Deployable and storable inflatable building

Information

  • Patent Grant
  • 6453619
  • Patent Number
    6,453,619
  • Date Filed
    Tuesday, November 7, 2000
    24 years ago
  • Date Issued
    Tuesday, September 24, 2002
    22 years ago
Abstract
A canopy which can be inflated, deployed and retracted by inflation and deflation, respectively. The canopy includes a plurality of beams arranged side by side, an apparatus for supplying the inflatable beams with pressurized fluid, an apparatus for sliding the beams along a rigid beam and at least one orifice made in the wall of the rigid beam placing the apparatus for supplying pressurized-fluid-supply in communication with the inner space of the inflatable beams. The canopy also includes an apparatus for successive positioning of the inner space of each inflatable beam opposite the orifice of the rigid beam to guarantee inflation of the beams by the pressurized fluid from the upper beam to the lower beam and their deflation from the lower beam to the upper beam.
Description




BACKGROUND OF THE INVENTION




The subject of the present invention is a canopy which can be inflated, deployed and retracted by means of inflation and deflation, respectively.




Generally speaking, inflatable canopies comprise a plurality of longitudinal beams placed side by side, means for sliding at least one end of the beams along at least one deployment and refolding path and means for supplying the beams with pressurized fluid.




This type of canopy is designed, amongst other things, to allow its deployment by simple inflation and its retraction by deflation, which makes it possible, at will, to cover over a space in order to protect it against bad weather and to uncover it in fine weather.




Such a canopy may be used temporarily to cover over diverse installations such as, for example, a stadium or a swimming pool.




An inflatable canopy in which each beam includes two opposite panels forming a flange and each constituting one of the lobes of the inner and outer wall of the canopy and two lateral panels forming the web of the beam is known, more particularly, from FR-A2,621,944.




The means for supplying each beam with inflation fluid are formed by at least one conduit passing through the beams and being extendible in terms of its length, its drawing-out and its retraction being controlled by the deployment and retraction, respectively, of the canopy.




In this canopy, the supply conduit is common to all the beams and communicates with each of the beams via an orifice which can be closed off and is controlled by closing-off means and the supply conduit passes through, in a leaktight manner, an opening made in each of the panels of the beams.




An inflatable beam in which the sliding means of the beams are formed by a pressurized-fluid-conveying channel for the inflation or deflation of the beams communicating, firstly, at at least one of its ends with the pressurized-fluid-supply means and, secondly, with the inside of at least one inflatable beam via at least one orifice made in the wall of the channel and equipped with closing-off means is also known from FR-A-2,734,856.




The closing-off means are formed by leaktight gates associated with means for controlling their opening or their closing.




However, a structure of this type poses problems of leaktightness and is complex because of the design of the inflation or deflation means and the closing-off means.




SUMMARY OF THE INVENTION




The subject of the invention is therefore a canopy which can be inflated, deployed and retracted by inflation and deflation, respectively, the canopy comprising:




a plurality of inflatable beams arranged side by side;




means for supplying the inflatable beams with pressurized fluid;




means for sliding the beams along at least one deployment or refolding path formed by a rigid beam passing, in a leaktight manner, through these beams and forming a fluid-conveying channel linked to the pressurized-fluid-supply means;




at least one orifice made in the wall of the rigid beam placing the pressurized-fluid-supply means in communication with the inner space of the inflatable beams;




means for the leaktight linking of the adjacent walls of the contiguous inflatable beams around the rigid beam;




means for spacing, around the rigid beam, the walls of the upper inflatable beam;




at least one bearing element of the inflatable beams; characterized in that the canopy includes means for successive positioning of the inner space of each inflatable beam opposite the orifice of the rigid beam to guarantee inflation of the beams by the pressurized fluid from the upper beam to the lower beam and their deflation from the lower beam to the upper beam.




According to other characteristics of the invention:




the means for successive positioning of the inner space of each inflatable beam opposite the orifice are actuated automatically by the flow of pressurized fluid supplying the inflatable beams,




the orifice of the rigid beam is located opposite the inner space of the upper beam in the deflated state of the inflatable beams and opposite the inner space of the lower beam in the inflated state of the inflatable beams,




the means for successive positioning of the inner space of each inflatable beam are formed by at least one wedge associated with the stacking of the inflatable beams and arranged in the vicinity of the rigid beam,




the wedge is formed by an inflatable cushion, which can be retracted by deflation, communicating with the pressurized-fluid-supply means or with the outside air via a three-way valve,




the pressurized-fluid-supply means of the cushion are formed by the pressurized-fluid-supply means of the inflatable beams,




the wedge is formed by a superposition of inflatable cushions which can be retracted by deflation, each cushion being connected separately, by means of a valve, to a pressurized-fluid-supply source,




the means for successive positioning of the inner space of each inflatable beam are formed by at least one ram arranged between the lower beam and the corresponding bearing element and below the means for leaktight linking of the lower wall of the beam around the rigid beam;




the positioning means also comprise at least one auxiliary wedge arranged in the inner space of an inflatable beam and in the vicinity of the rigid beam, the auxiliary wedge being formed by an inflatable cushion, which can be retracted by deflation, communicating with the inner space of the inflatable beam located above;




at least one communication orifice is made between two contiguous inflatable beams, equipped with a non-return valve arranged above this orifice and displaceable between an open position placing the inner spaces of the contiguous inflatable beams in communication and a closed position closing off the orifice;




the pressurized-fluid-supply means are formed by an exhauster including a delivery orifice and an aspiration orifice and by a member for reversing the direction of flow of the fluid formed by a hose intended to be connected to one of the orifices and including a non-return valve;




the canopy includes at least one cushion for lifting the upper beam during refolding of the canopy, the cushion being inflatable and retractable by deflation and being arranged between the upper inflatable beam and the corresponding bearing element.











