Dental light device

Information

  • Patent Grant
  • 9072572
  • Patent Number
    9,072,572
  • Date Filed
    Friday, June 21, 2013
    11 years ago
  • Date Issued
    Tuesday, July 7, 2015
    9 years ago
Abstract
A light device includes a body and a tip structure configured to be removably coupled with the housing. The tip includes a light engine that is operable for emitting light positioned at a distal end of the tip. A power supply circuit is positioned in the housing and coupled to the light engine. The power supply circuit is rechargeable and includes at least one ultracapacitor element. A non-imaging element is coupled with the light engine at the distal end.
Description
FIELD OF THE INVENTION

This invention relates to illumination or light devices, and more specifically to an illumination device that is used for oral and dental applications and provides light to illuminate and to cure light-curable compounds in dental applications


BACKGROUND OF THE INVENTION

Many illumination devices or light devices exist for use in dental and oral applications. One specific category of dental illumination devices is directed to hand-held devices that are held in proximity to the mouth of the patient to illuminate an area within the patient's mouth for various reasons. One particular usage is directed to curing light-curable compounds in the mouth. While suitable hand-held light devices exist for dental applications, there are often various drawbacks associated with such light devices, particularly with respect to dental curing lights.


Many such dental lights have a body, which contains the light elements, such as light-emitting diodes (LED). A tapered and curved light guide, then interfaces with the end of the body and the light-emitting elements to capture the light and direct it where desired. Generally, such light guides are bundles of fiber-optic elements, which operate to capture the light in the device, away from the patient's mouth, and then forward that light to a tip that may be placed at the area of interest within a patient's mouth. While such light guides operate in a suitable manner, they are also very inefficient. Almost half of the light generated in the device is lost in the transmission from its source down to the tip, through the light guide. Such inefficiency requires a significantly large light engine to generate the light needed at the curing site, such as for curing a compound. In turn, heat is generated, which must be properly removed and directed away from the light engine. The greater the output required by the light engine, the more heat that must be addressed.


Another issue associated with such dental lights is their sterilization. As may be appreciated, the tip of the dental light is generally brought into proximity or into actual contact with the mouth of the patient or some portion of the mouth. Thus, the tip of the light device is exposed to various germs and bacteria. Accordingly, in order to prevent the propagation of germs or infection between patients, dental instruments are often sterilized, such as by being autoclaved at a very high temperature. While suggestions and some attempts have been made in the art to move the light engine of a dental light closer to the operating tip, such attempts have not thoroughly addressed the issue of sterilization. For example, the temperature at which autoclaving is achieved is potentially damaging to a light engine, such as the light-emitting elements in an LED array. Accordingly, the issue of sterilization has not been adequately addressed by existing dental lights, such as dental curing lights.


Another drawback to existing dental lights is directed to their need for a power source. Often times, such lights are actually plugged into a base that then couples to an AC source, such as a wall outlet. Some are connected directly to an AC wall outlet. Some portable dental light devices are not attached to a base, but rather utilize batteries, such as rechargeable batteries. However, rechargeable batteries require a significant amount of time to charge, and thus, there may be some valuable down time required for the dental light, when it might otherwise be put to use. Furthermore, existing battery charging technology uses batteries that are subject to a somewhat limited number of charge cycles. Their continued ability to take and maintain a charge is reduced over time and usage. After a somewhat limited number of cycles, the batteries have to be replaced. Thus, there is still a need to address power issues in portable curing lights.


As such, various drawbacks remain in the field of dental lights, particularly dental curing lights, which are not addressed by the current art.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a light device incorporating features of the present invention.



FIG. 1A is a perspective view of a light device in a charging base.



FIG. 2 is an exploded cross-sectional view of the light device of FIG. 1.



FIG. 2A is an enlarged view of a portion of FIG. 2.



FIG. 3 is a side cross-sectional view of the light device of FIG. 1 showing the tip structure engaging the housing.



FIG. 4 is a partial cross-sectional view of an alternative embodiment of the light device of the invention.



FIG. 5 is a plan view of an end cap structure for a tip structure of the invention.



FIG. 6 is a circuit schematic for a charging circuit to be used to charge the invented light device.



FIG. 7 is a graphical depiction of the curve for operation of the circuit of FIG. 7.



FIG. 8 is a graphical depiction of the charging of the ultracapacitors according to an embodiment of the invention.



FIG. 9A is a graphical depiction of a capacitor charging curve.



FIG. 9B is a graphical depiction of a capacitor discharging curve.



FIG. 10 is a circuit schematic showing a power supply current source circuit for one embodiment of the invention.



FIG. 11 is a circuit schematic showing a power supply current source circuit for another embodiment of the invention.



FIG. 12 is a circuit schematic showing a power supply current source circuit for another embodiment of the invention.



FIG. 13 is a circuit schematic showing a power supply current source circuit for another embodiment of the invention.



FIG. 14 is a graphical depiction of a discharge function according to an embodiment of the invention.



FIG. 15 is a circuit schematic showing a power supply current source circuit for another embodiment of the invention.



FIG. 16 is a circuit schematic showing a power supply current source circuit for another embodiment of the invention.



FIG. 17 is a perspective view of an alternative embodiment of a light device in a charger base.



FIG. 18 is an exploded view of a charger base in accordance with the embodiment of FIG. 17.



FIG. 19 is a perspective view of a plug of the charger base in accordance with the embodiment of FIG. 17.



FIG. 20 is an exploded view of a light device in accordance with the embodiment of FIG. 17.



FIG. 21 is a sectional view of the light device in accordance with the embodiment of FIG. 20.



FIG. 22 is an exploded view of a removable tip for a light device in accordance with the embodiment of FIG. 20.



FIG. 23 is an exploded view of a socket for a light device in accordance with the embodiment of FIG. 20.



FIG. 24 is a partial cross-sectional view of the socket for a light device in accordance with the embodiment of FIG. 20.



FIG. 25 is a cross-sectional view of the light device in accordance with the embodiment of FIG. 20.



FIG. 26 is a partial cross-sectional view of a light engine for a light device in accordance with the embodiment of FIG. 20.



FIG. 26A is a perspective view of the light engine for a light device in accordance with the embodiment of FIG. 20.



FIG. 26B is a side view of the light engine for a light device in accordance with the embodiment of FIG. 20.



FIG. 26C is a top view of the light engine for a light device in accordance with the embodiment of FIG. 20.



FIGS. 27-27G are circuit schematics for a charging circuit in the charger base in accordance with the embodiment of FIG. 17.



FIGS. 28-28C are circuit schematics for a main control circuit for a light device in accordance with the embodiment of FIG. 20.



FIGS. 29-29D are circuit schematics for a discharge circuit for a light device in accordance with the embodiment of FIG. 20.





DETAILED DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given below, serve to explain the principles of the invention.



FIG. 1 illustrates one embodiment of a light device 10 of the present invention. While one embodiment of light device 10 might be used for curing, other uses are also anticipated, such as illumination, tooth whitening, or other treatment applications. Thus, the present invention is not limited to the particular use described herein for an exemplary embodiment. Curing device 10 includes the housing 12 and a tip structure 14 that is removably coupled to the housing 12. In accordance with one aspect of the invention, as discussed further hereinbelow, the tip structure 14 may be removed so that it may be separately autoclaved from the overall device. Device 10 also includes suitable control electronics 16 (See FIG. 2) with external controls 18 that may include buttons, switches, or other suitable manual controls for controlling device 10. A display device 20 might also be utilized and may include a screen, individual light elements, or other graphical elements for providing a visual display of the operation of device 10. For example, the operational mode or setting of the device, the selectable curing times, the remaining curing time, the charging or power status, and diagnostic graphics might also be illustrated utilizing a visual display 20. The tip structure 14 includes a proximal end 22 that is removably coupled with housing 12, and a distal end 24, which is placed within the mouth of a patient for curing a light-curable compound, in accordance with the invention. The base 26 of housing 12 might be coupled to a suitable external power supply, such as an AC or DC source in the form of a charging base or dock 27, as shown in FIG. 1A, for charging rechargeable internal elements of power supply circuit 28 of the device 10 (See FIG. 2). Base 26 might also be configured to fit within a suitable structure, such as a standalone, table-mounted base, a mounting structure for mounting it on a wall, pole, or chair, or might be incorporated in a portion of a dental chair for holding and charging the curing device 10.



FIGS. 2 and 2A illustrate cross-sectional views of device 10, showing the interface between the tip structure 14 and housing 12.



FIG. 3 illustrates the tip structure 14 engaging the housing. In the figures, section lines 30 are shown indicating a removable portion of the housing 12 for illustrative purposes. The housing 12, as well as the tip structure 14, may be sized as appropriate for a hand-held curing device that may be manipulated to position the distal end 24 of the device in the mouth of a patient, or otherwise proximate to light-curable material and compounds.


Tip structure 14 includes a heat sink structure or element 32 that extends in the tip structure from the proximal end 22 to the distal end 24. In one embodiment of the invention, as illustrated in FIGS. 2 and 2A, the heat sink 32 extends past the proximal end 22 of the tip structure 14 to engage the housing 12 for appropriate thermal transfer of heat from a curing light device. The heat sink may be made from a suitable heat-transfer or heat-conducting material, such as a metal (e.g. copper) or aluminum. Alternatively, a high thermal conductivity material such as Pyrolytic Graphite sheets (PGS) might be used for heat sink 32. In one embodiment, the heat sink 32 is an elongated copper tube formed in an appropriate shape for positioning inside the tip structure 14. Suitable thermal insulation material 34 surrounds the heat sink 32. Tip structure 14 includes a body 36 that houses the elements of the tip structure, and is appropriately sealed at its proximal and distal ends 22 and 24, as discussed further hereinbelow. The body 36 is made from an autoclavable material in accordance with one aspect of the invention. As noted above, it is desirable to sterilize certain reusable dental elements, such as those that are used in or inserted into or onto or proximate to the mouth of a patient. Past curing light devices have not been autoclavable to the degree desired by dental professionals. The present invention provides the tip structure enclosed within a sealed body 36 made from an autoclavable material that is able to withstand high temperature autoclaving, such as above 121° C., thus making the entire tip structure, including the light-emitting device or engine therein, autoclavable as well.


In one embodiment of the invention, the autoclavable body 36 is formed of a suitable metal, such as stainless steel. Alternatively, the body 36 might be formed of a ceramic, glass, or porcelain material that is able to withstand the temperatures associated with autoclaving. Generally, the body 36 will be formed to a suitable shape in conjunction with the heat sink 32 and insulation material 34. For example, the heat sink 32 and insulation material 34 might be formed and the body 36 then formed by coating with the ceramic, glass porcelain, polymeric, or other autoclavable material. In the embodiment illustrated in the figures, the tip structure 14 is appropriately curved from manipulation at a curing site, such as the mouth of a patient, and thus, the body 36 is formed in a curved fashion as well.


Coupled at the distal end of the heat sink 32 is a light-emitting device, or light-emitting engine 40. Such light-emitting devices may include one or more LED elements that are known for curing light-curable compounds, such as dental compounds, and are available from various manufacturers. High power LED elements are one suitable type of elements for the inventive device. For example, a high-power dental LED might be used. The light-emitting engine might use a single LED element or a plurality of elements in an array. Generally, for curing purposes, the light-emitting device will emit a light in a particular desired wavelength for curing a light-curable compound. For various dental compounds, a suitable light is in the wavelength range of 370-500 nanometers, or the blue light range. For other uses of the inventive light, such as for examination of the oral regions to detect caries, illuminate areas, and provide cancer screening, other wavelengths might be used.


However, in accordance with another aspect of the invention, various different tip structures 14 may be readily removed and inserted into the housing 12 so that multiple different tip structures might be utilized with a single housing 12. To that end, the light-emitting devices of the various tip structures might be directed to other applications, such as to whiten teeth, or for illumination within the mouth of a patient, but would still be operated with the same housing 12 and its controls. As such, the present invention is not limited to a specific type of lighting device or use, and various different tip structures 14 might be utilized with light-emitting devices that emit light in an appropriate range of wavelengths for different uses, such as curing, whitening, illuminating, screening, etc.


Such light-emitting devices or light engine 40 generally include a base or substrate 42 that supports one or more light-emitting structures, or semi-conductor junctions, such as in the form of light-emitting diodes or LEDs. A single light-emitting structure might be utilized or an array of structures might be arranged on substrate 42 for providing device 40, depending upon the power of the structures or elements. High power LED elements may be used for example. The light-emitting device 40 is able to withstand high temperatures, and thus, utilizes high-temperature structures, or LED's. Substrate 42 is adhered directly to the distal end of heat sink 32 utilizing a high-temperature adhesive or cement. The direct coupling of the light-emitting device 40 to the heat sink 32 provides optimum thermal coupling for removal of the heat generated by the light-emitting structures 44 or substrate 42.


To seal the distal end 24 of housing 36, a glass window 46 or other transparent element is solder-sealed around its periphery to housing 36, as shown in FIGS. 2 and 3. The transparent element is configured to allow light to pass out of the distal end of the housing. To that end, the glass window 46 might include metalized portions around its periphery for proper solder-sealing to the housing 36 utilizing a high-temperature solder, or other appropriate high-temperature adhesive. Generally, the light-emitting device 40 operates with a lens 48 over the LEDs or other light-emitting structures in order to focus the light from those structures. A window 46 is illustrated in FIG. 2. Alternatively, a separate lens 48 might be sealed to the end of the housing 36 instead of a window 46. The lens 48 may be appropriately shaped for focusing light from light-emitting device 40. For example, a total internal reflective (TIR) lens might be used, as discussed further hereinbelow for the lens 48.


To power the light-emitting device 40, the present invention utilizes high-temperature flexible circuits, or flex circuits 50, 52. The flex circuits extend generally along the inside of the tip structure proximate the heat sink 32. The flex circuits are flexible, and thus, may follow the contour or shape of the heat sink 32. In one embodiment of the invention, suitable traces or channels might be formed in the heat sink 32 for placement of the flex circuits 50, 52. The flex circuits 50, 52, in turn, couple to a ceramic end cap 54, with suitable electrically-conductive elements, such as traces, thereon for coupling to the flex circuits, and ultimately to a power supply and control circuits, as discussed further below.


