This is a nationalization of PCT/IB02/04824 filed Nov. 19, 2002 and published in English.
1. Field of the Invention
The present invention relates to an apparatus for the placement of dental fillings and in particular light curable dental fillings.
2. Summary of the Prior Art
The dental profession has moved over the last two or so decades from the use of mercury based fillings to the use of composite resins that are used to provide natural looking fillings. Composite resin is cured by the application of concentrated light. To enable the dental professional to place composite resin fillings matrixes are used. A matrix which is a device which wraps around the tooth and acts as a mould to contain the composite resins before they are cured. Matrices are generally formed of plastic or stainless steel and are either circumferential or sectional. Sectional matrices fit only in one proximal area of the tooth while circumferential matrix bands fit around the entire circumference of the tooth. In the prior art matrixes are secured in place by the use of wedges and/or clamps. Wedges are generally made of wood or plastic and are placed between the matrix and an adjacent tooth. Wedges are used to hold the matrix against the tooth being filled and to temporarily separate the tooth being filled and the adjacent tooth.
In the prior art wedges and other matrix support means are used to hold the matrices in place. The use of separate components makes it cumbersome to place matrices and requires the dental professional to undertake multiple steps in order to secure the matrix.
It is therefore an object of the present invention to provide a system for securing dental matrices which is an improvement on the prior art systems and devices or which will at least provide the industry with a useful choice.
In a first aspect the present invention consists in a retainer for placing and retaining a matrix in a dental contact matrix system, and for use in conjunction with an elastic “wedge”, said retainer comprising:
a first lug, to fit on one side of a proximal contact between two teeth,
a second lug to fit on the other side of said proximal contact,
a spring member connecting between said first lug and said second lug, said spring member holding said lugs such that they must be separated to fit over said proximal contact, wherein the spring member applies a restorative force pressing said lugs against opposed sides of said proximal contact, and
means for receiving and holding an elastic wedge in a stretched condition to span between said first lug and said second lug.
Elastic “wedge” refers to any resilient elastic member for introduction into the inter-proximal space between two teeth in a stretched condition, subsequent release of the stretched condition leading to a lateral expansion of the wedge within the inter-proximal space.
In a second aspect the present invention consists in a dental contact matrix system including a retainer for placing and retaining a matrix in a dental contact matrix system, an elastic “wedge” and a matrix, said retainer comprising:
a first lug, to fit on one side of a proximal contact between two teeth and
a second lug to fit on the other side of said proximal contact,
a spring member connecting between said first lug and said second lug, said spring member holding said lugs such that they must be separated to fit over said proximal contact, wherein the spring member applies a restorative force pressing said lugs against opposed sides of said proximal contact,
said elastic wedge being held in a stretched condition spanning between said first lug and said second lug.
In a third aspect the present invention consists in a retainer for placing and retaining a matrix in a dental contact matrix system, and for use in conjunction with an elastic “wedge”, said retainer comprising:
a first lug, to fit on one side of a proximal contact between two teeth,
a second lug to fit on the other side of said-proximal contact,
a first matrix support member positioned to retain a matrix against said first lug,
a second matrix support member positioned to retain a matrix against said second lug, and
a spring member connecting between said first lug and said second lug, said spring member holding said lugs such that they must be separated to fit over said proximal contact, wherein the spring member applies a restorative force pressing said lugs against opposed sides of said proximal contact.
This invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which this invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
One preferred form of the present invention will now be described with reference to the accompanying drawings in which;
Referring to
The retainer includes means for receiving and holding the elastic wedge in a stretched condition. The preferred means include a guide on each lug in the form of channels 119. Preferably the means also include a wedge engagement associated with each lug. In the preferred embodiment these are cleats 105.
Referring to
Referring to
Lug faces 112 in use abut the tooth being filled and the neighbouring tooth. The lug faces are in the preferred embodiment concave so as to adapt to the inter-proximal space between teeth. A ridge 113 at the intersection of the faces projects into the inter-proximal space between the two teeth. In use one lug fits on the lingual side and the other lug on the buccal side.
