The present invention relates generally to building evacuation. More particularly, the present invention relates to a mechanical fire escape that facilitates evacuating a building without walking.
A fire escape is a special kind of emergency exit, usually mounted to the outside of a building or occasionally inside but separate from the main areas of the building. It provides a method of escape in the event of a fire or other emergency that makes the stairwells inside a building inaccessible. Fire escapes are most often found on multiple-story residential buildings, such as apartment buildings. They are commonly a very important aspect of fire safety for construction in urban areas.
Traditional fire escapes consist of a number of horizontal platforms, one at each story of a building, with ladders or stairs connecting the platforms. Railings are usually provided on each of the levels, but as fire escapes are designed for emergency use only, these railings often do not meet the same standards as railings in other contexts. The ladder from the lowest level of the fire escape may be fixed, but commonly swings down on a hinge or slides along a track.
Traditional fire escapes are limited to being a form of egress that adds a substantial load on any building façade, creating points of deterioration and entry of water along the fire escape due to the union of steel and masonry. Additionally, the user of a traditional fire escape requires being physically capable of walking or climbing down the fire escape. Due to this limitation, persons who are not able-bodied enough to use a traditional fire escape in an emergency situation are at a higher risk of suffering injury or death in an emergency situation. Therefore, extended care and emergency facilities must perform special operations to rescue those who are unable to facilitate their own evacuation, increasing risk for both those who are in need of rescue as well as emergency personnel performing the rescue.
It is therefore an object of the present invention to provide a mechanical system that does not require the use of one's lower body to evacuate a building, and does not impose a substantial load on a building façade. The present invention provides an evacuation method by sliding down several belts that do not require the use of one's lower body. If a rescuer is performing a rescue utilizing the present invention, the rescuer does not require the levels of strength needed to carry the victim in order to perform the rescue, conserving energy and facilitating an effective rescue.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
The present invention is a mechanical deployable fire escape designed to be compact prior to release and that facilitates the ability to evacuate a building without requiring the use of walking, taking stairs or other exertion of the lower body. The present invention provides a plurality of alternating ramps 400 to allow a user to slide down from level to level, continuing until contacting the ground level. Each of the plurality of alternating ramps 400 is made of a number of wide, flexible belt sections. The user pulls apart the flexible belt sections and forces their body between the flexible belt sections in order to pass through one ramp to the next ramp. The user may rest between the alternating ramps on intermediate platforms. To clarify, the flexible belt sections form the sloped surface of each of the alternating ramps on which the user slides. The present invention is intended to be installed on a building façade 100, at the level of the window of a residence.
Referring to
The storage area 1 is the topmost portion of the present invention where a user enters the plurality of alternating ramps 400 to begin their descent to the ground using the present invention. As seen in
Referring to
The left fixed guide rail 20 and the right fixed guide rail 21 each comprise a guide channel 201, a horizontal portion 202, and a vertical portion 203. The horizontal portion 202 is perpendicularly connected to the vertical portion 203, forming a right angle between the horizontal portion 202 and the vertical portion 203. The horizontal portion 202 is oriented parallel to the deck support 11 and is positioned within the storage area 1.
The horizontal portion 202 of the left fixed guide fail is attached to the deck support 11 adjacent to the left railing 12. The horizontal portion 202 of the right fixed guide rail 21 is attached to the deck support 11 adjacent to the right railing 13. The horizontal portion 202 of the left fixed guide rail 20 is parallel to the horizontal portion 202 of the right fixed guide rail 21, and the vertical portion 203 of the left fixed guide rail 20 is oriented parallel to the vertical portion 203 of the right fixed guide rail 21. The guide channel 201 traverses continuously across the vertical portion 203 and the horizontal portion 202. The inside of the guide channel 201 has a width that is greater than the width of the opening of the guide channel 201.
Referring to
The left scissor mechanism 40 is pivotally and translationally engaged with the left fixed guide rail 20. That is, certain components of the left scissor mechanism 40 are engaged with the left fixed guide rail 20, pivot with respect to the left fixed guide rail 20 and are allowed to translate in a parallel manner along the left fixed guide rail 20. Similarly, the right scissor mechanism 41 is pivotally and translationally engaged with the right fixed guide rail 21.
As can be seen in
As can be seen in
The following descriptions of the first pulley 50, the upper ramp support arm 52, and the roller pin 53 apply to the first pulley 50, the upper ramp support arm 52, and the roller pin 53, respectively, of each of the first scissor section 42, the at least one subsequent scissor section 43, and the last scissor section 44 for each of the left scissor mechanism 40 and the right scissor mechanism 41, except where otherwise specified.
The descriptions of the second pulley 51, the lower ramp support arm 54, and the platform support arm 56 apply to the second pulley 51, the lower ramp support arm 54, and the platform support arm 56, respectively, of each of the first scissor section 42 and the at least one subsequent scissor section 43 for each of the left scissor mechanism 40 and the right scissor mechanism 41, except where otherwise specified.
The roller pin 53 is the component of the present invention that constrains the plurality of alternating ramps 400 against the left fixed guide rail 20 and the right fixed guide rail 21. The roller pin 53 comprises a first wheel 531 and a second wheel 532. The roller pin 53 is positioned perpendicular to the upper ramp support arm 52, and is positioned symmetrically across the upper ramp support arm 52 at the roller attachment location 523, so that the first wheel 531 and the second wheel 532 are symmetrically separated by the upper ramp support arm 52. The first wheel 531 of the left scissor mechanism 40 and the second wheel 532 of the left scissor mechanism 40 are rollingly engaged inside the left fixed guide rail 20, so that the roller pin 53 of the left scissor mechanism 40 holds the left scissor mechanism 40 adjacent to the left fixed guide rail 20. FIGURE Similarly, the first wheel 531 of the right scissor mechanism 41 and the second wheel 532 of the right scissor mechanism 41 are rollingly engaged inside the right fixed guide rail 21, so that the roller pin 53 of the right scissor mechanism 41 holds the right scissor mechanism 41 adjacent to the right fixed guide rail 21.