BRIEF DESCRIPTION OF THE DRAWINGS




Further characteristics and advantages of the invention will become apparent during the following description which is given with reference to the appended drawings, in which:





FIG. 1

is a diagrammatic perspective view of a deployable and retractable canopy according to the invention;





FIG. 2

is a diagrammatic view in transverse section of the inflatable canopy according to the invention;





FIGS. 3 and 4

are diagrammatic views in transverse section showing the means for successive positioning of the inner space of each inflatable beam;





FIG. 5

is a diagrammatic view in transverse section showing a variant of the means for successive positioning of the inner space of each inflatable beam;





FIG. 6

is a view in transverse section showing the leaktight linking means of the adjacent walls of an inflatable beam;





FIG. 7

is a sectional view along the line


7





7


in

FIG. 6

;





FIGS. 8 and 9

are diagrammatic views in transverse section of the means for supplying the inflatable beams with pressurized fluid;





FIG. 10

is a diagrammatic view in transverse section of a second embodiment of a deployable and retractable canopy according to the invention;





FIG. 11

is a diagrammatic view showing the link between the supply means and the upper inflatable beam;





FIG. 12

is a diagrammatic view in transverse section showing the lifting cushions of the upper beam during refolding of the canopy;





FIG. 13

is a diagrammatic view in transverse section showing a third embodiment of a deployable and retractable canopy according to the invention;





FIG. 14

is a diagrammatic view in transverse section showing a fourth embodiment of a deployable and retractable canopy according to the invention;





FIG. 15

is a diagrammatic half-view in transverse section of a variant of the means for successive positioning of the inner space of each inflatable beam;





FIG. 16

is a diagrammatic half-view in transverse section of a further variant of the means for successive positioning of the inner space of each inflatable beam;





FIGS. 17 and 18

are diagrammatic views in transverse section of a variant of the means for supplying the inflatable beams with pressurized fluid;





FIG. 19

is a partial diagrammatic view of a variant of a bearing element of the beams.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIGS. 1 and 2

diagrammatically show an inflatable canopy


1


including a plurality of longitudinal inflatable beams A, B, C . . . M, N which are leaktight and arranged side by side in order to form the canopy


1


.




This canopy


1


may include a series of inflatable beams A, B, C . . . which covers over the space to be protected by itself or of two symmetrical series of inflatable beams A, B, C . . . covering over the entire space to be protected.




The beams A, B, C . . . are connected together longitudinally by linking means which are described below.




As shown in

FIG. 2

, each beam A, B, C . . . includes a tubular envelope


2


providing the continuity of the leaktightness of the volume it confines and composed of four zones, two lateral zones of which form the webs


3


and


4


and two, upper and lower, zones of which form an outer flange


5


and an inner flange


6


, respectively.




These beams A, B, C . . . are connected at at least one end to foundation or ballasting means


7


fastened to the ground.




The canopy


1


includes means for sliding the beams A, B, C . . . along at least one deployment or refolding path formed by a rigid beam


8


passing through these beams in a leaktight manner and forming a fluid-conveying channel connected to pressurized-fluid-supply means


9


.




In the embodiment shown in

FIGS. 1 and 2

, the canopy


1


also includes two bearing elements


10


, one for the inflatable beams A, B, C . . . in the deflated state and in contact with the lower inflatable beam N and the other, opposite, in contact with the upper inflatable beam A when the beams are in the inflated state.




These bearing elements


10


are each formed, for example, by an arch-shaped support extending parallel to the beam with which it is in contact. Each bearing element


10


is, firstly, fastened to the ground at both of its ends and, secondly, supported in its central part by the rigid beam


8


.




Depending on its structure, the canopy


1


may include only one bearing element


10


.




To permit inflation of the beams A, B, C . . . or the deflation of these beams, the wall of the rigid beam


8


includes at least one orifice


11


placing the pressurized-fluid-supply means


9


in communication with the inner space


2




a


of the inflatable beams one after the other.




If the canopy


1


includes a series of inflatable beams A, B, C . . . , the wall of the rigid beam


8


includes an orifice


11


arranged above the bearing element


10


of the inflatable beams A, B, C . . . in the deflated state and if the canopy includes two series of inflatable beams A, B, C . . . and A′, B′, C′ . . . the wall of the rigid beam


8


includes two orifices


11


each arranged above the bearing element


10


of these beams of each series in the deflated state.




