This invention relates to an apparatus and method for obturating a root canal.
Dental root canal treatment generally involves three stages: shaping, cleaning, and obturation (generally involving filling and sealing). Ultimately, the goal of a root canal treatment is to eliminate the infection inside the dental root system and to tightly seal or obturate the small opening at the end of the root canal (i.e., the apex). Failure to completely seal the apex or the root canal leads to micro-leakage, which will allow future bacteria colonization inside the root canal system, re-infection, and possible loss of the tooth. Micro-leakage is the most common cause of tooth failure.
Traditional methods of obturating an extirpated or stripped root canal commonly involve packing the root canal with a thermoplastic material, such as gutta percha (e.g., trans 1-4 polyisoprene or polysulfone), so that the root canal space is filled with the thermoplastic material. The filling material is generally shaped into a slender cone having a small taper angle (e.g., 5 to 10 degrees). Preferably, the space is filled with the thermoplastic material forming a seal that prevents leakage between the root canal and the surrounding tissue. To ensure that the thermoplastic material is positioned adjacent to the apex for a proper seal, clinicians attempt to locate the apex. Traditional methods of locating the apex, such as using x-rays and radiovisiographs, do not always provide the clinician with an accurate view of whether the thermoplastic material has reached filled the apex of the root canal.
A satisfactory seal can be formed by softening the thermoplastic material by heating it prior to inserting it into the root canal. Conventionally, the gutta percha is applied to a carrier, often made of plastic, prior to insertion into the root canal in order to facilitate insertion. A carrier may be pre-coated with the gutta percha. However, carriers pre-coated with gutta percha are expensive to purchase, and a less expensive means is desired for applying gutta percha to a carrier. The carrier is often designed to permanently stay inside the root canal system as part of the final seal. When root canal retreatment is needed, the presence of the carrier may present difficulties when attempting to regain access to the apex area of the root canal. For instance, a rotating file often has difficulty penetrating the carrier, and instead simply slides to one side of the carrier.
By providing a carrier formed of a thermoset material (e.g., gutta percha), retreatment of a root canal may be simplified. Ideally, the improved carrier composition would have a desirable stiffness while generally being capable of maintaining its shape after the application of heat (e.g., during retreatment of a tooth). Additionally, providing an improved method of locating the apex of the root canal during obturation will improve the efficacy of the seal.
The present invention provides an endodontic obturator for obturating a root canal including a wire made of a conductive material, a carrier configured to releasably couple to the wire, the carrier being made of a first thermoset material, and a sheath configured to receive the carrier, the sheath being made of a second thermoset material. A melting temperature of the second thermoset material is lower than a melting temperature of the first thermoset material.
The present invention provides a method of obturating a root canal using an endodontic obturator comprising a wire, a carrier, and a sheath. The method includes positioning the endodontic obturator in the root canal, ensuring the endodontic obturator is in a proper position by locating an apex of the root canal using the wire, sealing an apex of the root canal with the sheath, and removing the wire from the obturator.
The present invention further provides a method of making an endodontic obturator including molding a carrier made of a first thermoset material around a conductive wire, molding a sheath made of a second thermoset material, and coupling the carrier and the sheath.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description given below, serve to explain the invention.
Referring first to
With reference now to
With further reference to
In an embodiment, the thermoset material (e.g., gutta percha) used to form the carrier 12 and the sheath 14 may include a matrix of thermoset material with heat conductive particles dispersed in the matrix (not shown). The heat conductive particles improve the thermal mechanical properties of gutta percha, for example, by increasing the heat conductivity of the gutta percha. Using the improved gutta percha material in the endodontic obturator 10 reduces the operating temperature for root canal treatment procedures. Additionally, when the sheath 14 cools, the gutta percha undergoes a slight dimensional expansion instead of the conventional shrinkage, which allows for a better seal between the endodontic obturator 10 and the root canal 20. The heat conductive particles may be of sub-micron size and are preferably bio-inert. The shape of the particles may be regular, irregular, symmetrical or non-symmetrical, having random or specific geometrical shapes (e.g., spherical, ellipsoidal, disc, etc.). The characteristic size of the particles is on the order of 1 micron or less and need not be uniform. In an embodiment, the characteristic size is 0.5 to 1 micron. In another embodiment, the characteristic size is on the order of 100 nm or less, in the nanoparticle range. The heat conductive particles may be generally or substantially the same size, or have random sizes within the prescribed size range. The particles may be made of high heat conductive metal, non-metal, organic or inorganic materials, including without limitations zinc oxide, magnesium silicate, gold, silver, titanium, diamond, etc. The type, quantity, and/or size of the heat conductive particles may be varied to alter the thermal characteristics of the gutta percha material. For example, a larger quantity of heat conductive metal particles may be added to the matrix to create a lower melting temperature. For another example, non-conductive particles may also be added with the heat conductive particles to create a higher melting temperature.
With reference again to
Still referring to
A method of using the endodontic obturator 10 during a dental root canal treatment process will be described with reference to
Once the sheath 14 has sealed the apex 38 of the root canal 20, the clinician may remove the wire 18 from the endodontic obturator 10. As shown in
In an embodiment, a method of making the endodontic obturator 10 includes molding the carrier 12 around the wire 18, molding the sheath 14, and coupling the carrier 12 and sheath 14. The wire 18 is secured to the first handle portion 46. High temperature gutta percha is molded around the wire 18 to form the carrier 12. A portion of the wire 18 will extend out of the second end 28 of the carrier 12. The sheath 14 is molded over the carrier 12 and the portion of the wire 18 extending from the carrier 12 using low temperature gutta percha (i.e., gutta percha with a lower melting temperature than the gutta percha used to mold the carrier 12).
One of ordinary skill will recognize that other methods of making the endodontic obturator 10 are possible. For example, in an embodiment, the wire 18 may be inserted into the carrier 12 and the sheath 14. In another embodiment, the carrier 12 may be glued into the sheath 14. In a further embodiment, the sheath 14 is molded separately from the carrier 12, and the carrier 12 and sheath 14 are coupled using an interference fit. To create an interference fit, the carrier 12 is slightly larger than the cavity 40 of the sheath 14. For example, in an embodiment where the carrier 12 includes the tapered body 24 having a 4% taper and the second end 28 having a 0.25 mm tip, the sheath 14 may include the tapered body 32 having a 4% taper and the tip 44 of the cavity 40 being a 0.20 mm tip. The carrier 12 may be inserted through a silicone stopper (not shown) to facilitate the process of coupling the carrier 12 and the sheath 14. The stopper may be positioned about 16 mm to 18 mm up the carrier 12 from the second end 28. The carrier 12 is then carefully inserted into the cavity 40 of the sheath 14. The carrier 12 may be pushed as far as possible within the cavity 40 without breaking the carrier 12 or the sheath 14 to create an interference fit.
While the present invention has been illustrated by the description of specific embodiments thereof, and while the embodiments have been described in considerable detail, it is not intended to restrict or in any way limit the scope of the appended claims to such detail. The various features discussed herein may be used alone or in any combination. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope of the general inventive concept.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/216,846 filed Sep. 10, 2015, the disclosure of which is expressly incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62216846 | Sep 2015 | US |