Referring now to FIG. 2A, the proximal end 22 of the tip structure 14, and particularly the proximal end of housing 36, is sealed utilizing a ceramic end cap 54 that has rotational circuit traces 56, 58 formed therein, as illustrated in FIG. 5. Specifically, in one particular feature of the invention, the tip structure 14 is rotatably coupled with housing 12. To facilitate such rotation, while maintaining the delivery of electrical signals to the light-emitting device 40, device 10 of the invention incorporates circular electrically-conductive elements or circuit traces 56, 58 formed on or in the end cap 54. As illustrated in FIG. 5, the circuit traces 56, 58 generally follow the shape of the end cap, and have a generally circular shape. Furthermore, end cap 54 has an appropriate center opening 60 formed therein for passage of the heat sink 32, as illustrated in FIG. 2A. As illustrated in FIG. 2A, the innermost circuit trace 56 is illustrated is being electrically-coupled to the flex circuit 50. Similarly, the outer circuit trace 58 on the end cap 54 is coupled with flex circuit 52. End cap 54 may be a ceramic end cap of a suitable ceramic material, such as aluminum oxide. The ceramic cap may be adhered to the body 36. If the body is metal, the edge of ceramic cap 54 may be metalized for soldering the cap to the end of the body. Alternatively, if the body is made from glass, a suitable high-temperature adhesive might be utilized to couple the end cap to the glass body.


As illustrated in FIGS. 2A and 5, the metal traces 56, 58 are formed through end cap 54 to present a connection for the flex circuits at the distal end of the tip structure. When coupled with or plugged into housing 12, as illustrated in FIG. 2A, the flex circuits 50, 52 via the ceramic end cap 54 are coupled to a suitable power supply circuit and controls. Specifically, spring contacts 62, 64 are mounted at the end of housing 12 that interfaces with tip structure 14. Those spring contacts 62, 64 are coupled through appropriate connections or circuits 66, 68 back to a suitable power supply circuit 28. The supplied power may then be controlled via suitable control circuit 16, such as to control the intensity of the light-emitting device, the duration of its illumination, and various other parameters associated with the operational modes of device 10. Housing 12 contains suitable control circuitry 16 and a power supply circuit 28, along with the various electrical connections/circuits 66, 68 for powering the tip structure 14 and the light-emitting device 40 at its distal end. Power supply circuit 28, through contacts 70 may be coupled to an external supply of power, such as an AC source or a DC source, for charging elements of the power supply. For example, as is illustrated in FIG. 1A, a base 27 might hold or dock device 10 for recharging purposes. In one embodiment of the invention, the power supply circuit includes rechargeable supply elements, such as a battery, which may be charged and removed from the external power source to be manipulated by an operator. In an alternative embodiment of the invention, as discussed below with respect to FIG. 4, an ultracapacitor element or circuit might be utilized to provide the desired power for the light-emitting device 40. Housing 12 may be formed of any suitable material, such as plastic or metal, or some other rigid material.


As illustrated in FIG. 3, when the tip structure 14 is coupled to housing 12, the contacts 62, 64 engage the circuit elements or traces 56, 58 respectively in the end of the tip structure. This electronically couples the light-emitting device with the power supply circuit. Because of the unique circular pattern of the traces, the tip structure 14 may be rotated in a range of 0°-360°, while the contacts 62, 64 still maintain connection to the traces 56, 58. Alternatively, the circular conductive element might only be contacted over some circular range less than 360°, but still allow at least partial rotation. In that way, the tip structure may be rotated without jeopardizing the electrical connection between the housing 12 and the tip structure 14. Although the electrically-conductive elements 56, 58 are illustrated as formed on the tip structure and the contact elements 62, 64, as positioned on the housing, their relative position might be reversed with elements 56, 58 on housing 12 and elements 62, 64 on tip structure 14. That is, the electrically-conductive elements or traces 56, 58 and contact elements 62, 64 may be positioned on either of the opposing housing and tip structure to pass power between the two. In an alternative embodiment, alternate pins and sockets might be used between the housing and tip structure to electrically couple the light-emitting device and power supply circuit.


At the same time, the proximal end of the heat sink 32 engages a suitable channel 80 formed in housing 12. The channel 80 is formed by an additional or secondary heat sink structure or element 82, which is preferably formed of a suitable metal, such as aluminum. In addition to the channel 80, the heat sink 82 includes a reservoir portion 84, which contains additional heat sink material. That reservoir portion might be all metal to form a metal heat sink. In accordance with one embodiment of the invention, the reservoir portion 84 might be made of metal, but then contains an amount of phase change material 86. Phase change material absorbs the heat from the secondary heat sink structure 82, and changes phase upon such absorption. For example, one suitable phase change material might be a paraffin wax that melts as it absorbs heat. This allows a suitable delay in the temperature rise of the light-emitting device 40 to provide a safe temperature level for the light-emitting device and the overall tip structure during normal usage. Other phase change materials might also be contained within the reservoir portion 84 of the secondary heat sink structure 82, and thus, the present invention is not limited to a particular phase change material 86.


As illustrated in FIG. 3, when the tip structure 14 is plugged into, or otherwise coupled to or engaged with, housing 12, the heat sink 32 engages the secondary heat sink structure 82 such that the end of the heat sink 32 is inserted into channel 80 to provide direct thermal connection or coupling between the heat sink 32 and the secondary heat sink structure 82. In that way, the metal of the secondary heat sink structure 82 may absorb the heat conducted by heat sink 32. If the reservoir portion 84 is simply solid metal or filled with a metal material, that metal would absorb heat, and thus, keep the temperature of the light-emitting device at a suitable operating point. Alternatively, if the phase change material 86 fills reservoir 84, the phase change material may melt in its absorption of heat, and thus, change phase to keep the operating point at a suitably low temperature. The circuits 66, 68 are high temperature circuits, and thus, will be suitable in their proximity to the secondary heat sink structure 82. Furthermore, a jacket of insulation 88 might surround a proportion of the secondary heat sink structure 82, such as the reservoir portion 84, and may also surround suitable electronic elements, such as the power supply circuit 28, and portions of the contacts 70 in order to protect them from the heat of the second heat sink structure 82.


Solid-liquid phase change materials absorb heat, and their temperature rises to a point where they change phase (their melting point). The materials then absorb additional amounts of heat without getting significantly hotter. When the ambient temperature in the reservoir provided by the secondary heat sink drops, the phase change material 86 solidifies, and thus, releases its stored heat. Therefore, the phase change material absorbs and emits heat while maintaining a generally constant temperature, which is desirable for the hand-held housing 12.


Another suitable phase change material is paraffin wax loaded with carbon. Once the heat sink engages with the bore hole, or channel 80 of the external heat sink, suitable thermal conduction is achieved.


The spring-loaded nature of the spring contacts 62, 64 provides a consistent and robust electrical connection between housing 12 and the tip structure 14.


Turning to FIG. 4, in accordance with another embodiment of the present invention, the power supply circuit 28 incorporates one or more ultracapacitors or super capacitors to provide the power for supplying the light-emitting device in the tip structure 14. The one or more ultracapacitors 90 could be utilized to replace batteries in the power supply circuit 28. The ultracapacitors provide high-energy storage, and are able to deliver power instantly when called upon, such as to power the light-emitting device. The ultracapacitors also charge very rapidly, sometimes in seconds, using the charging or charger circuits described herein in accordance with aspects of the invention. They can also be used to provide a necessary sudden burst of energy for applications of the device 10 of the invention. The rapid charging time provided by the power supply circuit 28 of the invention provides quick-charge applications, and eliminates the need for rechargeable batteries, which may require hours to fully charge. Furthermore, ultracapacitors have greater useful life. While a NiMH battery might be charged 500 cycles, or a Li-Ion battery 300 cycles, the present invention uses ultracapacitors that might be charged 500,000 cycles. Furthermore, such ultracapacitors that are charged and discharged as described herein do not have a memory (like battery units), have a reduced weight and cost, and do not yield hazardous waste upon disposal. For example, NiMH and Li-Ion batteries weigh significantly more on average than ultracapacitors.


A device 10, utilizing the features of the present invention, may be coupled to a suitable external power source, such as in a power base or dock 27 with sufficient contacts to engage the contacts 70 of device 10 (FIG. 1A). The ultracapacitors 90 may be charged and then discharged over a series of use cycles, such as curing cycles, for the device 10. The device may then be replaced into its charging base, or dock, to recharge the ultracapacitor. Generally, the ultracapacitor elements will not need replacement during the lifetime of the device 10, as would batteries. Since the ultracapacitors 90 charge very rapidly, the down time between charging cycles for a device 10 is very short. For example, while a NiMH battery or Li-Ion battery might take around 2.5 hours to charge fully, an ultracapacitor, as charged in accordance with the circuits of the invention, might be fully charged in 15 seconds.



FIG. 6 is a circuit schematic of one possible charging or charger circuit to be utilized within the base unit or dock 27 for charging device 10 and particularly for charging the ultracapacitors that would be provided in one such embodiment of the invention. Charger circuit 100 includes a power supply circuit/component 102 that provides suitable DC power to the circuit. For example, the power supply 102 may be coupled with an appropriate AC power cord 104 for plugging into an AC outlet, and provides DC power within the range of 5-24 Volts, for example. An indicator LED 106 might be used to provide an indication that the base 27 has power. (See FIG. 1A.) As shown in FIG. 1A, base 27 might also include indicators 111, 113 for indicating that device 10 is charging or fully charged. Circuit 100 is configured to operate as a current source in the form of a current foldback circuit, in accordance with one embodiment of the present invention. The current foldback circuit 100 is utilized to charge the ultracapacitor power supply circuit 28 of the invention, and provides a desirable rapid charge of the ultracapacitor elements 90 that differs from over how the capacitor might be charged generally. Specifically, in one embodiment of the invention, a current source is utilized to charge the ultracapacitor elements 90.



FIGS. 9A and 9B illustrate typical charge and discharge curves for a regular capacitor. For example, FIG. 9A shows a charge curve, and FIG. 9B shows a discharge curve. In general capacitor theory, the charge and discharge curves of a capacitor are considered to be exponential, as illustrated in FIGS. 9A and 9B. A single time constant, or 1T, indicates the amount of time that it takes for a capacitor to charge generally to around 63% of its full charge. The time for a full charge is expressed as 5T, as may be seen in FIG. 9A. FIG. 9B shows the discharge curve that is also exponential, wherein the time constant 1T is indicative of the time it takes to discharge to about 37% of its full charge.


However, in the present invention, it is necessary to charge ultracapacitors faster than traditional charging for the purposes of efficient use by an operator of the device 10 of the invention. That is, for certain uses, such as for curing dental compounds, it is desirable to charge the ultracapacitor very rapidly to avoid waiting and downtime in the curing process. In accordance with one embodiment of the invention as shown in FIG. 6, a current source power supply circuit 100 is used to charge the ultracapacitor at the desired rate. As illustrated in FIG. 8, the invention provides a rapid, generally non-exponential charge function for the ultracapacitor. FIG. 8 illustrates a charging ultracapacitor voltage versus time for the charger circuit of FIG. 6, and it may be seen that a very steep linear slope and charging is provided by the invention for providing a linear change function, as shown in FIG. 6. This provides significant advantages for the invention.


Returning again to FIG. 6, circuit 100 acts as a linear power supply with a current foldback function. FIG. 7 illustrates a curve associated with the operation of a current foldback supply, as illustrated in FIG. 6. When the power supply is connected to be charged, such as when device 10 is placed into the charging base 27, current is constant until the ultracapacitors are fully charged, and then there is effectively little or no output current to the ultracapacitors.


Charger circuit 100 utilizes a linear adjustable voltage regulator 108, such as an LM1084IT regulator available from National Semi-Conductor. In circuit 100, regulator 108 is a standard linear regulator where the control feedback signal is controlled by the transistor Q1 voltage Vbe. The current, through the charging ultracapacitor elements coupled to a connector 109, develops a voltage across sensing resistors (R3/R4). When the voltage across the sensing resistors is equal to the Vbe of transistor Q1 (0.6V), the transistor turns ON, and forces the linear voltage regulator 108 to foldback and limit the current generally to a value of I=0.6V/R3+R4. Once the ultracapacitors are fully charged, the current is generally or effectively 0 Amps. The capacitor charge time with such a circuit acting as a current source is illustrated in FIG. 8 as approximately T=C(V/I).


The constant power charging topology, as utilized in the invention and disclosed herein, generally transfers all the available power from the charging source or base into the energy storage ultracapacitors. The straight linear constant current or power delivery can generally provide a recharge of the power supply of the invention faster than 1T versus having to wait up to 5T, as with conventional charging of a capacitor. Effectively, the practical charge time will be set by the maximum peak current that the ultracapacitors can accept.


While FIG. 6 illustrates a charger circuit 100 that is a linear constant current foldback power supply, another alternative embodiment of the invention for fast ultracapacitor charging is to use a switched mode current mode power supply with pulse limit and pulse-by-pulse limit. In another embodiment, a lithium Ion (Li-Ion) battery charger might be utilized. Alternatively, a nickel metal hydride (NiMH) battery charger might also be utilized for the purposes of charging the ultracapacitors.


For the purposes of the invention, various different ultracapacitors might be utilized. In one embodiment, the ultracapacitor element or elements has a capacity of around 150 Farad. A range of 50-1,000 Farad might be suitable for the purposes of the invention. A multi-layer ultracapacitor might be utilized, such as one from Illinois Capacitor. Alternatively, ultracapacitors made from carbon nanotubes might also be utilized. In still another embodiment, an ultracapacitor made from carbon aerogel might be used. Lithium Ion ultracapacitors might also be utilized and provide significant cycling (e.g., 100,000 cycles) with a very low self-discharge characteristic. Another desirable feature of ultracapacitors is that they may be smaller, thinner, and lighter than conventional power supplies, such as rechargeable batteries.