Generally speaking, the orifice


11


of the rigid beam


8


is located opposite the inner space


2




a


of the upper beam A in the deflated state of the inflatable beams A, B, C . . . , as shown in

FIG. 3

, and opposite the inner space of


2




a


of the lower beam N in the inflated state of the inflatable beams.




As shown more particularly in

FIGS. 3 and 4

, the means for leaktight linking of the adjacent walls of the contiguous inflatable beams A, B, C . . . are formed, for example, by plates


12


which hold the lateral walls


3


and


4


of the contiguous beams A, B, C . . . and which slide in a leaktight manner over the rigid beam


8


during inflation or deflation of the beams A, B, C . . . .




Around the rigid beam


8


, the upper beam A includes means for separating the lateral walls


3


and


4


of this upper beam A.




These separation means are formed, for example, by spacers


13


arranged between the plates


12


and holding the lateral walls


3


and


4


, respectively of the upper beam A apart.




Thus, the spacers


13


make it possible to keep the lateral walls


3


and


4


of the upper beam A apart in such a manner that the inner space


2




a


of the upper beam A is opposite the orifice


11


when the inflatable beams A, B, C . . . are in the deflated state, as shown in FIG.


3


.




Finally, the canopy


1


includes means


20


for successive positioning of the inner space


2




a


of each inflatable beam A, B, C . . . opposite the orifice


11


of the rigid beam


8


for inflation of the beams A, B, C . . . by the inflation fluid from the upper beam A to the lower beam N and their inflation from the lower beam N to the upper beam A.




The means


20


for successive positioning of the inner space


2




a


of each inflatable beam A, B, C . . . opposite the orifice


11


may be actuated automatically by the flow of pressurized fluid for supplying these inflatable beams.




These positioning means


20


are formed by at least one wedge


21


associated with the stacking of the inflatable beams A, B, C . . . and arranged in the vicinity of the rigid beam


8


.




The wedge


21


is arranged either inside the lower inflatable beam N, as shown in

FIGS. 3 and 4

or between the lower beam N and the bearing element


10


of the inflatable beams A, B, C . . . in the deflated state.




The wedge


21


consists, for example, of a single wedge arranged on one side of the rigid beam


8


or by two independent wedges arranged on either side of this rigid beam


8


or by a single wedge in the form of a ring arranged around the rigid beam


8


.




Preferably, the wedge


21


is formed by an inflatable cushion, which can be retracted by deflation, communicating with the pressurized-fluid-supply means


9


.




To this end, the cushion


21


is connected to a three-way valve


22


by a conduit


23


and this three-way valve


22


communicates, firstly, with the rigid beam


8


via a conduit


24


or, secondly, with a conduit


25


to the outside air, as shown in

FIGS. 3 and 4

.




The contiguous inflatable beams A, B, C . . . communicate with one another via an orifice


15


made in the plates


12


connecting the lateral walls


3


and


4


of the contiguous inflatable beams A, B, C . . .




Each orifice


15


is equipped with a non-return valve


16


consisting, for example, of a flexible membrane which is displaceable between an open position placing the inner spaces


2




a


of the contiguous inflatable beams A, B, C . . . in communication and a closed position closing off the corresponding orifice


15


. The non-return valve


16


is arranged above the orifice


15


, i.e. on the upper face of the corresponding plate


12


.




According to a variant shown in

FIG. 5

, the means for successive positioning of the inner space


2




a


of each inflatable beam A, B, C . . . opposite the orifice


11


of the rigid beam


8


also comprise at least one auxiliary wedge


26


arranged in the inner space


2




a


of at least one inflatable beam A, B, C . . . and in the vicinity of the rigid beam


8


.




Preferably, the auxiliary wedge


26


is positioned above the wedge


21


.




In the illustrative embodiment shown in

FIG. 5

, the auxiliary wedge


26


is arranged in the inner space


2




a


of the inflatable beam B contiguous with the upper inflatable beam A.




The auxiliary wedge


26


may be arranged in the inner space


2




a


of another inflatable beam A, B, C . . . or in the inner space


2




a


of each of the inflatable beams.




The auxiliary wedge


26


is formed by an inflatable cushion, which can be retracted by deflation, communicating with the inner space


2




a


of the inflatable beam located above, via an orifice


27


.




The inflatable cushions forming the wedge


21


or the auxiliary wedge


26


preferably have an oblong cross section and are formed by a coated fabric of two layers woven together using the same threads and joined by a multitude of thread strands of the same length common to the two layers.




According to further variants, the positioning means


20


may include only the wedges


21


or the wedges


26


or, alternatively, the two wedges


21


and


26


arranged one on top of the other so as to compensate for the deformation of the beams A, B, C . . .




As shown in

FIG. 6

, the means for leaktight linking of the adjacent walls of the inflatable beams A, B, C . . . comprise a leaktight seal


28


, one end


28




a


of which is fastened to the corresponding plate


12


and the other end


28




b


of which bears slidably around the rigid beam


8


.




If the leaktight seal


28


is arranged on a plate


12


equipped with a communication orifice


15


, this leaktight seal


28


includes a flexible membrane


28




c


which forms the non-return valve


16


for closing off the orifice


15


.




