Embodiments of the invention generally relate to a deployable anchor that facilitates securing an electrode lead to internal tissue of a patient and preventing migration of the electrode lead relative to the tissue of the patient. Embodiments of the anchor may also be retracted to simplify the removal of the electrode lead from the tissue of the patient.
Implantable electronic stimulator devices, such as neuromuscular stimulation devices, have been disclosed for use in the treatment of various pelvic conditions, such as urinary incontinence, fecal incontinence and sexual dysfunction. Such devices generally include one or more electrodes that are coupled to a control unit by electrode leads. Electrical signals are applied to the desired pelvic tissue of the patient through the electrode leads in order to treat the condition of the patient. The electrode leads are typically secured to the tissue using an anchor in the form of a helical coil. Exemplary implantable electronic stimulator devices and uses of the devices are disclosed in U.S. Pat. Nos. 6,354,991, 6,652,449, 6,712,772 and 6,862,480, each of which is hereby incorporated by reference in its entirety.
An anchor is typically attached to the distal end of the electrode lead to secure the electrode lead within tissue of the patient and prevent relative movement between the anchor and the tissue in which the anchor in embedded.
Some embodiments of the invention are directed to an electrode lead comprising a lead body, at least one electrode at a distal end of the lead body, an actuatable member and at least one anchor wire. The actuatable member is positioned within a lumen of the lead body. The at least one anchor wire has a proximal end that is attached to the actuatable member. Movement of the actuatable member relative to the lead body moves the at least one anchor wire through at least one opening in the lead body.
Another embodiment is directed to a system that comprises an introducer sheath, an electrode lead and at least one anchor wire. The introducer sheath has a sheath wall and a longitudinal axis. The electrode lead comprises a lead body and at least one electrode at a distal end of the lead body. The distal end of a lead body is received within the sheath. The at least one anchor wire has a proximal end that is attached to the distal end of the lead body. The at least one anchor wire moves through at least one opening in the sheath wall responsive to movement of the lead body relative to the introducer sheath.
Yet another embodiment is directed to a method. In the method, an electrode lead is provided. In on embodiment, the electrode lead comprises a lead body, at least one electrode at a distal end of lead body and at least one anchor wire having a proximal end connected to the lead body. The distal end of the lead body is positioned within tissue of a patient. The distal end of the at least one anchor wire is moved radially from the lead body and into the tissue to anchor the distal end of the lead body to the tissue.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not indented to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in the Background.
Embodiments of the invention are directed to an anchor that facilitates securing an electrode lead to internal tissue of a patient to prevent migration of the electrode lead from its intended position. The tissue in which the anchors of the present invention may be used includes adipose tissue, muscle tissue or any other tissue of the patient. In one embodiment, the tissue is located in the pelvic region of the patient. In some embodiments, the tissue, in which the anchor is to be embedded, is targeted for electrical stimulation or is adjacent a desired stimulation target site. Embodiments of the invention comprise the individual embodiments described below and combinations of two or more of the embodiments described below. Elements having the same or similar labels correspond to the same or similar elements.
In one embodiment, the system 100 comprises a control unit 102 and one or more electrode leads 104, a proximal end 106 of which is coupled to the control unit 102 via a connector 108. Each electrode lead 104 comprises a lead body 110 and one or more stimulating electrodes 112 at a distal end 114 of the electrode lead 104 or lead body 110. The lead body 110 insulates electrical wires connecting the control unit 102 to the stimulating electrodes 112. The lead body 110 can be in the form of an insulating jacket typically comprising silicone, polyurethane or other flexible, biocompatible electrically insulating material. Additional electrode leads 104 or physiological sensors may be coupled to the control unit 102.
In one embodiment, the control unit 102 comprises circuitry for processing electrical signals received from the one or more stimulating electrodes 112 or physiological sensors. The control unit 102 is also configured to apply an electrical current or waveform to the tissue of the patient that is in contact with the one or more stimulating electrodes 112.
The electrode lead 104 can be anchored to pelvic tissue of the patient (e.g., internal urinary sphincter muscle) by means of a tissue anchor 120, which is formed in accordance with embodiments of the invention described below. The anchor 120 operates to secure the position of the distal end 114 of the electrode lead 104 in the desired tissue of the patient. In one embodiment, the anchor 120 is located at the distal end 114 proximate the one or more electrodes 112. While depicted as being located at the terminating side of the electrodes 112, the anchor 120 may be located between electrodes 112 or between the electrodes 112 and the proximal end 106 of the electrode lead.