In one embodiment of the invention, the device 10 is utilized for curing dental compounds. In such an application, the LEDs that are used for the light device or engine 40 are generally high-power blue LEDs, such as an array of such LEDs. Such devices are generally current devices, and the light output from the LEDs is a direct function of the current provided from the power supply. In accordance with one aspect of the invention, to maintain a constant light output, the current to the LED elements or array 40 should be constant. In one feature of the invention, the present invention provides a current source to power the LEDs. That is, the ultracapacitors are discharged as a current source. To that end a desirable discharge function for the ultracapacitors of the invention is a straight linear function, as shown in FIG. 14, where the discharge time would be:

Tdischarge=C(V1−V2)/I

    • Where V1 is the full charge voltage and V2 is the lowest operating voltage.


      In one embodiment of the invention, the power supply to drive the one or more LED elements or an array making up light engine 40 could be a boost pulse width modulated (PWM) current source, or a buck PWM current source. Alternatively, a buck-boost PWM current source might be utilized. Also, a flyback current source or SEPIC current source might be used as discussed below. A buck-boost topology would provide a desirable long run time (discharge time) for device 10 by providing power to the one or more LED elements when the ultracapacitors are fully charged and the voltage may be higher than the forward voltage necessary for the LED. Such a topology then also provides power to the LED when the charge on the ultracapacitors due to discharge is lower than the forward voltage for the LED. In one embodiment, using two 100 F ultracapacitors, 30-40 discharge curing cycles of 10 second each might be achieved on a single charge, for example.



FIG. 10 illustrates one embodiment of a suitable buck-boost converter 200 for use in an embodiment of the invention. The embodiment illustrated in FIG. 10 illustrates two ultracapacitors C1, C2. Alternatively, a single ultracapacitor might be utilized. Still further, more than two ultracapacitors might be utilized to realize the invention, as discussed below. As such, the present invention is not limited to any particular number of ultracapacitors that might be utilized in the power supply.


Power supply circuit 200 utilizes a PWM integrated circuit U1. U1 is coupled with inductor L1 and provides power to one or more LEDs. FIG. 10 illustrates symbolically a single LED1, however, such a symbol also covers an array of multiple LEDs. PWM circuit U1 provides power through a current sensing resistor R3. The power supply might be controlled through an ON/OFF switch S1 coupled with a suitable control circuit U3, which provides ON/OFF control and timing functionality for the operation of the LEDs and the light device. Circuit U4 provides a local power supply for the U3 control circuit. In order to control U1 as a current source in the present invention, circuit U2, such as an operational amplifier, converts the current through the LED, sensed by resistor R3, into a feedback voltage. The feedback voltage is used to control the U1 circuit as a current source, as desired. Resistors R1 and R2 set the voltage feedback level to the U2 circuit.


In an alternative embodiment of the invention, a buck converter power supply 300 might be utilized to provide a constant power load on the ultracapacitors and provide a constant current to any LED element. A buck converter topology, as illustrated in FIG. 11, somewhat resembles the buck-boost topology, as set forth in FIG. 10 with like elements sharing like reference numerals. The power path from the PWM circuit U1 includes a Schottky diode element D1 and inductor L1, as illustrated. The buck converter circuit 300 might be utilized if the LED light engine voltage requirement is less than the ultracapacitor stack voltage.


Alternatively, if the LED light engine voltage requirement is greater than the ultracapacitor stack voltage, a boost converter topology might be utilized. For example, the boost converter circuit 400, as illustrated in FIG. 12, might be used to drive the LED light engine. FIG. 12 resembles FIG. 10, with like reference numerals being utilized for like elements. In the boost topology of circuit 400, a solid state switch Q1 provides the functionality to turn the power supply ON/OFF based on the control of switch S1. Such a switch Q1 might also be desirable for circuits 200 and 300 as well. Schottky diode D1 and inductor element L1 are coupled appropriately for the boost converter operation.


In the circuits of FIGS. 10-12, 15, 16, PWM circuit U1 can be a standard buck, boost, or buck-boost PWM circuit that can operate at low voltages, such as from 1.5 Volts to 12 Volts. In each of the five circuits, the U2 circuit element is utilized to control the voltage feedback to the PWM U1 to provide the current source function. The voltage across the R3 element is directly proportional to the current through the LED, and the error amplifier amplifies the small voltage drop across the low Ohm sensing resister R3 to equal the internal PWM reference voltage. The U3 circuit is a control circuit that controls the ON time of the light engine and the shutdown when the ultracapacitor has discharged to a point that is too low for use by the PWM circuit U1. The U3 circuit could be a microprocessor, microcontroller, complex programmable logic device (CPLD), or a simple analog timer, such as a ZSCT1555. The U4 circuit is a charge pump power supply that acts as a low power buck-boost controller, and provides a stable, constant supply voltage to the control circuit during the discharge of the ultracapacitor. The Q1 circuit acts as a solid state switch to disconnect the LED power supply from the ultracapacitors when the power supply is turned OFF. The power circuit 400 illustrated in FIG. 12 utilizes the Q1 element. Such a solid state switch Q1 may or may not be necessary with the buck converter of FIG. 11 or the buck-boost converter of FIG. 10. Inductor element L1 is an electronic element required for the switched power mode power supply (SMPS). The value of L1 could range generally from 1 μH up to 300 μH. The D1 element, as noted above, is a Schottky diode that generally would be utilized for the buck or boost converter configurations of FIGS. 11 and 12.



FIG. 15 illustrates and alternative current source for powering the LED light engine in accordance with an embodiment of the invention. FIG. 15 illustrates a flyback current source 600, wherein similar elements are used, as noted above, with respect to other embodiments. In FIG. 15, T1 indicates a flyback transformer and element Q2 illustrates a flyback switch, wherein resistor R4 is a current limit sensing resistor for switch Q2. In operation, when the switch Q2 is ON, the primary of the transformer T1 is directly connected to the input voltage source. The voltage across the secondary winding is negative, so the diode D1 is reverse-biased (i.e., blocked). The output capacitor supplies energy to the output load, such as LED 1. When the switch is OFF, the energy stored in the transformer is transferred to the output of the converter. The feedback signal from the current sensing resistor R3 is sent back to the PWM circuit U1 to control the LED current.



FIG. 16 illustrates another alternative current source in the form of a “single-ended primary inductor converter” (SEPIC) converter 700. A SEPIC converter is a type of DC-DC converter that allows the electrical voltage at its output to be greater than, less than, or equal to, that of its input. The output of the SEPIC converter is controlled by the duty cycle of the U1 circuit from the feedback signal from current sense resistor R3 that is sent back to the U1 PWM circuit to control the LED current. Similar references are used in FIG. 16 as used in FIGS. 10-13 and 15. Q1 is a solid state switch that turns the power supply ON/OFF. The split inductors L1 and L2 provide the boost function (L1) and the buck function (L2). Capacitor C4 provides AC coupling in the circuit of FIG. 16.


While the various FIGS. 10-13, 15, 16 illustrate two ultracapacitors C1 and C2 in series, a single ultracapacitor might be utilized, as noted above. Alternatively, the ultracapacitors C1, C2 might be connected together in parallel. Still further, more than two ultracapacitors might be utilized, and they might be coupled together in a series-parallel arrangement to provide the required voltage and power for the light device 10.


In an alternative embodiment of the invention, the circuit as illustrated in FIG. 13 might be utilized, such as for providing power to lower power LEDs for applications other than curing dental compounds. Circuit 500 in FIG. 13 is in the form of a boost converter, which is powered by ultracapacitors C1, C2. A voltage detector portion of the circuit provides power to a “Ready” LED (See FIG. 1A) to indicate that the light device 10 is fully charged. An ON/OFF switch portion powers a timer circuit, which drives a solid state switch Q2 to turn the power supply ON and OFF after a selected period of time (e.g., 5-40 seconds). A boost converter then provides the necessary power to an LED or LED array as shown.



FIG. 17 illustrates another embodiment of the invention incorporating various of the features and aspects disclosed here. Curing light system 1000 incorporates a curing light device 1002 that is shown plugged in a charger dock or base 1004. Charger base 1004, and the charger electronics therein, are coupled by a power connector cord (not shown) to an AC power supply, such as a wall outlet. The power connector cord includes an AC-to-DC converter, including appropriate transformer and inverter circuitry that provides a suitable and usable DC signal, such as a 12-Volt DC signal, to the charger base 1004. Charger base 1004 has an appropriate opening 1006 therein to hold an end of the light device 1002, as shown in FIG. 17. The light device may then be readily removed and used, such as for curing a dental compound, in the mouth of a patient. Charger base 1004 is configured to sit on a flat table or countertop surface. The charger base includes an appropriate indicator 1008 that is illuminated for indicating the charging status of a light device.


Charger base 1004 also includes a radiometer sensor for measuring the light output of the light device 1002. The radiometer sensor, as shown in FIG. 17, includes an input port 1010, and a plurality of indicator lights 1012. The output end of the light device 1002 may be placed adjacent to the input port 1010, and operated to output a beam of light. A reading by the indicators 1012 provides an indication of the power level of the output of the light device. Generally, light device 1002 will output a power level in the range of 1,100-1,800 mW/cm2. The multiple indicators are illuminated in a graded fashion to provide a relative indication of that light output, as discussed below.


Referring to FIG. 17, a radiometer sensor 1010 has a plurality of indicator lights 1012 that provide a graded indication of the power of the light generated. In one embodiment of the invention, five indicators lights are used as shown in FIG. 17. The lights have different colors, and are illuminated in sequence to indicate the intensity of the light generated. To operate the radiometer, the curing time interval for the light is set to a 10 second cycle, as discussed below. Holding the tip over the radiometer sensor 1010 during the curing cycle, the indicator lights will illuminate from the bottom up, providing a reading of the light intensity. The radiometer sensor should be illuminated until the curing cycle is complete. In one embodiment of the invention, the bottom two lights are amber in color, and the top three lights are blue in color. In one feature of the invention, the indication lights have a minimum number that must be illuminated to indicate the light device is operational for a curing cycle. In accordance with one aspect of the invention, at least one blue light (3 lights total) must be illuminated for a proper cure. The first light is illuminated with an intensity of 750 mW/cm2 and above. The second light is illuminated at 850 mW/cm2 and above. The third light (the first blue light) is illuminated at 950 mW/cm2 and above. The fourth light is illuminated at 1,050 mW/cm2 and above, and the fifth light is illuminated at 1,250 mW/cm2 and above. Generally, the first four lights will emit a steady glow when lit. The top indicator light is sensitive to the Periodic Level Shifting (PLS) of the light device, as noted below, and that will cause a blinking or flickering effect for the fifth light.


Turning now to FIG. 18, an exploded view of the charger base 1004 is shown. Charger base 1004 includes a center portion 1020 formed out of a suitable thermoplastic, such a Valox resin, available from SABIC Innovative Plastics of Pittsfield, Massachusetts. Center portion 1020 sits on a metal base 1022. The metal base is made of a suitable metal, such as a zinc alloy, and weighs 300-320 grams, and in one embodiment, approximately 313 grams. The center portion 1020 is coupled to the various 1022 by appropriate fasteners, such as screws. Captured between the center portion and base are charger electronics 1024, which are positioned on an appropriate printed circuit board 1026. The charger electronics includes an upstanding charger plug 1028, which is captured in a suitable upstanding section 1030 of the center portion. Together, the plug and section provide an upstanding charger plug 1028 to be received into the end of the light device 1002 when the light device is seated into the charger base and plugged in, as shown in FIG. 17. To provide suitable insulation from metal base 1022, an insulator tray 1032 is positioned beneath the circuit board 1026. The charger electronics include a suitable outlet 1034 for receiving the plug of an AC/DC power cord, and delivering 12 Volts to the charger electronics 1024. A cover 1036 is then placed and appropriately secured to the center portion 1020 to provide the completed charger base 1004. Screw-in rubber feet 1038, which are secured with the metal base 1022, provide suitable engagement with a flat support surface.


A heavy metal base 1022 provides desirable weight to the charger base 1004 to hold the charger base down onto the support surface when the light device 1002 is inserted into and removed from the charger base. This provides the user the ability to readily remove the light device with a single hand, without having to hold down the charger base. The single-handed removal provides a desirable advantage and benefit, and allows the user to readily grab the light device for use with a single hand without upsetting the charger base, or otherwise securing the charger base with the other hand. The center portion 1020 and the cover, as noted, may be formed of a suitable thermoplastic, such as Valox resin. Other portions, such as indicator section 1040, might be formed of other materials, such as Lexan, a polycarbonate material. A person of ordinary skill in the art will understand that suitable materials are used for durability, aesthetics, and other purposes in forming the charger base, as well as the light device.



FIG. 19 illustrates the upstanding charger plug 1028, which includes suitable charging contacts, such as metal spring-loaded fingers 1042, for providing suitable electrical contact with the light device 1002 when it is plugged in. A socket in the end of the light device receives the upstanding charge plug 1028, as discussed below. The spring-loaded charger contacts exert a force on the counterpart contacts of the plug socket 1081 in the body 150 to hold the device in the charger base and provide a robust and positive electrical contact between the device and charger base. When light device 1002 is plugged into the charger base 1004, indicator 1008 is illuminated to indicate the charging status of the light device. Different color lights indicate different status. If the light is illuminated in one color, the light device is currently charging. When the indicator light changes to another color, the light device is fully charged. In one embodiment of the invention, indicator light 1008 will illuminate in an amber color when the light device is charging, and will illuminate in a green color when the light device is fully charged. As discussed further hereinbelow, when the light device is recharged regularly, it will require only 40 seconds of charging for a full recharge. If the power source is fully drained after several days of inactivity, the unit may require up to 70 seconds for a full recharge, but then will again only require around 40 seconds for subsequent recharges.