The lugs 110 connect to the spring 101, so that in general the placement of the spring path is substantially perpendicular to the line of ridge 113. However the sockets 104 in the spring are offset at an angle 160 shown in
Each lug 110 has a matrix holder to hold the matrix 130 in place. In the preferred embodiment the holder is a slot 114 used to retain the matrix 130. A support member 115 and a bottom 116 and top ledge 117 create the slot and retain the matrix 130. The support member 115 retains the matrix 130 against the tooth abutting face 112. A top ledge 115117 enables pressure to be applied to the matrix 130 as the matrix is inserted into the inter-proximal space. The top ledge, 115117 runs from the support member 115 towards the ridge 113.
The matrix 130 is able to horizontally slide within the slot 114 in the lugs 110. A further support member 118 aids in the retention to the matrix 130 by increasing the resistance to the matrix falling out of the slot To increase the resistance the face of the support member 118 that contacts the matrix 130 is further towards the face of support member 115 that contacts the matrix than the face 112 of the lug 110, requiring the matrix to follow a controlled path between them.
The lugs 110 additionally have a channel 119 that in use runs from the ridge 113. When the lugs 110 are assembled with the spring 101 the slot is substantially perpendicular to the spring arms 102. Referring to
The lugs 110 are made of acetyl but could be made of any suitable plastic or metal in particular stainless steel. In the preferred embodiment the lugs 110 are transparent to enable light used to cure acrylic filling. A light shined from above the lugs will be reflected towards the filling to be cured as shown by arrow 150 in
Referring to
The elongated tapered section 902 has a maximum thickness of 3 to 5 millimeters and an approximate length of 10 to 15 millimeters. In the preferred embodiment the cross section shown in
At the end of the elongated taper section 902 at the point where it joins the elongated narrow section 901 there is an integrated bead 905 which is wider than the elongated narrow section 901. At the free end of the elongated tapered section 902 there is a small elongated narrow section 904 and intrinsic bead 903. The integrated bead 903 is wider in cross section than the narrow section 904.
The elongated narrow section 901 has at the free end a bead 908 which is wider in cross section than the elongated narrow section. A short distance from the free end of the elongated narrow section 901 and from bead 908 there is an additional bead 907 which is wider in cross section than the elongate narrow section. In the preferred embodiment this bead is 3 to 5 millimeters from the bead 908 at the end of the narrow section 901.
In approximately the middle of the elongate narrow section 901 there is a flattened section 906. In its narrowest orientation flat section 906 shown in
The wedge 120 is attached to the lugs 110 and the spring 101 in the following manner. The narrow section 901 is fed through the cleat 105 in a first lug 110 with head 907 above the cleat 105. The wedge is passed across the channels 119 in the lugs 110 with the flat section 906 spanning the gap between the lugs. The flat section 906 of the wedge will only fit into the channel 119 slot one way so that the flat section 906 is parallel to the matrix 130. This can be seen in
Referring to
In the preferred embodiment the matrix 130 is made of stainless steel but brass or another suitable metal could be used. In an alternative embodiment a clear matrix or matrix that transmits light could be used. Clear matrices have the advantage that the transmit light to assist in the curing of filling. A clear matrix could be made of polyester or other suitable plastic.
The dental contact matrix system of the present invention can be assembled either with the matrix facing into the centre of the U-shape seen generally in
To use the assembled contact matrix system of the present invention the dental professional expands the spring arms 102. This also stretches the narrow section of the wedge 120. In particular the narrow flat section 906 of the wedge 120 is stretched The retainer is then manipulated to place the narrow section of the wedge 901 and the matrix 130 into the inter-proximal space between two teeth. When the dental professional removes the rubber dam forceps the spring 101 contracts and the lugs 110 provide pressure to hold the matrix 130 against the lingual and buccal sides of the tooth to be filled.
