Claims
- 1. In a rotating deoiler for a jet engine, said deoiler being installed in an environment of an air/oil mixture and having a housing and passage means for the flow of said mixture therethrough, means for first stage separation of oil from the air including first vanes for centrifugally forcing oil droplets in said mixture outwardly from said deoiler into casing means containing said air/oil mixture, means for second stage separation of oil from the air including second vanes mounted between inner and outer conical walls for centrifugally forcing oil droplets in said air/oil mixture outward through first holes in the perimeter of the deoiler housing, windows in said inner conical wall for the flow therethrough of the air/oil mixture to a third separation stage, and means for third stage separation of oil from the air including third vanes mounted between said second stage vane inner conical wall and a third wall for centrifugally forcing any remaining oil droplets in said air/oil mixture outward through second holes in the perimeter of the deoiler housing, the improvement of the extension of said first vanes along the outer surface of said second vanes outer conical wall and the addition to the leading edge of said first vanes of inducer vanes curved in the direction of rotation of the deoiler.
- 2. In a rotating deoiler for a jet engine, said deoiler being installed in an environment of an air/oil mixture and having a housing and passage means for the flow of said mixture therethrough, means for first stage separation of oil from the air including first vanes for centrifugally forcing oil droplets in said mixture outwardly from said deoiler into casing means containing said air/oil mixture, means for second stage separation of oil from the air including second vanes mounted between inner and outer conical walls for centrifugally forcing oil droplets in said air/oil mixture outward through first holes in the perimeter of the deoiler housing, windows in said inner conical wall for the flow therethrough of the air/oil mixture to a third separation stage, and means for third stage separation of oil from the air including third vanes mounted between said second stage vane inner conical wall and a third wall for centrifugally forcing any remaining oil droplets in said air/oil mixture outward through second holes in the perimeter of the deoiler housing, the improvement of second vanes mounted so that they are laid over about 30 degrees in the direction of rotation of the deoiler.
- 3. In a rotating deoiler for a jet engine, said deoiler being installed in an environment of an air/oil mixture and having a housing and passage means for the flow of said mixture therethrough, means for first stage separation of oil from the air including first vanes for centrifugally forcing oil droplets in said mixture outwardly from said deoiler into casing means containing said air/oil mixture, means for second stage separation of oil from the air including second vanes mounted between inner and outer conical walls for centrifugally forcing oil droplets in said air/oil mixture outward through first holes in the perimeter of the deoiler housing, windows in said inner conical wall for the flow therethrough of the air/oil mixture to a third separation stage, and means for third stage separation of oil from the air including third vanes mounted between said second stage vane inner conical wall and a third wall for centrifugally forcing any remaining oil droplets in said air/oil mixture outward through second holes in the perimeter of the deoiler housing, the improvement of second vanes mounted so that they are laid over about 30 degrees in the direction of rotation of the deoiler, windows in said inner conical wall for said second stage contoured with a circumferentially extending outer wall, a side wall substantially parallel and adjacent to a laid over second vane in the direction of rotation and an opposite side wall which is essentially radial in extent.
- 4. A deoiler for a jet engine, said deoiler being mounted on a rotating drive shaft installed in an environment of an air/oil mixture and having a peripheral housing and passage means for the flow of said mixture therethrough, means for first stage separation of oil from the air including first vanes for centrifugally forcing oil droplets in said mixture outwardly from said deoiler into casing means containing said air/oil mixture, said vanes extending radially outward from a first outer conical wall portion of said deoiler housing and having curved inducer vanes at their leading edge, means for second stage separation of oil from the air including second vanes mounted between said first outer conical wall and an inner conical wall for centrifugally forcing oil droplets in said air/oil mixture outwardly through first holes in the perimeter of the deoiler housing, said second vanes being mounted so that they are laid over in the direction of rotation of the deoiler, windows in said inner conical wall for the flow therethrough of the air/oil mixture to a third separation stage, and means for third stage separation of oil from the air including radially extending third vanes mounted between said second stage vane inner conical wall and a third wall for centrifugally forcing any remaining oil droplets in said air/oil mixture outwardly through second holes in the perimeter of the deoiler housing.
- 5. A deoiler for a jet engine, said deoiler being mounted on a rotating drive shaft installed in an environment of an air/oil mixture and having a peripheral housing and passage means for the flow of said mixture therethrough, means for first stage separation of oil from the air including first vanes for centrifugally forcing oil droplets in said mixture outwardly from said deoiler into casing means containing said air/oil mixture, said vanes extending radially outward from a first outer conical wall portion of said deoiler housing and having curved inducer vanes at their leading edge, means for second stage separation of oil from the air including second vanes mounted between said first outer conical wall and an inner conical wall for centrifugally forcing oil droplets in said air/oil mixture outwardly through first holes in the perimeter of the deoiler housing, said second vanes being mounted so that they are laid over in the direction of rotation of the deoiler, windows in said inner conical wall for the flow therethrough cf the air/oil mixture to a third separation stage, said windows having an outer wall substantially parallel to the deoiler perimeter, a side wall substantially parallel and adjacent to a laid over vane in the direction of rotation, and an opposite side wall which extends in substantially a radial direction.
- 6. A deoiler for a jet engine, said deoiler being mounted on a rotating drive shaft installed in an environment of an air/oil mixture and having a peripheral housing and passage means for the flow of said mixture therethrough, means for first stage separation of oil from the air including first vanes for centrifugally forcing oil droplets in said mixture outwardly from said deoiler into casing means containing said air/oil mixture, said vanes extending radially outward from a first outer conical wall portion of said deoiler housing and having curved inducer vanes at their leading edge, means for second stage separation of oil from the air including second vanes mounted between said first outer conical wall and an inner conical wall for centrifugally forcing oil droplets in said air/oil mixture outwardly through first holes in the perimeter of the deoiler housing, said second vanes being mounted so that they are laid over in the direction of rotation of the deoiler, windows in said inner conical wall for the flow therethrough of the air/oil mixture to a third separation stage, said windows having an outer wall substantially parallel to the deoiler perimeter, a side wall substantially parallel and adjacent to a laid over vane in the direction of rotation, and an opposite side wall which extends in substantially a radial direction, the perimeter of the back side of said windows having lip means found thereon.
- 7. A deoiler for a jet engine, said deoiler being mounted on a rotating drive shaft installed in an environment of an air/oil mixture and having a peripheral housing and passage means for the flow of said mixture therethrough, means for first stage separation of oil from the air including first vanes for centrifugally forcing oil droplets in said mixture outwardly from said deoiler into casing means containing said air/oil mixture, said vanes extending radially outward from a first outer conical wall portion of said deoiler housing and having curved inducer vanes at their leading edge, means for second stage separation of oil from the air including second vanes mounted between said first outer conical wall and an inner conical wall for centrifugally forcing oil droplets in said air/oil mixture outwardly through first holes in the perimeter of the deoiler housing, said second vanes being mounted so that they are laid over about 30 degrees in the direction of rotation of the deoiler, windows in said inner conical wall for the flow therethrough of the air/oil mixture to a third separation stage, said windows having an outer wall substantially parallel to the deoiler perimeter, a side wall substantially parallel and adjacent to a laid over vane in the direction of rotation, and an opposite side wall which extends in substantially a radial direction, a drive shaft on which said deoiler is mounted, and holes in said drive shaft through which air flows to the interior of the shaft after third stage oil separation.
Government Interests
The invention was made under a U.S. Government contract and the Government has rights herein.
US Referenced Citations (13)