Deployable origami-inspired barriers

Information

  • Patent Grant
  • 11454475
  • Patent Number
    11,454,475
  • Date Filed
    Friday, October 25, 2019
    4 years ago
  • Date Issued
    Tuesday, September 27, 2022
    a year ago
Abstract
An example barrier can be switchable between an at least partially collapsed state and at least partially expanded state (e.g., a deployed state). For example, the barrier can be formed from a sheet and a plurality of rigid sections (e.g., rigid panels) attached or incorporated into the sheet. The barrier can also include a plurality of hinges, such as hinge lines, between the panels that are formed from the sheet. The hinges enable the barrier to be rigid foldable (e.g., the hinges can fold and unfold while the rigid sections remain stiff and rigid) between the expanded and collapsed states.
Description
BACKGROUND

A barrier is an object that prohibits or impedes the progress of another object. Acoustic barriers prevent sound from traveling through them. A flood barrier stops water from flowing past it. A radiation barrier, such as a lead blanket used at the dentist's office, prevents harmful x-rays from damaging your body.


One common problem with barriers is that they are often large and hard to transport. As such, there is a need for barriers that can be stored small and quickly expanded (e.g., deployed) to cover a large area. Current solutions to this problem include folding barriers, barriers that roll up, and modular panel barriers. While these barriers solve the problem of size, they also introduce other challenges, such as increased degrees of freedom, slow expansion, manual assembly, and possible cuts, holes, and gaps in the barrier.


Despite the availability of a number of different barriers, manufacturers and users of barriers continue to seek new and improved barriers.


SUMMARY

In an embodiment, a barrier is disclosed. The barrier includes a sheet, a plurality of rigid sections attached to or incorporated into the sheet, and a plurality of hinges between the plurality of rigid sections. The plurality of hinges are formed from portions of the sheet. The plurality of hinges intersect with each other at at least one vertex. At least some of the hinges that intersection at the at least one vertex are non-collinear. The barrier is configured to be switchable between an at least partially collapsed state and an at least partially expanded state.


In an embodiment, a method to make a barrier is disclosed. The method includes providing a sheet, defining a plurality of rigid sections on the sheet, and forming a plurality of hinges from portions of the sheet that are disposed between the plurality of rigid sections. The plurality of hinges intersect with each other at at least one vertex. At least some of the plurality of hinges that intersect at the at least one vertex are non-collinear. The plurality of rigid sections are attached to or incorporated into the sheet. The barrier is configured to be switchable between an at least partially collapsed state and an at least partially expanded state.


In an embodiment, a method to deploy a barrier is disclosed. The method includes providing a barrier that is in an at least partially collapsed state. The barrier includes a continuous sheet, a plurality of rigid sections attached to or incorporated into the continuous sheet, and a plurality of hinges formed from the continuous sheet that are disposed between the plurality of rigid sections. The plurality of hinges intersect with each other at at least one vertex. At least some of the plurality of hinges that intersect at the at least one vertex are non-collinear. The method also includes switching the barrier from the at least partially collapsed state to an at least partially expanded state by unfolding the plurality of hinges. The barrier in the at least partially expanded state exhibits at least one of a length, width, or thickness that is greater than the barrier in the at least partially collapsed state.


Features from any of the disclosed embodiments may be used in combination with one another, without limitation. In addition, other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art through consideration of the following detailed description and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate several embodiments of the invention, wherein identical reference numerals refer to identical elements or features in different views or embodiments shown in the drawings.



FIG. 1A is a front view of a barrier in an at least partially expanded state, according to an embodiment.



FIG. 1B is a top view of the barrier shown in FIG. 1A while the barrier is in the at least partially expanded state, according to an embodiment.



FIG. 1C is an isometric view of the barrier of FIGS. 1A-1B in the at least partially collapsed configuration, according to an embodiment.



FIGS. 2A-2D are plan views of barriers that are in a planar configuration (e.g., are fully expanded) and that exhibit different Yoshimura or modified Yoshimura patterns, according to different embodiments.



FIGS. 3A and 3B are front and back views of a barrier in the expanded state thereof, according to an embodiment.



FIG. 3C is an isometric view of the barrier shown in FIGS. 3A and 3B in the collapsed state thereof, according to an embodiment.



FIGS. 4A-4C are partial cross-sectional views of a portion of a barrier that includes a hinge exhibiting a thick membrane fold when the hinge is completely unfold, partially folded, and completely folded, respectively, according to embodiment.



FIGS. 5A-5E are partial cross-sectional views of barriers that have different arrangements of one or more layers and a plurality of rigid sections, according to different embodiments.



FIG. 6 is a schematic front view of a portion of a barrier illustrating several mechanisms that can be used to stabilize the barrier when the barrier is in the expanded state, according to an embodiment.



FIG. 7 is a flow chart of a method of forming any of the barriers disclosed herein, according to an embodiment.





DETAILED DESCRIPTION

Embodiments disclosed herein are directed to barriers inspired by thick origami, methods of making such barriers, and methods of using such barriers. In an embodiment, the barrier can be switchable between an at least partially collapsed state and at least partially expanded state (e.g., a deployed state). For example, the barrier can be formed from a sheet (e.g., a continuous or non-continuous sheet) and a plurality of rigid sections (e.g., rigid panels) attached to or incorporated into the sheet. The barrier can also include a plurality of hinges, such as hinge lines, between the rigid sections that are formed from the sheet. The hinges allow the barrier to be rigid foldable (e.g., the hinges can fold and unfold while the rigid sections remain stiff and rigid) between the expanded and collapsed states.


The sheet (e.g., an unbroken surface of the barriers) can be split into portions thereof that are proximate to or include the rigid sections, and into other portions (e.g., the gaps between rigid sections) that form the hinges. The barrier is foldable along the hinges to switch between its expanded state to a smaller collapsed state. The barrier can include at least one vertex where multiple hinges converge together. The rigid sections and the hinges can create a tessellated mechanism that can, but is not limited to, one or more of dictating the degrees of freedom, control the folding and unfolding process, store energy to help expand or collapse the barrier, or maintain the barrier in certain states.


In a typical use of the barrier, the barrier can be stored and transported in its collapsed state. The barrier can include wheels, straps, and/or handles that are configured to facilitate transportation and/or handling of the barrier in at least one of the collapsed or expanded state. For example, the barrier can be carried or towed like luggage or worn on the back like a backpack. When an operator of the barrier reaches a desired destination, the operator can place the barrier on a support surface (e.g., ground or floor) and expand (e.g., deploy) the barrier. In an embodiment, the barrier can be expanded automatically using one or more of compressed air, springs, telescoping poles, or braces. In another embodiment, the barrier can be expanded manually. The expansion of the barrier can be limited by the telescoping poles, the braces, a rope or some other fabric that reaches a maximum length, thus stopping the expansion of the barrier. Once the barrier is at its desired expanded state, the barrier can be locked in place using braces (e.g., locking hinges, over-center latches, or telescoping poles), or springs, or the barrier can maintain its shape because of friction in the hinges or from the friction between barrier and the support surface. The wheels, straps, and/or handles may be used to move, position, or otherwise operate the barrier in the expanded state thereof.


In an embodiment, the barrier can exhibit a generally “C” shape that provides front and flank protection when expanded that makes the barrier self-standing, but other configurations (e.g., a generally flat shape) or support methods can be used. The barrier can have multiple configurations making it more versatile. For example, if the barrier needs to be set-up in a hallway, the sides can be folded in or, if the user wanted to use it to cover a wall, the barrier can be made completely flat and propped or attached to the wall. Once the barrier is no longer needed, the barrier can be folded back to its collapsed state which exhibits a compact size relative to the barrier in the expanded state. The barrier can be held in its collapsed state by straps, magnets, clasps, bag, or other suitable device.



FIG. 1A is a front view of a barrier 100 in an at least partially expanded state, according to an embodiment. The barrier 100 includes a sheet 102 (e.g., a continuous or non-continuous sheet) that includes at least two exterior surfaces 104. The barrier 100 can also include a plurality of rigid sections 106 that are attached to at least one of the exterior surfaces 104 of the sheet 102 (as shown), disposed in the sheet 102 (see FIGS. 4D-4E), or otherwise incorporated into the sheet 102. The rigid sections 106 can define gaps therebetween. The portion of the sheet 102 that is adjacent to the gaps can form hinges 108 that are configured to fold and unfold, such as fold and unfold without creasing. Allowing the hinges 108 to fold and unfold can switch the barrier 100 between the expanded state (FIG. 1A) and the collapsed state (FIG. 1C). In an embodiment, the barrier 100 can optionally include a plurality of springs 110 that ensure correct deployment of the barrier 100 and are configured to maintain the barrier 100 in the expanded state.


