1. Field of the Inventions
The present inventions generally relate to dental implants, and more specifically, to threaded dental implants.
2. Description of the Related Art
Implant dentistry involves the restoration of one or more teeth in a patient's mouth using artificial components. Such artificial components typically include a dental implant and a prosthetic tooth and/or an abutment that is secured to the dental implant. Generally, the process for restoring a tooth is carried out in three stages.
The dental implant is typically fabricated from pure titanium or a titanium alloy. The dental implant typically includes a body portion and a collar. The body portion is configured to extend into and osseointegrate with the alveolar bone. The top surface of the collar typically lies flush with the crest of the jawbone bone. The abutment (e.g., a final abutment) typically lies on the top surface and extends through the soft tissue, which lies above the alveolar bone. Recently, some dental implants have collars that extend above the crest of the jawbone and through the soft tissue.
Implants of various tapers and with various thread profiles are known in the art. For example, U.S. Pat. No. 5,427,527 describes a conical implant design that is placed into a cylindrical osteotomy site in order to induce bone compression at the coronal aspect of the implant, i.e. at its widest end. Other thread profiles and patterns are known in the art. The most common design involves a symmetrical, V-shaped appearance such as that illustrated in U.S. Pat. No. 5,897,319. A variable thread profile is disclosed in U.S. Pat. Nos. 5,435,723 and 5,527,183 which is mathematically optimized for stress transfer under occlusal loads. U.S. Pat. Nos. 3,797,113 and 3,849,887 describe dental implants with external thread-like features having a flat shelf facing the coronal end of the implant.
While such prior art dental implants have been successful, there is a continuing desire to improve a dental implant's ability to osseointegrate with the alveolar bone and to improve the stability of the dental implant within the alveolar bone.
An embodiment disclosed herein is a dental implant for supporting a dental prosthesis comprising a body. The body can comprise an outer surface, a distal end, and a proximal end. The dental implant can also include at least one thread located on at least a portion of the outer surface of the body. The thread can include a proximal flank and a distal flank. The thread can also include a face that extends between the proximal flank and the distal flank. The dental implant can also include a first helical groove formed on the face and a second helical groove formed on the body.
Another embodiment is a dental implant for supporting a dental prosthesis comprising a body. The body can comprise an outer surface, a distal body portion, and a proximal body portion. The dental implant can also include at least one thread. The thread can comprise a distal thread portion extending over the distal body portion and a proximal thread portion extending over the proximal body portion. The thread can comprise a proximal flank and a distal flank. The thread can further comprise a face extending between the proximal flank and the distal flank wherein the face increases in thickness from the distal thread portion to the proximal thread portion. The dental implant can also include a groove located on the face of at least a portion of the proximal thread portion.
Further embodiments of the invention are defined by the dependent claims. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
The abovementioned and other features of the inventions disclosed herein are described below with reference to the drawings of the preferred embodiments. The illustrated embodiments are intended to illustrate, but not to limit the inventions. The drawings contain the following figures:
In the illustrated embodiment, the implant body 32 includes an outer surface or a bone apposition surface 40, which can be configured to promote osseointegration. In one embodiment, the bone apposition surface 40 is configured to promote osseointegration by increasing the surface area of the body 32. In this regard, the bone apposition surface 40 can be formed by roughening the implant body 32 in several different manners, such as, for example, by acid-etching, grit blasting, and/or machining. Alternatively, the bone apposition surface 40 can be formed by coating the lower surface with a substance in order to promote osseointegration. In some embodiments, this may result in decreasing or increasing the surface area of the implant body 32. Calcium phosphate ceramics, such as tricalcium phosphate (TCP) and hydroxyapatite (HA) are examples of materials that can enhance osseointegration by changing the chemistry of the outer surface 40. In other embodiments, the outer surface 28 can comprise macroscopic structures, such as, for example, threads, micro-threads, indentations, and/or grooves that are configured to promote osseointegration and can be used alone or combined with the roughening and/or the coatings described above. In one embodiment, the outer surface 28 comprises a microstructure surface, such as, a highly crystalline and phosphate enriched titanium oxide microstructured surface with open pores in the low micrometer range. An example of such a surface is sold under the trademark, TiUnite™ by Nobel Biocare AB™. In another embodiment, it is particularly advantageous for a zirconium ceramic body can be coated with porous zirconium to provide a microstructure surface. In another embodiment, the microstructure surface can be coated with a substance configured to promote osseointegration (such as BMP).
