Not Applicable.
Field
The disclosed subject matter is generally directed to devices that can be used during oral surgery, and more particularly, to a dental surgical suction apparatus.
Description of Related Art
It is a known dental practice to employ an evacuating device, commonly called a saliva ejector, for removing saliva and debris from the mouth of a patient during the performance of dental work, such as cleaning and filling teeth. An illustration of a known saliva ejector is shown in
Known saliva ejectors, however, can be inefficient for providing sufficient suction, especially during oral surgery procedures and sedation, where keeping saliva and blood secretions from the throat can be critical. Often, when there is a lot of bleeding and thick saliva, known saliva ejectors can get clogged with blood or saliva, causing them to lose efficiency. In this situation, excessive saliva and blood could be allowed to go down a patient's throat. Flex-tube ejectors can be bendable and can hang in a patient's mouth, but they can often pull out of their holder on a suction tube.
Moreover, a dentist cannot simply stick a saliva ejector into the receiving suctioning port for a surgical suction tip. The saliva ejector tubing is typically one consistent diameter and the opening of a standard suctioning port for a surgical suction tip is much too large.
In a dental surgical suction apparatus embodying the principles disclosed herein, a novel illustrative embodiment can include the features and benefits of a surgical suction tip with the features and benefits of a saliva ejector. The illustrative embodiments can have the effect of creating a more powerful suction force than provided by a saliva ejector by itself and can allow for better suctioning during oral surgery procedures and sedation, where keeping saliva and blood secretion from the throat can be critical, while also providing a device that is less traumatic to a patient's mouth.
One general aspect includes a dental surgical suction apparatus, including a rigid tubular handle portion configured on one end to releasably attach to a receiving port configured to receive a surgical suction tip on one end; a flexible tube portion connected to another end of the rigid tubular handle portion; and a soft tip portion connected to another end of the flexible tube portion, where the soft tip portion includes a plurality of openings configured to minimize complete obstruction during suctioning.
Implementations may include one or more of the following features. The dental surgical suction apparatus, where the receiving port is configured to be operatively connected to a vacuum source to provide for a suction through the dental surgical suction apparatus. The dental surgical suction apparatus where the rigid tubular handle portion and flexible tube portion are non-releasably attached. The dental surgical suction apparatus where the rigid tubular handle portion and flexible tube portion are releasably attached. The dental surgical suction apparatus where the flexible tube portion and soft tip portion are non-releasably attached. The dental surgical suction apparatus where the flexible tube portion and soft tip portion are releasably attached. The dental surgical suction apparatus where the inside diameter of the rigid tubular handle portion is greater than the inside diameter of the flexible tube portion.
One general aspect includes a method of making a dental surgical suction apparatus, including: providing a rigid tubular handle portion configured to releasably attach to a receiving port configured to receive a surgical suction tip on one end; connecting a flexible tube portion to another end of the rigid tubular handle portion; and connecting a soft tip portion to another end of the flexible tube portion, where the soft tip portion includes a plurality of openings configured to minimize complete obstruction during suctioning.
Implementations may include one or more of the following features. The method further including operatively connecting the receiving port to a vacuum source to provide for a suction through the dental surgical suction apparatus.
As will be realized, different embodiments are possible, and the details disclosed herein are capable of modification in various respects, all without departing from the scope of the claims. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature and not as restrictive. Like reference numerals or characters are used throughout the several views and embodiments to designate like components.
To facilitate an understanding of the principles upon which the subject matter disclosed herein is based, illustrative embodiments are described hereinafter with reference to their implementation as a dental surgical suction apparatus. It will be appreciated that the practical applications of these principles are not limited to this particular type of system. Rather, they can be equally employed in any other type of system that can provide for the efficient suctioning of various materials.
In an embodiment, rigid handle portion 110 can be made of a substantially rigid or inflexible material, such as plastic, metal, glass, rubber, or other suitable materials, to name a few non-limiting examples. In an embodiment, rigid handle portion 110 can be made of high-density polyethylene (HDPE) or PVC and manufactured by injection molding.
In an embodiment, flexible tube portion 140 can be made of a substantially flexible material, such as plastic, rubber, or other suitable materials and can be releasably or non-releasably attached to rigid handle portion 110. In an embodiment, flexible tube portion 140 can be wire-reinforced to easily form and maintain a desired shape. In an embodiment, flexible tube portion 140 can be made of flexible PVC and manufactured by an extrusion process.
In an embodiment, a tubular, for example, soft tip portion 150 can be releasably or non-releasably attached to flexible tube portion 140. In an embodiment, soft tip portion 150 can be attached to flexible tube portion by any suitable means, such as a friction fit, threaded connection, or a coupling, to name a few non-limiting examples.
In an embodiment, soft tip portion 150 can include a plurality of openings 160 that can help to minimize complete obstruction during suctioning, such as when a large particle or foreign body is encountered.
In an embodiment, soft tip portion 150 can be made of plastic, metal, glass, or rubber, for example, to name a few non-limiting examples. In an embodiment, soft tip portion can be made of soft materials to cushion upon contact. In an embodiment, soft tip portion 150 can be made of flexible PVC and manufactured by injection molding.
