The present invention relates to handpieces for rotating tools and particularly to turbine driven medical or dental handpieces.
Numerous handpieces for rotating tools exist. Turbine driven handpieces are widely used in dental offices and medical labs around the world. Most handpieces include a handle portion, a connector at one end of the handle portion and a tool carries drive head at the other end. The connector provides a connection of the handpiece to various air, water, light and power supply conduits, generally combined in a so called umbilical cord. The drive head houses a tool rotating assembly, generally composed of a tool mount or chuck, and a motor or a turbine turbine, rotatably mounted in the head for driving the chuck.
Various different types of turbine arrangements are in use, all of which include a turbine in a turbine housing, a supply of pressurized air into the housing for driving the turbine and a set of bearings for rotatably supporting the turbine in the housing and the head. Since conventional dental handpieces are constructed to rotate the dental drill or burr at speeds of up to 500,000 rpm, the bearings are subject to large stress. This is exaggerated by the bearings having to additionally support the chuck and tool against the lateral forces applied to the tool during operation. Furthermore, asymmetrical thrust generated by drive air impinging tangentially on the turbine places additional stress on the bearings.
In existing handpieces, mostly ball bearings are used, which generally have a maximum service life of 3 months and must be lubricated each time they are subjected to sterilization conditions. Ceramic bearings have come on the market recently which are more robust and are maintenance free in that they do not need to be lubricated after each sterilization. However, their service life is still not satisfactory.
U.S. Pat. No. 3,906,635 is directed to a dental handpiece with air bearings. In that handpiece, a central spindle supporting the turbine wheel and having an axial, burr receiving bore is supported in the drive head of the handpiece by a pair of cylindrical bearing sleeves which are closely spaced from the spindle, forming a very narrow air passage or air gap therebetween. The bearing sleeves are respectively mounted in a pressure chamber to which pressurized drive air is supplied. The bearing sleeves each include a number of air passages allowing pressurized air to pass from the pressure chamber into the air gap between the spindle and the bearing sleeve. The drive air is supplied simultaneously to the turbine and the air bearings. The pressurized drive air supporting the spindle enters into the bearing chambers, passes through the bearing sleeves and into the air passages, and from there gets exhausted to ambient or into the turbine chamber. It is easily apparent that operating the air bearings and the turbine with the same drive air causes a major disadvantage. At shut down of the drive air, the turbine still rotates while the air pressure is no longer sufficient to fully support the spindle in the bearing sleeves. This can result in serious damage to the bearing, which in turn limits the service life of the turbine drive unit. Moreover, although the cylindrical air cushions may properly support the spindle in radial direction, very little support in axial direction is provided. Axial thrust washers are provided in this prior art construction, which support the spindle in axial direction. Although annular air cushions are provided around the thrust washers, the overall surface of these air cushions appears to be quite small considering the potentially large axial thrust force applied to the spindle upon contact of the burr with a tooth. Furthermore, the sharp angle at the transition from the cylindrical air cushion to the annular air cushion impedes the flow of cushioning air. Thus, an improved bearing design is desired.
Many different air turbine designs and constructions exist, but in common turbine designs drive air is tangentially blown onto the impeller wheel of the turbine and at the circumference of the wheel. The tangential air supply generates asymmetrical thrust and causes asymmetrical loading of the bearings, which increases stress and wear. Furthermore, the torque generation of the turbine is low due to the only localized drive air supply. Moreover, parasitic airflow (drag) is high when the drive air is supplied tangentially at the circumference of the turbine.
Numerous air turbine designs are known in the prior art, wherein a paddle wheel type turbine rotor is driven by drive air impacting onto the turbine vanes at the outer ends thereof and in a direction tangential to the turbine circumference. Representative of the prior art designs are U.S. Pat. No. 6,120,291 and US Patent Application US 2001/0002975. Although U.S. Pat. No. 4,470,813 discloses an air driven turbine arrangement wherein the drive air is somewhat redirected radially before impact onto the turbine wheel, the drive air is still directed onto the turbine vanes in one location and in a generally tangential direction. Thus, a need exists for an improved turbine construction generating higher torque output and less bearing stress.