The one or more anchor wires 132 are generally formed of a suitable biocompatible material. In one embodiment, the anchor wires 132 are flexible, yet firm enough to pierce tissue of the patient upon deployment, as described below. In one embodiment, the wires 132 are formed of a memory shaped material, such as nickel titanium (i.e., NITINOL), that forces each of the anchor wires 132 to follow a desired trajectory as the wires 132 are deployed into the tissue of the patient, for example.
In one embodiment, the anchor wires 132 are attached to a sidewall 138 of the lead body 110. In one embodiment, each of the anchor wires 132 is displaced from adjacent anchor wires 132 along a longitudinal axis 140 of the lead body 110. In accordance with another embodiment, the anchor wires 132 are angularly displaced from each other about the longitudinal axis 140. For instance, the anchor wires 132 may be angularly displaced by 90 degrees from each other, as shown in
In one embodiment, the distal ends 114 of the electrode leads 104 illustrated in
This deployment of the one or more anchor wires 132 of the anchor 130 is followed by the removal of the introducer sheath 162 in accordance with conventional techniques. For instance, the introducer sheath 162 may be split into separate halves that allow for the removal of the introducer sheath 162 without disrupting the placement of the anchor wires 132 in the tissue of the patient. The one or more anchor wires 132 that extend generally radially from the longitudinal axis 140 of the lead body 110 into the tissue of the patient operate to secure the position of the distal end 114 in the targeted tissue. The electrode lead 104 may then be used to perform electrical stimulation operations on the targeted tissue in accordance with conventional techniques.
After the one or more anchor wires 132 of the anchor 142 are deployed into the tissue of the patient through the rotation of the lead body 110 relative to the introducer sheath 162, the introducer sheath 162 may be removed from the patient without disturbing the anchor wires 132, such as by splitting the introducer sheath into separate halves. The resultant position of the distal end 114 of the electrode lead 104 is in the tissue by the one or more anchor wires 132.
In accordance with another embodiment, the anchor 142 is wound about the distal end 114 of the electrode lead 104 such that it is radially compressed toward the longitudinal axis 140 of the lead body 110 relative to a quiescent state of the anchor wire 132. During the implantation, this radial compression of the at least one anchor wire 132 of the anchor 142 is maintained by the introducer sheath 162, as illustrated in the simplified side view of
Once the distal end 114 of the electrode lead 104 is positioned as desired within the targeted tissue of the patient, the one or more anchor wires 132 may be deployed from within the lumen 182 and fed into the tissue of the patient, as illustrated in
In one embodiment, a control member 204 may be used by the physician to move the actuatable member 194 (
In one embodiment, the control member 204 has a distal end 206 that is removably attachable to the actuatable member 194 or 202. In one embodiment, the actuatable member 194 or 202 includes an aperture 208 that is configured to receive the distal end 206 of the control member 204. In one embodiment, the aperture 208 comprises a keyhole, as shown in the front view provided in
At 212, the distal end 114 of the lead body 110 is positioned within tissue of a patient. In one embodiment, the distal end 114 is positioned within tissue of the patient using an introducer, as described above. In one embodiment of step 212, an introducer sheath 162 is provided having a sheath wall 168 and a longitudinal axis 170. A distal end 164 of the introducer sheath 162 is then positioned in the targeted tissue of the patient. The distal end 114 of the lead body 110 is then fed into the introducer sheath 162 to position the distal end 114 proximate the distal end 164 of the introducer sheath 162 and the targeted tissue of the patient. In one embodiment, step 212 is performed while the at least one anchor wire 132 is in a retracted position.
At 214, a distal end 136 of the at least one anchor wire 132 is moved radially (i.e., relative to the longitudinal axis 140) from the lead body 110 and into the tissue to anchor the distal end 114 of the lead body 110 to the tissue. That is, the anchor comprising the at least one anchor wire 132 is moved from a retracted position to a deployed position in step 214.