As shown in FIG. 1A, the barrier 100 exhibits a relatively large exposed area when the barrier 100 is in the expanded state. For example, when the barrier 100 is in the expanded state, the barrier 100 can cover an area that is about 2 feet to about 10 feet (e.g., about 2 feet to about 4 feet, about 3 feet to about 5 feet, about 4 feet to about 6 feet, about 5 feet to about 7 feet, about 6 fee to about 8 feet, about 7 feet to about 9 fee, or about 8 feet to about 10 feet) by about 2 feet to about 10 feet (e.g., about 2 feet to about 4 feet, about 3 feet to about 5 feet, about 4 feet to about 6 feet, about 5 feet to about 7 feet, about 6 fee to about 8 feet, about 7 feet to about 9 fee, or about 8 feet to about 10 feet), such as an area that is about 4 feet by about 6 feet or about 2 feet by about 3 feet (e.g., about 23 inches by about 34 inches). For instance, the barrier 100 can exhibit a length L1 of about 3.5 feet and a width (e.g., width W1) of about 5.5 feet when in the expanded state.


In an embodiment, the barrier 100 is self-standing when the barrier 100 is in the expanded state thereof. In an embodiment, the barrier 100 is configured to be carried when the barrier 100 is in the expanded state thereof. In an embodiment, the barrier 100 can exhibit a weight that is less than about 120 lbs., such as less than about 100 lbs., less than about 90 lbs., less than about 75 lbs., less than about 60 lbs., less than about 50 lbs, less than about 40 lbs, less than about 30 lbs, less than about 20 lbs, less than about 10 lbs, or in ranges of about 10 lbs to about 30 lbs, about 20 lbs to about 40 lbs, about 30 lbs to about 50 lbs, about 40 lbs to about 60 lbs, about 50 lbs to about 75 lbs, about 60 lbs to about 90 lbs, about 75 lbs to about 100 lbs, or about 90 lbs to about 120 lbs. Additionally, the barrier 100 can be configured to switch from the collapsed state to the expanded state in less than about 20 seconds by a single user, such as in less than about 15 seconds, less than about 10 seconds, less than about 5 seconds, less than about 2 seconds, or in ranges of about 1 second to about 5 seconds, about 2 seconds to about 10 seconds, about 5 seconds to about 15 seconds, or about 10 seconds to about 20 seconds. In other words, the barrier 100 can be expanded easily and quickly.


In an embodiment, the sheet 102 of the barrier 100 can be a continuous sheet. The continuous sheet may made from a single sheet that may be uncut. Forming the sheet 102 from a single uncut sheet can allow the barrier 100 to exhibit the folding characteristics of origami and prevents holes in the barrier 100 through which items and energy can pass. As previously discussed, portions of the sheet 102 that are between the rigid sections 106 can form the hinges 108 of the barrier 100, thereby allowing the barrier 100 to be foldable (e.g., switch between the expanded and collapsed state) without creasing. The barrier 100, including the sheet 102, can exhibit improved barrier properties than a substantially similar barrier that includes a discontinuous sheet (e.g., a sheet including one or more cuts formed therein). For example, forming the sheet 102 from bulletproof material can create bulletproof hinges, can avoid the uncertain ballistic behavior of traditional hinges, and can ensure that the ballistic rating would be at the least rated to the ballistic level of the sheet 102. In an example, forming the sheet 102 from acoustic absorbing material can substantially prevent acoustic energy from passing through the hinges 108. In an embodiment, the sheet 102 of the barrier 100 can be a discontinuous sheet since the discontinuous sheet may be easier to manufacture.


The sheet 102 can be formed of any suitable compliant material. In an example, the sheet 102 can include a material that exhibits excellent ballistic properties or that is commonly used in ballistic protection devices (e.g., bulletproof vests) In such an example, the sheet 102 can include one or more of ballistic nylon, Kevlar®, ultra-high-molecular-weight polyethylene fabric, or another suitable material. In an example, the sheet 102 can include a material that resists creasing. In an embodiment, the sheet 102 can include a non-ballistic material (e.g., non-ballistic fabric), such as a material exhibiting acoustic absorbing properties, a good yield or shear strength, good abrasion resistance, good resistance to sunlight (e.g., ultra-violet light resistance), good water resistance (e.g., waterproof), etc. In such an example, the non-ballistic material may be used in a barrier 100 that is a ballistic barrier, such as when the rigid sections 106 cover the non-ballistic material when the barrier 100 is in the expanded state or the non-ballistic material is used in conjunction with a ballistic material (e.g., Kevlar). In an example, the sheet 102 may be stretchable. The sheet 102 is stretchable when, without plastically deforming or otherwise failing, the sheet 102 may increase in at least one dimension by at least about 1%, at least about 2%, at least about 5%, at least about 10%, at least about 20%, at least about 50%, at least about 100%, or in ranges of about 1% to about 5%, about 2% to about 10%, about 5% to about 20%, about 10% to about 50%, or about 20% to about 100%. The ability of the sheet 102 to stretch may at least one of allow the rigid sections 106 to substantially completely cover one or more portions of the hinges 108 when the barrier 100 is in the expanded state or allow the rigid sections 106 to fold around each other when the barrier 100 is in the collapsed state (i.e., allow the barrier 100 to have fewer voids when the barrier 100 is in the collapsed state).


In an embodiment, the sheet 102 can be formed from a plurality of layers (as shown in FIGS. 4B-4E), such as a plurality of layers of ballistic fabric. At least one (e.g., each) of the plurality of layers can be a continuous layer. In an example, the barrier 100 can be formed from 2 layers to 5 layers, 4 layers to 7 layers, 5 layers to 10 layers, 7 layers to 15 layers, 10 layers to 20 layers, 15 layers to 25 layers, 20 layers to 40 layers, 30 layers to 50 layers, or more than 50 layers. In an example, the sheet 102 can be formed from a plurality of layers that are substantially the same. In an example, the sheet 102 can be formed from a plurality of different layers. In such an example, the layers that are different can exhibit at least one of a material composition, porosity, structure (e.g., a fibrous structure vs. non-porous film structure), or thickness that is different. It is noted that the sheet 102 can be formed from a plurality of layers regardless of the material used to form the sheet 102.


In an embodiment, the sheet 102 can exhibit a thickness that is negligible (e.g., greater than 0 mm to about 0.75 mm, greater than about 0 to about 1.5 mm) or non-negligible (e.g., greater than about 0.75 mm or greater than about 1.5 mm). For example, the sheet 102 can exhibit a thickness that is less than about 25 mm, greater than 0 mm to about 12.5 mm, about 2.5 mm to about 6 mm, about 5 mm to about 13 mm, about 6 mm to about 19 mm, greater than about 13 mm, or about 13 mm to about 25 mm. Increasing the thickness of the sheet 102 can improve the barrier properties of the barrier 100. For example, increasing the thickness of the sheet 102 can increase the ballistic properties, increase acoustic barrier properties, increase fluid barrier properties (e.g., decrease a water permeation rate), decrease a heat permeation rate, increase opaqueness, increase impact resistance, etc. of the barrier 100. However, increasing the thickness of the sheet 102 can increase the weight of the barrier 100 thereby making it harder to transport and operate. Additionally, as will be discussed in more detail with regards to FIGS. 4A-4C, increasing the thickness of the sheet 102 can increase the complexity of the hinges 108.


The configuration of the hinges 108 can depend on the number of layers used to form the sheet 102 and/or the thickness of the sheet 102. For example, increasing number of layers and/or thickness of the sheet 102 can increase the distance between the rigid sections 106, require the use of thick membrane folds (e.g., shown in FIGS. 4A-4C), etc.


In an embodiment (not shown), the barrier 100 can be formed form a dissheet. In such an embodiment, the hinges 108 can be formed using traditional hinges, such as a butt hinge, a T-hinge, a strap hinge, etc. The traditional hinges can be strengthened or covered by the sheet 102 or another sheet, thereby preventing projectiles, energy, or other material from passing through the hinge area.