The leaktight seal


28


and the membrane


28




c


are produced as a single component moulded from elastomere.




The rigid beam


8


is formed by a cylindrical tube and the orifice


11


made in its wall preferably includes two diametrically opposed openings


11




a


, as shown in FIG.


7


.




The openings


11




a


are equipped, substantially in their central part, with a transverse reinforcement plate


11




b


which is substantially parallel to the axis of the tube forming the rigid beam


8


.




With reference, now, to

FIGS. 8 and 9

, a description will be given of the pressurized-fluid-supply means


9


.




These pressurized-fluid-supply means


9


are formed by a turbo exhauster


30


including a roller


31


driven in rotation by a motor


32


and whose axis of rotation is, for example, arranged substantially vertically.




The turbo exhauster


30


also includes a member for reversing the direction of flow of the fluid formed by an S-bend hose


33


.




This hose


33


includes a first end


33




a


mounted pivotedly on a conduit


34


for linking with the rigid beam


8


via a revolving joint


35


.




The bent hose


33


is displaceable by means, for example, of a motor


36


between a first low position (

FIG. 8

) in which the second end


33




b


of the hose


33


is located opposite a delivery orifice


37


of the exhauster


30


and a high position (

FIG. 9

) in which the second end


33




b


is located opposite an aspiration orifice


38


of this exhauster


30


.




The bent hose


33


is equipped on the inside with a non-return valve


40


which is displaceable by means of gravity.




This non-return valve


40


consists, for example, of a ball which is displaceable between a first position (

FIG. 8

) in which the valve


40


rests on a seat


41


made inside the bent hose


33


and a second position (

FIG. 9

) in which the valve


40


is separated from the seat


41


.




The first position of the valve


40


corresponds to that position of the bent hose


33


in which the end


33




b


is opposite the delivery orifice


37


of the exhauster


30


and the second position of the valve


40


corresponds to the high position of the bent hose


33


in which the end


33




b


of this hose


33


is located opposite the suction orifice


38


of this exhauster


30


.




In this second position, gravity prevents closure of the valve


40


over the seat


41


.




In the embodiment shown in

FIG. 10

, the inflatable canopy, designated overall by the reference


1


, is formed from two series of inflatable beams A, B, C . . . and A′, B′, C′ . . . , respectively.




Each series of inflatable beams is identical to that of the preceding embodiments.




As shown in

FIG. 10

, some of the inflatable beams A, B, C . . . and some of the inflatable beams A′, B′, C′ . . . go beyond the summit position S of the corresponding rigid beam


8


when each series of inflatable beams is in the deployed state.




Thus, during their displacement, the inflatable beams A, B, C . . . and A′, B′, C′ . . . initially follow an ascending movement as far as this summit position S and then a descending movement beyond this position in order to close the canopy


1


.




To assist opening of each series of inflatable beams in opposition to gravity, the canopy includes at least one cushion


45


for lifting the upper beam A or A′ during refolding of each series of inflatable beams A, B, C . . . and A′, B′, C′ . . .




The cushion


45


is inflatable and retractable by deflation an connected directly and permanently via a flexible hose


46


to the delivery orifice


37


of the turbo exhauster


30


.




The lifting cushion


45


is preferably arranged between at least one of the ends of the upper inflatable beam A or A′ and the corresponding bearing element


10


.




According to a variant, the lifting cushion


45


may be arranged at the level of the rigid beam


8


and, in this case, the rigid beam


8


may pass through it.




According to a further variant, each of the lifting cushions


45


has one end fastened to the same foundation or ballasting means


7


, connected to the ground, as the ends of the inflatable beams A, B, C . . .




In the embodiment shown in

FIGS. 10 and 12

, the lifting cushion


45


is formed by a plurality of superposed cushions


45


connected to one another and to the upper beam A or A′ via orifices


47


which are each equipped with a non-return valve


48


providing the passage for the fluid from the lower lifting cushion


45


towards the other lifting cushions and the upper inflatable beam A or A′.




The lower lifting cushion


45


is connected directly and permanently to the delivery orifice


37


of the exhauster


30


via the flexible hose


46


.




According to a particular embodiment shown in

FIG. 11

, the upper beam A of the inflatable canopy


1


is connected directly and permanently to the delivery orifice


37


of the exhauster


30


via a flexible hose


49


whose end opens up into the upper beam A and is equipped with a non-return valve


50


.




According to an embodiment shown in

FIG. 13

, the rigid beam


8


which is formed by a curved beam is fastened at one of its ends


8




a


via a dismantlable mechanical link


51


to a stationary support, whilst its upper end


8




b


is mounted in an articulated manner so as to pivot, for example, on the corresponding bearing element


10


.




During assembly of the canopy


1


, the rigid beam


8


is tilted about its end


8




b


and the inflatable beams A, B, C . . . are flipped over the end


8




a


of the rigid beam


8


, as shown in broken lines in FIG.


13


.




Next, the rigid beam


8


is tilted in the opposite direction and its end


8




a


is fastened via the mechanical link


51


.