In one embodiment of step 214, a proximal end 134 of the anchor wire 132 is attached to an actuatable member (194 or 202) within a lumen 192 of the lead body, as shown in
In one embodiment, the at least one anchor wire 132 is a component of anchor 130 (
When the at least one anchor wire 132 is held in a compressed state by the introducer sheath 162 during the positioning step 212, step 214 of the method is performed by removing the introducer sheath from the tissue. This allows the compressed anchor wire 132 to expand toward its quiescent expanded state and into the tissue of the patient.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
The present application is based on and claims the benefit of U.S. provisional patent application Ser. No. 61/358,053, filed Jun. 24, 2010, and U.S. provisional patent application Ser. No. 61/360,157, filed Jun. 30, 2010. The present application is a continuation-in-part of and claims priority to U.S. patent application Ser. No. 12/558,143, filed Sep. 11, 2009, now abandoned, which claims the benefit of U.S. provisional patent application Ser. Nos. 61/096,387 filed Sep. 12, 2008 and 61/160,765 filed Mar. 17, 2009, and is a continuation-in-part of U.S. application Ser. No. 12/170,582 filed Jul. 10, 2008, now abandoned, which in turn claims the benefit of U.S. provisional patent application Ser. No. 60/948,908, filed Jul. 10, 2007. The content of each of the above-referenced applications is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3628538 | Vincent et al. | Dec 1971 | A |
3640284 | De Langis | Feb 1972 | A |
3646940 | Timm et al. | Mar 1972 | A |
3650276 | Burghele et al. | Mar 1972 | A |
3662758 | Glover | May 1972 | A |
3667477 | Susset et al. | Jun 1972 | A |
3866613 | Kenny et al. | Feb 1975 | A |
3870051 | Brindley | Mar 1975 | A |
3926178 | Feldzamen | Dec 1975 | A |
3941136 | Bucalo | Mar 1976 | A |
3983865 | Shepard | Oct 1976 | A |
3983881 | Wickham | Oct 1976 | A |
4010758 | Rockland et al. | Mar 1977 | A |
4023574 | Nemec | May 1977 | A |
4030509 | Heilman et al. | Jun 1977 | A |
4044774 | Corbin et al. | Aug 1977 | A |
4106511 | Erlandsson | Aug 1978 | A |
4136684 | Scattergood et al. | Jan 1979 | A |
4139006 | Corey | Feb 1979 | A |
4153059 | Fravel et al. | May 1979 | A |
4157087 | Miller et al. | Jun 1979 | A |
4165750 | Aleev et al. | Aug 1979 | A |
4177819 | Kofsky et al. | Dec 1979 | A |
4222377 | Burton | Sep 1980 | A |
4290420 | Manetta | Sep 1981 | A |
4387719 | Plevnik et al. | Jun 1983 | A |
4402328 | Doring | Sep 1983 | A |
4406288 | Horwinski et al. | Sep 1983 | A |
4414986 | Dickhudt et al. | Nov 1983 | A |
4431001 | Hakansson et al. | Feb 1984 | A |
4457299 | Cornwell | Jul 1984 | A |
4492233 | Petrofsky et al. | Jan 1985 | A |
4515167 | Hochman | May 1985 | A |
4542753 | Brenman et al. | Sep 1985 | A |
4568339 | Steer | Feb 1986 | A |
4569351 | Tang | Feb 1986 | A |
4571749 | Fischell | Feb 1986 | A |
4580578 | Barsom | Apr 1986 | A |
4585005 | Lue et al. | Apr 1986 | A |
4602624 | Naples et al. | Jul 1986 | A |
4607639 | Tanagho et al. | Aug 1986 | A |
4628942 | Sweeney et al. | Dec 1986 | A |
4688575 | DuVall | Aug 1987 | A |
4703755 | Tanagho et al. | Nov 1987 | A |
4731083 | Fischell | Mar 1988 | A |
4739764 | Lue et al. | Apr 1988 | A |
4750494 | King | Jun 1988 | A |
4771779 | Tanagho et al. | Sep 1988 | A |
4785828 | Maurer | Nov 1988 | A |
4881526 | Johnson et al. | Nov 1989 | A |
4913164 | Greene et al. | Apr 1990 | A |
4941874 | Sandow et al. | Jul 1990 | A |
5013292 | Lemay | May 1991 | A |
