This relates to medical equipment used by medical professionals to perform medical treatments. It more particularly relates to laser equipment used by dentists to perform laser dental procedures on patients.
A laser handpiece, electrically powered by a power supply, is held by a dentist and used to perform dental laser procedures on a patient.
A medical treatment apparatus includes a power-and-control (PAC) device. The PAC device provides electrical power through a cable to a laser handpiece assembly to electrically power a laser source within the handpiece assembly. The PAC device controls operation of the handpiece assembly and detects an identification of the handpiece assembly. The PAC device also monitors data relating to operation of the handpiece assembly. The PAC device uploads, through a communication network to a user assistance center remote from the PAC device, the handpiece assembly identification and the monitored data.
Preferably, the PAC device downloads an update of software that controls the PAC device, and implements the software update, wherein the update is prepared based on the uploaded data. The PAC device also downloads and implements control instructions that control operation of the PAC device to perform a diagnostic test and upload resulting data to the assistance center. The PAC device also downloads information that is derived from the uploaded data, and displays the information to a user of the apparatus. A dental patient chair assembly, for seating a dental patient undergoing treatment by the handpiece assembly, supports the PAC device.
A hardware server communicates over the network with multiple such PAC devices. The server uploads, from each PAC device through the network, the respective handpiece assembly identification and the monitored data.
Preferably, the server prepares, based on the uploaded data, an update of software that controls the PAC devices, and downloads the update to the PAC devices. The server downloads, to each PAC device, control instructions that control the PAC device to perform a diagnostic test and upload resulting data to the assistance center, and receives the uploaded resulting data from the respective PAC device. The server derives information from the uploaded data, and downloads the information to the PAC devices to be displayed by the PAC devices. The server uploads, from one of the PAC devices, a question regarding use of the handpiece assembly, downloads the question to the other PAC devices, uploads, from the other PAC devices, answers to the question, and downloads the answers to the PAC device from which the question was received. The server uploads, from one of the PAC devices, educational advice on use of the handpiece assembly, and downloads the advice to the other PAC devices. The server is part of an assistance center that is operated by a manufacturer or distributer of the PAC device and the handpiece assembly.
In this example, as shown in
In this example, the PAC device 14 is connected at the end of, and supported by, the first support arm 25. Alternatively, the PAC device 14 may be located within the chair assembly 12, such as beneath the seat 22. The PAC device 14 includes a PAC device housing 30 with multiple pockets 31 for holding multiple handpiece assemblies 18 when they are not in use. The PAC device 14 detects when, and which, handpiece assembly is removed from its pocket, and automatically switches between standby mode (laser disabled) and ready mode (laser enabled) when a handpiece is removed. A footswitch 32 at the bottom of the chair assembly 12 is electrically connected by a footswitch cable 33 to the PAC device 14 to actuate (activate) the handpiece assembly 18 when the treatment unit 13 is in the ready mode.
As shown in
A remote control interface circuit 45 communicates, either wirelessly or through a cable, with a handheld remote control device 46. The remote control device 46 might be a smartphone or a tablet computer. The remote control device 46 may be used by the dentist to control, through the PAC device 14, operation of the treatment unit 13. Control commands may be entered on an input device 47 of the remote control device 46 by the user pressing keys on a keypad, swiping a mouse pad, touching a touch screen, or applying tilting and jarring movements to the remote control device 46 that are sensed by the remote control device 46. Example commands that can be entered in the remote control device 46 are to set a laser pulse intensity setting and a laser pulse duration setting, or to control release of water or air to the handpiece assembly 18 or release of water or air from the handpiece assembly 18 to the target tissue. A display screen 48 of the remote control device 70 may display operating settings and operating measurements, such as power setting, pulse duration setting, measured voltage and current powering the laser module and measured output laser power and measured laser source temperature.
As illustrated in
The handpiece 51 is the part of the handpiece assembly that the dentist grips. The handpieces 51 that the dentist can choose from are application-specification, in that their shape, size and internal configuration are optimized for a particular medical treatment procedure. Example handpieces 51 my include a surgical handpiece, a whitening handpiece and a pain control handpiece. Handpieces may include optical elements (e.g., a lens, mirror, filter, beamsplitter, prism, grating) for processing and directing the laser beam.