The rigid sections 106 perform several functions for the barrier 100. For example, the rigid sections 106 can be configured to resist deformation (e.g., resist folding and unfolding). The ability of the rigid sections 106 to resist deformation can facilitate controllably switching the barrier 100 between the collapsed and expanded states since the movement of the barrier 100 is restricted (e.g., prevents the formation of new hinges). Additionally, the ability of the rigid section 106 to resist deformation can make it easier to maintain the barrier 100 in the expanded state. In an example, the rigid sections 106 can improve the ballistic properties, acoustic barrier properties, etc. of the barrier 100 compared to a substantially similar barrier that does not include the rigid sections 106.


In an embodiment, the rigid sections 106 can include rigid panels (e.g., rigid material) that are distinct from the sheet 102. As shown in FIG. 1A, the rigid panels can be attached to at least one of the exterior surfaces 104 of the sheet 102. The rigid panels can be made from any rigid material, such as a material with ballistic properties or a light weight material. For example, the rigid panels can be formed from a light weight composite of aluminum and polyethylene (e.g., Dibond®), a fiberglass composite (e.g., Garolite), carbon fiber, magnesium alloys, aluminum alloys, silicon carbide, aluminum oxide, steel, titanium, ultra-high molecular weight polyethylene, synthetic spider silk, metal composite foams, other suitable ceramics, other suitable polymers, other suitable composites, or combinations thereof. For example, if the barrier 100 is a ballistic barrier, the panels can be formed from Garolite or carbon fiber because these materials are light weight, bullet-resistant, rigid, and inexpensive. In an embodiment, the rigid panels may be formed from steel, or another suitable hard material.


The rigid panels of the rigid sections 106 can be attached to the sheet 102 using any suitable method. For example, the panels of the rigid sections 106 can be attached to the sheet 102 by sewing, gluing, melting, bolting, pocketing, or any combination thereof. Such methods of attachment can minimize shearing between the layers of the sheet 102 and the rigid panels, prevent bending of the rigid panels, and may not introduce weak points in the barrier 100. For example, a sharpened bolt can split a weave of the sheet 102 fairly easily and attach the rigid panels snugly to the sheet 102. However, using bolts to attach the rigid panels to the sheet 102 can damage the sheet 102.


In an embodiment, the rigid sections 106 can include rigid panels disposed in the sheet 102. For example, the panels can be placed in the middle of the sheet 102. For instance, the sheet 102 can be formed from a plurality of layers and the panel can be placed between two of the layers. The rigid panels that are disposed in the sheet 102 can include any of the rigid panels disclosed herein. The rigid panels can be maintained in a selected portion of the sheet 102 using any suitable method, such as by sewing, gluing, melting, bolting, pocketing, or any combination thereof.


In an embodiment, the rigid sections 106 can include portions of the sheet 102 that are reinforced to form the rigid sections 106. For instance, reinforcing the sheet 102 can cause the sheet 102 to resist folding. In an example, the sheet 102 can be reinforced by attaching or disposing any of the rigid panels disclosed herein to or in the sheet 102. In an example, the sheet 102 can be reinforced by laminating at least one thermoplastic to the sheet 102. In an example, the sheet 102 can be reinforced by impregnating the sheet 102 with an epoxy, resin, or other hardener (collectively referred to as “hardener”). In such an example, the rigid sections 106 can be formed by using the sheet 102 as the matrix and then adding the hardener to harden selected regions of the sheet 102. Heat and pressure can be applied to the sheet 102 and the hardener to facilitate hardening of the hardener. A mask (e.g., rubber that would remain attached to the barrier 100) can be used to selectively cure the hardener. In an example, the sheet 102 can be reinforced by sewing a plurality of stitches in the sheet 102. The stitches can limit movement between the plurality of layers of the sheet 102 thereby forming the rigid sections 106. These methods of creating the rigid sections 106 are not mutually exclusive and can be combined.


In an embodiment, the rigid sections 106 (e.g., rigid panels) can exhibit a thickness that is greater than about 0.8 mm, such as in ranges of about 0.8 mm to about 25 mm, about 0.8 mm to about 3 mm, about 1.6 mm to about 6.4 mm, about 1.6 mm to about 13 mm, or about 9.5 mm to about 25 mm. It is noted that the thickness of the rigid sections 106 can depend on the material or method used to form the rigid sections 106. As such, in some embodiments, the thickness of the rigid section 106 can be less than about 0.8 mm or greater than 25 mm. In an embodiment, the rigid sections 106 can include a surface that is flat, exhibits a non-flat shape (e.g., a concave or convex shape), includes one or more protrusion extending therefrom, or includes one or more recesses extending inwardly therefrom.


In an embodiment, the rigid sections 106 can be configured to limit the degrees of freedom of the barrier 100. In an example, the rigid sections 106 can be configured to limit the barrier 100 to a single degree of freedom. In an example, the rigid sections 106 can be configured to limit the barrier 100 to 2, 3, 4, or 5 degrees of freedom. Additionally, the thickness of the rigid sections 106 can be used to create interference. For example, the thickness of the rigid sections 106 can be equivalent of placing hinges on certain sides of the thick material so as to have the thickness interfere or restrict the movement of the hinges (e.g., most doors only swing one direction because hinges are placed on the valley side of the door and the thickness of the door and door frame prevent the door from swinging the other direction). As such, the thickness of the rigid sections 106 can limit degrees of freedom and can determine the available configurations of the barrier 100, thereby allowing more rapid set up and take down of the barrier 100.


In an embodiment, the rigid sections 106 can be made to at least partially overlap the hinges 108 to prevent the hinges 108 from being a weak point of the barrier 100. For example, the rigid sections 106 may substantially cover the hinges 108 when the barrier 100 is in the expanded state In an embodiment, the rigid sections 106 can include multiple layers of rigid panels on one or both sides of the sheet 102.


Each of the hinges 108 includes a mountain side 112 that forms a generally convex shape and a valley side 114 that opposes the mountain side 112. Each of the hinges 108 can also form hinge lines that intersect with each other at at least one vertex 116. As will be discussed in more detail below, the mountain side 112 of the hinges 108, the valley side 114 of the hinges 108, and how the hinges 108 intersect at the vertex 116 can be configured to bias the hinges 108 to bend in certain directions and to improve the stability of the barrier 100 when the barrier 100 is in the expanded configuration.


In an embodiment, the barrier 100 can include a plurality of springs 110 that are coupled to one or more components of the barrier 100. For example, at least some of the springs 110 can be coupled to the rigid sections 106 of the barrier 100 and can span across the hinges 108. In another embodiment, the barrier 100 does not include the springs 110.


The springs 110 can be configured to make the barrier 100 stable when the barrier 100 is in the expanded state and to provide spring-assisted actuation (e.g., easier switching between the expanded and collapsed states). For example, the springs 110 can apply a force across the hinges 108 that is configured to cause the hinges 108 to unfold. Such springs 110 can support at least a portion of the mass of the barrier 100. For instance, springs 110 that support at least a portion of the mass of the barrier 100 can automatically cause the barrier 100 to switch from the collapsed state to the expanded state or reduce the force required to manually switch the barrier 100 from the collapsed state to the expanded state. In another instance, the springs 110 can support enough of the mass of the barrier 100 that the barrier 100 remains in the expanded state. In an example, the springs 110 can be configured to prevent the barrier 100 from folding in the wrong direction. For instance, the springs 110 can bias the hinges 108 to fold in a selected directions.


In some embodiments, the springs 110 can be compression springs, leaf springs, torsional springs, resilient material (e.g., an elastomer), other suitable biasing elements, or any combination thereof. For example, the springs 110 can include steel springs. Alternatively or additionally, the springs 110 can be replaced with air cylinders, solenoids, motors, shape memory alloy actuators, other suitable actuators, or combinations thereof.



FIG. 1B is a top view of the barrier 100 shown in FIG. 1A while the barrier 100 is in the at least partially expanded state, according to an embodiment. As shown in FIG. 1B, the barrier 100 can include at least one brace 118. The brace 118 can be configured to keep the barrier 100 in the expanded state when the brace 118 is activated (e.g., when the brace 118 is extended). For example, the brace 118 can add at least one compressive member to the barrier 100 for support.