5019032 | Robertson | May 1991 | A |
5082006 | Jonasson | Jan 1992 | A |
5094242 | Gleason et al. | Mar 1992 | A |
5103835 | Yamada et al. | Apr 1992 | A |
5112344 | Petros | May 1992 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5199430 | Fang et al. | Apr 1993 | A |
5285781 | Brodard | Feb 1994 | A |
5291902 | Carman | Mar 1994 | A |
5312439 | Loeb | May 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5324324 | Vachon et al. | Jun 1994 | A |
5330507 | Schwartz | Jul 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5411548 | Carman | May 1995 | A |
5417226 | Juma | May 1995 | A |
5423329 | Ergas | Jun 1995 | A |
5452719 | Eisman et al. | Sep 1995 | A |
5484445 | Knuth | Jan 1996 | A |
5518504 | Polyak | May 1996 | A |
5520606 | Schoolman et al. | May 1996 | A |
5562717 | Tippey et al. | Oct 1996 | A |
5569351 | Menta et al. | Oct 1996 | A |
5571148 | Loeb et al. | Nov 1996 | A |
5611515 | Benderev et al. | Mar 1997 | A |
5611768 | Tutrone, Jr. | Mar 1997 | A |
5634462 | Tyler et al. | Jun 1997 | A |
5702428 | Tippey et al. | Dec 1997 | A |
5752978 | Chancellor | May 1998 | A |
5807397 | Barreras | Sep 1998 | A |
5824027 | Hoffer et al. | Oct 1998 | A |
5833595 | Lin | Nov 1998 | A |
5842478 | Benderev et al. | Dec 1998 | A |
5860425 | Benderev et al. | Jan 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5927282 | Lenker et al. | Jul 1999 | A |
5931864 | Chastain et al. | Aug 1999 | A |
5954761 | Machek et al. | Sep 1999 | A |
5957920 | Baker | Sep 1999 | A |
5957965 | Moumane et al. | Sep 1999 | A |
5978712 | Suda et al. | Nov 1999 | A |
5984854 | Ishikawa et al. | Nov 1999 | A |
6002964 | Feler et al. | Dec 1999 | A |
6026326 | Bardy | Feb 2000 | A |
6027456 | Feler et al. | Feb 2000 | A |
6039686 | Kovac | Mar 2000 | A |
6042534 | Gellman et al. | Mar 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6055456 | Gerber | Apr 2000 | A |
6061596 | Richmond et al. | May 2000 | A |
6104955 | Bourgeois | Aug 2000 | A |
6104960 | Duysens et al. | Aug 2000 | A |
6110101 | Tihon et al. | Aug 2000 | A |
6131575 | Lenker et al. | Oct 2000 | A |
6135945 | Sultan | Oct 2000 | A |
6141594 | Flynn et al. | Oct 2000 | A |
6161029 | Spreigl et al. | Dec 2000 | A |
6178356 | Chastain et al. | Jan 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6240315 | Mo et al. | May 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6243607 | Mintchev et al. | Jun 2001 | B1 |
6266557 | Roe et al. | Jul 2001 | B1 |
6266564 | Hill et al. | Jul 2001 | B1 |
6304786 | Heil et al. | Oct 2001 | B1 |
6328686 | Kovac | Dec 2001 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6354991 | Gross et al. | Mar 2002 | B1 |
6360750 | Gerber et al. | Mar 2002 | B1 |
6366814 | Boveja et al. | Apr 2002 | B1 |
6382214 | Raz et al. | May 2002 | B1 |
6397109 | Cammilli et al. | May 2002 | B1 |
6407308 | Roe et al. | Jun 2002 | B1 |
6418930 | Fowler | Jul 2002 | B1 |
6505082 | Scheiner et al. | Jan 2003 | B1 |
6582441 | He et al. | Jun 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6612977 | Staskin et al. | Sep 2003 | B2 |
6641524 | Kovac | Nov 2003 | B2 |
6650943 | Whitehurst et al. | Nov 2003 | B1 |
6652449 | Gross et al. | Nov 2003 | B1 |
6652450 | Neisz et al. | Nov 2003 | B2 |
6652499 | Edgren et al. | Nov 2003 | B1 |
6658297 | Loeb | Dec 2003 | B2 |
6659936 | Furness et al. | Dec 2003 | B1 |
6662045 | Zheng et al. | Dec 2003 | B2 |
6712772 | Cohen et al. | Mar 2004 | B2 |
6735474 | Loeb et al. | May 2004 | B1 |
6745079 | King | Jun 2004 | B2 |
6802807 | Anderson et al. | Oct 2004 | B2 |