Prior art chucks of dental handpieces are almost exclusively designed to hold the dental burr by way of a friction fit only. Examples of such constructions are found in U.S. Pat. Nos. 4,595,363, 5,549,474, and 5,275.558. Only low torque transmission is possible between the chuck and the burr in such constructions, higher torque leading to slippage of the burr. In U.S. Pat. No. 6,065,966, a spring loaded pin is used for engaging a recess in a dental tool. However, the use of this arrangement in an air turbine handpiece is not disclosed. In fact, the disclosed arrangement could not be used to hold a dental burr, since the engagement between the pin and the chuck is designed for a non-rotating tool and does not easily lend itself to being used with a rotating tool.
A lock and key type connection is known from U.S. Pat. No. 4,370,132 which teaches the use of a burr with a shank having a flattened end portion at the upper shank end. A dog rigidly connected with the burr receiving sleeve is provided for engagement with the flattened end of the burr shank. The burr cannot be fully inserted into the chuck until the burr end fits into the dog, so that the burr must be turned relative to the chuck until these interlocking portions align. It is a disadvantage of this prior art arrangement that the burr must be rotated in the chuck until the lock and key structures fit together. Since the chuck also provides a friction fit with the burr, rotating the almost completely inserted burr within the chuck would necessitate some kind of mechanism which keeps the chuck from rotating in the drive head, or the burr must be repeatedly removed and reinserted in a slightly different angular position. Locating the interlocking mechanism deep in the drive head of the handpiece makes it impossible for the user to visually pre-align the lock and key structure prior to insertion of the burr. Thus, insertion of the burr is an exercise of trial and error.
Dental handpiece air turbines are normally shut down by simply stopping the supply of pressurized drive air. However, since the turbine is rotating at high speed, it takes some time to gradually slow down and come to a stop. This is undesirable, since for safety reasons, the dentist must wait until the turbine has fully stopped before removing the handpiece from a patient's mouth. Furthermore, during this so called rundown period, the continued rotation of the turbine generates a vacuum in the turbine chamber which may lead to contaminants being sucked into the chamber.
U.S. Pat. No. 5,507,642 discloses a discharge air shut-off arrangement for a dental handpiece turbine unit, which automatically prevents the flow of discharge air through the lower bearing during rundown of the turbine in order to prevent the generation of a vacuum. This is achieved by using a flexible Belleville washer which is held in a flat configuration by the drive air and automatically curves upward when the drive air is shut off, thereby closing off the air discharge passage. U.S. Pat. No. 5,782,634 discloses an auto-stop arrangement which includes a valve in the exhaust air conduit which is operated by the drive air pressure and closes the exhaust air conduit when the drive air pressure falls below a certain level. However, the valve arrangements of these two patents shut off only the exhaust air conduit, not the drive air and chip air/water conduits. Thus, a vacuum may still be generated and contamination may still occur. Consequently, a mechanism is desired which provides for a reliable and quick stopping of the turbine and prevents contamination of the turbine chamber as much as possible.
Dental turbine handpieces generally include either a straight neck or a bent neck, the latter intended to facilitate access to the back of a patient's teeth. However, the tooth clearance achievable with such a construction is limited by the length of the burr. For some situations, a better tooth clearance is desired. Furthermore, the treatment field is usually partially obstructed during use by the drive head and the neck. U.S. Pat. Nos. 1,984,663 and 4,820,154 respectively disclose a dental handpiece with an adjustable neck angle and a dental instrument (scaler) with a neck portion including two bends. Thus, a handpiece neck portion design is desired which provides additional tooth clearance and improved visibility of the field of treatment.