In addition to the holding force of the spring-loaded contacts 1042, the charger base also provides a friction fit of the device 1002, when it is plugged in for charging. Specifically, a friction fit is presented between the plastic of the upstanding section 1030, and the plastic material of the plug socket 1086 at the base of device body 1050. A 4 to 5 Newton point force will be exerted by the charger base contacts 1042 on the body socket contacts (not shown) of socket 1086 at the contact points. However, the additional friction fit presented by the plastic material of section 1030 and plug socket 1086 adds an additional force on the body for a required manual removal force of approximately 7.8 Newtons. To counteract the force and provide for one-handed removal in accordance with an aspect of the invention, the charger base 1004 provides a weight of approximately 456 grams. In one embodiment, the metal base 1022 weighs around 313 grams, and the other parts and plastic portions provide the rest. To that end, a charger base weight in the range of 425-475 grams might be suitable to provide a one-handed removal. This ensures the removal force required to remove the curing light is less than the downward gravity force provided by the charger base.


Referring to FIG. 20, in accordance with one aspect of the invention, the curing light device 1002 includes a hand piece or body 1050, and a removable LED light attachment referred to herein as tip 1052. The body is manually manipulated by a user, such as a dentist. The tip is plugged into the body, as illustrated in FIG. 20, and may be readily removed for changing or replacing the tip. Tip 1052 may also be rotated as appropriate for positioning the tip and the light therefrom at the curing site or other site. The light device also includes a light shield 1054 that is held onto the body 1050 by a rubber grommet 1056. The light shield is made of a suitable plastic material, such as an orange plastic, and is optically clear. In accordance with another aspect of the invention, the rubber grommet provides an easy removal of the shield, as desired from the body 1050, and also facilitates easy rotation of the shield as desired, such as when the tip is rotated.


The hand piece or body 1050 has a handle section 1058 to be grasped by a user, and a suitable control and indicator section 1060 that may be manually manipulated, such as by the fingers of a user, when they are holding the light device body at the handle section. The curing light device body includes a proximal end 1062, which includes a socket for plugging into the charger base, and a distal end 1064, which also includes a socket 1066 for receiving the removable tip 1052.



FIG. 25 illustrates a cross-sectional view of curing light device 1002 showing the various components of the light device, as well as sections of the body 1050. Body 1050 encloses a power supply for the light device in the form of a plurality of ultracapacitors 1068. Light device body 1050 also encloses suitable power discharge electronics and control electronics that are positioned appropriately on a pair of printed circuit boards 1070, 1072. Generally, the ultracapacitors 1068 are contained in the handle section 1058, while the electronics 1070, 1072, are proximate the control section 1060, so that individual control buttons 1074 can interface with the electronics, and may be used to control the light device, such as to start a curing cycle.


Referring to FIGS. 20 and 25, body 1050 forms a housing for components of the device and includes an internal frame 1080, which forms a rigid structure and base for the body. The frame also provides a suitable structure for holding the socket 1066 that receives tip 1052. Frame 1080 is made of a suitable rigid material, such as aluminum. The body also includes an upper subsupport 1082 that cooperates with the frame, and provides structure for securing the boards of circuits 1070, 1072, such as with screws 1084. The sub support 1082 also supports a plug socket 1086 at the proximal end 1062 of the body, as illustrated in FIG. 25. The socket 1086 receives the upstanding plug 1028 and contacts 1042, when the curing light device is plugged into the base charger, and the socket includes appropriate metal contacts (not shown) to interface with the spring contacts 1042 of the plug in the charger base to deliver power to the ultracapacitors and light device. An upper cover 1090 and a lower cover 1092 operate with the frame and upper subsupport 1082 for forming the hand piece body 1050. The upper subsupport 1082 and covers 1090, 1092 may be formed of a suitable thermoplastic material, such a Valox resin and/or GLSVersaFlex TPE Alloy, available from PolyOne GLS of Avon Lake, Ohio. A person of ordinary skill in the art will understand that the body 1050 might be formed in various different ways, and thus, the invention is not limited specifically to the materials or arrangement of the various sections and body elements.


The subsupport 1082 that couples with frame 1080 defines the control section 1060, as illustrated in FIG. 21. The control section includes operational buttons 1074a, 1074b for turning the device ON and selecting an operational mode, as well as indicator lights 1094, such as for indicating the length of the cure process that has been selected, as discussed further hereinbelow.



FIG. 22 illustrates one embodiment of the removable tip 1052 shown in the exploded view. Specifically, FIG. 22 illustrates the structure of removable tip that holds, cools, and supports the LED light engine on the distal end 2000 of the tip. The proximal end 2002 of the tip then plugs into an appropriate socket 1066, as illustrated in FIG. 20.


Tip 1052 includes two core or body elements 2004a, 2004b, which fit together in a clam-shell fashion, as illustrated. The body elements are formed of an electrically and thermally conductive material. In one embodiment, the elements 2004a, 2004b are formed of copper to provide both the conduction of electrical energy to the light engine at the distal end 2000, and to also provide thermal conduction for removing and dissipating heat that is generated when the light engine is operated. As shown in FIG. 22, an insulator plate or element 2006 is positioned between the conductive body elements 2004a, 2004b. Therefore, the body elements are electrically isolated, and may act as the positive and negative conductors, as desired below, to deliver power to the light engine of the device. The insulator element is in the form of a plate structure, and generally has the same cross-sectional shape as the body elements, as shown in FIG. 22. That insulator element incorporates alignment structures 2007 that cooperate with alignment apertures 2008 in the body elements 2004a, 2004b for proper alignment to form the finished tip 1052, as illustrated in FIG. 20, for example. The core or body elements as shown are solid out near the distal end 2000, but are also hollowed out along portions of their length, as illustrated. The proximal ends each include integral electrical contact structures 2010, 2012 that are formed with the body elements and are positioned along the length of the tip to be longitudinally offset from each other. The electrical contact structures 2010, 2012 provide electrical contact with a power source (ultracapacitors) for the tip, in order to provide electrical power out to the light engine on the distal end 2000 of the tip, as discussed further hereinbelow. In the complete tip, as shown in FIG. 20, the offset contact structures 2010, 2012 provide longitudinally separated and electrically isolated contact points, so that positive and negative contacts presented in the socket 1066, and coupled with the power supply, may make appropriate electrical contact for providing power to the light engine. The insulator element 2006 keeps the body elements 2004a, 2004b electrically insulated from each other, so that both the positive and negative positions of the signals from the power supply may be delivered from the body 1050 out to the distal end of the tip and the light engine. The insulator element includes a flat base 2014 that abuts with the ends of the body elements 2004a, 2004b. Copper body elements 2004a, 2004b might be appropriately plated, such as with a nickel plating. A steel disk 2016 is also abutted against the base 2014. The steel disk 2016 might also be plated with the nickel plating, and provides part of the securement apparatus for the tip 1052, to secure the tip in socket 1066, as discussed below.


Once the tip is assembled as shown in FIG. 22, the entire body of the tip is appropriately covered with a suitable thermoplastic material 2018, such as Valox resin. (See FIG. 25.) A plastic material layer 2018 will generally follow the surface contours of the elements making up the tip, while still leaving the contact structures 2010, 2012 exposed for proper electrical contact, as shown in FIG. 20. As shown in FIG. 26, and discussed further hereinbelow, the light engine utilized in the curing light device 1002 is coupled to the distal end 2000 of the tip 1052.


The tip 1052 might be dimensioned for a length X end to end of approximately 4.10 inches, a length Y of approximately 3.22 inches, and a length Z of approximately 2.58 inches. The width of the plug end of the tip W might be approximately 0.34 inches, and the width W2 approximately 0.94 inches, as shown in FIG. 20. This provides a stable base 2013 to tip 1052 that is wider than the proximal end 2002. Referring to FIG. 25, the distal end 2000 of the tip might be angled approximately 60° from a longitudinal axis L of the tip.


Turning now to FIG. 23, an exploded view of the socket 1066 that is positioned at the distal end 1064 of body 1050 is shown. The socket incorporates a housing 2020, a cap 2022 that engages the housing and holds a plurality of spacers 2024, 2026 therebetween. Electrical spring contacts 2028 are appropriately held between the spacers and are aligned to physically contact the contact structures 2010, 2012 in the tip 1052 when the tip is plugged into and secured in the socket 1066. To that end, the electrical contacts are in the form of shaped spring contacts that generally surround the inside of the socket roughly 360°. The shaped spring contacts create a plurality of shoulders 2032 that provide desirable physical and electrical contact with the contact structures 2010, 2012 of the tip. As illustrated in FIG. 24, the contacts 2028 and 2030 are spaced along the length of the socket to coincide with the longitudinal offset spacing of the contact structures 2010 and 2012 at the proximal end 2002 of the tip. A gasket 2023 positioned at an end of the socket engages the subsupport 1080, as shown in FIG. 24.


In accordance with one aspect of the invention, the tip 1052 is secured in socket 1066 with a magnetic mechanism. Referring to FIG. 24, when the tip 1052 is plugged into the socket 1066, the contact structures 2010 and 2012 each are seated to press against their respective electrical contacts 2028, 2030. More specifically, the contact structures 2010, 2012 abut against the shoulders 2032 of those electrical spring contacts. The contacts 2028, 2030 and structures 2010, 2102 are dimensioned to provide a solid electrical contact all the way around the socket. To hold the tip in place, a magnet, such as a magnetic disk 2027, is positioned at the back end of the cap 2022, as illustrated in FIGS. 23 and 24. The magnetic disk magnetically attracts the steel disk 2016 in the tip proximal end. In that way, the tip is securely yet removably held in the socket 1066 of body 1050.


The magnet or magnetic disk 2027 is made of a rare earth magnetic material, such as, for example, a Neodymium Iron Boron magnet (NdFeB) that is rated N52. In the invention, other suitable rare earth magnets rated N28-N52 in their magnetic scale, or 28 MGOe-52 MGOe must be used The N52 magnetic disk provides a strong securement of tip 1052 in the body 1050. This strong magnetic engagement not only physically secures the tip, but also maintains a strong and robust electrical contact between the proximal end of the tip and the contacts 2028, 2030 of the socket 1066. The magnetic securement of tip 1052 also allows the tip to be freely rotated around the socket, while staying secured in the socket. This provides greater flexibility to the user. The magnetic disk 2027 creates a pull force in the range of 0.5-6 pounds to secure the tip, and, in one embodiment, a pull force of approximately 2 pounds is provided for securing the tip in the socket. The tip can be readily rotated, but also may be readily removed when desired by manually overcoming the magnetic force. Although the magnetic mechanism is illustrated with the magnetic disk in the socket and the disk is on the tip, the arrangement might be reversed with the magnetic disk on the tip and the disk in the socket.


The spring contacts extend back from socket 1066, and contact the appropriate circuits 1070 and 1072 for providing the control for the light device and electrical power to the tip and the LED light engine. As noted, the body elements of the tip 2004a and 2004b, which are copper in an exemplary embodiment, provide the electrical connection from the electrical spring contacts 2028, 2030 to the light engine at the distal end 2000 of the tip. That is, electrical current is conducted down the length of the tip and the elements 2004a, 2004b. Simultaneously, the body elements 2004a, 2004b are also thermally conductive, and are thermally coupled with the light engine so as to draw heat away from the light engine, and away from the distal end of the tip. The heat is conducted away along the length of the tip through the body elements, and is appropriately dissipated through those body elements and through the thermoplastic material layer 2018. In that way, the light device 1002 of the invention removes the heat and provides a desirable long operating life for the light engine and the LED emitters.


Turning now to FIGS. 26-26C, one exemplary light engine for use in the invention is illustrated. Referring to FIG. 26, light engine 2050 utilizes a substrate base 2052 with one or more LED emitter devices 2054 positioned thereon. Referring to FIG. 26A, an exemplary illustrated embodiment utilizes three LED emitters that form an array. The present invention implements a light engine with this number of LED emitters in order to provide the curing light output power in the range of 1100-1800 mW/cm2, as noted, while at the same time, controlling the heat generated by the light engine. The body elements 2004a, 2004b of the tip are configured and dimensioned to draw heat away to prevent a significant rise of tooth pulp temperature. The three (3) LED emitters, in combination with the unique thermal dissipation features of the tip, ensure that the heat generated during a curing cycle does not overheat or burn up the LED emitters, and does not provide heat at the distal end of the light tip that would damage the tissue of a tooth being cured. More specifically, the combination of the three LED emitters and the configurations and dimensions of the body element 2004a, 2004b are their thermal properties ensures that temperature is controlled, and the pulp temperature of a tooth being curing is not raised more than 5 degrees Centigrade. In one exemplary embodiment, LED emitters from CREE, Inc. of Durham, N.C., are utilized. Specifically, suitable CREE LED's in the EZ-900 Series might be utilized. In one embodiment, C470 EZ-900 emitters are utilized, which have a dominant wavelength 464-468.5 nm, and a radiated flux of 400 mW-420 mW. The LED emitters 2054 are appropriately physically and electrically secured to base 2052. Base 2052, for example, might be an aluminum nitride substrate that provides electrical isolation, as well as good thermal conductivity. Base 2052 is then electrically adhered to the distal end 2000 of the tip 1052. Suitable positive and negative electrical connections are provided through the body elements 2004a, 2004b of the tip, and thus, suitable electrical connections are provided to the light engine 2050.


In accordance with one embodiment of the invention, the base 2052 includes contacts 2056 that connect with the two respective body elements 2004a, 2004b of the tip. In the embodiment illustrated, the contacts 2056 are in the form of tabs that fit into slots 2057 found in the elements 2004a, 2004b, as shown in FIG. 22. Such a direct connection provides a robust electrical connection, and eliminates the need for any wiring between the tip elements 2004a, 2004b, and the substrate. As illustrated in FIGS. 26A and 26C, the top layer of the substrate includes suitable microstrip conductors and patterns 2058, and jumper wires 2060 for coupling the LED emitters 2054 together in a series electrical connection. A protective circuit component, such as a zener diode 2062 might be utilized between the contacts 2056 on the bottom of base 2052 for protection of the LED emitter elements 2054, as shown in FIG. 26B. The base and LED emitters comprising the light engine are coupled to the distal end 2000 of the tip to provide light directly to the curing site. The light does not have to pass through a long light guide, and thus, the proper amount of light can be provided while generating less heat than curing lights that implement the light engine inside the body of the device and rely upon an elongated light guide. The unique tip design, wherein the elements 2004a, 2004b act as both electrical conductors, as well as thermal conductors, also ensures that sufficient power if delivered to the light engine, while the generated heat is directed away from the light engine, and away from the distal end of the tip.