In an embodiment, the brace 118 can include at least one telescoping pole that holds the barrier 100 in its expanded state. The telescoping poles can prevent gravity from pulling the barrier 100 into its collapsed state. For instance, the telescoping poles can expand from 25 in. to 36 in., allowing sufficient internal overlap to prevent bending and releasing, thereby allowing the barrier 100 to remain expanded. In an example, the barrier 100 can include air cylinders, solenoids, motors, shape memory alloys, light or temperature sensitive materials, leaf spring, other suitable braces, or combinations thereof instead of or in conjunction with the brace 118.


In an embodiment, the barrier 100 may be configured to be self-standing when the barrier 100 is in the expanded state. The barrier 100 can exhibit any shape that allows that barrier 100 to be self-standing. For example, the barrier 100 can exhibit a shape that includes at least one flat surface supported by at least one beam or another flat surface that extends from the flat surface towards a support surface. In such an example, the barrier 100 can form an A-frame. In an example, the barrier 100 can exhibit a shape that includes at least two flat surfaces that extend at an angle relative to each other, such as a generally V-shape, generally L-shape, or a generally W-shape. In an example, as shown in FIG. 1C, the barrier 100 can exhibit a curved shape, such as a generally C-shape, a generally O-shape, or a generally J-shape. In an example, the barrier 100 can exhibit a shape that offers protection from multiple angles (e.g., from a front and flank direction), such as a generally V-shape or a generally C-shape. In an example, the barrier 100 may include a flat surface. In an embodiment, the barrier 100 may be configured to be carried (e.g., not self-standing) when the barrier 100 is in the expanded state. In such an embodiment, the barrier 100 may include any of the shapes discussed above.


In an embodiment, the barrier 100 can include one or more additional components (not shown) that facilitate the operation of the barrier 100. In an example, the barrier 100 can have lights (e.g., strobe lights) attached to a front of the barrier 100 that are configured to illuminate a location and/or blind possible attackers. In an example, the barrier 100 can also have supports attached to the sides or top thereof upon which a gun can rest. In an example, the barrier 100 can have a clear section (e.g., a clear ballistic material) or define a gap so a user can see through it. In an example, the barrier 100 can have handholds, straps, wheels, or another device that facilitates movement of the barrier 100. In an example, the barrier 100 can include pockets, such as pockets sewn into the sheet 102 and or formed in the rigid sections 106. In an example, the barrier 100 may include one or more tabs that may be gripped by the user of the barrier 100 while the barrier 100 is being at least one of switched from the collapsed state to the expanded state or switched from the expanded state to the collapsed state since, in some embodiments, the barrier 100 may be more difficult to grip without the tabs.


The barrier 100 may be unwieldy and hard to store when the barrier 100 is in the expanded state. As such, the barrier 100 is switchable between the expanded state and an at least partially collapsed state. FIG. 1C is an isometric view of the barrier 100 of FIGS. 1A-1B in the at least partially collapsed configuration, according to an embodiment. As shown in FIG. 1C, the barrier 100 exhibits a relatively more compact size when the barrier 100 is in the collapsed state than when the barrier 100 in the expanded state. The relatively more compact size of the barrier 100 when the barrier 100 is in the collapsed state can facilitate storage and transportation of the barrier 100. In an example, the barrier 100 can exhibit a size and shape that allows the barrier 100 to be stored in a trunk of a car when the barrier 100 is in the collapsed state. In an example, the barrier 100 can exhibit a size and shape that allows the barrier 100 to be carried like a backpack or a suitcase when the barrier 100 is in the collapsed state. In an example, the barrier 100 can exhibit a size and shape that allows the barrier 100 to be disposed between two adjacent seats in a car and/or between a seat (e.g., passenger or driver side seat) and a console.


Switching the barrier 100 from the expanded state to the collapsed state can include decreasing at least one of a length, width, or thickness of the barrier 100. Similarly, switching the barrier 100 from the collapsed state to the expanded state can include increasing at least one of the length, width, or thickness of the barrier 100. For example, referring to FIGS. 1A-1B, the barrier 100 exhibits a first length L1, a first width W1, and a first thickness t1 when the barrier 100 is in the expanded state. Meanwhile, referring to FIG. 1C, the barrier 100 exhibits a second length L2, a second width W2, and a second thickness t2 when the barrier 100 is in the collapsed state, wherein at least one of the second length L2, the second width W2, or the second thickness t2 is less than at least one of the first length L1, the first width W1, or the first thickness t1, respectively.


In an embodiment, switching the barrier 100 from the expanded state to the collapsed state can include decreasing the volume occupied by the barrier 100. For example, the volume of the barrier 100 in the expanded state can be defined by a box having dimensions equal to the first length L1, the first width W1, and the first thickness t1. Similarly, the volume of the barrier 100 in the collapsed state can be defined by a box having dimensions equal to the second length L2, the second width W2, and the second thickness t2. In such an example, the volume of the barrier 100 in the collapsed state is less than the volume of the barrier 100 in the expanded state. In another embodiment, switching the barrier 100 from the expanded state to the collapsed state can include increasing the volume occupied by the barrier 100. For example, the barrier 100 can form a substantially planar shape when the barrier 100 is in the expanded state which can cause the barrier 100 in the expanded state to occupy a smaller volume than the barrier 100 in the collapsed state.


The barriers disclosed herein can exhibit a number of different origami patterns that can create a barrier that is at least one of thick-foldable, can fold up compactly, and can be expanded into a large barrier (e.g., a curved barrier). For example, the barrier 100 shown in FIGS. 1A-1C exhibits a 6-story modified Yoshimura pattern. FIGS. 2A-2D are plan views of barriers 200a-d that are in a planar configuration (e.g., are fully expanded) and that exhibit different Yoshimura or modified Yoshimura patterns, according to different embodiments. Except as otherwise disclosed herein, the barriers 200a-d are the same as or substantially similar to the barrier 100 of FIGS. 1A-1C. For example, each of the barriers 200a-d includes a sheet 202, a plurality of rigid sections 206, and a plurality of hinges 208. Additionally, each of the barriers 200a-d are configured to switch between an at least partially expanded state to an at least partially collapsed configuration.



FIG. 2A illustrates a barrier 200a that exhibits a Yoshimura pattern that is composed of degree-6 vertices, according to an embodiment. FIGS. 2B-2D illustrate barriers 200b-d that each exhibit a modified Yoshimura pattern, according to an embodiment. Barriers 200b-d exhibit a modified Yoshimura pattern because each degree-6 vertex of a conventional Yoshimura pattern is split into two degree-4 vertices. The modified Yoshimura patterns shown in FIGS. 2B-2D are also known as a version of the Huffman pattern and/or a version of an origami pattern used by magicians known as the Troublewit. It is noted that, in an embodiment, the barrier 200a can exhibit a modified Yoshimura pattern and/or the barriers 200b-d can exhibit a Yoshimura pattern.


The barriers 200a-d include a first surface 228a and a second surface 228b opposite the first surface 228a. The first and second surfaces 228a, 228b are configured to be the top surface or the bottom surface during operation of the barriers 200a-d (e.g., when the barriers 200a-d are in the expanded states thereof). As such, when the barriers 200a-d are in use, the first and second surfaces 228a, 228b are configured to be spaced from each other in a vertical direction that is generally parallel to gravity. In the illustrated embodiment, either of the first surface 228a or the second surface 228b may be configured to be positioned on the ground.



FIGS. 2A-2D illustrate that the barriers 200a-d that exhibit a pattern (e.g., Yoshimura pattern, modified Yoshimura pattern, or any other pattern disclosed herein) can include a plurality of stories. “Stories” are defined as the number of rigid sections 206 in the vertical direction of the barriers 200a-d (e.g., between the first and second surfaces 228a, 228b). Each of the stories of the barriers 200a-d can include a generally horizontal hinges 208 (e.g., the generally horizontal hinges may vary by ±45° from an axis that is perpendicular to vertical direction) that separates each of the stories. For example, FIG. 2A illustrates that the barrier 200a includes three stories 220a, FIG. 2B illustrates that the barrier 200b includes four stories 220a, FIG. 2C illustrates that the barrier 200c includes five stories 220c, and FIG. 2D illustrates that the barrier 200d includes six stories 220d. While it is possible to have a pattern having an infinite amount of stories, for practical reasons, such as manufacturing, it is advantageous to limit the pattern to 3 to 10 stories, and more particularly, to 3 to 6 stories. It is noted that, in some embodiments, the barriers disclosed herein may only include a single story.