As mentioned, fluids and power are supplied to dental handpieces by way of an umbilical cord normally removably connected thereto at a rear end. The connection is usually achieved by an umbilical cord swivel connection which prevents a tangling of the cord. However, this connection normally extends straight in extension of the handpiece, which places a fairly high twisting strain on the wrist of the user, since the straight swivel connection combined with the inherent rigidity of the umbilical cord acts as a sort of lever which exaggerates the actual downward force created by the weight of the cord. This problem has plagued dentists for years with no solution for dental handpieces being available. Various swivel connectors are known in the art for releasable connection of a dental handpiece to the umbilical cord including the working fluid supply and fiberoptic conduits. Examples of swivel connectors are shown in U.S. Pat. Nos. 5,057,015, 6,033,220 and 6,319,003. However, all of these connectors provide only a straight connection between the umbilical cord and the handpiece. Thus, a need exists for a connector which reduces wrist strain.
It is an object of the present invention to obviate or mitigate at least one disadvantage of existing handpiece designs.
In a first aspect, the present invention provides a turbine design and method of operation, wherein drive air is evenly distributed in an annular chamber extending about the turbine chamber before the air is directed in a generally radial direction onto the turbine wheel. The results are higher torque and self-centering of the turbine, the latter being particularly important for longevity of the bearings used.
In another aspect, the invention provides air bearings for the turbine and the chuck which respectively include a bearing stator of substantially semi-spherical shape and a bearing rotor of complementary shape for fitting into the bearing stator, the bearing rotor being shaped and constructed to fit into the bearing stator with an intermediate air gap for bearing air.
In still another aspect, the invention provides an air bearing arrangement including magnetic portions in the bearing parts for floating the bearings at all times irrespective whether sufficient bearing air is supplied to float the air bearings on the desired air cushion. This provides the advantage that contact of the bearing parts even at low rotational speeds and when the handpiece is shut-off is substantially prevented, thereby reducing bearing wear. Floating the bearing at standstill or in the shut-off condition of the handpiece is also advantageous during sterilization, since the potential for contaminant trapping between respectively contacting bearing parts is substantially reduced.
In a further aspect, the present invention provides a solution to the problem of slippage of the burr in the chuck in high torque situations. A burr/chuck (burr/spindle) combination in accordance with the invention provides a burr with a shaft section of non-circular cross-sectional shape and the chuck or spindle has a protrusion which engages this shaft section to prevent rotation of the burr in the chuck/spindle.
In yet a further aspect of the invention, a burr locking structure is provided which includes a chuck having a central bore for receiving standard burrs, and a socket portion at an outer end of the bore for receiving a lock portion on a burr in accordance with the invention. The socket and lock portion are non-circular in cross-section and of complementary shape to prevent rotation of the lock portion in the socket. This prevents rotation of the chuck relative to the burr and allows for reliable torque transfer. The chuck is preferably constructed to allow visual alignment of the complementary shapes of the socket and lock portion during insertion of the burr.
In still a further aspect of the invention, a burr locking structure is provided which includes a burr having a non-circular shaft end portion for insertion into the chuck/spindle and the latter has a radially inwardly extending protrusion for engagement with the shaft end portion to prevent rotation of the burr relative to the chuck. The protrusion is preferably shaped for automatically aligning the burr with the protrusion upon insertion of the burr.
In still another aspect of the invention, a handpiece construction is provided which addresses the problem of excessive wrist strain by providing an angled swivel connector, which brings the point of attack of the downward force exerted by the weight of the umbilical cord close to the wrist of the user so that twisting strain on the user's wrist (user wrist strain) is significantly reduced.
In a preferred embodiment, the invention provides a medical or dental turbine handpiece including a handle portion for gripping by a user, a drive head connected with the handle portion and forming a turbine housing, a turbine in the turbine housing for rotation about an axis of rotation and having an axial tool bore for receiving a shaft of a rotatable tool insertable into the handpiece, and a pair of axially spaced apart bearings for rotatably supporting the turbine in the turbine housing, characterized in that the handpiece further includes a torque transfer arrangement for transferring torque generated by the turbine to a tool with a shaft portion of non-circular cross-section, the torque transfer arrangement including a locking socket for receiving the shaft portion and having a complementary cross-section for locking the shaft portion against rotation in the socket while permitting axial insertion of the shaft portion into the locking socket, the locking socket being connected to the turbine for rotation therewith.