The laser module 52 in this example includes a source of laser light, such as a laser diode, a diode-pumped solid state laser, a flash lamp pumped solid state laser, or LED. The laser module 52 includes a water channel to channel water toward, and spray the water on, a target tissue being ablated to both cool the tissue and interact with the laser energy to achieve the ablation. The laser module 52 may be assigned, by its manufacturer, a unique electronic laser module identification (ID) that includes the laser module's serial number, model and calibration parameters. The laser module 52 may include a microprocessor 55 that outputs the ID information when queried and that also controls the operation of laser module 52. A temperature sensor 56 (e.g., thermistor) near the laser source inside the handpiece assembly 18 outputs a temperature signal that indicates a temperature of the laser module 52. The laser module 52 further includes cooling line 57 (
The laser tips 53 may include optical elements, (e.g., a lens, mirror, filter, beamsplitter, prism, grating) with different focal lengths.
As illustrated in
The cable 16 in this example has a laser power line 91 that conducts electrical supply current from the PAC device 14 to the handpiece assembly 18 to power the laser module 52. The cable 16 further may have the following electric signal lines that conduct data between the PAC device 14 and the handpiece assembly 18: Lines for conducting data from the handpiece assembly to the PAC device 14 include a temperature sensor line 92 for communicating the temperature sensor output of the temperature sensor 56, a laser ID line 93 for communicating the laser module ID information, and a laser output power sense line 94 for communicating the laser output power sensor (photodiode) output. A system-ready line 95 conducts a system-ready signal from the PAC device 14 to the handpiece assembly 18, to power the system-ready light 59. An optical fiber 96 conducts the visible aiming light to the handpiece assembly 18 for the aiming light aperture 58. A water supply line 97 conducts water to the handpiece assembly 18. An air supply line 98 and an air return line 99 conduct cooling air respectively from the PAC device 14 to the handpiece assembly and from the handpiece assembly back to the PAC device 14.
As shown in
The PAC device 14 may monitor, and upload to the user assistance center 20, data relating to operation of the handpiece assembly 18 during medical procedures. The monitored operational data may include data the PAC device 14 receives from the handpiece assembly 18, such as measured laser source temperature, measured laser output power, laser module 52 used and laser tip 18 used. The operational data may further include settings implemented by the PAC device 14, such as power setting used and pulse duration setting used. The operational data may yet further include data detected and measured by the PAC device 14, such as measured current and voltage output to the handpiece assembly, and an identification of the cable or other attachment used. The data may yet further include operational notes that are input by the dentist into the input devices 43, 47, such as attachments used and selections made. The PAC device 14 may upload the data in real time, or in the form of a time log, noting what the medical unit 13 did and what the settings and measured values were and which attachments were used, and including when the laser source was activated and the duration of the activation. The designation of attachments may include which cable 16, handpiece 51, laser module 52, and laser tip 53 were used.
The uploaded data may further include questions and comments entered by the dentist into the input devices 43, 47. The questions and comments may be regarding a medical procedure being performed or a non-medical issue (e.g., product warrantee) relating to the unit 13 or regarding general information unrelated to a current issue. For example, a question might include the medical condition being treated and a request for advice on what procedure to use and what attachments and settings to use. Another question might be in general about which attachments are best for which procedures. Another question might be about the medical unit's warrantee or about a malfunction or problem in using the medical unit 13. A comment might include the dentist's notes regarding the medical condition currently treated and the treatment procedure being used (including what settings and attachments used), and what the procedure's results to the patient are. Another comment might include advice on use of the medical unit 13 based on the present dentist's personal experience, which other unit users would find educational. Each question and comment may be designated by the dentist to be directed to either the assistance center's personnel and/or for dissemination to other dentists using the units. In one example, a question from a first dentist might be disseminated by the assistance center 20 to other dentists using the unit, and comments from the other dentists might be in response to the first dentist's question. Downloaded information (e.g., answers and comments from other dentists) may be displayed to the dentist by any of the displays 24, 44, 48.