With continued reference to
In the embodiment shown in
As best seen in
The implant body 32 can define at least three different angles: an first angle can be defined by the general shape of the implant body 32; a second angle can be defined by the faces 58 of the threads 38; and a third angle can be defined by the base of the thread. A similar principle can be seen in PCT Application No. PCT/IL2004/000438 (International Publication No. 2004/103202), the entirety of which is incorporated herein by reference. With reference to
With reference to
With reference to
Although the illustrated embodiment of the dental implant 20 has been shown with flutes 48 that are configured to cut when the dental implant 20 is rotated in a counterclockwise direction, other suitable flutes or flute orientations may also be used. Such suitable flutes or flute orientations may comprise flutes that are configured to cut or provide a tapping function when the dental implant 20 is rotated in a clockwise direction.
With continued reference to
The lower grooves 52 can begin at the distal end 24 of the dental implant 20 and can be formed between the pair of threads 38 on the outer surface 35 of the lower portion 34 of the implant body 32. The lower grooves 52, in the illustrated embodiment, can extend toward the proximal end 22 of the implant 20 over approximately the distal 75% of the lower portion 34. The outer surface 35 can be formed such that the lower grooves 52 dissipate and/or taper toward the proximal end 22 of the implant 20. The dissipation and/or tapering of the lower grooves 52 can occur over a distance approximately within a ¼-½ rotation of the implant 20. In some embodiments, the portion of the outer surface 35 between the threads beyond the dissipation and/or taper will not include the lower grooves 52. Although the illustrated embodiment shows that lower grooves 52 can extend approximately along the distal 75% of the lower portion 34 of the dental implant 20, in other embodiments, the lower grooves 52 may extend over the distal 10% to the distal 100% of the lower portion 34, and in yet other embodiments may extend over the distal 50% to the distal 80% of the lower portion 34.
In the illustrated embodiment, the configuration of the lower grooves 52 and the upper grooves 50 can result in the upper and lower grooves 50, 52 overlapping along at least a portion of the lower portion 34 of the implant body 32. That is, in the illustrated embodiment, there is a portion of the lower portion 34 of the implant body 32 that comprises both the upper and lower grooves 50, 52. Although the illustrated embodiment shows that the upper grooves 50 and the lower grooves 52 overlap, in other embodiments the upper grooves 50 and the lower grooves 52 may not overlap and/or may terminate at a meeting point between the upper and lower grooves 50, 52 or prior to a meeting point between the upper and lower grooves 50, 52.
The upper and lower grooves 50, 52 can be sized such that the upper and/or lower grooves 50, 52 occupy only a portion of the faces 58 or the outer surface 35 of the lower portion 34 between the threads 38. It will be appreciated that in other embodiments the upper and/or lower grooves 50, 52 may be sized such that they occupy substantially all of the faces 58 and/or substantially all of a portion of the outer surface 35 between the threads 38.
Additionally or alternatively the upper and lower grooves 50, 52 can be formed on the upper and lower flanks 56, 54 of the threads 38.
As best seen in
The threaded chamber 70 can be located generally below the abutment chamber 68. As was mentioned above, the threaded chamber 70 can be configured to receive a coupling screw (not shown) that is configured to attach an abutment to the implant 20.
Although the particular embodiment shown in
The illustrated socket 66 is advantageously configured to provide an enhanced connection interface and to provide flexibility such that the implant 20 can mate with multiple types of dental components. In particular, as noted above, the conical portion 68 comprises a side wall that tapers inwardly with respect to the longitudinal axis L of the implant 20 providing a wider initial opening for the socket 66. With reference to
In one embodiment, the ratio between the length (d1) of the conical portion 68 and the length (d2) the interlock recess 74 is about 1:1. In one preferred embodiment, the depth (d1) of the conical portion 68 is at least about 1 mm and the depth (d2) of the interlock recess 74 is at least about 1 mm. As shown in
Yet another advantage of the illustrated embodiment is an area or thickness of the substantially planar top surface 21 of the implant 20. In one embodiment, the top surface 21 of the implant 20 advantageously can provide a surface to support certain dental restorations on the top surface 21 of the implant 20. Additionally or alternatively, the top surface 21 can be used to support a component that bypasses the interlock recess 74. Accordingly, in one embodiment, the top surface 21 of the implant 20 has at least a thickness as measured between the outer and inner periphery of the top surface 21 that is greater than at least 0.2 mm and in another embodiment greater than about 0.25 mm. In one embodiment, the thickness of the top surface 21 is about 0.25 mm.