The locking socket can be separate from the turbine and fastened thereto or integrated into the turbine as an enlarged portion of the tool bore for receiving a tool with a shaft portion in the form of a radially enlarged locking boss having a diameter larger than a diameter of the shaft of the tool.
The locking socket can also be constructed to receive a shaft portion of triangular cross-section, whereby the locking socket has cross-section complementary to that of the shaft portion.
When the locking socket is a part separate from the turbine, the locking socket is preferably a hollow spindle received in the tool bore and fastened therein, the spindle having a cylindrical bore for receiving the shaft portion of the tool and having a torque transfer for locking the shaft portion in the spindle against rotation, while permitting axial insertion of shaft portion into the locking socket. The torque transfer member is preferably a protrusion extending radially inwardly into the cylindrical bore, more preferably a portion of the spindle bent radially inwardly to project into the bore, most preferably a part of the spindle wall stamped radially inwardly to project into the bore. The protrusion where it engages the shaft portion during insertion of the tool into the spindle preferably has a rounded shape for automatically directing the shaft portion past the protrusion to achieve a self-alignment of the shaft portion in the locking socket during insertion of the tool.
The handpiece preferably further includes a tool retaining arrangement for releasably retaining the tool in the tool bore against axial movement after complete insertion of the tool into the bore the burr retaining arrangement including a pair of complementary, interengaging elements respectively incorporated into the spindle and the tool shaft. The retaining arrangement preferably includes a first interengaging element in the form of a resilient tongue incorporated into the spindle and a circular groove in the tool shaft, whereby the resilient tongue and the groove a positioned on the spindle and the tool shaft in such a way that the tongue resiliently engages the groove when the tool is completely inserted into the tool bore.
In another preferred embodiment, the invention provides a torque transfer arrangement for a dental handpiece having a turbine for rotatably driving a burr about an axis of rotation, the burr having a burr shaft with a non-circular shaft portion and the turbine having an axial tool bore for receiving the burr shaft, the torque transfer arrangement, whereby the arrangement includes a locking socket with an axial bore for receiving the shaft portion of the burr shaft, the locking socket being connectable with the turbine for rotation therewith and a torque transfer member connected with the locking socket for locking the shaft portion against rotation relative to the locking socket.
In one variant, the locking socket is preferably insertable into the tool bore. Preferably, the locking socket is a hollow spindle insertable into the tool bore for connection with the turbine and the torque transfer member is a wall portion of the spindle extending radially inwardly into the axial bore. Most preferably, the locking portion of the burr shaft is a terminal portion of the burr shaft and the locking socket is a hollow spindle having a cylindrical bore for receiving the burr shaft, the torque transfer member being a protrusion extending radially inwardly into the cylindrical bore for preventing rotation of the locking portion of the burr shaft in relation to the spindle while permitting axial insertion of the burr shaft into the spindle. To achieve a self-alignment of the terminal portion relative to the protrusion during insertion of the burr, the end surfaces of the protrusion and the terminal portion which come into mutual contact during insertion of the burr shaft into the spindle preferably have a rounded shape for directing the end surface of the terminal portion past the protrusion. To releasably retain the burr in the tool bore, the spindle preferably further includes a burr retaining element extending into the cylindrical bore for releasably engaging a complementary retaining element on the burr shaft to releasably lock the burr shaft in the cylindrical bore against axial movement.
In another variant, the locking socket is incorporated into the turbine and is an enlarged portion of the tool bore for receiving a shaft portion which is a locking boss on the burr shaft having a diameter larger than the diameter of the burr shaft. The locking socket in this variant preferably has a cross-section complementary to a shaft portion of triangular cross-section.