6862480 | Cohen et al. | Mar 2005 | B2 |
6896651 | Gross et al. | May 2005 | B2 |
6911003 | Anderson et al. | Jun 2005 | B2 |
6941171 | Mann et al. | Sep 2005 | B2 |
6952613 | Swoyer et al. | Oct 2005 | B2 |
6964643 | Hovland et al. | Nov 2005 | B2 |
6964699 | Carns et al. | Nov 2005 | B1 |
6971393 | Mamo et al. | Dec 2005 | B1 |
7079882 | Schmidt | Jul 2006 | B1 |
7120499 | Thrope et al. | Oct 2006 | B2 |
7319905 | Morgan et al. | Jan 2008 | B1 |
7328068 | Spinelli et al. | Feb 2008 | B2 |
7330764 | Swoyer et al. | Feb 2008 | B2 |
7343202 | Mrva et al. | Mar 2008 | B2 |
7376467 | Thrope et al. | May 2008 | B2 |
7613516 | Cohen et al. | Nov 2009 | B2 |
7628795 | Karwoski et al. | Dec 2009 | B2 |
7647113 | Wirbisky et al. | Jan 2010 | B2 |
7771345 | O'Donnell | Aug 2010 | B1 |
20010002441 | Boveja | May 2001 | A1 |
20010003799 | Boveja | Jun 2001 | A1 |
20010018549 | Scetbon | Aug 2001 | A1 |
20020055761 | Mann et al. | May 2002 | A1 |
20020099259 | Anderson et al. | Jul 2002 | A1 |
20020161382 | Neisz et al. | Oct 2002 | A1 |
20020161423 | Lokhoff et al. | Oct 2002 | A1 |
20020165566 | Ulmsten | Nov 2002 | A1 |
20030018365 | Loeb | Jan 2003 | A1 |
20030023296 | Osypka | Jan 2003 | A1 |
20030028232 | Camps et al. | Feb 2003 | A1 |
20030060868 | Janke et al. | Mar 2003 | A1 |
20030100930 | Cohen et al. | May 2003 | A1 |
20030171644 | Anderson et al. | Sep 2003 | A1 |
20030199961 | Bjorklund et al. | Oct 2003 | A1 |
20030236557 | Whitehurst et al. | Dec 2003 | A1 |
20030236558 | Whitehurst et al. | Dec 2003 | A1 |
20040015057 | Rocheleau et al. | Jan 2004 | A1 |
20040015204 | Whitehurst et al. | Jan 2004 | A1 |
20040015205 | Whitehurst et al. | Jan 2004 | A1 |
20040039453 | Anderson et al. | Feb 2004 | A1 |
20040059392 | Parramon et al. | Mar 2004 | A1 |
20040068203 | Gellman et al. | Apr 2004 | A1 |
20040093053 | Gerber et al. | May 2004 | A1 |
20040242956 | Scorvo | Dec 2004 | A1 |
20040248979 | Brettman et al. | Dec 2004 | A1 |
20050038489 | Grill | Feb 2005 | A1 |
20050043580 | Watschke et al. | Feb 2005 | A1 |
20050065395 | Mellier | Mar 2005 | A1 |
20050113877 | Spinelli et al. | May 2005 | A1 |
20050119710 | Furness et al. | Jun 2005 | A1 |
20050143618 | Anderson et al. | Jun 2005 | A1 |
20050149156 | Libbus et al. | Jul 2005 | A1 |
20050216069 | Cohen et al. | Sep 2005 | A1 |
20050228346 | Goode et al. | Oct 2005 | A1 |
20050245787 | Cox et al. | Nov 2005 | A1 |
20050245874 | Carrez et al. | Nov 2005 | A1 |
20050250977 | Montpetit et al. | Nov 2005 | A1 |
20050251240 | Doan | Nov 2005 | A1 |
20050283235 | Kugler et al. | Dec 2005 | A1 |
20060004421 | Bennett et al. | Jan 2006 | A1 |
20060004429 | Mrva et al. | Jan 2006 | A1 |
20060149345 | Boggs, II et al. | Jul 2006 | A1 |
20060241733 | Zhang et al. | Oct 2006 | A1 |
20060287571 | Gozzi et al. | Dec 2006 | A1 |
20070021650 | Rocheleau et al. | Jan 2007 | A1 |
20070043416 | Callas et al. | Feb 2007 | A1 |
20070123952 | Strother et al. | May 2007 | A1 |
20070156219 | Sommer et al. | Jul 2007 | A1 |
20070179559 | Giftakis et al. | Aug 2007 | A1 |
20070185541 | DiUbaldi et al. | Aug 2007 | A1 |
20070239224 | Bennett et al. | Oct 2007 | A1 |
20070253997 | Giftakis et al. | Nov 2007 | A1 |
20070253998 | Giftakis et al. | Nov 2007 | A1 |
20070255333 | Giftakis et al. | Nov 2007 | A1 |
20070255341 | Giftakis et al. | Nov 2007 | A1 |
20070260288 | Gross et al. | Nov 2007 | A1 |
20070265675 | Lund et al. | Nov 2007 | A1 |
20080009914 | Buysman et al. | Jan 2008 | A1 |
20080071321 | Boggs, II et al. | Mar 2008 | A1 |