The embodiments described above provide for improved stability of a dental implant when implanted in the alveolar bone. Furthermore, certain embodiments of the invention provide efficient utilization of space. For example, as described above, in certain embodiments, the upper groove 50 is located on the face 58 of the thread 38 at a portion of the body 32 containing the internal connection interface 66. Hence, the strength of the body of the implant 20 at this location remains unaffected. If the upper groove 50 had been located on the body 32 at this portion, less space would have been available for the internal connection interface 66 with maintained minimum wall thickness at specific dimensions to maintain body strength. Hence, having the upper groove 50 positioned at the face 58 in the portion of the internal connection interface 66 improves the space available for the connection interface 66 and still provides for improved stability of the implant 20. In some embodiments, the wall thickness will be sufficient if the upper groove 50 is located at the face 58 only at the portion of the interlock recess 74 but at least partly not at the location of he threaded chamber 70.
In the portion of the body 32 that does not include the internal connection interface 66, the lower groove 52 can be located on the body 32. This will not deteriorate the strength of the implant 20 substantially as the implant 20 of the illustrated embodiment does not include any internal recess 66 at this portion. This provides for the option of having a thinner face of the thread 38 at this location, such as a variable thread thickness, which may provide for even further improved stability of the implant 20. Hence, the location of the grooves 50, 52 provides for stability themselves as well as their specific locations. In addition, efficient utilization of the space available without compromising strength is provided. The locations also provides for flexibility, as the locations for the grooves 50, 52 can be used on implants having either an internal connection interface 66 or an external connection interface (described below).
As seen in
With continued reference to
As best seen in
The coupling member or screw 200 also includes a recess 206 in a shape configured to receive a Unigrip® rotational tool provided by Nobel Biocare™. In other embodiments, the recess 208 can have a different shape, such as, for example, a hexagon configured to allow for the insertion of a hexagonally shaped tool such as a conventional Allen® wrench to install or remove the coupling screw 200 from the implant 20.
With continued reference to
Although the embodiment of the dental implant 20 described above has been shown with a cavity 66 for receiving a separate abutment 100, other configurations may also be used. Such an alternate or modified configuration is illustrated in
The dental implant 20′, shown in
Similar to the abutment 100 of
Another alternative embodiment of a dental implant is shown in
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while the number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to perform varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1698951 | Holmes | Jan 1929 | A |
2215770 | Sheffield | Sep 1940 | A |
3672058 | Nikoghossian | Jun 1972 | A |
3797113 | Brainin | Mar 1974 | A |
3849887 | Brainin | Nov 1974 | A |
4103422 | Weiss et al. | Aug 1978 | A |
4406623 | Grafelmann et al. | Sep 1983 | A |
4431416 | Niznick | Feb 1984 | A |
4468200 | Munch | Aug 1984 | A |
4547157 | Driskell | Oct 1985 | A |
4645453 | Niznick | Feb 1987 | A |
4713003 | Symington et al. | Dec 1987 | A |
4738623 | Driskell | Apr 1988 | A |
4758161 | Niznick | Jul 1988 | A |
4826434 | Krueger | May 1989 | A |
4863383 | Grafelmann | Sep 1989 | A |
4932868 | Linkow et al. | Jun 1990 | A |
4960381 | Niznick | Oct 1990 | A |
4976739 | Duthie, Jr. | Dec 1990 | A |
5000686 | Lazzara et al. | Mar 1991 | A |
5007835 | Valen | Apr 1991 | A |
5061181 | Niznick | Oct 1991 | A |
5062800 | Niznick | Nov 1991 | A |