In a further preferred embodiment, the invention provides a medical or dental turbine handpiece for a rotatable tool, having a handle portion for gripping by a user, a drive head connected with the handle portion and forming a turbine housing, a turbine in the turbine housing for rotatably driving the tool about an axis of rotation and having an axial tool bore for receiving the shaft of the tool, a pair of axially spaced apart bearings for rotatably supporting the turbine in the turbine housing, and a pressurized drive air conduit for supplying pressurized turbine drive air to the turbine, whereby the bearings are air bearings, and the handpiece includes a bearing air conduit for supplying pressurized bearing air to the air bearings independent of the turbine drive air. The handpiece preferably further includes a controller for controlling a flow of the pressurized drive air through the drive air conduit separate and independent from a flow of the bearing air through the bearing air conduit.
In yet another preferred embodiment, the invention provides a method of operating a dental handpiece including an air turbine driven by pressurized drive air and a pair of air bearings for supporting the air turbine in the handpiece and operated by pressurized bearing air. The method preferably includes the steps of supplying pressurized bearing air to the air bearings, and supplying pressurized drive air to the turbine independent of the bearing air. The step of supplying bearing air is preferably commenced prior to supplying drive air and continued at least as long as the step of supplying drive air.
In still another preferred embodiment, the invention provides a medical or dental turbine handpiece for a rotatable tool, having a handle portion for gripping by a user, a drive head connected with the handle portion and forming a turbine housing, a turbine in the turbine housing for rotatably driving the tool about an axis of rotation and having an axial tool bore for receiving the tool, and a pressurized turbine drive air supply conduit, whereby the drive head includes a turbine drive air supply chamber connected to the drive air supply conduit for receiving drive air, and the supply chamber extends about the turbine chamber for supplying turbine drive air to the turbine at least at two spaced apart locations distributed about the axis of rotation. The turbine drive air supply chamber is preferably an annular chamber extending concentrically about the axis of rotation. More preferably, the supply chamber supplies drive air to the turbine at a multitude of locations evenly distributed about the axis of rotation. The handpiece can further include a Venturi passage in the drive head connecting the drive air supply chamber to the turbine chamber for accelerating the drive air prior to impinging on the turbine. The Venturi passage preferably includes multiple air guide vanes for directing the turbine drive air onto the turbine in a direction generally radially inwardly towards the axis of rotation.
In a further preferred embodiment, the invention provides a medical or dental turbine handpiece for a rotatable tool having a handle portion for gripping by a user, a drive head connected with the handle portion and forming a turbine housing, a turbine in the turbine housing for rotatably driving the tool about an axis of rotation and having an axial tool bore for receiving a shaft of the tool; and a pair of axially spaced apart bearings for rotatably supporting the turbine in the turbine chamber for rotation about the axis of rotation, whereby the bearings are air bearings. Each air bearing preferably includes a bearing stator having the shape of a spherical section and a bearing rotor of complementary shape. More preferably, the bearing rotor and stator are shaped to define an intermediate bearing gap of even width throughout.
In still a further preferred embodiment, the invention provides a medical or dental turbine handpiece having a handle for gripping by a user, a drive head attached to the handle and forming a turbine chamber, an air driven turbine in the turbine chamber for rotatably driving a tool, the turbine being operated by turbine drive air, and a swivel connector for rotatably connecting the handle to an umbilical cord including at least a supply conduit for the turbine drive air, whereby the swivel connector has an angled connector body for connecting the handle and the umbilical cord at an angle of less than 180 degrees to reduce user wrist strain. The handle and the umbilical cord are preferably connected at an angle between 90 and 180 degrees.