The number of stories of the pattern used to form the barriers 200a-d can also affect the stability of the barriers 200a-d when expanded for several reasons. First, increasing the number of stories of the barriers 200a-d can increase the stability of the barriers 200a-d because it can increase the width of the barriers 200a-d. For example, the wider footprint of the 6-story barrier 202d provides better resistance to tipping than the 5-story barrier 202c, the 4-story barrier 202b, and the 3-story barrier 202a. Second, the structural stability of the barriers 200a-d can also be increased by increasing the number of stories of the barriers 200a-d because parallel axes of the hinges 208 become less collinear. For example, the angled hinges 208 on the 4-story barrier 202b are closer to being collinear than those on the 6-story barrier 202d. The closer the hinges 208 are to being collinear, the more diagonal sheering can occur. Third, increasing the number of stories of the barriers 200a-d can result in more hinges 208, which can decrease stability of the barriers 200a-d. For example, increasing the number of stories above a certain number (e.g., greater than 8 stories, greater than 10 stories, greater than 15 stories, or greater than 20 stories) can decrease the stability of a barrier even though the barrier exhibits an increased width and non-collinear hinges. In view of the above, at least for Yoshimura and modified Yoshimura patterns, the inventors have found that the 6-story barrier 202d provides enough stories to have a stable base, and fewer collinear hinges 208, and not too many hinges 208. As such, it is currently believed by the inventors that the 6-story barrier 202d may result in a universal barrier that works the same in both directions and helps reduce set up time and eliminates set up error in critical situations.


The number of stories of the pattern that is used to form the barriers 200a-d can also determine the storage efficiency and storage size of the barriers 200a-d when the barriers 200a-d are in a collapsed state. In particular, increasing the number of stories of the Yoshimura or a modified Yoshimura pattern increases the unused space in the middle of the folded Yoshimura or a modified Yoshimura pattern and increases size and number of the gaps between the folded layers of the Yoshimura or a modified Yoshimura pattern. For example, the barrier 200a of FIG. 2A exhibits better storage efficiency and storage size than the barriers 200b-d of FIGS. 2B-2D. However, increasing the number of stories of the Yoshimura or a modified Yoshimura pattern can decrease a collapsed base dimensions of the barriers 200a-d (e.g., the second width W2 and the second thickness t2 shown in FIG. 1C) and increases a length of the barriers 200a-d (e.g., the second length L2 shown in FIG. 1C) when the barriers 200a-d are in a collapsed state. For example, the 6-story barrier 202d shown in FIG. 2D has smaller collapsed base dimensions and larger storage height than the 4-story barrier 202b shown in FIG. 2B.



FIGS. 2A-2D illustrate that the rigid sections 206 can exhibit a shape that exhibits a long edge 222 and two angular edges 224 that extend from the long edge 222 at an oblique angle. For example, as shown in FIG. 2A, the rigid sections 206 can exhibit a generally triangular shape. In such an example, the two angular edges 224 intersect with each other. The generally triangular shape of the rigid sections 206 can form hinges 208 that are less collinear that rigid sections 206 exhibit a generally rectangular shape. In an example, as shown in FIGS. 2B-2D, the rigid sections 206 can exhibit a generally non-rectangular quadrilateral shape, such as a generally trapezoidal shape, a generally rhombus shape, a generally rhomboid shape, a generally parallelogram shape, a convex quadrilateral shape, a generally trapezium shape, a generally kite shape, or a generally concave quadrilateral shape. In such an example, the rigid sections 206 exhibit a short edge 226 that opposes the long edge 222 and the angular edges 224 extend between the long edge 222 and the short edge 226. The short edge 226 can be substantially parallel to the long edge 222. It is noted that rigid sections 206 exhibiting a generally non-rectangular quadrilateral shape can form hinges 208 that are less collinear than rigid sections 206 exhibiting a generally triangular shape or generally rectangular shape. It is noted that the rigid sections disclosed herein may exhibit any other suitable shape, such as a generally pentagonal shape, a generally hexagonal shape, a generally heptagonal shape, a generally octagonal shape, or combinations of any of the shapes disclosed herein.


As previously discussed, the first and second surfaces 228a, 228b of each of the barriers 200a-d may be configured to contact a support surface (e.g., ground, floor, etc.) when the barriers 200a-200d are in the expanded state. The first and second surfaces 228a, 228b can be defined by or positioned proximate to some of the long edges 222 of the rigid sections 206. The first and second surfaces 228a, 228b can also be defined by or positioned proximate to the intersection of the two angular edges 224 when the rigid sections 206 exhibit a generally triangular shape or by the short edge 226 when the rigid sections 206 exhibit a generally trapezoidal shape. Increasing the number of long edges 222 that form the first and/or second surfaces 228a, 228b that contacts the support surface increases the stability of the barriers 200a-d when the barriers 200a-d the expanded state. For example, a first or second surface 228a, 228b that is formed from two long edges 222 is more stable than a first or second surface 228a, 228b that is formed from a single long edge 222.


The barriers 200a-d can have an odd number of stories or an even number of stories. However, a pattern (e.g., a Yoshimura or a modified Yoshimura pattern) that exhibits an even number of stories may exhibit improve the stability and facilitate quicker deployment than a pattern that exhibit an odd number of stories. For example, barriers 200a and 200c of FIGS. 2A and 2C exhibit an odd number of stories. Forming the barriers 200a and 200c from an odd number of stories can cause the first and second surfaces 228a, 228b thereof to be defined by or proximate to a different number of long edges 222, intersections of the angular edges 224, or the short edges 226. As such, one of the first and second surfaces 228a, 228b of the barriers 200a and 200c can be more stable when contacting one of the first or second surfaces 228a, 228b than the other of the first or second surfaces 228a, 228b. Therefore, an operator of the barriers 200a and 200c may need to be aware of which one of the first or second surfaces 228a, 228b contacts the support surface to maximize the stability of the barriers 200a and 200c. Meanwhile, the barriers 200b and 200d of FIGS. 2B and 2D exhibit an even number of stories. Forming the barriers 200b and 200d from an even number of stories causes the first and second surfaces 228a, 228b thereof to be defined by or proximate to the same number of long edges 222, intersections of the angular edges 224, or the short edges 226. As such, both of the first and second surfaces 228a, 228b of the barriers 200b and 200d are equally stable when contacting the support surface. Therefore, an operator of the barriers 200b and 200d does not need to check which of the first or second surfaces 228a, 228b contacts the support surface thereby facilitating deployment of the barriers 200b and 200d.


Forming the barriers 200a-d using the Yoshimura or a modified Yoshimura pattern causes the barriers 200a-d to only exhibit a single degree of freedom, which provides additional control while deploying the barriers 200a-d. The additional control in deploying the barriers 200a-d can also decrease the time required to deploy the barriers 200a-d. Additionally, forming the barriers 200a-d using the Yoshimura or modified Yoshimura pattern can enable the rigid sections 206 of the barriers 200a-d to exhibit flat-edge geometry (e.g., the long or short edges 222, 226) which increases the stability of the barriers 200a-d compared to a barrier that does not include a flat-edge geometry.


While FIGS. 2A-2D illustrate that the barriers 200a-d are formed using a Yoshimura or a modified Yoshimura pattern, it is noted that any of the barriers disclosed herein can also be formed using other origami patterns. In an example, any of the barriers disclosed herein can exhibit a Miura-ori pattern. Barriers exhibiting a Miura-ori pattern can fold more compactly than barriers exhibiting a Yoshimura or a modified Yoshimura pattern. Barriers exhibiting a Miura-ori pattern may require the use of offsets or other features that account for the thickness of layers stacking inside of each other. In an example, any of the barriers disclosed herein can exhibit a square twist pattern which can have similar benefits as the Miura-ori pattern. In an example, any of the barriers disclosed herein can exhibit a diamond pattern. Barriers exhibiting a diamond pattern can exhibit semicircular shapes while in their intermediate states (e.g., a state between the collapsed and expanded states) and can fold more compactly than similar barriers exhibiting a Yoshimura or a modified Yoshimura pattern. Additionally, barriers that exhibit a diamond pattern can exhibit more than a single degree of freedom while switching the barriers between the expanded and collapsed states. In an example, any of the barriers disclosed herein can exhibit a pattern exhibiting a single degree of freedom, two degrees of freedom, three degrees of freedom, four degrees of freedom, five degrees of freedom. As previously discussed, the barriers disclosed herein preferably exhibit a single degree of freedom since the single degree of freedom may allow the barrier to be quickly and easily switched from the collapsed state to the expanded state than if the barrier exhibited two or more degrees of freedom. In an example, any of the barriers disclosed herein can exhibit a pattern were at least some of the hinges that intersect with each other (e.g., the hinges that are most aligned with each other) are non-collinear since the non-collinear hinges may improve the stability of the barriers when the barriers are in the expanded state. In an example, any of the barriers disclosed herein can exhibit a pattern that includes rigid sections and at least some of the rigid sections (e.g., all of the rigid sections) exhibit non-rectangular shapes, such as generally non-rectangular quadrilateral shapes or generally triangular shapes.


