This invention relates to a dental drilling assembly which can be used to drill holes in the bone of a patient for the fitting of dental implants as well as a method of manufacture of and using the assembly.
In dental treatment methods and devices are known for determining the ideal placement of an implant. Such treatment methods typically consist of a number of steps. Firstly a diagnostic wax-up is created to represent the desired prosthetic end result. The wax-up is optimized to achieve proper occlusion, morphology, aesthetics and phonetics. Next, a scanning template or scan prosthesis is manufactured. This is a replica of the wax-up made in a radio-opaque material to ensure that it is clearly visible in the medical images when the patient is scanned.
Following production of the scan template, the patient is sent to a radiologist for scanning (CT, MRI or the like). The output of the scan is a stack of 2D slices forming a three-dimensional data set. From this data set virtual 3D models can be constructed and a planning project is established. The surgeon uses this project to plan the implant positions and inclinations using a computer program such as SimPlant™. The computer program allows the individual patient's CT images to be assessed in a three-dimensional way and to determine where dental implants can be placed ideally. Implants can be chosen from a digital implant library (different implant brands, lengths, diameters, etc.) Several cross sections can be selected perpendicular to both the arch of the jaw curve and the axial slices. Typically, implant receptor sites are chosen in these cross-sections. The practitioner can modify the positions and inclinations of each implant as needed in any of the available views. Fine-tuning is achieved by shifting or tilting of the implant representations or by changing their dimensions. Each individual implant position can be evaluated in terms of the volume of available bone. The quality of the bone is visualized in the computer program using Hounsfield units as a measure for bone density.
Once the implant plan has been fixed, it must be transferred to the patient as accurately as possible. US patent US2005/0170301A1 describes a method and device for placing dental implants. A custom-made surgical template that has an exact mating region in the mouth of the patient (either on the jawbone, the gums or the teeth) has bore tubes with predetermined positions and inclinations. Drill bushings are inserted into the bore tubes in the template and these serve to guide step drills and calibrating drills to create implant cavities in the jaw of the patient. After drilling, the aforementioned drill bushings are removed from the template and the implants are placed through the bore tubes in a guided manner. Fixture mounts are then attached on top of the implants. The fixture mounts glide into the bore tubes fixed in the surgical template.
One of the disadvantages of the described method relates to the removal of the drill bushings. Due to limited space in the mouth of the patient, manipulating the drill bushings is difficult. Typically, once holes have been drilled in the jaw, the surgical template must be removed from its position in the patient's mouth to take out the drill bushings. The template is then repositioned.
An additional problem occurs when the surgical template is fitted directly on the soft tissue or the teeth of the patient. Indeed when no surgical flap is made the presence of soft tissue overlying the respective implantation sites in the jaw is troublesome. If the implant cavities are drilled without firstly removing the soft tissue locally, gingival matter can be dragged into the bone cavity and can contaminate the implantation site, eventually leading to implant failure. Alternative solutions include marking the position where the implant is required through the template using a tissue marker. The template is then removed, the tissue is removed from the marked area, and the template is replaced. This adds further steps to the overall implant process and presents a risk that the template is replaced in a different position in the mouth.
An object of the present invention is to provide an improved dental drilling assembly which can be used to drill holes in the bone of a patient for the fitting of dental implants as well as a method of manufacture of and using the assembly.
An advantage of the present invention is that it can overcome at least one of the problems of the prior art devices mentioned above.
A first aspect of the present invention provides a dental drilling assembly comprising a drill and a bushing which is mounted, or mountable, coaxially with the drill. By having the bushing mounted, or mountable, to the drill, the bushing can be inserted with the drill into a bore hole of a surgical template and can similarly be removed from the bore hole when a hole has been drilled. This avoids the need to remove the surgical template from the mouth of the patient after drilling operations to remove a bushing from the template. The bushing can be permanently mounted to the drill, or the bushing can be removably mountable to the drill such as by a bayonet or corkscrew type of fixing.
Preferably, the bushing has at least one cutting surface for cutting soft tissue. The cutting surface can comprise a serrated leading edge of the bushing, a knife-edge or any other suitable form. This has the advantage of avoiding the need to use a separate tissue cutting tool. Such tools may normally require the removal of the surgical template from the patient's mouth.