In yet a further preferred embodiment, the invention provides a medical or dental turbine handpiece for a rotatable tool having a shaft including a drive head for rotatably supporting the tool and forming a turbine housing, a turbine in the turbine housing for rotatably driving the tool about an axis of rotation, a pair of axially spaced apart bearings for rotatably supporting the turbine in the turbine housing, a pressurized drive air conduit connected to the turbine housing for supplying pressurized turbine drive air to the turbine, and an exhaust conduit connected to the turbine housing for removing spent turbine drive air from the turbine housing, the handpiece further including a shut-off valve for reducing turbine run down time when the supply of turbine drive air is stopped, the shut-off valve being connected to the drive air conduit and the exhaust air conduit and that the shut-off valve including a closure member normally biased into a closed position wherein the closure member closes both the drive air and exhaust conduits and movable by drive air pressure to an open position wherein the closure member permits passage of drive air and exhaust air through the drive air and exhaust conduits respectively. The the bearings are preferably air bearings and handpiece preferably further includes a bearing air supply conduit connected to the drive head for supplying pressurized bearing air to the air bearings, which supply conduit supplies the bearing air independent of the position of the closure member of the shut-off valve. The shut-off valve is preferably incorporated into the handle portion and the closure member is preferably a sleeve axially movable in the handle portion between the open and closed positions.
In yet another preferred embodiment, the invention provides a medical or dental turbine handpiece for a rotatable tool having a working tip, the handpiece including a handle portion for gripping by a users a drive head connected with the handle portion by an intermediate neck portion, the drive head forming a turbine housing, a turbine in the turbine housing for rotatably driving the tool about an axis of rotation and having an axial tool bore for receiving the shaft of the tool, and a pair of axially spaced apart bearings for rotatably supporting the turbine in the turbine housing, the handle portion having a longitudinal central first axis and the neck portion having a longitudinal central second axis, the drive head, neck portion and handle portion being interconnected in such a way that an angle enclosed by the axis of rotation of the tool with the first axis is larger than 90 degrees and with the second axis is less than 90 degrees, and the second axis being oriented at an angle to the first axis such that the tool tip coincides with the first axis.
In still another preferred embodiment, the invention provides a medical or dental turbine handpiece for a rotatable tool, including a handle portion for gripping by a user, a drive head forming a turbine housing, an intermediate neck portion connecting the drive head with the handle portion, a turbine in the turbine housing for rotatably driving the tool about an axis of rotation and having an axial tool bore for receiving the shaft of the tool, and a pair of axially spaced apart bearings for rotatably supporting the turbine in the turbine housing, wherein the handpiece further includes a neck connecting arrangement for releasably connecting the neck portion to the handle portion, the neck connecting arrangement including a socket portion on one of the neck portion and the handle portion and a plug portion on the other of the neck portion and handle portion, and the plug and socket portions being of complementary shape for non-rotatably connecting the neck and handle portions. Preferably, the neck connecting arrangement further includes a snap lock for releasably locking the plug portion in the socket portion.
In another preferred embodiment, the invention provides a dental burr for a dental turbine hand piece, the burr having a working tip and a shaft for insertion into the hand piece, characterized in that the shaft includes a shaft portion of non-circular cross-section for tourque transferring engagement with a burr receiving locking socket in the hand piece. The shaft portion preferably has a cross-section of geometic shape other than circular and preferably triangular. The cross-sectional shape of the shaft portion is preferably symmetrical to the axis of rotation of the burr. If the shaft portion has a cross-sectional shape not symmetrical to the axis of rotation, the cross-sectional shape is preferably complimentary to a cross-sectional shape of the locking socket to prevent rotation of the shaft portion in the locking socket while permitting axial movement of the shaft portion in the locking socket. The burr preferably further has a circumferential retaining groove for releasable engagement with a flexible retaining member in the locking socket when the shaft portion is completely inserted into the locking socket.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
Embodiments of the present invention will now be described, by way of example only, with reference to the attached Figures, wherein:
a-c and 2 illustrate the shape and design of a turbine and bearing combination of one embodiment of a handpiece in accordance with the invention;
a-d show various cross-sections of the drive head of the handpiece of
a-e illustrate the shape and design of another turbine bearing combination in accordance with the invention;
a-b show another burr locking structure in accordance with the invention as included in the embodiment shown in
a-k illustrate the detailed construction of the components of a preferred embodiment of the bearing structure shown in
a-c show perspective, partially cut-away and cross-sectional views of the handle (stem) and neck portion quick coupling in accordance with the invention,
Generally, the present invention provides a handpiece for a rotating tool and in particular a medical or dental handpiece and a method of operating and controlling the handpiece. Although for the sake of simplicity reference is made in the following to a dental handpiece, all structural and functional features of the invention are equally applicable to medical handpieces and other handpieces for supporting high speed rotating tools.