According to a last embodiment shown in

FIG. 14

, the bearing elements


10


have the shape of a trough


52


whose concave face matches the shape of the lower half of the inflatable beam with which it is in contact.




In the case of two symmetrical series of inflatable beams, each trough


52


forms a receptacle for receiving the beams A, B, C . . . in the deflated state.




The canopy


1


is deployed as follows:




As shown in

FIGS. 3 and 8

, in the folded state, the beams A, B, C . . . are deflated and bear on one another and the end


33




b


of the bent hose


33


is arranged opposite the delivery orifice


37


of the exhauster


30


.




In this position, the inner space


2




a


of the upper beam A is arranged opposite the orifice


11


by virtue of the spacers


13


for separating the lateral walls


3


and


4


from the upper beam A.




The exhauster


30


is switched on and the pressurized air penetrates, via the rigid beam


8


and the orifice


11


into the inner space


2




a


of the upper beam A which inflates at the same time as the cushions


21


via conduits


23


and


24


and the three-way valve


22


which places these conduits


23


and


24


in communication.




The upper beam A is deployed and rigidified, assuming the configuration shown in FIG.


4


and bearing on the cushions


21


.




The orifice


11


made in the rigid beam


8


is then located opposite the inner space


2




a


of the beam B which, in turn, inflates through the effect of the pressurized air.




Next, the other beams C . . . M, N are inflated one after the other in the same way and, when these beams have been inflated, the orifice


11


is opposite the inner space


2




a


of the lower beam N.




Thus, all the inflatable beams A, B, C . . . of the canopy


1


are inflated and this canopy is deployed.




If, during or after this deployment, the beams A, B, C . . . and M rise too rapidly and are not completely inflated to the required pressure, their pressurization is continued from the lower beam N via the orifices


15


made in the plates


12


, the valves


16


opening automatically through the effect of the fluid pressure.




For a canopy


1


including a significant number of inflatable beams A, B, C . . . , the cumulative weight of these beams combined with their flexibility may give rise to the phenomenon of the bearing forces on the cushions


21


not allowing their displacement above the orifice


11


, so that deployment of the canopy


1


is interrupted.




To prevent this interruption and to allow full deployment of the canopy


1


, the auxiliary cushions


26


which communicate with the beam located above that in which these auxiliary cushions


26


are installed (

FIG. 5

) are inflated and provide the necessary complementary wedging to complete deployment of the entire canopy


1


.




Once the completed canopy


1


has been deployed, the exhauster


30


is stopped and the valve


40


closes automatically, thereby isolating all the beams A, B, C . . . of the canopy


1


.




If, owing to various leaks, the pressure inside the beams A, B, C . . . drops slightly and has to be re-established, the exhauster


30


which has remained in the inflation configuration shown in

FIG. 8

is switched on again.




The air is blown into the lower beam N and then into the orifices


15


successively in the beams M . . . C, B, A.




The valves


16


open automatically when the pressure in the lower beam N is greater than that in the beam located above, and so on.




The beams A, B, C . . . of the canopy


1


are refolded as follows.




Firstly, the motor


36


controlling the pivoting of the bent hose


33


is switched on, which causes this bent hose


33


to rotate about its end


33




a


so as to position the end


33




b


opposite the suction orifice


38


of the exhauster


30


, as shown in FIG.


9


.




In this position, the ball forming the valve


40


falls under gravity into the bottom of the bent hose


33


and this valve


40


can no longer come into contact again with its seat


41


, so that the air can freely be aspirated from the lower beam N via the orifice


11


, the rigid beam


8


and the conduit


34


.




As the three-way valve


22


is held in the position in which it places the cushions


21


in communication with the exhauster


30


, the beam N progressively deflates at the same time as the cushions


21


.




The beams M . . . , C, B and A arranged above the lower beam N lose their support on this lower beam N and on the cushions


21


, with the result that these beams descend under gravity and are deflated one after the other when each inner space


2




a


of the beams M . . . , C, B and A arrives opposite the orifice


11


.




As each inner space


2




a


of these beams is not opposite the orifice


11


, each beam remains completely inflated, given that the valves


16


close automatically and prevent the passage of fluid between these beams.




The non-deflated part of the canopy retains its rigidity and can therefore pivot as a whole while continuing, for example, to withstand gusts of wind or to support snow.




With a view to improving this rigidity of the non-deflated beam during retraction, the upper beam A may be permanently supplied during this retraction by means of the flexible hose


46


connected to the delivery orifice


37


of the exhauster


30


.




If the inner spaces


2




a


of the beams A, B, C . . . have descended below the orifice


11


prior to being completely deflated, these beams may continue their deflation via the orifices


15


, the reduction in pressure engendered by the aspiration of the exhauster


30


opening the valves


16


.




In the case of a canopy whose deployment goes beyond the summit position of the rigid beam


8


, as shown, for example, in

FIG. 10

, the lifting cushions


45


are inflated in order to assist retraction of the beams of the canopy.




To this end, the same exhauster


30


is used and this exhauster


30


simultaneously deflates the beams by means of its aspiration orifice


38


and inflates the lifting cushions


45


which are in communication with the delivery orifice


37


of the exhauster


30


via the hose


46


.