In an embodiment, the inside diameter of flexible tube portion 140 can be essentially constant. In an embodiment, the inside diameter of rigid handle portion 110 can be essentially constant or decreasing from where it attaches to receiving port 120 (e.g., greater diameter) to where it attaches to flexible tube portion 140 (e.g., smaller diameter). For example, the outside diameter of flexible tube portion 140 can be essentially the same size as the inside diameter of rigid handle portion 110 where they attach. In an embodiment, the outside diameter of rigid handle portion 110 can be sized to snugly fit into receiving port 120, thus providing a more powerful suctioning force of a surgical suctioning tip system with the benefits of a saliva ejector tip.
In an embodiment, several potential fitment solutions exist. For example, a press fit arrangement can be used where the parts, e.g., the rigid handle portion 110, the flexible tube portion 140, and soft tip portion 150 can be designed to have a snug friction fit. In some cases, the soft tip portion 150 may be too flexible to be rigidly retained onto the flexible tube portion 140 and may need to be bonded. In an embodiment, flexible tube portion 140 can be rigidly retained onto rigid handle portion 110.
In an embodiment, cohesive bonding using radio-frequency (RF) welding can be used to bond PVC parts. Ultrasonic welding and vibration welding can be used to bond olefinic parts. Adhesive bonding, e.g., solvent bonding, can be used with PVC parts and cyanoacrylate adhesive can be used for polyethylene parts, for example.
Various embodiments can have different materials and methods of fitment employed. For example, rigid handle portion 110 can be made of rigid PVC, flexible tube portion 140 can be made of flexible PVC and the soft tip portion 150 can be made of flexible PVC. The portions can be chemically bonded or joined using RF welding. In another non-limiting example, rigid handle portion 110 can be made of rigid HDPE, flexible tube portion 140 can be made of flexible PVC and soft tip portion 150 can be made of flexible PVC. Rigid handle portion 110 and flexible tube portion 140 can be chemically bonded whereas the soft tip portion 150 and flexible tube portion 140 can be chemically bonded. In another non-limiting example, rigid handle portion 110 can be made of HDPE, and flexible tube portion 140 and soft tip portion 150 can be made of thermoplastic olefin (TPO). Again, appropriate fitment techniques may be used.
In some cases the materials can be food-grade, rather than medical-grade plastics, for example. The materials chosen can be resistant to radiation to allow sterilization when packaged.
The disclosed embodiments can provide a novel solution to problems that dentists face everyday in their practice. The disclosed embodiments can allow dentists to improve their efficiency without any significant changes in the way they currently perform their suctioning procedures.
The illustrative embodiments disclosed herein can provide desirable features found in a saliva ejector, such as a tip that allows the device to be gentle on the oral and gingival tissue, causing less trauma during suctioning. Additionally, the tip can have multiple openings that help to prevent complete obstruction during suctioning, such as when a large particle or foreign body is encountered. Moreover, a flexible portion can allow it to be bent in any direction and can be maintained in a bent position.
Similarly, the illustrative embodiments disclosed herein can provide desirable features found in a surgical suction tip, such as providing for more powerful and efficient suctioning of saliva and blood. Additionally, a portion of the dental surgical suction apparatus can be rigid, which can allow for more stability during use. A larger bore can also allow more saliva and blood to be removed during suctioning.
The above description is presented to enable a person skilled in the art to make and use the systems and methods described herein, and is provided in the context of a particular application and its requirements. Various modifications to the embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the claims. Thus, there is no intention to be limited to the embodiments shown, but rather to be accorded the widest scope consistent with the principles and features disclosed herein.
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/789,772, filed Mar. 15, 2013, the disclosure of which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/059861 | 3/15/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/141215 | 9/18/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4083115 | McKelvey | Apr 1978 | A |
4487600 | Brownlie | Dec 1984 | A |
4878900 | Sundt | Nov 1989 | A |
5013300 | Williams | May 1991 | A |
5441410 | Segerdal | Aug 1995 | A |
5464397 | Powers, Jr. | Nov 1995 | A |
5704785 | Young | Jan 1998 | A |
6068476 | Point | May 2000 | A |
6129547 | Cise | Oct 2000 | A |
6159226 | Kim | Dec 2000 | A |
6183254 | Cohen | Feb 2001 | B1 |
6280190 | Hoffman | Aug 2001 | B1 |
6299444 | Cohen | Oct 2001 | B1 |
7066903 | Yarger | Jun 2006 | B2 |
7335023 | Mahlmann | Feb 2008 | B2 |
7625207 | Hershey | Dec 2009 | B2 |
7744371 | Griffin | Jun 2010 | B1 |
7938794 | Rehman | May 2011 | B2 |
8545401 | Hajarian | Oct 2013 | B2 |
8845618 | Hensler | Sep 2014 | B2 |
9283308 | Hajarian | Mar 2016 | B2 |
20010024778 | Hoffman | Sep 2001 | A1 |
20030054317 | Burney | Mar 2003 | A1 |
20080145815 | Hershey | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
9320776 | Oct 1993 | WO |
Number | Date | Country | |
---|---|---|---|
20160038661 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61789772 | Mar 2013 | US |