As is apparent from
Air Bearings
One embodiment of the handpiece 10 of the invention includes an improved drive head 14 with a casing 13 forming a turbine chamber 60 and housing a drive unit 20 consisting of a pair of spaced apart air bearings 30 (see
The bearings are preferably spherical air bearings wherein the bearing rotor 32 and complementary bearing stator 31 parts have a spherically curved surface (in other words the shape of a spherical section) in order to provide a smooth flow of bearing air in the bearing gap 33 and to allow the bearing to support the turbine against axial thrust forces applied by way of the tool 15 (see
In a preferred embodiment of the handpiece in accordance with the invention as illustrated in
The upper casing cap 122 has a circumferential cylindrical sidewall 126 for sealing engagement with the casing 13 and for spacing the cap from the bearing stator 121 to create the upper bearing air chamber 142. The upper casing cap 122, includes an air supply passage 123, for supplying bearing air to the upper bearing stator 121. The bearing air entering through the air supply passage 123 from bearing air supply conduit 140 (see
In a preferred embodiment of the air bearing construction illustrated in
The turbine unit 100 and bearing stators 121, 131 are preferably made of metallic materials well known to the person skilled in the art. The magnetic inserts 150 are preferably commercially available permanent magnets inserted into receiving pockets in the bearing stators 121, 131 and bearing rotors 120, 130 and fastened therein, preferably with adhesive. The running surfaces of the bearing stators and bearing rotors are preferably polished to provide the best possible bearing air cushion. The magnetic inserts are preferably inserted into the bearing stators and rotors before the polishing operation to prevent any bearing surface unevenness. This will be apparent to the person of skill in the art of air bearings. The running surfaces may also be anodized to provide a smoother bearing surface.
Radial Air Flow Turbine
The drive unit 20 of a handpiece in accordance with the invention as shown in
Chuck and Burr Lock
The embodiment of the handpiece 10 of the invention illustrated in
The torque transfer structure generally includes a torque transfer shaft portion of non-circular cross-section on a shaft of the burr 80 and a locking socket 35 non-rotatably connected with the turbine and having a shape complementary to the shaft portion to prevent rotation of the shaft portion in the socket and, thus, relative to the turbine. The locking socket can be separate from the turbine and connected thereto through an intermediate part, such as the bearing rotor 32, or can be directly connected with the turbine.
In a preferred embodiment as illustrated in
Rotation of the burr 80 relative to the chuck 40 and turbine 50 is prevented by an interlocking or intermeshing structure including complementary portions such as lock and key type portions on the bearing rotor 32 and the burr 80 respectively. The burr 80 has a shaft 81 of generally constant cross-section for insertion into the burr receiving tool bore of the bearing rotor 32, the chuck 40 and the turbine wheel 50. The shaft includes an enlarged locking boss 82 of non-circular cross-section. The bearing rotor 32 of the lower bearing 30 includes a locking socket 35 complementary in shape to the locking boss 82 of the shaft 81. The socket 35 fittingly receives the locking boss 82 so that rotation of the burr 80 relative to the bearing rotor 32 and thereby the turbine 50 is thereby reliably prevented. The axial position of the boss 82 on the shaft is selected such that the boss 82 non-rotatably engages the socket 35 when the burr 80 is fully inserted into the chuck 40. Thus, the problem of burr slippage at high torque commonly observed in prior art handpiece constructions is thereby overcome. The boss 82 and socket 35 can have any cross-sectional shape other than circular, as long as their respective shapes reliably prevent rotation of the burr 80 relative to the socket 35 when the burr 80 is fully inserted into chuck 40. The socket 35 is preferably positioned on the bearing rotor 32 to be easily visible to the user. This allows the user to visually align the shape of the boss 82 with the shape of the socket 52, thereby facilitating insertion of the burr 80.