In certain cases, it is advantageous to be able to deploy the canopy


1


partially, for example in order to protect oneself from the wind while taking advantage of the sun.




To this end, the exhaust


30


is stopped when, for example, the first three beams A, B, C are inflated.




The valve


40


closes automatically on its seat


41


and isolates these three beams.




After a certain period, owing to various leaks, the pressure in these beams drops slightly and they have to be reflated.




If the installation remains as it is, reinflation gives rise not only to the reinflation of these three beams but also, automatically, to the deployment of the other beams, in order to fully close the canopy.




To prevent this, the three-way valve


22


is tilted into the position in which it places the cushions


21


in communication with the open air.




The beams A, B, C previously deployed thus no longer bear on these cushions


21


, which are retracted by deflation, and can no longer be raised in order to bring the orifice


11


opposite the inner space of the next beam and deployment is halted.




Switching the exhauster


30


on again therefore has the effect only of re-establishing the required pressure in the beams A, B and C which were previously deployed.





FIGS. 15 and 16

show two variants of the means


20


for successive positioning of the inner space


2




a


of each inflatable beam A, B, C . . . opposite the orifice


11


made in the rigid beam


8


.




According to the embodiment shown in

FIG. 15

, the wedge


21


associated with the stacking of the inflatable beams A, B, C . . . and arranged in the vicinity of the rigid beam


8


is formed by the superposition of inflatable cushions


60


which can be retracted by deflation.




These cushions


60


are interposed between the plate


12


for leaktight linking of the inner wall of the beam N and the first bearing element


10


.




Moreover, each cushion


60


is linked separately via a valve (not shown) to a pressurized-fluid-supply source.




According to a further variant shown in

FIG. 16

, the means


20


for successive positioning of the inner space


2




a


of each inflatable beam A, B, C . . . opposite the orifice


11


are formed by at least one ram


61


arranged between the lower beam N and the corresponding bearing element


10


and below the plate


12


for leaktight linking of the lower wall of the beam N around the rigid beam


8


and the bearing element


10


of the inflatable beams A, B, C . . . in the deflated state.




When the canopy


1


is retracted, the inflatable beams A, B, C . . . N are deflated and the plates


12


are stacked on one another.




In these embodiments, the inflatable beams A, B, C . . . include, around the rigid beam


8


, means


13


for separating the walls of each of the inflatable beams.




These separation means


13


consist of spacers


65


which are fastened to the upper face of each plate


12


and make it possible to separate the upper and lower walls of each beam by a height which is substantially equal to that of the orifice


11


.




In the deflated state of the beams A, B, C . . . , the orifice


11


is therefore located opposite the inner space


2




a


of the beam A and the latter may be inflated by the pressurized fluid blown into the rigid beam


8


.




In the case of inflatable cushions


60


which can be flattened by deflation, successive inflation of these cushions


60


separately, with the aid of a pressurized-fluid source which may be the principal source serving to supply the inflatable beams A, B, C . . . with pressurized fluid or an additional source at a higher pressure than the principal source, gives rise to a translation of the stack of plates


12


by the height necessary to bring the spaces


2




a


of the beams B, C . . . N opposite the orifice


11


.




If the positioning means


20


consist of a ram


61


, for example an electric ram actuated by a stepping motor, the total travel of this ram


61


is equal to the translation travel necessary to bring the spaces


2




a


of the beams B, C . . . N successively opposite the orifice


11


.




According to a variant shown in

FIGS. 15 and 16

, the rigid beam


8


is formed by a cylindrical tube and the orifice


11


made in its wall is formed by an aperture


11




c


separating the tube into two sections


62




a


and


62




b


, respectively.




The first section


62




a


is connected to the pressurized-fluid-supply means


9


for successively inflating the beams A, B, C . . . and the second section


62




b


is closed off by a plate


63


arranged above the aperture


11




b


and connected to the first section


62




a


via radial ribs


64


.




These radial ribs


64


also make it possible to channel the pressurized fluid into the inner space


2




a


of the inflatable beam placed opposite the aperture


11




c.






With reference, now, to

FIGS. 17 and 18

, a description will be given of a variant of the means


9


for supplying the inflatable beams A, B, C . . . with pressurized fluid.




In this embodiment, the pressurized-fluid-supply means


9


are formed by an exhauster


70


including a delivery orifice


71


and an aspiration orifice


72


and by a member for reversing the direction of flow of the fluid, formed by a hose


73


at whose end an end-piece


73




a


is mounted for connection to one of the orifices


71


or


72


with the aid of appropriate linking means.




The hose


73


, preferably produced from a flexible material, includes a non-return valve


74


integral with a rod


75


mounted slidably on two opposite supports


76




a


and


76




b


fastened inside the end-piece


73




a


of the hose


73


.




These supports


76




a


and


76




b


consist of radial spacers which, between them, form passages for the circulation of the pressurized fluid.




The non-return valve


74


is displaceable between an open position which allows the circulation of the fluid and in which it is distant from a valve seat


77


made in the end-piece


73




a


and a closed position in which it rests against the valve seat


77


to prevent the circulation of pressurized fluid.