The present invention also provides greater efficiency in the light delivery by using a non-imaging optical device, such as a non-imaging lens, to capture and collimate the generated light. Referring again to FIG. 26, to collimate the light, a non-imaging lens element 2070 is coupled with the light engine. More specifically, the lens element is positioned over the light engine 2050, and particularly over the LED emitters 2054, at the distal end of the tip. Lens element 2070, as illustrated in FIGS. 26 and 26A, has a frustoconical section 2072 and a cylindrical section 2074. One end of the frustoconical section, and particularly the small diameter end 2076, is positioned over the LED emitters. The frustoconical section 2072 then tapers outwardly in diameter along its length to a larger diameter end 2078, where it continues, at that diameter, as the cylindrical section 2074. In one embodiment, the lens has lengths L of approximately 0.279 inches, and L2 of approximately 0.219 inches, and a diameter D of approximately 0.320 inches. Also, the frustoconical section has a taper angle Θ of approximately 42 degrees.


Lens element 2070 is a non-imaging lens element, which collimates the light generated from LED emitters 2054, and directs that light out of a distal end 2080 of the lens element. The lens distal end or face surface 2080 generally represents the distal end of the tip 1052, and ultimately the distal end of the curing light device. In use, the distal end 2080 is positioned proximate to a work site, such as a site containing dental composite material that is to be cured. Light generated from the LED emitters 2054 is captured and collimated and effectively reflected in the body of the lens element 2070 to be directed out of the distal end 2080. In one embodiment of the invention, the lens element 2070 is a total internal reflector (TIR) lens element that is configured for capturing, collimating, and efficiently directing the light out to the end of the lens element for less optical loss and greater delivery of light energy to the curing cite. A suitable non-imaging lens element would be available from Schott North America, Inc. of Elmsford, N.Y.


To attach lens element 2070, the small diameter end 2076 might be coated to have a metalized body surface along its periphery, as illustrated in FIG. 26A by circular metal pattern 2081. Similarly, the substrate forming base 2052 includes a metallization pattern 2082 thereon for abutting metal pattern 2081 and the lens element and sealing the light engine 2050 (See FIG. 26C). The small diameter end 2076 of the lens element also incorporates a convex indentation 2084, as illustrated in FIG. 26B. The convex indentation at the small diameter end 2076 of the lens element overlies the LED emitters 2054. For further attaching the lens element and sealing the LED emitters from the environment, a silicone adhesive is injected into the convex cavity 2084, such as through openings or holes 2086 in the base 2052. More specifically, a suitable silicone adhesive might be injected into one hole, filling the cavity, while air is directed out of the other hole 2086. One suitable silicone adhesive might be available from Schott North America, Inc. as a UV-200 index matching silicone adhesive. After the silicone adhesive is injected, the holes are then sealed, such as by soldering. Thus, the LED emitters are sealed from the environment, while allowing the radiant energy therefrom to pass through the interface to lens element 2070. The lens may be further secured in the tip 1052 using an adhesive around the periphery of the lens proximate the distal end 2080. A gap 2083 is provided in the tip for such adhesive. The end of plastic material 2018 is generally flush with the face or distal surface 2080.


The light system 1000 includes the curing light device 1002, and charger base 1004, as discussed herein. Appropriate circuitry contained in both the curing light device 1002 and the charger base 1004 provides the desirable charging, discharging, and operation of the system. In accordance with one aspect of the invention, the light device 1002 incorporates a plurality of ultracapacitors for storing energy to power a light device. In an exemplary embodiment, as illustrated in FIG. 25, two ultracapacitors 1068 (sometimes called supercapacitors) are charged through charger base 1004 and the circuitry therein, and are discharged to operate the light device 1002 and power the light engine at the distal end of the tip 1052. The appropriate charger circuitry is contained on the circuit board 1026 in the charger base, as illustrated in FIG. 18. The circuitry for turning on the curing light device, changing the operational mode to the curing light device, and other operational features are contained on the appropriate circuit boards 1070 and 1072, as illustrated in FIG. 25.


The curing light device has several operational curing modes. In one embodiment of the invention, the light device may be operated to provide several different curing cycles, including a five-second (5) cycle, a ten-second (10) cycle, and a twenty-second (20) cycle. As illustrated in FIG. 21, suitable indicator lights 1094, as shown in FIG. 21, provide an indication of the curing light cycle or mode that has been selected. Appropriate controls, such as push buttons 1074a, 1074b, may be used to turn the curing light device ON and OFF, to select the operational mode and curing cycle, and to begin the curing cycle. When a particular cycle is selected, the curing light will output a light beam for the selected amount of time. In accordance with another aspect of the invention, light device 1002 incorporates periodic level shifting (PLS). Such periodic level shifting provides an increased light output, while maintaining desirable heat characteristics. Such a PLS feature is disclosed further in U.S. Pat. No. 8,113,830, which is commonly owned with the present application, and which is incorporated by reference herein in its entirety. The control circuitry provides the several curing modes of five, ten, and twenty second, with the PLS feature, or without the PLS feature. Accordingly, six operational modes might be selected.


Referring again to FIG. 21, button 1074a turns the unit ON and OFF, and also selects or deselects the PLS feature. Button 1074b controls the operating mode, and also controls an audible beeper. A charge indicator light 1094a, as shown in FIG. 21, indicates the amount of time for curing that may be provided with the current charge. When there are 40 seconds or less of curing time left, the charge indicator light 1094a glows amber, warning the user that the charge is almost depleted. The charge indicator light turns red when there is not enough charge to complete the selected curing cycle duration. If the curing cycle duration is reduced, the light may change back to amber, indicating there is enough charge for a shorter curing cycle. The three top-most indicator lights 1094, as shown, indicate the time interval or operational cycle that is selected. To change the current selection, the selector button 1074b is pressed until a desired time interval is indicated by a respective illuminated light. That is, curing cycles of 5, 10, and 20 seconds may be selected. Then, when the proper curing cycle is selected, button 1074a is engaged to start the curing cycle. When button 1074a is pressed, the PLS feature will be automatically engaged. With the PLS feature, the LED emitters will appear to be flickering at the end of the tip. If button 1074a is pressed at any time during the curing cycle, it will stop the curing cycle. In accordance with one feature of the invention, the PLS feature may be disabled by pressing and holding button 1074a, when starting the curing cycle. The PLS feature will be disabled until the button is released. While the PLS is disabled, the curing light will maintain a steady light output of around 1,100 mW/cm2, and the unit will beep once per second. The curing light emits a short, audible beep when button 1074a is pressed. The beep indicates that the curing cycle has begun. A slightly longer, audible beep will sound at the end of the curing cycle. During the 10 and 20 second cycles, a beep is sounded every 5 seconds, as well as at the end of the cycle. The curing light device might also be placed into silent mode by essentially holding down button 1074b when the curing cycle is being selected. As discussed further below, the processing circuitry is appropriately configured and programmed for providing the noted operational features and curing cycles.


Turning to FIG. 27, a main charger circuit is shown for charging the power supply and ultracapacitors of a light device. In the exemplary embodiment described herein, various circuits and their locations will be indicated in particular locations, such as either in the charger base 1004, or in the light device 1002. However, it would be readily understood that the location of particular circuits or circuit components is not particularly limiting, and that other embodiments might incorporate different circuit components in different locations. The main charger circuit of FIG. 27 is shown broken up into several sections for the purposes of illustrating greater detail, such as in FIGS. 27A-27G. The circuitry of FIG. 27 is generally contained on board 1026, as illustrated in FIG. 18. The circuit of FIG. 27 provides voltage conversion and the delivery of the desired voltage and current to the ultracapacitors. In accordance with one feature of the invention, the charger circuit 2100 provides individual charging of two ultracapacitors in a three-point connection charging circuit for more rapid charging. Furthermore, charger circuit 2100 incorporates trickle charge sections for maximum charging. Therefore, the invention provides a very rapid charge of the light device in the order of less than, or around 40 second, so that the light device may be repeatedly used without significant downtime for the purposes of charging.


The curing light device begins immediately charging upon being engaged with the charger base. That is, when the light device is put into the appropriate opening 1006, and the upstanding plug 1028 is plugged into socket 1086, the ultracapacitors will begin to charge. Indicator 1008 on the charger base provides an indication that the charge process is ongoing, and when the device is completely charged. The ultracapacitors each have a capacitance value of 100 Farads, and will provide a desirable number of operational cycles when they are fully charged. One suitable ultracapacitor for the invention is available from Maxwell Technologies of San Diego, Calif.


In accordance with one aspect of the present invention, the power supply incorporates two 100 Farad capacitors to provide the user with a desirable run time, and desirable large number of operational cycles while still maintaining a rapid charging time. In accordance with one feature of the invention, the two ultracapacitors, operating together, when fully charged, will provide a working time or operational run time of at least 1 minute. In another embodiment of the invention, the two ultracapacitors, when fully charged, will provide an operational run time of up to 10 minutes. In accordance with one particular embodiment of the invention, approximately 250 seconds of run time are provided by a full charge of the two capacitors. For example, that would provide around 25 individual 10-second curing cycles. The inventors have determined that the two 100-Farad ultracapacitors, that are charged utilizing the unique charging circuit as noted below, will provide a rapid charge of the light device of around 40 seconds, while providing a desirable amount of run time, such as the 250 seconds of run time noted. Therefore, that unique combination of the multiple ultracapacitors and the unique charging circuitry provides desirable features for the curing light device.


In accordance with another feature of the invention, the ultracapacitors do not heat up significantly when they are being charged, or when they are being discharged, and thus, do not generate a significant amount of heat that affects their operational life like batteries do. Therefore, a consistent amount of run time may be achieved with each full recharge. Furthermore, the ultracapacitors will last up to 500,000 charging cycles, which provides a significant life to the power supply of the curing light device of the invention.


Referring to FIG. 27, the charger circuit 2100 includes an input section 2102, as illustrated in FIG. 27C. Input circuit section 2102 includes an appropriate DC jack 2104 for plugging into a DC power supply to provide the twelve-volt DC signal. Such a DC power supply (not shown) will generally include an AC plug and suitable converter circuitry to convert AC to DC to the desirable level, such as twelve volts DC. The input section delivers twelve volts DC to the main power supply section 2106, as illustrated in FIG. 27B. The main power supply section 2106 provides further DC signal conversion, such as down to a level of 5.4 volts DC. The main power supply section incorporates a suitable converter circuit 2108 to provide the step-down conversion. In one embodiment of the invention, converter circuit 2108 may be a 10V/20A constant current, constant voltage step-down converter.


The main power supply section provides a suitable DC voltage signal to the current source circuit 2120, which is coupled to the ultracapacitors to charge the ultracapacitors. Referring to FIG. 27A, the current source circuit 2120 includes sub-circuits 2122, 2124, which act as current sources. There is one current source circuit for each ultracapacitor to be charged (two ultracapacitors in the exemplary embodiment). The current source circuit 2122, 2124 are then coupled to trickle charge circuits 2126 and 2128, respectively, for each current source circuit. Each of the trickle charge circuits 2126 and 2128 provide a top-off of the charge for each of the respective ultracapacitors.


In accordance with one aspect of the invention, the current source circuit 2120, as illustrated in FIG. 27A, provides a three-point connection to the series connected ultracapacitors. As may be appreciated, two series connected ultracapacitors have a top point of connection to the first one of the ultracapacitors, a middle point of connection where each of the ultracapacitors connect to each other, and then a bottom or ground point of connection at the second ultracapacitor. Referring specifically to the connector 2130, as illustrated in FIG. 27A, the top point of connection to a first ultracapacitor is illustrated by circuit trace 2132. Circuit trace 2134 is the mid-point connection between the two ultracapacitors. Finally, circuit trace 2136 provides the ground connection to the second ultracapacitor. In that way, the various current source circuits 2122, 2124, and respective trickle charge circuits 2126, 2128 are coupled to each of the ultracapacitors in a three-point connection of traces 2132, 2134, 2136. Such a three-point connection provides rapid and efficient charging of the ultracapacitors, and also provides a complete charge that is generally equally distributed across the ultracapacitors.



FIGS. 27D and 27E illustrate additional operational circuitry that provides the detection of the charging process, as well as an indication of the charging by a photodiode, such as to provide illumination of the indicator 1008.



FIGS. 27F and 27G illustrate control circuitry for providing the desired control of the charging process, including a microprocessor or controller element 2140, as illustrated in FIG. 27F, and a register circuit 2142, as illustrated in FIG. 27G.



FIG. 28 illustrates a main control circuit 2200 for a light device 1002. Generally, the main control circuit will be on board 1072, in the control section 1060 of the light device body 1050. Referring to FIG. 28A, the main control circuit 2200 incorporates a control section, which includes a suitable processor or controller 2202 for controlling the operation of the light device. The controller 2202 interfaces with one or more switches 2204, 2206, which are actuated, such as by the buttons 1074, as illustrated in FIG. 25. The switches control the ON/OFF characteristics of the light device, as well as the modes that are selected for curing. The main control circuit further includes an indicator section, as illustrated in FIG. 28B, which includes various LEDs 2210, 2212, and a driver circuit 2214. The LEDs provide a desirable indication, such as through indicators 1094 to indicate the length of the cutting cycle (e.g. 5, 10, 20 seconds) as well as the particular mode, such as a PLS mode or a non-PLS mode.


As illustrated in FIG. 28C, the main control circuit will also include an appropriate connector 2216 for connecting to a discharge circuit for discharging the ultracapacitors and driving the light engine for a curing process.