As shown in
Results of the data analysis may be used by the assistance center 20 to update the software that controls the PAC device 14. The updated software may then be downloaded to the PAC devices 14 of the medical units 13 to improve operation of the medical units 13. The software improvement may be based on (1) input (e.g., questions, recommendations and reports of problems) uploaded from the dentists and (2) operational parameters detected (including measured) by the medical units 13 independent of dentists' knowledge or input. The resulting software updates, based on uploaded data from some or all of the medical units 13, may be downloaded to all of the medical units 13. Each unit 13 implements the update by revising its operating software in accordance with the update revision, or by replacing its operating software with the update revision.
Some examples of what software update revisions are based on are as follows:
The software update may improve on a feature based on what the manufacturer has found to be desirable through its internal experimentation or quality control assessments. For example, the software update may correct a software glitch found by the manufacturer's own quality control tests or eliminate a high laser power option that the quality control tests find leads to shortened laser source life.
The software update may add an operational feature that users recommend. For example, if dentists' comments recommend adding a particular pulse duration option to an offered list of pulse duration options, that particular requested pulse duration option may be added in the next software update that is downloaded to all medical units 13.
The software update may add operational features based on operating data detected (including measured) by the PAC devices 14. For example, if the uploaded operating data indicate that dentists are often using the very lowest pulse duration option, then the assistance center 20 may deduce that dentists would use an even lower pulse duration option if it were available, and the assistance center 20 may make that even-lower pulse duration option available in the next software update.
The software update may prune operational options that are not being used or problematic. For example, if the uploaded operating parameter data indicate that a particular pulse duration option is not being used, the next software update may delete that pulse duration option from a list of pulse duration options. The next software update may also delete a pulse duration option that is found to be problematic based on dentists' uploaded questions and comments and/or based on parameters detected and uploaded (even without dentists' interaction or knowledge) by the PAC device 14.
A software update may adjust a feature in a way that depends on the operating condition. For example, if the uploaded data indicates that a particular pulse intensity tends to cause laser overheating only in a particular model of laser module 52, then the next software update may eliminate that particular pulse intensity option from a pulse intensity option list only when the PAC device 14 detects that particular laser model 52 is connected to the cable 16. As another example, the uploaded data might indicate dentists are using a first range of pulse intensities when using a first model of laser module and using a second, different, range of pulse intensities when using a second model of laser module. In that case, the software update might list optional pulse intensities that are only in the first range when (as detected by the PAC device 14) the first laser model is used and that are only in the second range when the second laser model is used.
The uploaded data may provide reliability information about how the treatment devices' components are performing in the field. This would augment the manufacturer's own internally-generated quality assurance (QA) reliability test results. For example, the uploaded data, which includes both laser input power and laser output power, may indicate a gradual degradation in laser efficiency (output power per input power) for a particular laser module model. If the uploaded data is from many (for example in the hundreds) medical units 13, the precision of any statistical assessment derived from this uploaded data would surpass the precision of any statistical assessment derived from the manufacturer's QA lab. A product reliability assessment derived from the uploaded data would also be more relevant to what to expect from field use of the unit 13 than product reliability results derived from the manufacturer's QA lab.
The uploaded data may enable the manufacturer to predict product failure and prevent it from occurring. For example, if the uploaded data indicates a gradual degradation in efficiency by a laser module of a particular model or production batch, the manufacturer may issue a product recall of all laser modules of that model or production batch. The product recall may precede, and thus prevent, any laser modules of that model actually failing in the field. Also, being informed of the degradation before a product failure actually occurs gives the manufacturer more time to prepare for the recall (such as by ramping up production of replacement laser modules), as opposed to if the first indication of a problem were a report of products already failing.
The uploaded data may also enable the manufacturer to determine whether or not a unit's degradation is due to a system-wide problem with all units of particular model or production patch, or only an isolated incident. For example, if uploaded data from one unit 13 in one dentist office indicates a particular component is degrading while uploaded data from other units 13 in other dentist offices indicate components of the same model and production batch are not degrading, the manufacturer may deduce that the problem is unique to that particular component and not a systemic problem with that component's model or batch. This would enable the manufacturer to send a replacement component to the dentist, before the component fails and without a product recall.
The uploaded data may also be used to verify an assertion by dentists about his/her unit's performance. For example, if a dentist asserts that the unit performed improperly on a particularly date under a particular set of conditions, the uploaded data will indicate the accuracy of the dentist's assertion. And because the dentist is aware of the uploaded data being available to the manufacturer, the dentist will be more inclined to ensure that his/her assertion is accurate.