In the open position, i.e. during inflation of the beams A, B, C . . . , the non-return valve


77


bears against the support


76




a.






If the hose


73


is connected to the orifice


71


for delivery of pressurized fluid, the non-return valve


74


is in the open position during inflation of the beams A, B, C . . . , as shown in broken lines in

FIG. 17

, or in the closed position, resting against the valve seat


77


by means of the counterpressure after the inflation of these beams A, B and C . . . , as shown in solid lines in FIG.


17


.




To deflate the beams A, B, C . . . with a view to retracting the canopy


1


, the hose


73


is connected to the suction orifice


72


, as shown in FIG.


18


.




The normal direction of flow of the fluid aspirated by the exhauster


70


should keep the non-return valve


74


resting against the valve seat


77


.




However, to prevent closure of the non-return valve


74


and to allow deflation of the beams A, B, C . . . , this non-return valve


74


is kept in the open position by means of a stop


78


mounted on the suction orifice


72


and on which the end of the rod


75


bears, as shown in FIG.


18


.




By virtue of this arrangement, the fluid aspirated by the exhauster


70


flows into the hose


73


and into the suction orifice


72


.




According to a particular embodiment shown in

FIG. 19

, each bearing element


52


in the shape of a trough consists of stretched fabric


80


bearing on a series of arches


81


carried by at least one beam


82


extending parallel to the inflatable beams A, B, C . . . .




Finally, at least one of the bearing elements


10


of the inflatable beams A, B, C . . . may extend only over part of the length of the beams.