Referring to
The first upper arm end 521 is positioned opposite the second upper arm end 522 along the upper ramp support arm 52. The roller attachment location 523 is positioned adjacent to the second upper arm end 522 opposite the first upper arm end 521. The first lower arm end 541 is positioned opposite the second lower arm end 542 along the lower ramp support arm 54. The first platform arm end 561 is positioned opposite the second platform arm end 562 along the platform support arm 56. The supporting protrusion 563 is positioned on the underside of the platform support arm 56 adjacent to the first platform arm end 561. The supporting protrusion 563 extends from the platform support arm 56 and presses against the lower ramp support arm 54 in order to support the platform support arm 56 in a horizontal orientation while the present invention is in the deployed position.
Referring to
Referring to
The second upper arm end 522 of the last scissor section 44 is pivotally connected to the second lower arm end 542 of the lower ramp support arm 54 of a previous scissor section 200, wherein the previous scissor section 200 is one of the at least one subsequent scissor section 43s.
Referring to
Referring to
As can be seen in
Similarly, the right cable 10 is operatively engaged, in order, with the railing pulley 101 of the right railing 13, the first pulley 50 of the first scissor section 42 of the right scissor mechanism 41, the second pulley 51 of the first scissor section 42 of the right scissor mechanism 41, the first pulley 50 of the at least one subsequent scissor section 43 of the right scissor mechanism 41, the second pulley 51 of the at least one subsequent scissor section 43 of the right scissor mechanism 41, and the first pulley 50 of the last scissor section 44 of the right scissor mechanism 41. The right cable 10 is also attached to the cable securing rod 57 of the last scissor section 44 of the right scissor mechanism 41. In other words, the right cable 10 is engaged with all the pulleys of the right scissor mechanism 41 and is secured to the last scissor section 44 of the right scissor mechanism 41. The present invention is collapsed by applying a force to the left cable 9 and the right cable 10 in a direction toward the façade 100. The left cable 9 and the right cable 10 are made of appropriate material for sustaining the weight of the present invention and any users of the present invention. When the present invention is in the stored position, the ends of the left cable 9 and the right cable 10 opposite the cable securing rod 57 may be wound around a spool, which may be electrically operated by a motor or operated by hand, or by another method.
As seen in
The plurality of first upper belt sections 61 and the plurality of first lower belt sections 62 are positioned adjacent to each other and are oriented parallel to each other. The plurality of first upper belt sections 61 and the plurality of first lower belt sections 62 are attached in between the first crossbar 71 and the second crossbar 72, wherein the first crossbar 71 and the second crossbar 72 are positioned between the plurality of first upper belt sections 61 and the plurality of first lower belt sections 62. The plurality of first upper belt sections 61 are laterally spaced apart from each other, and the plurality of first lower belt sections 62 are also laterally spaced apart from each other. The plurality of first upper belt sections 61 and the plurality of first lower belt sections 62 are laterally staggered relative to each other, wherein a first gap between two of the plurality of first upper belt sections 61 is centrally positioned with one of the plurality of first lower belt sections 62 and a second gap between two of the plurality of first lower belt sections 62 is centrally positioned with one of the plurality of first upper belt sections 61.
Similarly, the plurality of second upper belt sections 63 and the plurality of second lower belt sections 64 are positioned adjacent to each other and are oriented parallel to each other. The plurality of second upper belt sections 63 and the plurality of second lower belt sections 64 are attached in between the second crossbar 72 and the first crossbar 71 of a next scissor section 300, wherein the next scissor section 300 is the at least one subsequent scissor section 43, or the next scissor section 300 is the last scissor section 44. The second crossbar 72 and the first crossbar 71 of the next scissor section 300 are positioned between the plurality of second upper belt sections 63 and the plurality of second lower belt sections 64.
The plurality of second upper belt sections 63 are laterally spaced apart from each other, and the plurality of second lower belt sections 64 are also laterally spaced apart from each other. The plurality of second upper belt sections 63 and the plurality of second lower belt sections 64 are laterally staggered relative to each other, wherein a third gap between two of the plurality of second upper belt sections 63 is centrally positioned with one of the plurality of second lower belt sections 64 and a fourth gap between two of the plurality of second lower belt sections 64 is centrally positioned with one of the plurality of second upper belt sections 63.
Each of the plurality of ramp belt sections 6 may be attached to one of the plurality of crossbars 7 by any appropriate means. For example, in one embodiment of the present invention, each of the plurality of ramp belt sections 6 is attached to one of the plurality of crossbars 7 by a plurality of metal rings attached between the ramp belt section and the crossbar in a manner similar to a shower curtain. In another embodiment of the present invention, a ramp belt is connected to a crossbar by forming a loop of fabric around the crossbar that is part of or attached to the ramp belt. In another embodiment of the present invention, a first ramp belt is connected to a crossbar by stitching the first ramp belt to an opposing second ramp belt, forming a loop around the crossbar. In another embodiment of the present invention, each of the plurality of ramp belts is a single entity being woven throughout the plurality of crossbars 7.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.