The uploaded data, combined with the downloaded control instructions, facilitates remote diagnostic troubleshooting. For example, if the dentist reports a problem with the unit 13, downloaded control instructions may control the unit to perform different diagnostic test procedures including operating in different modes, and the uploaded data would indicate how the unit responded. For example, the control instructions may control the power supply to drive the laser module at different power levels, and the uploaded data may indicate, for each power level, a measured power that is input by the laser module and a measured power that is output by the laser module. A customer service expert at the assistance center 20 may then use this data to troubleshoot the unit 13, all without assistance by the dentist.
Statistical analysis of the uploaded data over time may be used by the manufacturer to recognize changes in trends, over time, in how the unit is being used. Knowledge of how the trends are changing enables the manufacturer to anticipate market demand for each of the unit's attachments and optimize the unit's design. For example, if the uploaded data indicates that, of all laser module models dentists have in their offices, use of a first model is increasing over the course of several months while use of a second model is decreasing over those same months, the manufacturer might anticipate an increase in future sales of the first model and a decrease in future sales of the second model. The manufacturer may also determine what aspect of the second model makes it increasingly used and optimize that aspect in future models.
Statistical analysis of the uploaded data, received from many or all of the units 13, may yield reports on trends in how dentists are using the system. These reports may be downloaded to one or more of the units 13, to be displayed to one or more of the dentists on any of the dentists' displays 24, 44, 48. For example, the reports may summarize, for each type of treatment for each type of medical condition, what selections dentists (who use the units 13) are making in terms which attachment (e.g., cable, handpiece, laser module, laser tip) and operating parameter (e.g., pulse intensity and duration), and what the medical outcomes (derived from the dentists' uploaded comments) are as a function of what selections are made. The results may be categorized by geographic area and by level of dentist experience and by dentist ranking in patient satisfaction surveys. The results may be part of the downloaded information to be displayed by the PAC device 14 to the dentist. The results may also be used by a customer service expert at the assistance center 20 to advise the dentist on the most commonly used attachment selections and setting selections for performing a particular medical procedure for a particular medical issue.
Statistical analysis of a particular dentist's uploaded data may result in a personalized report particularly relating to the particular dentist's use of the system and derived primarily or solely from uploaded data from the dentist's own unit 13. The personalized report may be downloaded to the particular dentist's unit 13, and may include summaries and graphs and tabulations of the dentist's uploaded data, and results of statistical analysis of the data.
The arrangement described above provides interchange of information between dentists, including sharing of experiences. This may foster a camaraderie between users of the medical units, and also between each unit user and the manufacturer. It also helps educate a user on best practices for using the unit. It also gives the user a feeling that he/he is not alone in the use of the unit 13. The downloaded information may include on-line education, training and special events to the PAC device 14 for display on any of the unit's displays 24, 44, 48.
The arrangement described above, based on two-way communication between the PAC device 14 and the assistance center 20, may be subscribed to by a dentist and may be implemented in accordance with subscription or licensing business arrangement between the dentist and a party associated with the assistance center 20. The party with whom the dentist subscribes might be a manufacturer or distributer (vendor) of the unit 13. The dentist may be billed for the subscription as a monthly fee or a one-time fixed price. The subscription may entitle the dentist to an extension on the laser modules' warrantee, such as a lifetime free laser module exchange agreement. The subscription makes the extended warrantee and exchange agreement more financially feasible to the manufacturer, by giving the manufacturer an ability to monitor usage of the laser module 52 and thus to verify that the laser module 52 was used properly.
The server 110 may store the uploaded data (including data detected by the units 13 themselves, and questions and comments from dentists) on the storage device 111 for long term storage, to make the data available for future applications that are not envisaged when the data is being collected. One such application includes data mining, in which a large amount of data is analyzed to discover patterns and relationships. This can include future direct marketing and target marketing for a future new product. For example, if the manufacturer develops and starts marketing a new model of laser module, the manufacturer may analyze the stored data to determine which dentists are likely to want the new model and which dentists are not. The manufacturer may then send email advertisements to the target group of dentists who will appreciate the new product and not to the dentists who will consider emailed advertisements for this product as annoying junk mail.