Preferably, a pathway is defined between the drill and the bushing which serves, in use, to evacuate soft tissue from the cutting surface. This ensures soft tissue is removed from the cutting site and helps to prevent contamination of the implant site.
The dental drilling assembly is used in connection with a surgical template having at least one bore hole representing a position where the drill is required to be used, the bore hole having a diameter which accommodates the drill and bushing. Where the bore hole is lined with a bore tube, the bore tube has a diameter which accommodates the drill and bushing. Preferably the bore hole, or bore tube, has a diameter which is only slightly larger than the bushing so that the bushing is accommodated with a sliding fit. This helps to ensure an accurate positioning of the drill at the required drilling site.
Embodiments of the invention will be described, by way of example only, with reference to the accompanying drawings in which:
The present invention will be described with respect to particular embodiments and with reference to certain drawings but the invention is not limited thereto but only by the claims. The drawings described are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes. Where the term “comprising” is used in the present description and claims, it does not exclude other elements or steps. Furthermore, the terms first, second, third and the like in the description and in the claims, are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or illustrated herein.
Before describing the drilling assembly in detail, the initial steps of an implant process and the apparatus used in the process will be described. The aim of the process is to create a dental superstructure which will fit on implants which have been fixed in the jaw bone of a patient. The superstructure supports artificial teeth. With the intention of creating a superstructure, a diagnostic setup of the future teeth will first be made. This is normally achieved using an articulator, i.e. an appliance in which two teeth molds or plaster models/casts can be positioned in correct relation to one another enabling the simulation of realistic jaw movement. The diagnostic setup is made on plaster models of the remaining teeth or gums that indicates the future positions of the teeth. The same test arrangement is also copied in a radio-opaque material in order to make a scan prosthesis 1, as represented in
Next, teeth can be chosen from a digital library and positioned in those places where teeth are missing. After this preliminary stage, preferably as a first step of the actual method, a computer planning is made in view of the placement of the implants. This can be done, for example, by first scanning the patient with a computed tomography scanner (CT-scanner) and by simulating the implants on the CT-scans, as described in the Belgian patent No. 1.011. 205. It is useful that the patient is scanned with what is called a scan prosthesis 1 as represented in
The teeth 3 can be made of any suitable material such as an acrylic resin mixed with 30% of barium sulfate, while the rest of the prosthesis 1 is made of a less radio opaque materials such as a mixture of acrylic resin and 10% of barium sulfate. This offers the advantage that the teeth 3 are nicely visible in the CT scan images and can thus be segmented separately in a simple manner. In addition, the shape of the gums 2 will also be visible, as the base part 4 of the scan prosthesis 1 can be identified and delineates the gums and its lower side represents the shape of the gums. Furthermore, the shape of the surface of the bone 5 is perfectly visible by means of the CT-scan. Next, a drill jig or surgical template 6 is created. This drill jig can possibly also serve as a fitting jig, since the implants 7 can be placed by means of it. Implant placement can possibly also be achieved with a separate fitting jig. The template 6, and possibly the fitting jig, can for example be made by means of Rapid Prototyping techniques, as described in the Belgian patent No. 1.011. 205.
According to
According to an aspect of the present invention metal bore tubes may or may not be present in the template. The bushing that is mounted over the drills is preferably made from metal but this is not mandatory. Alternative materials are included within the scope of the present invention such as some structural plastics and types of hard plastics.
If the template 6 is to be used as a fitting jig, implants are fitted through the bore tubes 14. Implants 7 and individually mounted to holders 19.
The drill 30 is provided with a bushing 40 which is mounted coaxially about the longitudinal axis of the drill 30. The bushing 40 is a tubular structure having a generally cylindrical shape. The bushing has a flange 43 radially extending from the outer surface of the bushing 40. In use, flange 43 rests on a bore tube 14 of the template 6. A first portion 41 of the bushing 41, positioned below the flange 43, locates inside a bore tube 14 and a second portion of the bushing 41 sits above the bore tube 14. Bushing 40 has a radially inwardly-extending collar 44.