In an embodiment, any of the sheets disclosed herein can be completely planar (e.g., exhibit no protrusions or intrusions). However, a sheet that is completely planar can have problems folding and unfolding, especially when the sheet exhibits a non-negligible thickness. For example, the completely planar sheet can form a hinge having a mountain side and a valley side. Folding the completely planar sheet can put portions of the completely planar sheet that is at or near the mountain side of the hinge to be in tension and the portions of the completely planar sheet that is at or near the valley side in compression. Causing portions of the completely planar sheet to be in tension can cause the completely planar sheet to tear. Additionally, compressing portions of the completely planar sheet can cause the completely sheet to crease which can weaken the sheet. Additionally, causing portions of the completely planar sheet to be in tension and/or compression can make compactly folding the substantially planar sheet difficult.



FIGS. 3A and 3B are front and back views of a barrier 300 in the expanded state thereof, according to an embodiment. FIG. 3C is an isometric view of the barrier 300 in the collapsed state thereof, according to an embodiment. Except as otherwise disclosed herein, the barrier 300 illustrated in FIGS. 3A-3C is the same or substantially the same as any of the barriers disclosed herein. For example, the barrier 300 includes a sheet 302, a plurality of rigid sections 306 arranged in a plurality of stories between the first and second surfaces 328a, 328b, and a plurality of hinges 308 (shown between the rigid sections 306 on FIG. 3A and with dashed lines on FIG. 3B) formed from the portions of the sheet 302 between the rigid sections 306. The rigid sections 306 may be configured to cover at least some of the hinges 308 when the barrier 300 is in the expanded state.


The barriers illustrated in FIGS. 1A-2D are primarily configured to be rested on a surface, such as the ground. However, as previously discussed, the barriers illustrated in FIGS. 1A-2D may be carried, for example, when the barriers are moved from one location to another location. Unlike the barriers illustrated in FIGS. 1A-2D, the barrier 300 is configured to be primarily carried by a user, though the barrier 300 may also be rested on a surface. This allows the barrier 300 to be used, for example, as a riot shield or a ballistic shield.


Since the barrier 300 is configured to be carried, the barrier 300 may include handles 329 (shown in FIG. 3B) on a back exterior surface 304 of the barrier 300. The handles 329 may facilitate carrying the barrier 300. The handles 329 may include any suitable mechanism that can be used to carry the barrier 300. In an embodiment, the handles 329 may include at least one strap attached (e.g., sewn) to the sheet 302 to form a loop (e.g., a loop formed exclusively from the strap, or between the strap and at least one of the sheet 302 or the plurality of rigid sections 306). The strap may be configured to be gripped by the user and/or have the forearm of the user positioned through the loop defined thereby. In an embodiment, the handles 329 may include one or more hooks. The hooks may facilitate insertion of the forearm more quickly than the straps. In an embodiment, the handles 329 may include a bar (e.g., a vertical or horizontal bar), such as a bar that includes one or more hinges therein to allow the bar to be folded or a bar that can be attached and detached from the rest of the barrier 300. The bar may provide a location for the user to grip the barrier 300. In an embodiment, the handles 329 may include a combination of handles. For instance, the handles 329 may include a strap and a hook since the strap may be gripped more securely by a hand while the hook is easier to use with a forearm. When the barrier 300 is configured to be used with the right hand of the user, according to the perspective of the user, the strap may be on the left side of the barrier 300 and the hook may be on the right side of the barrier 300. When the barrier 300 is configured to be used with a left hand of the user, from the perspective of the user, the strap may be on the right side of the barrier 300 and the hook may be on the left side of the barrier.


The barrier 300 exhibits a shape that is configured to facilitate carrying the barrier 300. For example, the barrier 300 may exhibit a shape in its expanded configuration that exhibits a longitudinal axis that, during operation, is configured to be generally parallel to a vertical axis (e.g., generally parallel to gravity). The longitudinal axis is generally parallel to the vertical axis because a user of the barrier 300 is unlikely to rigidly hold the barrier 300 during use such that the longitudinal axis of the barrier 300 is constantly parallel to the vertical axis. Selecting the shape of the barrier 300 to exhibit a longitudinal axis that is generally parallel to the vertical axis allows the barrier 300 to better protect the user of the barrier 300 (e.g., protect the torso of the user). For example, the torso of the user will exhibit a length (measured parallel to the vertical axis) that is greater than a width thereof (measured perpendicular to the vertical axis). Further, the shape of the barrier 300 exhibiting a longitudinal axis that is generally parallel to the vertical axis decreases the weight of the barrier 300 without significantly decreasing the protection provided by the barrier 300. The shape of the barrier 300 exhibiting a longitudinal axis that is generally parallel to the vertical axis may allow the barrier 300 to easily fit through doors.


As previously discussed, the barrier 300 includes a first surface 328a and a second surface 328b that is spaced from the first surface 328a in the vertical direction when the barrier 300 is in the expanded state. During operation, the first and second surfaces 328a, 328b may form the top and bottom surface of the barrier 300. For example, the first and second surfaces 328a, 328b may be generally horizontal (i.e., perpendicular to the vertical axis). The barrier 300 may also include a third surface 328c and a fourth surface 328d opposite the third surface 328c. The third and fourth surface 328c, 328d may form the side surfaces of the barrier 300. For example, the third and fourth surfaces 328c, 328d may be generally vertical (i.e., parallel to the vertical axis) when the barrier 300 is in the expanded state and in operation. Since the barrier 300 may exhibit a shape exhibiting a longitudinal axis that is generally parallel to the vertical axis, one or more of the first or second surfaces 328a, 328b may be smaller (e.g., exhibit a length that is less than) one or more of the third or fourth surfaces 328c, 328d.


Although the first, second, third, and fourth surfaces 328a, 328b, 328c, 328d are illustrated as being straight, it is noted that one or more of the first, second, third, or fourth surfaces 328a, 328b, 328c, 328d may be non-straight (e.g., curved, V-shaped, etc.). For example, the first and second surfaces 328a, 328b may be non-straight since the barrier 300 is not configured to be primarily rested on the ground.


It is noted that the barrier 300 may include one or more additional surfaces. For example, the barrier 300 may include one or more intermediate surfaces 330 extending between adjacent ones of the first, second, third, and fourth surfaces 328a, 328b, 328c, 328d. The intermediate surfaces 330 may decrease the overall size and weight of the barrier 300 making the barrier 300 easier to carry. The decrease in the overall size of the barrier 300 caused by the intermediate surfaces 330 may have a negligible effect on the barrier's 300 ability to protect the user since the intermediate surfaces 330 cause the barrier 300 to better conform to the shape of the torso of the user. The intermediate surfaces 330 may also allow the barrier 300 to be more densely packed when the barrier 300 is in the collapsed state thereof. It is noted that, in an embodiment, one or more of the intermediate surfaces 330 may be omitted. In such an embodiment, at least one of the third or fourth surfaces 328c, 328d may extend to and/or between at least one of the first or second surfaces 328a, 328b.


As previously discussed, the barrier 300 includes a plurality of hinges 308. The plurality of hinges 308 may include one or more vertical hinges 331 that extends generally parallel (e.g., within about 45°, within about 30°, within about 20°, within about 10°, or within about 5°) to the vertical axis when the barrier 300 is in the expanded position and in use. In the illustrated embodiment, the vertical hinges 331 may extend along a center of the barrier 300 though it is noted that the vertical hinges 331 may be off-center (e.g., when the barrier 300 includes a plurality of vertical hinges 331). The vertical hinges 331 may intersect at vertices 316 and may be generally collinear with each other. The collinearity of the vertical hinges 331 may facilitate bending of the barrier 300 to allow the barrier 300 to fit through narrow openings and to allow the barrier to be more densely packed when the barrier 300 is in the collapsed state thereof.