Referring to FIG. 29, a discharge circuit is illustrated in accordance with one embodiment of the invention. Discharge circuit 2220 provides an input section, as illustrated in FIG. 29B, that couples appropriately with ultracapacitors 1068. The ultracapacitors, as illustrated, are discharged in series and generally 5.2 volts DC is provided across the ultracapacitors, which is converted by an appropriate converter circuit component 2222, to around 3.3 volts. The input circuit may also provide an appropriate audio element, such as a buzzer or beeper 2224, for indicating the operation of the light device, such as the completion of a curing cycle. The appropriate control of the discharge is provided through a connector section 29D, which corresponds to the connector section 28C of the main control circuit 2200 (See FIG. 28). The output voltage signal from the input section of FIG. 29B is provided to discharge circuit sections 23A, 23C, which are coupled directly to the light engine LED emitters, as illustrated in FIG. 29. More specifically, the circuit section illustrated in FIG. 29A includes a boost converter circuit 2226 to drive the LED emitters of the light engine. The boost converter circuit 2226 includes an FET driver component 2228, which drives FET 2230. A solid state switch component 2232, as illustrated in FIG. 29C, provides switch control to turn the curing light device ON and OFF.


component 2228, which drives FET 2230. A solid state switch component 2232, as illustrated in FIG. 29C, provides switch control to turn the curing light device ON and OFF.


While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the Applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of Applicant's general inventive concept.

Claims
  • 1. A curing light device comprising: a body including a housing and a socket at an end thereof;a tip having a proximal end and a distal end, the proximal end configured for plugging into the body socket to removably secure the tip with the body;the tip including a plurality of body elements formed of an electrically and thermally conductive material, the body elements electrically isolated from each other to form separate electrical conductors in the tip and collectively operating to provide thermal conduction of heat in the tip;a light engine including at least one light emitting element operable for emitting light, the light engine positioned on the distal end of the tip and electrically coupled with the tip body elements to receive power and thermally coupled with the tip body elements for removing heat;a non-imaging element coupled with the light engine at the distal end of the tip for capturing and collimating the emitted light;a power supply positioned in the body housing and electrically coupled with electrical contacts in the socket, the tip body elements engaging the socket electrical contacts to conduct electrical enerqy to power the light engine, the power supply being rechargeable and including at least one ultracapacitor element.
  • 2. The curing light device of claim 1 further comprising a magnetic mechanism configured for removably securing the tip in the socket.
  • 3. The curing light device of claim 2 wherein the magnetic mechanism provides a force in the range of 0.5 to 6 pounds for securing the tip in the socket.
  • 4. The curing light device of claim 2 wherein the magnetic mechanism includes a rare earth magnet.
  • 5. The curing light device of claim 1 wherein the tip body elements come together to form the tip and are separated by an insulator element to electrically isolate the body elements.
  • 6. The curing light device of claim 1 wherein the body elements of the tip are operable for drawing heat away from the light engine and the distal end of the tip.
  • 7. The curing light device of claim 1 wherein the power supply further comprises a pair of ultracapacitors.
  • 8. The curing light device of claim 1 wherein the power supply is operable for providing an operational run time of at least one minute.
  • 9. The curing light device of claim 1 wherein the power supply is operable for providing an operational run time of up to 10 minutes.
  • 10. The curing light device of claim 1 wherein power supply is operable for providing an operational run time of approximately 250 seconds.
  • 11. The curing light device of claim 1 wherein the light engine includes three light emitting elements, the light engine operable for providing an output power of 1100-1800 mW/cm2.
  • 12. The curing light device of claim 6 wherein the body elements of the tip are configured to draw heat away from the distal end of the tip and prevent a rise in the temperature of the pulp of a tooth being cured greater than 5 degrees Centigrade.
  • 13. The curing light device of claim 1 wherein the tip body elements are configured to form contact structures at the proximal end of the tip, the contact structures engaging the socket electrical contacts to conduct electrical energy.
  • 14. The curing light device of claim 1 wherein at least one of the body elements has a solid portion and a hollowed out portion along the length of the body element.
  • 15. The curing light device of claim 1 wherein the tip has a base that is wider than the proximal end, the proximal end of the tip extending beyond the base for plugging into the body socket.
  • 16. The curing light device of claim 2 wherein the magnetic mechanism includes a magnet coupled with one of the body and the tip and a metal element coupled with the other of the body and the tip for removably securing the tip in the socket.
  • 17. The curing light device of claim 1 further comprising a charger base for receiving the device body to recharge the power supply, the charger base providing a gravity force and including a plug that is configured to be received by a socket in the device body, the plug and socket requiring a removal force to separate the device and charger base that is less than the gravity force of the charger base to facilitate one hand removal of the light device from the charger base.
  • 18. The curing light device of claim 1 wherein the charger base includes a radiometer sensor operable for measuring a light output of the light device.
  • 19. The curing light device of claim 1 wherein the non-imaging element is a non-imaging lens having a frustoconical section.
RELATED APPLICATIONS

This Application is a continuation-in-part Application of U.S. Ser. No. 12/752,335, filed Apr. 1, 2010, and entitled “CURING LIGHT DEVICE”, which is a non-provisional application of U.S. Provisional Application No. 61/166,130, filed Apr. 2, 2009, and entitled “CURING LIGHT DEVICE”, which applications are incorporated herein by reference in their entireties.