In another preferred embodiment, as illustrated in
The construction of the locking socket 200 as a spindle 220 also allows the use of the locking socket in conventional drive head arrangements including a turbine wheel and a pair of mechanical bearings such as ball bearings. The spindle 220 can be used for coaxial alignment of the bearings and the turbine and, when rigidly connected to the turbine (for example through adhesive bonding) for reliable torque transfer from the turbine to the burr. Thus, conventional handpieces subject to the problem of burr slipping at high torque can be retrofitted with a torque transfer arrangement in accordance with the invention.
The torque transfer arrangement of the embodiment shown in
Drive Head Quick Connect
Conventional handpieces include a neck/drive head which houses the drive unit and a stem/handle portion for manipulation by the dentist, which stem portion includes at the rear end a coupling for the umbilical cord housing the air and water supply lines. The neck and stem portions are generally combined in a single part. This is disadvantageous since the coupling will be subjected to harsh sterilization conditions when the handpiece is sterilized, which often leads to premature failure of the coupling components (such as O-rings). The preferred embodiment of the handpiece of the present invention as illustrated in partially cut-away view in
Turbine Auto-Stop
The handpiece is further provided with an automatic shut-off valve for the turbine drive air and the turbine exhaust air and, preferably, also the chip water/air mixture. This provides for instant on/off of the turbine and chip water/air. That is a very important advantage, since with current handpiece designs the dentist must wait until the burr has slowed to a stop before removing the burr from the patient's mouth in order to avoid injury to the patient's tongue or lips. The automatic shut-off valve as shown in
Neck Portion Ergonomics
The shape of the handpiece neck portion has been redesigned in the handpiece of the invention to provide additional tooth clearance and better field of vision clearance. The neck portion of conventional handpieces is designed to provide a certain amount of tooth clearance. This is achieved by bending the forward end 17 of the neck portion 14 adjacent the head 16 away from the longitudinal axis of the handle 11 at a fixed angle of deflection. However, since the upwardly bent portion of the neck 14 is substantially straight, maximum tooth clearance is only achieved immediately behind the drive head 16. Furthermore, the maximum tooth clearance is limited by the length of the burr 80, since for ergonomic reasons the tip of the burr 80 must align with the longitudinal axis of the handpiece. This is required so that the angle of attack of the burr 80 on the tooth surface can be changed without movement of the burr tip by simply rotating the handle portion about the longitudinal axis of the handpiece (see
Additional clearance and a better field of vision is now achieved in the preferred embodiment of a handpiece in accordance with the invention (see
Swivel Connector
As mentioned above, conventional handpiece designs include swivel connectors for connection of the handpiece to the umbilical cord and preventing twisting and kinking of the umbilical cord. The weight of the umbilical cord places a strain on the dentist's wrist. This is aggravated by the relatively stiff umbilical cord extending from the rear of the handpiece, which acts as a lever. That problem has now been addressed in the preferred embodiment of a handpiece in accordance with the invention (see
In the preferred embodiment of this invention, the swivel connector body 101 is directly fixed to the end of the umbilical cord and only has one swivel arrangement for connection with the handpiece (see
The above-described embodiments of the present invention are intended to be examples only. Alterations, modifications and variations may be effected to the particular embodiments by those of skill in the art without departing from the scope of the invention, which is defined solely by the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
2414908 | Dec 2002 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA03/01999 | 12/22/2003 | WO | 1/19/2006 |