In use, a bushing 40 is used which has an outer diameter slightly less than the inner diameter of the bore tube 14. This allows the bushing and drill to slide within the bore tube 14 of the surgical template 6. This sliding fit has a centering effect on the drill 30 and serves to ensure an accurate alignment of the drill with the required drill position and direction/inclination dictated by the bore tube 14. Although bore tubes 14 are shown here, it is alternatively possible to use the template without any bore tubes 14 and the bushing 40 fits directly within a hole in the surgical template 6. The bushing 40 can be permanently mounted to the drill 30 or, more preferably, is removably mounted to the drill 30. This allows a set of differently-sized bushings 40 to be used. In this embodiment, the bushing 40 is mountable to the drill so that torque is transmitted between the drill and the bushing, i.e. the bushing 40 rotates with the drill 30. As best shown in
Referring to
The pattern of grooves comprises a number of discrete positions. To go to from one position to a consecutive position, the tooth engaging in the groove must follow the pattern. Each position is located at an angle relative to the previous one. Though this is not required it offers the advantage that the wall thickness of the bushing will not be diminished over it's entire length but only over short distances which differ radially. This contributes to the strength of the component.
Each lateral groove has a starting point (where the tooth first engages) and an end point (where the tooth is eventually blocked). The grooves can be conical or tapered in the sense that the width of the groove at the starting point can be larger than at the end point. Thus, as the tooth engages lower down in the groove, the tolerances between tooth and groove become smaller and smaller increasing friction between the components so they are fixed or jammed into position.
A drilling operation using the drill and bushing will now be described. In use, and as best shown in
Although a bayonet type of fitting is shown in
A removable bushing provides at least one of the following advantages:
Alternative cutting surfaces are included within the scope of the invention. In case of a knife edge the rim of the bushing will be processed such that the wall thickness is reduced to a sharp edge. This creates a very sharp circular “blade”. The blade coincides with the rim of the bushing.
Such a sharp edge may be used to perform a local circular cut in the soft tissue without removing bone. It is preferred that the cutting edge of the bushing should be adapted in material and form so that it can only cut through the soft tissue but cannot continue to cut through the bone.
The (wall) thickness of the teeth typically lies in a range between 0.2 and 0.5 mm. This cutting function helps to cleanly cut soft tissue material from the site where the implant will be fitted. Cutting the soft tissue as part of the drilling operation improves accuracy of the position of the cut, and avoids the need to use other tools, which may require the removal of the template from the patient's mouth.
It is desirable that soft gingival tissue is removed from the site of the cutting operation. A tissue evacuation pathway is provided between the drill 30 and bushing 40. The flute 37 of the drill serves to remove material from the drill tip 33 towards the coronal end of the drill. This flute 37 can also help to carry soft tissue material from the region adjacent the cutting surface 51 to the coronal end of the drill. A channel 55 is provided through the bushing 40, which is aligned with the flute 37. This allows the flute to perform a material moving function in an unrestricted manner. The pathway is continued at the upper portion of the bushing. Spiral slots 54 align with the flute 37 on the drill 30. The upper section of the bushing has spiral slots aligned with the flute. The spiral slots in the bushing extend from the pathway upwards. They need not (but can) run all the way through to the top of the bushing provided that this does not compromise the strength of the components.
It is preferred that the distance 56 between the lower edge of the cutting surface 51 of the bushing 40 and the drill tip 33 lies in a range, e.g. between 3 to 4 mm. This corresponds to the average soft tissue thickness of a patient. The limitation assures that the bushing always centres the drill when it engages in the bone of the patient. The 3-4 mm distance controls the distance by which the drill extends beyond the bushing—in other words, the drill will always drill 3-4 mm deeper than the bushing.
If the drill extends only 3-4 mm relative to the bushing and the depth of the soft tissue equals this size, it is physically impossible to drill inside bone without the bushing engaging in a guiding cylinder. If the drill would extend further, for instance 8 mm, the minimum height of the guiding cylinder would need to be 5 mm to make sure that the drill is centred in the template.
In the embodiments described above torque applied to the drill is transmitted to the bushing. According to another embodiment of the invention the drill 30 can rotate freely with respect to the bushing 40 and there is no such transmission of torque between the parts. In this alternative embodiment the bushing does not perform a cutting operation and only performs a stabilising and guiding function for the drill. Different arrangements are included within the scope of the present invention:
The invention is not limited to the embodiments described herein, which may be modified or varied without departing from the scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/000220 | 1/12/2006 | WO | 00 | 7/11/2008 |