The components and procedures described above provide examples of elements recited in the claims. They also provide examples of how a person of ordinary skill in the art can make and use the claimed invention. They are described here to provide enablement and best mode without imposing limitations that are not recited in the claims.
This claims priority to U.S. Provisional Application No. 61/777,046, filed Mar. 12, 2013, hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5819229 | Boppe | Oct 1998 | A |
6026396 | Hall | Feb 2000 | A |
6096025 | Borders | Aug 2000 | A |
20020057203 | Borders | May 2002 | A1 |
20030036683 | Kehr | Feb 2003 | A1 |
20040111012 | Whitman | Jun 2004 | A1 |
20040224279 | Siemons | Nov 2004 | A1 |
20050137653 | Friedman | Jun 2005 | A1 |
20050170310 | Schafer | Aug 2005 | A1 |
20060030891 | Saltzstein | Feb 2006 | A1 |
20060208931 | Boese | Sep 2006 | A1 |
20060240381 | Rizoiu | Oct 2006 | A1 |
20060274794 | Watanabe et al. | Dec 2006 | A1 |
20070042315 | Boutoussov | Feb 2007 | A1 |
20070288628 | Sadovsky | Dec 2007 | A1 |
20080097917 | Dicks | Apr 2008 | A1 |
20080161783 | Cao | Jul 2008 | A1 |
20080281301 | DeBoer | Nov 2008 | A1 |
20090030652 | Greco | Jan 2009 | A1 |
20090204423 | DeGheest | Aug 2009 | A1 |
20090291410 | Conners | Nov 2009 | A1 |
20100016995 | Barat | Jan 2010 | A1 |
20100036535 | Feine et al. | Feb 2010 | A1 |
20100167226 | Altshuler | Jul 2010 | A1 |
20100292556 | Golden | Nov 2010 | A1 |
20100324380 | Perkins | Dec 2010 | A1 |
20110030141 | Soderberg | Feb 2011 | A1 |
20110039229 | Senia et al. | Feb 2011 | A1 |
20110144410 | Kennedy | Jun 2011 | A1 |
20110179405 | Dicks | Jul 2011 | A1 |
20110195374 | Boren | Aug 2011 | A1 |
20110225002 | Fackler | Sep 2011 | A1 |
20120123399 | Belikov | May 2012 | A1 |
20120226771 | Harrington | Sep 2012 | A1 |
20130036210 | Birtwhistle | Feb 2013 | A1 |
20130045456 | Feine et al. | Feb 2013 | A1 |
20130104120 | Arrizza | Apr 2013 | A1 |
20130176230 | Georgiev | Jul 2013 | A1 |
20130221184 | Odaka | Aug 2013 | A1 |
20130289548 | Hamada | Oct 2013 | A1 |
20130321284 | Bello | Dec 2013 | A1 |
20140113243 | Boutoussov | Apr 2014 | A1 |
20140152466 | Wiesner | Jun 2014 | A1 |
20140363784 | Monty | Dec 2014 | A1 |
20150070187 | Wiesner | Mar 2015 | A1 |
20150342703 | Monty | Dec 2015 | A1 |
20160007937 | Georgiev | Jan 2016 | A1 |
20160299510 | Feine et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2012196240 | Oct 2012 | JP |
2006012752 | Feb 2006 | WO |
2012074918 | Jun 2012 | WO |
Entry |
---|
Patent Cooperation Treaty International Application Serial No. PCT/US2014/023553, filed Jul. 10, 2014, entitled “International Search Report” by Lee W. Young. |
Patent Cooperation Treaty International Application Serial No. PCT/US2014/023553, filed Jul. 10, 2014, entitled “Written Opinion of the International Searching Authority” by Lee W. Young. |
European Patent Office; Communication and Supplementary European Search Report issued in connection to corresponding EP Patent Application No. 1477925834; dated Apr. 17, 2006; 12 pages; Europe. |
European Patent Office; Translation of Abstract to JP2012196240; Sep. 16, 2017; 1 page; Europe. |
Number | Date | Country | |
---|---|---|---|
20140272771 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61777046 | Mar 2013 | US |