US Referenced Citations (537)
Number Name Date Kind
2218678 Hoffman Oct 1940 A
3310358 Marcatili et al. Mar 1967 A
3638013 Keller Jan 1972 A
3666180 Coombs et al. May 1972 A
3704928 Coombs et al. Dec 1972 A
3712984 Lienhard Jan 1973 A
3733481 Kuyt May 1973 A
3755900 Friedman Sep 1973 A
3787678 Rainer Jan 1974 A
3829676 Nelson et al. Aug 1974 A
3868513 Gonser Feb 1975 A
3930149 French Dec 1975 A
3970856 Mahaffey et al. Jul 1976 A
4032773 Halliday, Jr. et al. Jun 1977 A
4041304 Spector Aug 1977 A
4045663 Young Aug 1977 A
RE29421 Scott Sep 1977 E
4048490 Troue Sep 1977 A
4080737 Fleer Mar 1978 A
4112335 Gonser Sep 1978 A
4114274 Jones Sep 1978 A
4114946 Hoffmeister et al. Sep 1978 A
4149086 Nath Apr 1979 A
4151583 Miller Apr 1979 A
4184196 Moret et al. Jan 1980 A
4185891 Kaestner Jan 1980 A
4186748 Schlager Feb 1980 A
4209907 Tsukada et al. Jul 1980 A
4221994 Friedman et al. Sep 1980 A
4229658 Gonser Oct 1980 A
4230453 Reimers Oct 1980 A
4233649 Scheer et al. Nov 1980 A
4245890 Hartman et al. Jan 1981 A
4266535 Moret May 1981 A
4280273 Vincent Jul 1981 A
4281366 Wurster et al. Jul 1981 A
4298806 Herold Nov 1981 A
4308120 Pennewiss et al. Dec 1981 A
4309617 Long Jan 1982 A
4325107 MacLeod Apr 1982 A
4337759 Popovich et al. Jul 1982 A
4348180 Schuss Sep 1982 A
4357648 Nelson Nov 1982 A
4360860 Johnson et al. Nov 1982 A
4385344 Gonser May 1983 A
RE31279 Mefferd et al. Jun 1983 E
4391588 Matsui Jul 1983 A
4392827 Martin Jul 1983 A
4398885 Loge et al. Aug 1983 A
4402524 D'Antonio et al. Sep 1983 A
4412134 Herold et al. Oct 1983 A
4445858 Johnson May 1984 A
4450139 Bussiere et al. May 1984 A
4522594 Stark et al. Jun 1985 A
4610630 Betush Sep 1986 A
4611992 Lokken Sep 1986 A
4634953 Shoji et al. Jan 1987 A
4666405 Ericson May 1987 A
4666406 Kanca, III May 1987 A
4673353 Nevin Jun 1987 A
4682950 Dragan Jul 1987 A
4698730 Sakai et al. Oct 1987 A
4716296 Bussiere et al. Dec 1987 A
4725231 Boinot et al. Feb 1988 A
4729076 Masami et al. Mar 1988 A
4733937 Lia et al. Mar 1988 A
4757381 Cooper et al. Jul 1988 A
4762862 Yada et al. Aug 1988 A
4792692 Herold et al. Dec 1988 A
4794315 Pederson et al. Dec 1988 A
4810194 Snedden Mar 1989 A
4819139 Thomas Apr 1989 A
4826431 Fujimura et al. May 1989 A
4835344 Iyogi et al. May 1989 A
4836782 Gonser Jun 1989 A
4839566 Herold et al. Jun 1989 A
4846546 Cuda Jul 1989 A
4857801 Farrell Aug 1989 A
4888489 Bryan Dec 1989 A
4935665 Murata Jun 1990 A
4936808 Lee Jun 1990 A
4948215 Friedman Aug 1990 A
4963798 McDermott Oct 1990 A
4992045 Beisel Feb 1991 A
4999310 Kim Mar 1991 A
5003434 Gonser et al. Mar 1991 A
5007837 Werly Apr 1991 A
5013144 Silverglate et al. May 1991 A
5013240 Bailey et al. May 1991 A
5017140 Ascher May 1991 A
5029957 Hood Jul 1991 A
5043634 Rothwell, Jr. et al. Aug 1991 A
5046810 Steiner et al. Sep 1991 A
5063255 Hasegawa et al. Nov 1991 A
5070258 Izumi et al. Dec 1991 A
5071222 Laakmann et al. Dec 1991 A
5115761 Hood May 1992 A
5123845 Vassiliadis et al. Jun 1992 A
5139495 Daikuzono Aug 1992 A
5147204 Patten et al. Sep 1992 A
5150016 Sawase et al. Sep 1992 A
5161879 McDermott Nov 1992 A
5162696 Goodrich Nov 1992 A
5173810 Yamakawa Dec 1992 A
RE34196 Munro Mar 1993 E
5189751 Giuliani et al. Mar 1993 A
5198678 Oppawsky Mar 1993 A
5201655 Friedman Apr 1993 A
5209169 Basic, Sr. May 1993 A
5233283 Kennedy Aug 1993 A
5242602 Richardson et al. Sep 1993 A
5265792 Harrah et al. Nov 1993 A
5275564 Vassiliadis et al. Jan 1994 A
5278629 Schlager et al. Jan 1994 A
5283425 Imamura Feb 1994 A
5285318 Gleckman Feb 1994 A
5288231 Kuehn et al. Feb 1994 A
5290169 Friedman et al. Mar 1994 A
5302124 Lansing et al. Apr 1994 A
5312249 Kennedy May 1994 A
5316473 Hare May 1994 A
5328368 Lansing et al. Jul 1994 A
5346489 Levy et al. Sep 1994 A
5348552 Nakajima et al. Sep 1994 A
5371826 Friedman Dec 1994 A
5373114 Kondo et al. Dec 1994 A
5382799 May Jan 1995 A
5388988 Goisser et al. Feb 1995 A
5395490 Hoff et al. Mar 1995 A
5397892 Abdelqader Mar 1995 A
5415543 Rozmajzl, Jr. May 1995 A
5418384 Yamana et al. May 1995 A
5420768 Kennedy May 1995 A
5448323 Clark et al. Sep 1995 A
5457611 Verderber Oct 1995 A
5471129 Mann Nov 1995 A
5475417 Ogata et al. Dec 1995 A
5485317 Perissinotto et al. Jan 1996 A
5487662 Kipke et al. Jan 1996 A
5521392 Kennedy et al. May 1996 A
5527261 Monroe et al. Jun 1996 A
5530632 Shikano et al. Jun 1996 A
5535230 Abe Jul 1996 A
5598005 Wang et al. Jan 1997 A
5613751 Parker et al. Mar 1997 A
5616141 Cipolla Apr 1997 A
5617492 Beach et al. Apr 1997 A
5621303 Shalvi Apr 1997 A
5634711 Kennedy et al. Jun 1997 A
5639158 Sato Jun 1997 A
5660461 Ignatius et al. Aug 1997 A
5664042 Kennedy Sep 1997 A
5669769 Disel Sep 1997 A
5678998 Honkura et al. Oct 1997 A
5688042 Madadi et al. Nov 1997 A
5689866 Kasai et al. Nov 1997 A
5698866 Doiron et al. Dec 1997 A
5702250 Kipke Dec 1997 A
5707139 Haitz Jan 1998 A
5711665 Adam et al. Jan 1998 A
5733029 Monroe Mar 1998 A
5741132 Usui et al. Apr 1998 A
5747363 Wei et al. May 1998 A
5749724 Cheng May 1998 A
5759032 Bartel Jun 1998 A
5762605 Cane et al. Jun 1998 A
5766012 Rosenbaum et al. Jun 1998 A
5768458 Ro et al. Jun 1998 A
5772643 Howell et al. Jun 1998 A
5782552 Green et al. Jul 1998 A
5782553 McDermott Jul 1998 A
5791898 Maissami Aug 1998 A
5797740 Lundvik Aug 1998 A
5803579 Turnbull et al. Sep 1998 A
5803729 Tsimerman Sep 1998 A
5807397 Barreras Sep 1998 A
5857767 Hochstein Jan 1999 A
5880839 Ishizuka et al. Mar 1999 A
5882082 Moore Mar 1999 A
5885082 Levy Mar 1999 A
5886401 Liu Mar 1999 A
5897314 Hack et al. Apr 1999 A
5905268 Garcia et al. May 1999 A
5908294 Schick et al. Jun 1999 A
5908295 Kawata Jun 1999 A
5912470 Eibofner et al. Jun 1999 A
5921652 Parker et al. Jul 1999 A
5921777 Dorman Jul 1999 A
5928220 Shimoji Jul 1999 A
5928505 Inakagata et al. Jul 1999 A
5931676 Honkura et al. Aug 1999 A
5936353 Triner et al. Aug 1999 A
5971755 Liebermann et al. Oct 1999 A
5975714 Vetorino et al. Nov 1999 A
5975895 Sullivan Nov 1999 A
6001058 Sano et al. Dec 1999 A
6008264 Ostler et al. Dec 1999 A
6019482 Everett Feb 2000 A
6019493 Kuo et al. Feb 2000 A
6019599 Volcker et al. Feb 2000 A
6028694 Schmidt Feb 2000 A
6028788 Choi et al. Feb 2000 A
6033087 Shozo et al. Mar 2000 A
6033223 Narusawa et al. Mar 2000 A
6036336 Wu Mar 2000 A
6045240 Hochstein Apr 2000 A
6046460 Mertins Apr 2000 A
6059421 White et al. May 2000 A
6065965 Rechmann May 2000 A
6068474 Senn et al. May 2000 A
6072576 McDonald et al. Jun 2000 A
6077073 Jacob Jun 2000 A
6079861 Woodward et al. Jun 2000 A
6086366 Mueller et al. Jul 2000 A
6086367 Levy Jul 2000 A
6089740 Forehand et al. Jul 2000 A
6095661 Lebens et al. Aug 2000 A
6095812 Senn et al. Aug 2000 A
6099520 Shimoji Aug 2000 A
6102696 Osterwalder et al. Aug 2000 A
6103203 Fischer Aug 2000 A
6123545 Eggler et al. Sep 2000 A
6132213 Knorpp et al. Oct 2000 A
6155823 Nagel Dec 2000 A
6157661 Walker et al. Dec 2000 A
6159005 Herold et al. Dec 2000 A
6161937 Rosenstatter Dec 2000 A
6168431 Narusawa et al. Jan 2001 B1
6171105 Sarmadi Jan 2001 B1
6186786 Trushkowsky Feb 2001 B1
6190020 Hartley Feb 2001 B1
6193510 Tsimerman Feb 2001 B1
6200134 Kovac et al. Mar 2001 B1
6203325 Honkura et al. Mar 2001 B1
6208788 Nosov Mar 2001 B1
6210042 Wang et al. Apr 2001 B1
6220722 Begemann Apr 2001 B1
6257883 Voudouris Jul 2001 B1
6266576 Okada et al. Jul 2001 B1
6270343 Martin Aug 2001 B1
6280187 Slone Aug 2001 B1
6280188 Ross Aug 2001 B1
6282013 Ostler et al. Aug 2001 B1
6299450 Honkura et al. Oct 2001 B1
6318996 Melikechi et al. Nov 2001 B1
6322358 Senn et al. Nov 2001 B1
6325623 Melnyk et al. Dec 2001 B1
6328456 Mize Dec 2001 B1
6331111 Cao Dec 2001 B1
6345982 Meyer Feb 2002 B1
6361192 Fussell et al. Mar 2002 B1
6361489 Tsai Mar 2002 B1
6371826 Pestonji Apr 2002 B1
6379149 Franetzki Apr 2002 B1
6382967 Rohner et al. May 2002 B1
6384099 Ostler et al. May 2002 B1
6398398 Moschkowitz Jun 2002 B1
6402511 Calderwood Jun 2002 B1
6417917 Jung et al. Jul 2002 B1
6419483 Adam et al. Jul 2002 B1
6425761 Eibofner Jul 2002 B1
6439888 Boutoussov et al. Aug 2002 B1
6444725 Trom et al. Sep 2002 B1
6454789 Chen et al. Sep 2002 B1
6465961 Cao Oct 2002 B1
6468077 Melikechi et al. Oct 2002 B1
6478447 Yen Nov 2002 B2
6482004 Senn et al. Nov 2002 B1
6485301 Gemunder et al. Nov 2002 B1
6498108 Cao et al. Dec 2002 B2
6511317 Melikechi et al. Jan 2003 B2
6511321 Trushkowsky et al. Jan 2003 B1
6514075 Jacob Feb 2003 B1
6522086 Gemunder et al. Feb 2003 B2
6528555 Nikutowski et al. Mar 2003 B1
6554463 Hooker et al. Apr 2003 B2
6558048 Kuhara et al. May 2003 B2
6558829 Faris et al. May 2003 B1
6561802 Alexander May 2003 B2
6561806 Kyotani et al. May 2003 B2
6563269 Robinett et al. May 2003 B2
6604847 Lehrer Aug 2003 B2
6611110 Fregoso Aug 2003 B1
6634770 Cao Oct 2003 B2
6634771 Cao Oct 2003 B2
6635363 Duclos et al. Oct 2003 B1
6638063 Otsuka Oct 2003 B2
6666612 Lorigny et al. Dec 2003 B2
6692251 Logan et al. Feb 2004 B1
6692252 Scott Feb 2004 B2
6692525 Brady et al. Feb 2004 B2
6695614 Plank Feb 2004 B2
6700158 Cao et al. Mar 2004 B1
6702576 Fischer et al. Mar 2004 B2
6709128 Gordon et al. Mar 2004 B2
6709270 Honkura et al. Mar 2004 B2
6719446 Cao Apr 2004 B2
6719558 Cao Apr 2004 B2
6719559 Cao Apr 2004 B2
6746885 Cao Jun 2004 B2
6755647 Melikechi et al. Jun 2004 B2
6755648 Cao Jun 2004 B2
6755649 Cao Jun 2004 B2
6764719 Russell et al. Jul 2004 B2
6767109 Plank et al. Jul 2004 B2
6780010 Cao Aug 2004 B2
6783362 Cao Aug 2004 B2
6783810 Jin et al. Aug 2004 B2
6793490 Bianchetti et al. Sep 2004 B2
6799967 Cao Oct 2004 B2
6815241 Wang Nov 2004 B2
6821119 Shortt et al. Nov 2004 B2
6824294 Cao Nov 2004 B2
6829260 Hsia et al. Dec 2004 B2
6832849 Yoneda et al. Dec 2004 B2
6835219 Gittleman Dec 2004 B2
6857873 Bianchetti et al. Feb 2005 B2
6873111 Ito et al. Mar 2005 B2
6880954 Ollett et al. Apr 2005 B2
6880985 Hoshino et al. Apr 2005 B2
6890175 Fischer et al. May 2005 B2
6890234 Bortscheller et al. May 2005 B2
6910886 Cao Jun 2005 B2
6918762 Gill et al. Jul 2005 B2
6926524 Cao Aug 2005 B2
6929472 Cao Aug 2005 B2
6932600 Cao Aug 2005 B2
6933702 Hsu Aug 2005 B2
6940659 McLean et al. Sep 2005 B2
6951623 Wu Oct 2005 B2
6953340 Cao Oct 2005 B2
6954270 Ostler et al. Oct 2005 B2
6955537 Cao Oct 2005 B2
6957907 Fischer et al. Oct 2005 B2
6969253 Cao Nov 2005 B2
6971875 Cao Dec 2005 B2
6971876 Cao Dec 2005 B2
6974319 Cao Dec 2005 B2
6976841 Osterwalder Dec 2005 B1
6979193 Cao Dec 2005 B2
6979194 Cao Dec 2005 B2
6981867 Cao Jan 2006 B2
6981876 Bleckley et al. Jan 2006 B2
6986782 Chen et al. Jan 2006 B2
6988890 Cao Jan 2006 B2
6988891 Cao Jan 2006 B2
6991356 Tsimerman et al. Jan 2006 B2
6991456 Plank Jan 2006 B2
6994546 Fischer et al. Feb 2006 B2
6994551 Wang et al. Feb 2006 B2
7001057 Plank et al. Feb 2006 B2
7011519 Castellini Mar 2006 B2
7029277 Gofman et al. Apr 2006 B2
7056116 Scott et al. Jun 2006 B2
7066732 Cao Jun 2006 B2
7066733 Logan et al. Jun 2006 B2
7074040 Kanca Jul 2006 B2
7077648 Cao Jul 2006 B2
7086111 Hilscher et al. Aug 2006 B2
7086858 Cao Aug 2006 B2
7094054 Cao Aug 2006 B2
7097364 Wang Aug 2006 B2
7101072 Takada et al. Sep 2006 B2
7104793 Senn et al. Sep 2006 B2
7106523 McLean et al. Sep 2006 B2
7108504 Cao Sep 2006 B2
7118563 Weckwerth et al. Oct 2006 B2
7119515 Senn et al. Oct 2006 B2
7134875 Oxman et al. Nov 2006 B2
7139580 Stein et al. Nov 2006 B2
7144250 Fischer et al. Dec 2006 B2
7153015 Brukilacchio Dec 2006 B2
7163181 Omps Jan 2007 B2
7163318 Panagotacos et al. Jan 2007 B2
7167824 Kallulli Jan 2007 B2
7178941 Roberge et al. Feb 2007 B2
7179860 Cao et al. Feb 2007 B2
7182597 Gill et al. Feb 2007 B2
7189983 Aguirre et al. Mar 2007 B2
7192276 Fischer et al. Mar 2007 B2
7195482 Scott Mar 2007 B2
7202489 Aguirre et al. Apr 2007 B2
7202490 Aguirre et al. Apr 2007 B2
7207694 Petrick Apr 2007 B1
7210814 Scott et al. May 2007 B2
7210930 Kovac et al. May 2007 B2
7223270 Altshuler et al. May 2007 B2
7224001 Cao May 2007 B2
7250611 Aguirre et al. Jul 2007 B2
7252678 Ostler et al. Aug 2007 B2
7267457 Ostler et al. Sep 2007 B2
7267546 Scott et al. Sep 2007 B2
7271420 Cao Sep 2007 B2
7273369 Rosenblood et al. Sep 2007 B2
7283230 Ostler et al. Oct 2007 B2
7294364 Cao Nov 2007 B2
7300175 Brukilacchio Nov 2007 B2
7320593 Ostler et al. Jan 2008 B2
7323849 Robinett et al. Jan 2008 B1
7329887 Henson et al. Feb 2008 B2
7410283 West et al. Aug 2008 B2
7422598 Altshuler et al. Sep 2008 B2
7443133 Hamada et al. Oct 2008 B2
7452924 Aasen et al. Nov 2008 B2
7471068 Cegnar Dec 2008 B2
7483504 Shapira et al. Jan 2009 B2
7485116 Cao Feb 2009 B2
7507491 Finkelshtain et al. Mar 2009 B2
7530707 Plank et al. May 2009 B2
7530808 Cao et al. May 2009 B2
7624467 Hilscher et al. Dec 2009 B2
7645056 Mills et al. Jan 2010 B1
7645086 Zhang et al. Jan 2010 B2