Claims
  • 1. A canopy, which can be inflated and deployed by inflation, and retracted by deflation, said canopy comprising:a plurality of inflatable beams arranged side by side, said inflatable beams each having an inner space and walls, said plurality including an upper inflatable beam and a lower inflatable beam; a pressurized-fluid-supplier operable to supply said inflatable beams with pressurized fluid; a rigid beam having a wall; sliding means for sliding said inflatable beams along at least one deployment or refolding path formed by said rigid beam passing, in a leaktight manner, through said inflatable beams and forming a fluid-conveying channel linked to said pressurized-fluid supplier; at least one orifice in said wall of said rigid beam, placing said pressurized-fluid supplier in communication with said inner space of said inflatable beams; linking means for leaktight linking of adjacent walls of said inflatable beams around said rigid beam; spacing means, around said rigid beam, for spacing said walls of said upper inflatable beam from one another; at least one bearing element bearing against said inflatable beams; and positioning means for successive positioning of said inner space of each inflatable beam, said positioning means being opposite said orifice of said rigid beam to guarantee inflation of said inflatable beams, by the pressurized fluid, from said upper inflatable beam to said lower inflatable beam and deflation of said inflatable beams from said lower inflatable beam to said upper inflatable beam.
  • 2. The canopy according to claim 1, wherein said positioning means is actuated automatically by a flow of the pressurized fluid.
  • 3. The canopy according to claim 1, wherein said orifice of said rigid beam is located opposite said inner space of said upper inflatable beam during a deflated state of said inflatable beams and opposite said inner space of said lower inflatable beam during an inflated state of said inflatable beams.
  • 4. The canopy according to claim 1, wherein said positioning means comprises at least one wedge associated with a stacking of said inflatable beams and arranged in a vicinity of said rigid beam.
  • 5. The canopy according to claim 4, wherein said wedge is arranged between said lower inflatable beam and said bearing element during the deflated state.
  • 6. The canopy according to claim 4, wherein said wedge is arranged inside said lower inflatable beam.
  • 7. The canopy according to claim 4, comprising a further pressurized-fluid supplier, and a three-way valve, wherein said wedge comprises an inflatable cushion, which can be retracted by deflation, said three-way valve being connected to said wedge, said further pressurized-fluid supplier, and outside air, and being operable to selectively communicate said wedge with said further pressurized-fluid supplier or with the outside air.
  • 8. The canopy according to claim 4, comprising a three-way valve, wherein said wedge comprises an inflatable cushion, which can be retracted by deflation, said three-way valve being connected to said wedge, said pressurized-fluid supplier, and outside air, and being operable to selectively communicate said wedge with said pressurized-fluid supplier or with the outside air.
  • 9. The canopy according to claim 4, wherein said wedge comprises a superposition of inflatable cushions, which can be retracted by deflation, each inflatable cushion being connected separately, via a valve, to a pressurized-fluid-supply source.
  • 10. The canopy according to claim 9, therein each inflatable cushion has an oblong cross section and comprises a coated fabric of two layers woven together using common threads and joined by a multitude of thread strands of a same length common to said two layers.
  • 11. The canopy according to claim 9, wherein said inflatable beams include, around said rigid beam, spacers for separating upper and lower walls of each inflatable beam by a height substantially equal to a height of said orifice in said wall of said rigid beam.
  • 12. The canopy according to claim 1, wherein said positioning means comprises an auxiliary wedge arranged in said inner space of at least one of said inflatable beams, other than said upper inflatable beam, and in the vicinity of said rigid beam, wherein one of said inflatable beams is located above said auxiliary wedge, said auxiliary wedge comprising an inflatable cushion, which can be retracted by deflation, communicating with said inner space said inflatable beam located above said cushion.
  • 13. The canopy according to claim 1, wherein said positioning means comprises at least one ram arranged between said lower inflatable beam and a corresponding one of said at least one bearing element and below said linking means of said lower inflatable beam.
  • 14. The canopy according to claim 1, comprising at least one communication orifice between two contiguous inflatable beams of said plurality of inflatable beams, said at least one communication orifice being equipped with a non-return valve arranged above said at least one communication orifice and displaceable between an open position placing said inner spaces of said contiguous inflatable beams in communication and a closed position closing off said communication orifice.
  • 15. The canopy according to claim 14, wherein said linking means of at least some of said inflatable beams comprise a leaktight seal bearing slidably around said rigid beam, and a flexible membrane forming said non-return valve, and wherein said leaktight seal and said membrane are produced as a single component.
  • 16. The canopy according to claim 1, wherein said rigid beam comprises a cylindrical tube, and said orifice in said wall of said rigid beam includes two diametrically opposed openings.
  • 17. The canopy according to claim 16, wherein said openings of said orifice in said wall of said rigid beam are equipped, substantially in their center, with a transverse reinforcement plate which is substantially parallel to an axis of said cylindrical tube of said rigid beam.
  • 18. The canopy according to claim 1, Wherein said rigid beam comprises a cylindrical tube, a plate, and radial ribs, and said orifice in said wall of said rigid beam comprises an aperture separating said cylindrical tube into first and second sections, said plate being arranged above said first section and connected to said first section via said radial ribs, said first section being connected to said pressurized-fluid supplier, and said second section being closed off by said plate.
  • 19. The canopy according to claim 1, comprising a dismantlable mechanical link, wherein said rigid beam comprises a curved beam having first and second ends, said curved beam being fastened, at said first end, via said dismantlable mechanical link and mounted in an articulated manner so as to pivot at said second end on one of said at least one bearing element.
  • 20. The canopy according to claim 1, wherein said pressurized-fluid supplier comprises an exhauster, including a delivery orifice and an aspiration orifice, and a reversing member operable to reverse a direction of flow of the fluid, said reversing member comprising a hose to be selectively connected to either of said delivery and aspiration orifices and including a reversing-member non-return valve.
  • 21. The canopy according to claim 20, comprising a stop mounted on said aspiration orifice, wherein said reversing-member non-return valve is, in a position in which said hose is connected to said delivery orifice, displaceable by the pressurized fluid between an open position and a closed position, and said reversing-member non-return valve is, in a position in which said hose is connected to said aspiration orifice, held in an open position by said stop.
  • 22. The canopy according to claim 20, wherein said upper inflatable beam is connected directly and permanently to said delivery orifice of said exhauster by a flexible hose and an upper-beam non-return valve.
  • 23. The canopy according to claim 1, comprising at least one lifting cushion operable to lift said upper inflatable beam during refolding of said canopy, said at least one lifting cushion being inflatable, and retractable by deflation, and being arranged between said upper inflatable beam and one of said at least one bearing element.
  • 24. The canopy according to claim 23, wherein said pressurized-fluid supplier comprises an exhauster, including a delivery orifice, and said at least one lifting cushion comprises a plurality of superposed cushions, including a lower lifting cushion, connected to one another and to said upper inflatable beam, said superposed cushions each comprising an orifice, each having a non-return valve, providing a passage for the fluid from said lower lifting cushion towards the other superposed lifting cushions and said upper inflatable beam, said lower lifting cushion being connected directly and permanently to said delivery orifice of said exhauster via a flexible hose.
  • 25. The canopy according to claim 1, wherein said at least one bearing element is trough-shaped with a concave face matching a shape of a lower half of one of said inflatable beams, at least one of said bearing elements, being trough-shaped, forming a receptacle for receiving said inflatable beams during a deflated state of said inflatable beams.
  • 26. The canopy according to claim 1, wherein each bearing element is arch-shaped, has two ends, extends parallel to said inflatable beams, is fastened to the ground at said two ends, and is supported by said rigid beam.
  • 27. The canopy according to claim 26, wherein each bearing element is also trough-shaped and comprises at least one beam extending parallel to said inflatable beams, a series of arches carried by said at least one beam, and stretched fabric bearing on said series of arches.
Priority Claims (1)
Number Date Country Kind
97 16525 Dec 1997 FR
PCT Information
Filing Document Filing Date Country Kind
PCT/FR98/02675 WO 00
Publishing Document Publishing Date Country Kind
WO99/34078 7/8/1999 WO A
US Referenced Citations (7)
Number Name Date Kind
4976074 Delamare Dec 1990 A
5303516 Delamare Apr 1994 A
5305561 Goddard Apr 1994 A
5526610 Delamare Jun 1996 A
5675938 McLorg Oct 1997 A
5913775 Delamare Jun 1999 A
6065252 Norsen May 2000 A
Foreign Referenced Citations (3)
Number Date Country
0 647 751 Apr 1995 EP
2 070 982 Sep 1971 FR
9638642 Dec 1996 WO