5071350 | Niznick | Dec 1991 | A |
5074790 | Bauer | Dec 1991 | A |
5076788 | Niznick | Dec 1991 | A |
RE33796 | Niznick | Jan 1992 | E |
5078607 | Niznick | Jan 1992 | A |
5087201 | Mondani et al. | Feb 1992 | A |
5195892 | Gersberg | Mar 1993 | A |
5226766 | Lasner | Jul 1993 | A |
5230590 | Bohannan et al. | Jul 1993 | A |
5328371 | Hund et al. | Jul 1994 | A |
5343391 | Mushabac | Aug 1994 | A |
5427527 | Niznick et al. | Jun 1995 | A |
5433606 | Niznick | Jul 1995 | A |
5435723 | O'Brien | Jul 1995 | A |
5439381 | Cohen | Aug 1995 | A |
5484286 | Hansson | Jan 1996 | A |
5527183 | O'Brien | Jun 1996 | A |
5571017 | Niznick | Nov 1996 | A |
5580246 | Fried et al. | Dec 1996 | A |
5584629 | Bailey et al. | Dec 1996 | A |
5601429 | Blacklock | Feb 1997 | A |
5628630 | Misch et al. | May 1997 | A |
5639237 | Fontenot | Jun 1997 | A |
5642996 | Mochida et al. | Jul 1997 | A |
5674072 | Moser et al. | Oct 1997 | A |
5725375 | Rogers | Mar 1998 | A |
5782918 | Klardie et al. | Jul 1998 | A |
5795160 | Hahn et al. | Aug 1998 | A |
5810590 | Fried et al. | Sep 1998 | A |
5816812 | Kownacki et al. | Oct 1998 | A |
5823776 | Duerr et al. | Oct 1998 | A |
5823777 | Misch et al. | Oct 1998 | A |
5871356 | Guedj | Feb 1999 | A |
5876453 | Beaty | Mar 1999 | A |
5897319 | Wagner et al. | Apr 1999 | A |
5915968 | Kirsch et al. | Jun 1999 | A |
5938444 | Hansson et al. | Aug 1999 | A |
5967783 | Ura | Oct 1999 | A |
6095817 | Wagner et al. | Aug 2000 | A |
6116904 | Kirsch et al. | Sep 2000 | A |
6129730 | Bono et al. | Oct 2000 | A |
6135772 | Jones | Oct 2000 | A |
6149432 | Shaw et al. | Nov 2000 | A |
6200345 | Morgan | Mar 2001 | B1 |
6227859 | Sutter | May 2001 | B1 |
6273722 | Phillips | Aug 2001 | B1 |
6287117 | Niznick | Sep 2001 | B1 |
6312259 | Kvarnstrom et al. | Nov 2001 | B1 |
6315564 | Levisman | Nov 2001 | B1 |
6394806 | Kumar | May 2002 | B1 |
6402515 | Palti | Jun 2002 | B1 |
6419491 | Ricci et al. | Jul 2002 | B1 |
6481760 | Noel et al. | Nov 2002 | B1 |
6626671 | Klardie et al. | Sep 2003 | B2 |
6655962 | Kennard | Dec 2003 | B1 |
6679701 | Blacklock | Jan 2004 | B1 |
6726689 | Jackson | Apr 2004 | B2 |
6733291 | Hurson | May 2004 | B1 |
6733503 | Layrolle et al. | May 2004 | B2 |
6769913 | Hurson | Aug 2004 | B2 |
6913465 | Howlett et al. | Jul 2005 | B2 |
6955258 | Howlett et al. | Oct 2005 | B2 |
7014464 | Niznick | Mar 2006 | B2 |
7108510 | Niznick | Sep 2006 | B2 |
7249949 | Carter | Jul 2007 | B2 |
7273373 | Horiuchi | Sep 2007 | B2 |
7281925 | Hall | Oct 2007 | B2 |
7383163 | Holberg | Jun 2008 | B2 |
20020102518 | Mena | Aug 2002 | A1 |
20020106612 | Back et al. | Aug 2002 | A1 |
20020177106 | May et al. | Nov 2002 | A1 |
20050147942 | Hall | Jul 2005 | A1 |
20050214714 | Wohrle | Sep 2005 | A1 |
20050260540 | Hall | Nov 2005 | A1 |
20050287497 | Carter | Dec 2005 | A1 |
20060172257 | Niznick | Aug 2006 | A1 |
20060183078 | Niznick | Aug 2006 | A1 |
20070099153 | Fromovich | May 2007 | A1 |
20080014556 | Neumeyer | Jan 2008 | A1 |
20080032264 | Hall | Feb 2008 | A1 |
20080261176 | Hurson | Oct 2008 | A1 |
20090305192 | Hall | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
10231743 | Feb 2004 | DE |
10231 743 | Mar 2005 | DE |
0475358 | Mar 1992 | EP |
0 707 835 | Oct 1995 | EP |
0 707 835 | Apr 1996 | EP |
1 396 236 | Mar 2004 | EP |
1624826 | Feb 2006 | EP |
1 728 486 | Dec 2006 | EP |
1624826 | May 2007 | EP |
2 600 246 | Dec 1987 | FR |
8-501962 | Mar 1996 | JP |
3026125 | Apr 1996 | JP |
10-052445 | Feb 1998 | JP |
WO 9407428 | Apr 1994 | WO |
WO 9409717 | May 1994 | WO |
WO 9509583 | Apr 1995 | WO |
WO 9705238 | Feb 1997 | WO |
WO 9923971 | May 1999 | WO |
WO 0000103 | Jan 2000 | WO |
WO 0072775 | Dec 2000 | WO |
WO 0072777 | Dec 2000 | WO |
WO 0174412 | Oct 2001 | WO |
WO 0176653 | Oct 2001 | WO |
WO 03030767 | Apr 2003 | WO |
WO 03034951 | May 2003 | WO |
WO 03055405 | Jul 2003 | WO |
WO 03055406 | Jul 2003 | WO |
WO 03063085 | Jul 2003 | WO |
WO2004103202 | Dec 2004 | WO |
WO2005117742 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080261175 A1 | Oct 2008 | US |