7651268 Cao et al. Jan 2010 B2
7654086 Gong et al. Feb 2010 B2
7661172 Hilscher et al. Feb 2010 B2
7677888 Halm Mar 2010 B1
7677890 Turner Mar 2010 B2
7696728 Cross et al. Apr 2010 B2
7704074 Jensen Apr 2010 B2
7712468 Hargadon May 2010 B2
7728345 Cao Jun 2010 B2
7733056 Hartung et al. Jun 2010 B2
7758204 Klipstein et al. Jul 2010 B2
7786499 Cao Aug 2010 B2
7861363 Moll et al. Jan 2011 B2
7976211 Cao Jul 2011 B2
7989839 Dahm Aug 2011 B2
7995882 Wanninger et al. Aug 2011 B2
8019405 Weber et al. Sep 2011 B2
8096691 Mills et al. Jan 2012 B2
8113830 Gill et al. Feb 2012 B2
8174209 Bayer et al. May 2012 B2
8203281 Cegnar et al. Jun 2012 B2
8231383 Gill et al. Jul 2012 B2
8269469 Cegnar et al. Sep 2012 B2
8333588 Putz et al. Dec 2012 B2
8337097 Cao Dec 2012 B2
8568140 Kovac et al. Oct 2013 B2
8569785 Cao Oct 2013 B2
8602774 Wasyluscha Dec 2013 B2
8653723 Cao et al. Feb 2014 B2
20010007739 Eibofner et al. Jul 2001 A1
20020093833 West Jul 2002 A1
20020168607 Cao Nov 2002 A1
20030015667 MacDougald et al. Jan 2003 A1
20030036031 Lieb et al. Feb 2003 A1
20030060013 Marchant et al. Mar 2003 A1
20030081430 Becker May 2003 A1
20030147258 Fischer et al. Aug 2003 A1
20030148242 Fischer et al. Aug 2003 A1
20030152885 Dinh Aug 2003 A1
20030186195 Comfort et al. Oct 2003 A1
20030215766 Fischer et al. Nov 2003 A1
20030235800 Qadar Dec 2003 A1
20040029069 Gill et al. Feb 2004 A1
20040054386 Martin et al. Mar 2004 A1
20040101802 Scott May 2004 A1
20040117930 Townley et al. Jun 2004 A1
20040120146 Ostler et al. Jun 2004 A1
20040152038 Kumagai et al. Aug 2004 A1
20040181154 Peterson et al. Sep 2004 A1
20040185413 Gill et al. Sep 2004 A1
20040214131 Fischer et al. Oct 2004 A1
20040256630 Cao Dec 2004 A1
20050002975 Cao Jan 2005 A1
20050033119 Okawa et al. Feb 2005 A1
20050074723 Ostler et al. Apr 2005 A1
20050077865 Durbin et al. Apr 2005 A1
20050082989 Jones et al. Apr 2005 A1
20050096661 Farrow et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050154081 Yin et al. Jul 2005 A1
20050158687 Dahm Jul 2005 A1
20050171408 Parker Aug 2005 A1
20050174753 Cao et al. Aug 2005 A1
20050174801 Cao Aug 2005 A1
20050196721 Jackson et al. Sep 2005 A1
20050282102 Kert Dec 2005 A1
20060033052 Scott Feb 2006 A1
20060040231 Quan et al. Feb 2006 A1
20060044823 Wong et al. Mar 2006 A1
20060084028 Cheetham et al. Apr 2006 A1
20060084717 Cohen et al. Apr 2006 A1
20060095095 Cao May 2006 A1
20060188835 Nagel et al. Aug 2006 A1
20060188836 Logan et al. Aug 2006 A1
20060199144 Liu et al. Sep 2006 A1
20060240375 Soukos et al. Oct 2006 A1
20060252005 Feinbloom et al. Nov 2006 A1
20060271068 Cao Nov 2006 A1
20060274529 Cao Dec 2006 A1
20060275732 Cao Dec 2006 A1
20060275733 Cao Dec 2006 A1
20070020578 Scott et al. Jan 2007 A1
20070025658 Fukai et al. Feb 2007 A1
20070031777 Wang et al. Feb 2007 A1
20070037113 Scott et al. Feb 2007 A1
20070054232 Rauchenzauner Mar 2007 A1
20070128577 Scott et al. Jun 2007 A1
20070170444 Cao Jul 2007 A1
20070224570 West et al. Sep 2007 A1
20070228392 Plank et al. Oct 2007 A1
20070265607 Cao et al. Nov 2007 A1
20070279011 Jones et al. Dec 2007 A1
20080026103 Fichtali et al. Jan 2008 A1
20080027518 Island et al. Jan 2008 A1
20080071256 Cao et al. Mar 2008 A1
20080080184 Cao Apr 2008 A1
20080086117 Cao Apr 2008 A1
20080154249 Cao Jun 2008 A1
20080191941 Saban et al. Aug 2008 A1
20080225019 Hsiung Sep 2008 A1
20080285302 Scott et al. Nov 2008 A1
20080311545 Ostler et al. Dec 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090011385 Jensen et al. Jan 2009 A1
20090087393 Jensen et al. Apr 2009 A1
20090092947 Cao et al. Apr 2009 A1
20090143842 Cumbie et al. Jun 2009 A1
20090147505 Robinett Jun 2009 A1
20090155740 Jensen et al. Jun 2009 A1
20090208894 Orloff et al. Aug 2009 A1
20090227875 Cao et al. Sep 2009 A1
20090238779 Jensen et al. Sep 2009 A1
20090271936 Walanski et al. Nov 2009 A1
20090315484 Cegnar et al. Dec 2009 A1
20100004640 Cao et al. Jan 2010 A1
20100117560 Cao May 2010 A1
20100173267 Cao et al. Jul 2010 A1
20100207502 Cao et al. Aug 2010 A1
20100273123 Mecher Oct 2010 A1
20110070553 Stempfle et al. Mar 2011 A1
20110143304 Jamnia et al. Jun 2011 A1
20120230017 Duffy Sep 2012 A1
20140038125 Logan et al. Feb 2014 A1
20140051031 Kovac et al. Feb 2014 A1
Foreign Referenced Citations (164)
Number Date Country
2190225 Jun 1997 CA
2266845 Oct 1999 CA
2298993 Sep 2000 CA
2315709 Oct 1974 DE
2842938 Apr 1980 DE
3411996 Oct 1985 DE
3706852 Oct 1987 DE
9017070 Apr 1992 DE
4211233 Aug 1993 DE
29511927 Jan 1997 DE
19624087 Dec 1997 DE
19624087 Dec 1997 DE
19803755 Aug 1999 DE
000266038 May 1988 EP
000320080 Jun 1989 EP
0531438 Mar 1993 EP
000568666 Nov 1993 EP
000591613 Apr 1994 EP
000672435 Sep 1995 EP
000678282 Oct 1995 EP
000709698 May 1996 EP
000736307 Oct 1996 EP
000740567 Nov 1996 EP
000750889 Jan 1997 EP
000755662 Jan 1997 EP
000780101 Jun 1997 EP
000780103 Jun 1997 EP
000830850 Mar 1998 EP
000830851 Mar 1998 EP
000830852 Mar 1998 EP
0879582 Nov 1998 EP
000879582 Nov 1998 EP
000880945 Dec 1998 EP
000884025 Dec 1998 EP
000885025 Dec 1998 EP
000959803 Dec 1999 EP
000998880 May 2000 EP
001031326 Aug 2000 EP
001090607 Apr 2001 EP
001090608 Apr 2001 EP
001093765 Apr 2001 EP
001103232 May 2001 EP
001112721 Jul 2001 EP
001138276 Oct 2001 EP
001138349 Oct 2001 EP
001206923 May 2002 EP
001228738 Aug 2002 EP
001253547 Oct 2002 EP
001374797 Jan 2004 EP
001843079 Oct 2007 EP
2058636 May 2009 EP
002212010 Jul 1989 GB
002218636 Nov 1989 GB
002329756 Mar 1999 GB
002385137 Aug 2003 GB
7240536 Sep 1985 JP
8141001 Jun 1996 JP
H06285508 Jun 1996 JP
910238 Jan 1997 JP
928719 Apr 1997 JP
9187825 Jul 1997 JP
1033573 Feb 1998 JP
10245245 Sep 1998 JP
11267140 Jan 1999 JP
2000312688 Nov 2000 JP
2001522635 Nov 2001 JP
2002125984 May 2002 JP
2002320683 May 2002 JP
2002200100 Jul 2002 JP
2003093405 Apr 2003 JP
2003524501 Aug 2003 JP
2003288201 Oct 2003 JP
2004040998 Feb 2004 JP
2004355852 Dec 2004 JP
2005168231 Jun 2005 JP
2006149190 Jun 2006 JP
2007509669 Apr 2007 JP
2007128667 May 2007 JP
2007514454 Jun 2007 JP
2007516689 Jun 2007 JP
2011135973 Jul 2011 JP
8301311 Apr 1983 WO
8404463 Nov 1984 WO
9202275 Feb 1992 WO
9309847 May 1993 WO
9321842 Nov 1993 WO
9507731 Mar 1995 WO
9519810 Jul 1995 WO
9526217 Oct 1995 WO
9736552 Oct 1997 WO
9737722 Oct 1997 WO
1997039880 Oct 1997 WO
9746279 Dec 1997 WO
9746280 Dec 1997 WO
9803131 Jan 1998 WO
9803132 Jan 1998 WO
9804317 Feb 1998 WO
9836703 Aug 1998 WO
9909071 Feb 1999 WO
9911324 Mar 1999 WO
9916136 Apr 1999 WO
9920346 Apr 1999 WO
9935995 Jul 1999 WO
9937239 Jul 1999 WO
0002491 Jan 2000 WO
0013608 Mar 2000 WO
0014012 Mar 2000 WO
0015296 Mar 2000 WO
0041726 Jul 2000 WO
0041767 Jul 2000 WO
0041768 Jul 2000 WO
0043067 Jul 2000 WO
0043068 Jul 2000 WO
0043069 Jul 2000 WO
2000043069 Jul 2000 WO
0045733 Aug 2000 WO
2000045733 Aug 2000 WO
0067048 Nov 2000 WO
0067660 Nov 2000 WO
2000067048 Nov 2000 WO
2000067660 Nov 2000 WO
0103770 Jan 2001 WO
2001003770 Jan 2001 WO
0119280 Mar 2001 WO
2001019280 Mar 2001 WO
0124724 Apr 2001 WO
2001024724 Apr 2001 WO
0154770 Aug 2001 WO
0160280 Aug 2001 WO
2001054770 Aug 2001 WO
2001060280 Aug 2001 WO
0164129 Sep 2001 WO
0168035 Sep 2001 WO
0169691 Sep 2001 WO
2001064129 Sep 2001 WO
2001068035 Sep 2001 WO
2001069691 Sep 2001 WO
0206723 Jan 2002 WO
2002006723 Jan 2002 WO
0209610 Feb 2002 WO
0211640 Feb 2002 WO
2002009610 Feb 2002 WO
2002011640 Feb 2002 WO
0232505 Apr 2002 WO
0233312 Apr 2002 WO
2002032505 Apr 2002 WO
2002033312 Apr 2002 WO
0249721 Jun 2002 WO
2002049721 Jun 2002 WO
02056787 Jul 2002 WO
2002056787 Jul 2002 WO
02069839 Sep 2002 WO
2002069839 Sep 2002 WO
02080808 Oct 2002 WO
2002080808 Oct 2002 WO
03083364 Oct 2003 WO
2003083364 Oct 2003 WO
2005006818 Jan 2005 WO
2005043709 May 2005 WO
2006014363 Feb 2006 WO
2006014597 Feb 2006 WO
2009134885 Nov 2009 WO
2010029519 Mar 2010 WO
2010115082 Oct 2010 WO
Non-Patent Literature Citations (31)
Entry
Burgess, John O. et al., An Evaluation of Four Light-Curing Units Comparing Soft and Hard Curing, ; Pract. Periodont Aesthet. Dent. 11(1), 125-132, 1999.
Davidson-Kaban, Saliha S. et al., The Effect of Curing Light Variations on Bulk Curing and Wall-to-Wall Quality of Two Types and Various Shades of Resin Composites, ; Dent. Mater. 13: 344-352, Nov. 1997.
Feltzer, A. J. et al., Influence of Light Intensity on Polymerization Shrinkage and Integrity of Restoration-Cavity Interface, Eur. J. Oral Sciences, 103: 322-326, 1995.
Kanca, III, John and Suh, Byoung I., Pulse Activation: Reducing Resin-Based Composite Contraction Stresses at the Enamel Cavosurface Margins, Am. J. of Dentistry, 12(3), 107-112, 1999.
Kato, Hiromasa, Relationship Between the Velocity of Polymerization and Adaptation to Dentin Cavity Wall of Light-Cured Composite, Dental Materials J. 6(1): 32-37, 1987.
Koran, Peter and Kurschner, Ralf, Effect of Sequential versus Continuous Irradiation of a Light-Cured Resin Composite on Shsrinkage, Viscosity, Adhesion, and Degree of Polymerization, Am. J. of Dentistry, 11, No. 1, 17-22, 1998.
LumiLeds Lighting LLC, Luxeon™ Power Light Sources of the Future, Jan. 2001—Mike Holt.
LumiLeds Lighting LLC, Application Note 1149-5, Secondary Optics Design Considerations for Super Flux LEDs, Copyright© 2000 LumiLeds Lighting, Obsoletes Publication No. 5968-1215E, Publication No. ANO6 (3/O0).
LumiLeds Lighting LLC, LED Application Note Dental Light Curing, LumiLeds Lighting Publication No. XXX(03.01), Copyright© 2000.
LumiLeds Lighting LLC, Concept Evaluation Data Luxeon™ Star 5-Watt, Luxeon™ 5-Watt Prelminary Target Data Sheet, Publication No. JP10 (Jan. 2002).
LumiLeds Lighting LLC, Application Bulletin AB XXX, Luxeon™ Data Sheet, Publication No. xxxx-xxxx.
LumiLeds Lighting LLC, Lumen Maintenance of White Luxeon™ Power Light Sources, Application Brief AB07, LumiLeds Lighting, US LLC.
Luxeon Dental Technical Data, Power Light Source, ; Apr. 2002.
Mayes, Joe H., Curing Lights: An Overview, Unknown, p. 15-17.
Mehl, et al., Softstartpolymerisation von Kompositen in Klasse-V-Kavitatent, Dtsch Zhnarzl Z. 52/1997, pp. 824-827 (in German).
Mehl, A. et al., Physical Properties and Gap Formation of Light-Cured Composites With and Without ‘Softstart-Polymerization’, J. of Dentistry, 25, 321-330, 1997.
Mehl, et al., 496 The Influence of Pre-Curing on the Material Properties of Composite Resins, Journal of Dental Research, vol. 74, 1995, Special Issues S.462 (abstract).
Mehl, et al., Soft Start Polymerization of Composites in Class V Cavities, Dtsch Zhnarztl Z. 52/1997, pp. 824-827.
Mills, Robin W., et al., Blue LED's for Curing Polymer-Based Dental Filling Materials, LEO's Newsletter, Jun. 1998.
Mills, R. W., et al., Optical Power Outputs, Spectra and Dental Composite Depths of Cure, Obtained with Blue Light Emitting Diode (LED and Halogen Light Curing Units (LCU's), Oct. 26, 2002.
Reinhardt, et al., Unischerheiten bei der Prufung von Photopolymerisation, Dtsch zahnarzl Z. 36,635-640, 1981 (in German).
Reinhardt, et al, Uncertaintaies ini the Testing of Photopolymers, Dtsch zahnarzl Z. 635-640, 1981 (English Translation of cite No. 5 above).
Sakaguchi, Ronald L. and Berge, Hong Xu, ; Sakaguchi & Berge, Reduced Light Energy Density Decreases Post-Gel Contraction While Maintaining Degree of Conversion in Composites, J. of Dentistry, 26, 695-700, 1998.
Schlager, Kenneth J., Ignatius, Ronald W., ; An LED-Array Light Source for Medical Therapy, ; SPIE vol. 1892 Medical Lasers and Systems II (1993) p. 26-35.
Swift Jr., Edward J. et al., Ed., Contemporary Photocuring Issues, Part II, J. Esthetic Dentistry, 12 (1), 50-57, 2000.
Tarle, Z. et al., The Effect of the Photopolymerization Method on the Quality of Composite Resin Samples, ; J. of Oral Rehab. 25: 436-442, 1998.
TIR Technologies, Inc., Miniaturized TIR lenses for Light Emitting Diodes, TIR Technical Publication, pp. 1-14, 1992.
Uno, Shigeru and Asmussen, Erik, Marginal Adaptation of a Restorative Resin Polymerized at Reduced Rate, ; Scand J. Dent. Res. 1991; 99: 440-4.
Seventeen-Page International Search Report mailed Sep. 20, 2010 for International Application No. PCT/US2010/029756.
George W. Gaines, Lieutenant Colonel, USAF, DC & Curtis D. Wyrauch, Major, USAG, DC, A New Generation of Visible—Light Curing Units, USAF School of Aerospace Medicine, Final Report for Period Oct. 1987-Sep. 1988.
Thirteen—Page European Search Report mailed Nov. 21, 2014 for European Patent Application No. EP14172118.
Related Publications (1)
Number Date Country
20140038124 A1 Feb 2014 US
Provisional Applications (1)
Number Date Country
61166130 Apr 2009 US
Continuation in Parts (1)
Number Date Country
Parent 12752335 Apr 2010 US
Child 13924439 US