019. |
OrthoCAD downloads; retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp); 2 pages; Feb. 14, 2005. |
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002. |
Paredes et al.; A new, accurate and fast digital method to predict unerupted tooth size; The Angle Orthodontist; 76(1); pp. 14-19; Jan. 2006. |
Patterson Dental; Cosmetic imaging; 2 pages retrieved from the internet (http://patterson.eaglesoft.net/cnt_di_cosimg.html) on Jun. 6, 2008. |
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998. |
Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages , Jan./Feb. 1989. |
Pinkham; Inventor's CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990. |
Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971. |
Procera Research Projects; Procera Research Projects 1993 {grave over ( )} Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993. |
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000. |
Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993. |
Raintree Essix & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997. |
Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000. |
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991. |
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping: Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991. |
Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992. |
Rekow; CAD/CAM in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992. |
Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987. |
Rekow; Dental CAD-CAM Systems: What is the State of the Art ?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991. |
Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988. |
Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992. |
Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986. |
Richmond; Recording the Dental Cast in Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987. |
Rose et al.; The role of orthodontics in implant dentistry; British Dental Journal; 201(12); pp. 753-764; Dec. 23, 2006. |
Rubin et al.; Stress analysis of the human tooth using a three-dimensional finite element model; Journal of Dental Research; 62(2); pp. 82-86; Feb. 1983. |
Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981. |
Sahm et al.; “Micro-Electronic Monitoring of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990. |
Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 1990. |
Sakuda et al.; Integrated Information-Processing System in Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992. |
Sarment et al.; Accuracy of implant placement with a sterolithographic surgical guide; journal of Oral and Maxillofacial Implants; 118(4); pp. 571-577; Jul. 2003. |
Schafer et al.; “Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation”; Eur J Orthod.; 37(1)pp. 1-8; doi: 10.1093/ejo/cju012; Jul. 3, 2014. |
Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988. |
Schroeder et al; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998. |
Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971. |
Shimada et al.; Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations; Current Oral Health Reports; 2(2); pp. 73-80; Jun. 2015. |
Siemens: CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin: 15 pagesl; (Includes Machine Translation): (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004. |
Sinclair; The Readers' Comer; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992. |
Sirona Dental Systems GmbH, CEREC 3D, Manuel utilisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003. |
Smalley; Implants for tooth movement: Determining implant location and orientation: Journal of Esthetic and Restorative Dentistry; 7(2); pp. 62-72; Mar. 1995. |
Smart Technology; Smile library II; 1 page; retrieved from the internet (http://smart-technology.net/) on Jun. 6, 2008. |
Smile-Vision_The smile-vision cosmetic imaging system; 2 pages; retrieved from the internet (http://www.smile-vision.net/cos_imaging.php) on Jun. 6, 2008. |
Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rztl Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990. |
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984. |
Szeliski; Introduction to computer vision: Structure from motion; 64 pages; retrieved from the internet (http://robots.stanford.edu/cs223b05/notes/CS%20223-B%20L.10%structurefrommotion1b.ppt, on Feb. 3, 2005. |
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004. |
The Dental Company Sirona: Cerc omnicam and cerec bluecam brochure: The first choice in every case; 8 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2014. |
Thera Mon; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016. |
Thorlabs; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012. |
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000. |
Truax; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-28; Sep.-Oct. 1992. |
Tru-Tatn Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996. |
U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973. |
U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977. |
Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018. |
Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972. |
Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972. |
Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993. |
Van Hilsen et al.; Comparing potential early caries assessment methods for teledentistry; BMC Oral Health; 13(16); doi: 10.1186/1472-6831-13-16; 9 pages; Mar. 2013. |
Varady et al.; Reverse Engineering of Geometric Models' An Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997. |
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998. |
Vevin et al.; Pose estimation of teeth through crown-shape matching; In Medical Imaging: Image Processing of International Society of Optics and Photonics; vol. 4684; pp. 955-965; May 9, 2002. |
Virtual Orthodontics; Our innovative software; 2 pages; (http://www.virtualorthodontics.com/innovativesoftware.html); retrieved from the internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2005. |
Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989. |
Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23 (10); pp. 694-700; Oct. 1989. |
Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987. |
Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970. |
Wiedmann; According to the laws of harmony to find the right tooth shape with assistance of the computer; Digital Dental News; 2nd vol.; pp. 0005-0008; (English Version Included); Apr. 2008. |
Wikipedia; Palatal expansion; 3 pages; retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018. |
Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987. |
Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987. |
Windmiller et al.; Wearable electrochemical sensors and biosensors: a review; Electroanalysis; 25(1); pp. 29-46; Jan. 2013. |
Wireless Sensor Networks Magazine; Embedded Teeth for Oral Activity Recognition; 2 pages; retrieved on Sep. 19, 2016 from the internet (www.wsnmagazine.com/embedded-teeth/); Jul. 29, 2013. |
Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990. |
Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop.; 52(3); pp. 117-125; (Translation Included) Jun. 1991. |
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969. |
Wong et al.; Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants: Case report; Implant Dentistry; 16(2); pp. 123-130; Sep. 2007. |
Wong et al.; The uses of orthodontic study models in diagnosis and treatment planning; Hong Kong Dental Journal; 3(2); pp. 107-115; Dec. 2006. |
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998. |
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001. |
Yaltara Software; Visual planner; 1 page; retrieved from the internet (http://yaltara.com/vp/) on Jun. 6, 2008. |
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993. |
Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Biol. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988. |
Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990. |
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164; 43 pages; (Author Manuscript); Nov. 1980. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 pages; (Author Manuscript); Dec. 1980. |
Zhang et al.; Visual speech features extraction for improved speech recognition; 2002 IEEE International conference on Acoustics, Speech and Signal Processing; vol. 2; 4 pages; May 13-17, 2002. |
Zhou et al.; Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review; Electroanalysis; 24(2); pp. 197-209; Feb. 2012. |
Zhou et al.; Bio-logic analysis of injury biomarker patterns in human serum samples; Talanta; 83(3); pp. 955-959; Jan. 15, 2011. |
Merriam Webster; (Definition); Disintegrate; 7 pages; retrived from the internet; https://www.merriam-webster.com/dictionary/disintegrate) on Oct. 16, 2023. |
Merriam Webster; (Definition); Integral; 7 pages; retrived from the internet (https://www.merriam-webster.com/dictionary/integral) on Oct. 16, 2023. |
Number | Date | Country | |
---|---|---|---|
20190298494 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62648698 | Mar 2018 | US |