The hinges 308 also include one or more generally horizontal hinges 333. The generally horizontal hinges 333 are hinges 308 that are within about ±45° (e.g., within about 30°, within about 20°, within about 10°, or within about 5°) from an axis that is perpendicular to the longitudinal axis. The generally horizontal hinges 333 also intersect with each other at the vertices 316. The horizontal hinges 333 are non-collinear with each other and the vertical hinges 331. As previously discussed, the non-collinearity of the horizontal hinges 333 improves the stability of the barrier 300.


The barrier 300 may be switchable from an expanded state (FIGS. 3A and 3B) and a collapsed state (FIG. 3C). In an embodiment, in the collapsed state, the barrier 300 may exhibit a size and shape that allows the barrier 300 to be easily stored in a vehicle and, more particularly, within easy reach of the user (e.g., driver and/or passenger) of the vehicle. In an example, the barrier 300 may exhibit a shape and/or size in the collapsed state that is sufficient to fit between a seat (e.g., driver or passenger seat) of the vehicle and a console (e.g., the middle console) of the vehicle. In an example, the barrier 300 may exhibit a shape and/or size in the collapsed state that is sufficient to be placed on a seat or on the floor of a vehicle that is in front of the seat. In an example, the barrier 300 may exhibit a shape and/or size in the collapsed state that is sufficient to fit into the space under a seat of the vehicle. In an example, the barrier 300 may exhibit a shape and/or size in the collapsed state that is sufficient to fit in the door or to the back of the seat. It is noted that the size of the barrier 300 in the collapsed state may vary from one vehicle to the next due to the different sizes of vehicles. However, in any of the above examples, the barrier 300 may exhibit length of about 6 inches to about 2 feet, a width of about 6 inches to about 2 feet, and a thickness of about 0.5 inch to about 6 inches when the barrier 300 is in the collapsed state.


Configuring the barrier 300 to be stored proximate to user of the vehicle may improve the safety of the user. For example, the vehicle may be a police vehicle or other law enforcement or military vehicle that enters a dangerous environment. The dangerous environment includes an environment where the user is in immediate danger of being shot, stabbed, or otherwise injured. Positioning the barrier 300 within easy access of the user allows the barrier 300 to be accessed while the user is in the relatively safety of the interior of the vehicle. The barrier 300 may be switched from the collapsed state to the expanded state while the user is in the vehicle or shortly after the user exits the vehicle. As such, the user is substantially constantly protected in the dangerous environment by at least one of the vehicle or the barrier 300.


However, it is noted that not all of the barriers disclosed herein, including the barrier 300, need to be configured to stored proximate to the user of the vehicle. For example, any of the barriers disclosed herein may be configured to be stored in the trunk of the vehicle thereby allowing the barriers to exhibit larger sizes. Storing the barriers in the trunk though may cause the user to be exposed to danger for a short period of time when the user leaves the vehicle and travels to the trunk.


In an embodiment, the barrier 300 may be flat in the collapsed state thereof. In an embodiment, the barrier 300 may exhibit substantially no “empty” or void space in the collapsed state thereof.


As previously discussed, the barrier 300 may be oriented such that the first and second surfaces 328a, 328b form the top and bottom surfaces of the barrier 300. In an embodiment, the barrier 300 may be oriented such that the third and fourth surfaces 328c, 328d form the top and bottom surfaces of the barrier 300.


As such, in some embodiments, the barriers disclosed herein can include sheets that are configured to reduce the tension and compression forces in the sheets, especially if the sheet exhibits a non-negligible thickness. In particular, the fold lines of the sheet that act as hinges can be configured to accommodate the thickness of the sheet. For example, the hinges can exhibit a thick membrane fold (e.g., turn-of-cloth fold). FIGS. 4A-4C are partial cross-sectional views of a portion of a barrier 400 that includes a hinge 408 exhibiting a thick membrane fold when the hinge 408 is completely unfold, partially folded, and completely folded, respectively, according to embodiment. Except as otherwise disclosed herein, the barrier 400 can be the same as or similar to any of the barriers disclosed herein. For example, the barrier 400 can include a sheet 402 that forms the hinge 408 and a plurality of rigid sections 406. Additionally, the barrier 400, and in particular the hinge 408, can be used in any of the barrier embodiments disclosed herein.


To form the thick membrane fold, the sheet 402 is formed from a plurality of layers, such as from at least a first layer 432 and a second layer 434 that opposes the first layer 432. The first layer 432 defines the mountain side 412 of the hinge 408 and one of the two exterior surface 404 of the sheet 402. Similarly, the second layer 434 defines the valley side 414 of the hinge 408 and the other of the two exterior surfaces 404 of the sheet 402. The first layer 432 includes extra material at or near the mountain side 412 of the hinge 408 whereas the second layer 434 does not include extra material. In an example, the sheet 402 also includes one or more additional layers between the first and second layers 432, 434. In such an example, the one or more addition layers can also include extra material. However, the amount of extra material that each of the one or more additional layers have generally decreases from the first layer 432 to the second layer 434.


Referring to FIG. 4A, the extra material of the first layer 432 and, optionally, the one or more additional layers bunches up when the hinge 408 is unfolded. The bunching up of the extra material can form a protrusion 436 on the mountain side 412 of the hinge 408. Meanwhile, the second layer 434 is substantially planar. The presence of the protrusion 436 on the mountain side 412 and the substantially planar second layer 434 can bias the hinge 408 to fold in a certain direction. FIGS. 4B and 4C illustrate how the extra material of the first layer 432 and, optionally, the one or more additional layers allows the hinge 408 to be folded without causing the first layer 432 to be in tension and the second layer 434 to be compressed. As such, the extra material of the first layer 432 and, optionally, the one or more additional layers can be used to increase the flexibility of the hinge 408 and allowing the hinge 408 to be completely unfolded and completely folded regardless of the thickness or number of layers used to form the sheet 402.


In an embodiment, the sheet 402 can be configured to contain the bunching at or near the mountain side 412 of the hinge 408 and cause the protrusion 436 to extend outwardly from the mountain side 412 of the hinge 408. For example, the portions of the sheet 402 adjacent to the hinges 408 can be sewn together to prevent the extra material from bunching at a location that is spaced from the hinge 408. This can result in the hinges 408 being biased. This means that the protrusion 436 may remain visible when the barrier 400 is in the expanded state.


As previously discussed, the barriers disclosed herein can be formed from a sheet that includes one or more layers and a plurality of rigid sections that are attached to, disposed in, and/or reinforces the sheet. FIGS. 5A-5E are partial cross-sectional views of barriers 500a-e that have different arrangements of one or more layers and a plurality of rigid sections, according to different embodiments. Except as otherwise disclosed herein, the barriers 500a-e are the same as or substantially similar to any of the barriers disclosed herein. Additionally, any of the barriers disclosed herein can have any of the arrangements illustrated in FIGS. 5A-5E.


Referring to FIG. 5A, the barrier 500a includes a sheet 502a that includes two exterior surfaces 504a and a plurality of rigid sections 506a. The plurality of rigid sections 506a are attached to at least one of the two exterior surfaces 504a of the sheet 502a. The sheet 502a is formed from at least one layer 532a. The at least one layer 532a can include a single layer or a plurality of layers that are each substantially the same.


Referring to FIG. 5B, the barrier 500b includes a sheet 502b that includes two exterior surfaces 504b and a plurality of rigid sections 506b that are attached to at least one of the two exterior surfaces 504b. The sheet 502b is formed from at least at least one first layer 532b and at least one second layer 534b that is different than the first layer 532b. For example, the first layer 532b can exhibit a material composition, structure, etc. that is different than the second layer 534b.


Referring to FIG. 5C, the barrier 500c includes a sheet 502c that includes two exterior surfaces 504c and a plurality of rigid sections 506c that are attached to at least one of the two exterior surfaces 504c. The sheet 502c is formed from at least at least one first layer 532c, at least one second layer 534c, and at least one third layer 538c. The third layer 538c is different than the first and second layers 532c, 534c and, the first and second layers 532c, 534c are substantially the same or different than each other. In an embodiment, at least one of the first or second layers 532c, 534c can form protective layers that are configured to protect the third layer 538c. For example, the barrier 500c can be a ballistic barrier and the third layer 538c can include Kevlar. However, Kevlar has a relatively low abrasion resistance, water resistance, and ultra-violet light resistance and, as such, exposing the third layer 538c to the environment can adversely affect the ballistic properties of the Kevlar. In such an example, the first and second layers 532c, 534c of the barrier 500c can be formed from a material that exhibits better abrasion resistance, water resistance, and/or ultra-violet light resistance than Kevlar, such a ballistic nylon. As such, the first and second layers 532c, 534c can protect the third layer 538c from the environment and maintain the ballistic properties of the third layer 538c.