The dental contact matrix system of the preferred embodiment of the present invention is shown in
Once in place the dental professional can use tweezers or another suitable tools to detach the ends of the elastic wedge from the cleats 105 of the spring 101. Beads 908 and 903 make this process easier by preventing the tweezers from slipping off the wedge 120
Then using tweezers or other suitable tool, the dental professional pulls on the elongated narrow section 902 and in particular bead 908. This pulls the tapered section 902 into the inter-proximal space between the two teeth to better secure the matrix 130 against the tooth to be filled. The elastic wedge causes continuous lateral pressure.
In the preferred embodiment the lugs, wedge and matrix all transmit light enabling light used to cure the filling to reach the filling material. This has the advantage of enabling the filling to cure faster and to ensure a more complete cure.
While use of the wedge 120 has been described with reference to the dental contact matrix system of the present invention the wedge 120 of the present invention can be used separately to hold various types of matrix bands in place. To use the wedge 120 of the present invention the dental professional would position their preferred matrix band or sectional matrix on the tooth to be filled in the usual manner using fingers and/or tweezers.
The dental professional would then elongate the narrow elongated section 901 of the wedge 120 by stretching it and placing the wedge between the matrix band and the adjacent tooth. The wedge is placed in a similar fashion to the use of dental floss. The dental professional then releases both ends and pulls on the narrow elongated section 901 to pull the elongated tapered section 902 through the gap so that the tapered section passes inter-proximally until the space is tight.
The present invention has the advantage that when the tension on the wedge 120 is released the elastic wedge 120 expands further increasing the pressure on the matrix band and on the adjacent teeth, thereby causing them to separate. The elastic wedge of the present invention, because it does not have a point and is pulled or threaded into the interproximal space, is gentler on the gingival tissue and thereby less traumatic for dental patients.
The present dental contact matrix system of the invention can be assembled before being placed in the patients mouth saving the dental professional time and reducing the chance of dropping a matrix or wedges into a patients mouth.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB02/04824 | 11/19/2002 | WO | 00 | 8/19/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/043521 | 5/30/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
164870 | Palmer | Jun 1875 | A |
368988 | Williams | Aug 1887 | A |
388620 | Booth | Aug 1888 | A |
719834 | Mills | Feb 1903 | A |
2090904 | Singer | Aug 1937 | A |
2150005 | McNinch | Mar 1939 | A |
2629930 | Lane | Mar 1953 | A |
4007530 | Gaccione | Feb 1977 | A |
4259070 | Soelberg et al. | Mar 1981 | A |
4718852 | Galler | Jan 1988 | A |
4787849 | Jacoby et al. | Nov 1988 | A |
5607302 | Garrison et al. | Mar 1997 | A |
6059568 | Munro et al. | May 2000 | A |
6206697 | Hugo | Mar 2001 | B1 |
6220858 | McKenna et al. | Apr 2001 | B1 |
6293796 | Trom et al. | Sep 2001 | B1 |
6325625 | Meyer | Dec 2001 | B1 |
6336810 | Bertoletti | Jan 2002 | B1 |
6435874 | Hughes | Aug 2002 | B1 |
1908145 | Harper | May 2003 | A1 |
6609911 | Garrison | Aug 2003 | B2 |
20020155410 | Bills | Oct 2002 | A1 |
20030059741 | Bills | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
387223 | Jan 1965 | CH |
669514 | Mar 1989 | CH |
0097266 | Jan 1984 | EP |
0668060 | May 2001 | EP |
2820024 | Aug 2002 | FR |
435004 | Sep 1935 | GB |
WO9618353 | Jun 1996 | WO |
WO9639984 | Dec 1996 | WO |
Entry |
---|
Ridge. (n.d.) The American Heritage® Dictionary of the English Language, Fourth Edition. (2003). Retrieved Mar. 18, 2014 from http://www.thefreedictionary.com/ridge. |
Number | Date | Country | |
---|---|---|---|
Parent | 10495120 | Nov 2002 | US |
Child | 12320112 | US |