20080132969 | Bennett et al. | Jun 2008 | A1 |
20090012592 | Buysman | Jan 2009 | A1 |
20090043356 | Longhini et al. | Feb 2009 | A1 |
20090157091 | Buysman | Jun 2009 | A1 |
20100049289 | Lund et al. | Feb 2010 | A1 |
20100076254 | Jimenez et al. | Mar 2010 | A1 |
20120095478 | Wang et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
8506522.6 | Jun 1985 | DE |
0245547 | Nov 1987 | EP |
1 661 600 | May 2006 | EP |
1119314 | Jun 2006 | EP |
2295109 | Mar 2011 | EP |
2309388 | Jul 1997 | GB |
9012617 | Nov 1990 | WO |
9604955 | Feb 1996 | WO |
9632916 | Oct 1996 | WO |
9817190 | Apr 1998 | WO |
0000082 | Jan 2000 | WO |
0019940 | Apr 2000 | WO |
0239890 | May 2002 | WO |
02069781 | Sep 2002 | WO |
02078592 | Oct 2002 | WO |
03002192 | Jan 2003 | WO |
2006047833 | May 2006 | WO |
2007097994 | Aug 2007 | WO |
2007126632 | Nov 2007 | WO |
2007145913 | Dec 2007 | WO |
2009017680 | Feb 2009 | WO |
2009075800 | Jun 2009 | WO |
2010107751 | Sep 2010 | WO |
Entry |
---|
Prosecution Documents associated with U.S. Appl. No. 12/558,143 including: Office Action mailed Dec. 13, 2011; Office Action mailed Sep. 29, 2011; and Office Action mailed Jun. 20, 2011. |
Yamanishi et al., “Electrical Stimulation for Stress Incontinence”, Int. Urogynecol J (1998) 9:281-290 Springer-Verlag London Ltd. |
International Search Report and Written Opinion dated Apr. 21, 2011 from International Application No. PCT/US2011/023677, filed Feb. 4, 2011. |
Dietz et al., “Mechanical Properties of Urogynecologic Implant Materials”, Int. Urogynecol J. (2003) 14:239-243. |
Iglesia et al., “The Use of Mesh in Gynecologic Surgery”, Int. Urogynecol J. (1997) 8:105-115. |
Partial European Search Report from European Patent Application No. 10176162.5, mailed Jan. 21, 2011. |
European Search Report and Written Opinion of 06011641.5, mailed Aug. 21, 2006. |
International Search Report and Written Opinion of PCT/US2007/004474, filed Feb. 22, 2007. |
International Search Report and Written Opinion of PCT/US2007/000112, filed Jan. 3, 2007. |
U.S. Appl. No. 12/406,434, filed Mar. 18, 2009. |
Caldwell, K.P.S. et al. “Urethral Pressure Recordings in Male Incontinents Under Electrical Stimulation.” Investigative Urology vol. 5, No. 6, pp. 572-579, May 1968. |
Caldwell, K.P.S. et al. “Stress Incontinence in Females: Report on 31 Cases Treated by Electrical Implant.” J. Obstet. Gynaec. Brit. Cwlth vol. 75, pp. 777-780, Jul. 1968. |
Caldwell, K.P.S. “Electrical Stimulation.”, Sphincter Research Unit, Royal Devon and Exeter Hospital, Exeter (England), Urol. Int. 29: 225, 1974. (1 page). |
Caldwell, K.P.S. “The Use of Electrical Stimulation in Urinary Retention and Incontinence [Abridged].” Section of Urology, vol. 61, pp. 35-39, Jul. 1968. |
Notification of the First Office Action from Chinese patent application No. 200780007709.2, mailed Sep. 27, 2010. |
Extended European Search Report and Opinion for European patent application No. 10176162.5, dated Apr. 28, 2011. |
Yamamoto et al., “Optimal parameters for effective electrical stimulation of the anal sphincters in a child with fecal incontinence: preliminary report,” Pediatr Surg Int (1993) 8:132-137. |
Number | Date | Country | |
---|---|---|---|
20110313427 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61358053 | Jun 2010 | US | |
61360157 | Jun 2010 | US | |
61096387 | Sep 2008 | US | |
61160765 | Mar 2009 | US | |
60948908 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12558143 | Sep 2009 | US |
Child | 13167541 | US | |
Parent | 12170582 | Jul 2008 | US |
Child | 12558143 | US |