Referring to FIG. 5D, the barrier 500d includes a sheet 502d and a plurality of rigid sections 506d that are disposed in the sheet 502d. For example, the sheet 502d can include at least one first layer 532d and at least one second layer 534d. The first and second layers 532d, 534d can be substantially the same or different (e.g., exhibit different material compositions). In such an example, the rigid sections 506d can be disposed between the first and second layers 532d, 534d. Disposing the rigid sections 506d in the sheet 502d can improve the aesthetics of the barrier 500d, allows the first and second layers 532d, 534d to protect the rigid sections 506d from the environment, provide new means of securely coupling the rigid sections 506d to the sheet 502d, etc.


In an embodiment, the first layer 532d and the second layer 534d may form a pocket. The pocket may include an opening, such as an opening at or near a periphery of the barrier 500d. The pocket may be configured to receive and hold the rigid sections 506d therein. The pocket may allow the rigid sections 506d to be removed therefrom, for example, to replace a damaged rigid sections 506d or to switch between different rigid sections 506d.


Referring to FIG. 5E, the barrier 500e includes a sheet 502e and a plurality of rigid sections 506e that are disposed in the sheet 502e. For example, the sheet 502e can include at least one first layer 532e, at least one second layer 534e, and at least one third layer 538e that is disposed between the first and second layers 532e, 534e. Except as otherwise disclosed herein, the first, second, and third layers 532e, 534e, 538e can be the same or substantially similar to the first, second, and third layers 532c, 534c, 538c of FIG. 5C. In an example, the rigid sections 506e can be disposed between the third layer 538e and at least one of the first or second layers 532e, 534e. In an example, the rigid sections 506e can be disposed in the third layer 538e (e.g., the third layer 538e includes at least two layers and the rigid sections 506e are disposed between the at least two layers of the third layer 538e).


It is noted that the barriers disclosed herein can exhibit arrangements other than the arrangements illustrated in FIGS. 5A-5E. For example, the barriers disclosed herein can include at least one rigid section attached to at least one of the two exterior surfaces of the sheet and at least one rigid section disposed in the sheet. In an example, the barriers disclosed herein can be formed from a sheet that includes at least one first layer, at least one second layer, at least one third layer, and one or more additional layers.


In some embodiments, the barriers disclosed herein can include one or more mechanisms that are configured to improve the stability of the barriers when the barriers are in the at least partially expanded state. FIG. 6 is a schematic front view of a portion of a barrier 600 illustrating several mechanisms that can be used to stabilize the barrier 600 when the barrier 600 is in the expanded state, according to an embodiment. Unless otherwise disclosed herein, the barrier 600 can be similar to any of the barriers disclosed herein. For example, the barrier 600 can be formed from a sheet 602, a plurality of rigid sections 606, and a plurality of hinges 608. The stability mechanisms illustrated in FIG. 6 can be used in any of the barrier disclosed herein.


In an embodiment, the stability mechanisms that can be used to stabilize the barrier 600 can include at least one spacer 640. The spacer 640 includes a narrow rigid panel that is formed from any of the rigid panel materials disclosed herein. The spacer 640 is attached to portions of the sheet 602 are that adjacent to gaps formed between the rigid sections 606. The spacers 640 can be configured to decrease the instability in the barrier 600 that is caused by the gaps. In an example, the spacer 640 is disposed on the mountain side 612 of the hinges 608 because the size of the gaps between the rigid sections 606 on the mountain side 612 of the hinges 608 may be greater than the gaps between the rigid sections 606 on the valley side (not shown) of the hinges 608. It is noted that the spacers 640 can also be used to strengthen weak points in the barrier 600 that are formed by the gaps.


In an embodiment, the mechanism used to increase the stability of the barrier 600 can include positioning the hinges 608 to be substantially non-collinear. The hinges 608 are substantially non-collinear when a plurality of hinges 608 intersect a single gap (e.g., an unoccupied gap or a gap that is at least partially occupied by a spacer 640) and, at most, only one pair of hinges 608 are collinear. The hinges 608 are non-collinear when the longitudinal axes thereof are not parallel and/or are offset. Positioning the hinges 608 to be substantially non-collinear can increase the stability of the barrier 600 when the barrier 600 is in the expanded state. For example, FIG. 6 illustrates a plurality of hinges 608 that meet at a single gap (e.g., the gap is at least partially occupied by the spacer 640) and that all of the hinges 608 that intersect at the gap are non-collinear. For instance, FIG. 6 illustrates a first longitudinal axis 642 of one of the hinges 608 and a second longitudinal axis 644 of another one of the hinges 608. As shown, the first longitudinal axis 642 is offset and non-parallel to the second longitudinal axis 644.



FIG. 7 is a flow chart of a method 700 of forming any of the barriers disclosed herein, according to an embodiment. The method 700 can include blocks 705, 710, and 715. Except as otherwise disclosed herein, blocks 705-615 can be performed in any order, can be split into a plurality of different blocks, combined into a single block, supplemented, or deleted. Additionally, as discussed in more detail below, the method 700 can include one or more additional blocks.


Block 705 recites “providing a sheet.” In an example, block 705 includes providing a sheet that includes a single layer or a plurality of layers. In an example, block 705 can include providing a sheet that is premade. In an example, block 705 can include providing a plurality of layers and forming the plurality of layers into the sheet. In an example, block 705 can include providing any of the sheets disclosed herein.


In an embodiment, block 705 can include providing at least one first layer that forms one of the exterior surfaces of the sheet and at least one second layer that forms another one of the exterior surfaces of the sheet. In such an embodiment, block 705 can also include providing at least one third layer that is disposed between the first and second layers. In an example, at least one of the first or second layers can be configured to form protection layers that protect the third layer from the environment. In such an example, at least one of the first or second layer can exhibit at least one of an abrasion resistance, water resistance, or ultra-violet light resistance that is greater than the third layer.


Block 710 recites “defining a plurality of rigid sections on the sheet.” For example, block 710 can include providing any of the rigid panels disclosed herein and attaching the rigid panels to at least one of the exterior surfaces of the sheet. In an example, block 710 can include providing any of the rigid panels disclosed herein and disposing the rigid panels in the sheet. In an example, block 710 can include laminating at least one thermoplastic on a plurality of regions of the sheet. In an example, block 710 can include impregnating a plurality of regions of the sheet with at least one epoxy, resin, or another hardener. In an example, block 710 can include forming a plurality of stitches on a plurality of regions of the sheet.


In an embodiment, the method 700 can include performing blocks 705 and 710 substantially simultaneously. For example, block 705 can include providing at least one first layer. After providing the at least one first layer, block 710 can include positioning a plurality of rigid panels to the one or more layers. After positioning the plurality of rigid panels on the one or more layers, block 705 can include disposing at least one second layer over the plurality of rigid panels and the first layer. Such an example can also include attaching the first and second layers together, attaching the rigid panels to the first and/or second layers, and/or attaching one or more additional layers to the first and second layers.


In an example, block 710 includes defining a plurality of rigid sections on the sheet to form a Yoshimura or a modified Yoshimura pattern, a Miura-ori pattern, a square twist pattern, a diamond pattern, or any of the other patterns disclosed herein. In an example, block 710 can include forming a pattern exhibiting an even number of stories, such as a Yoshimura or a modified Yoshimura pattern having six stories.


Block 715 can include “forming a plurality of hinges from portions of the sheet that are disposed between the plurality of rigid sections.” In an example, block 715 can be performed substantially simultaneously with blocks 705 and/or 710. In an example, block 705 can include providing a sheet that already includes a plurality of thick membrane folds formed therein or forming the thick membrane folds in the sheet. In an example, block 715 can include forming a plurality of hinges that are substantially non-collinear.


In an example, the method 700 can include positioning at least one spacer on at least one mountain side of at least one of the plurality of hinges. In an example, the method 700 can include coupling a plurality of springs to the plurality of rigid sections. In an example, the method 700 can include positioning at least one brace to at least one of the plurality of rigid section.


The barriers disclosed herein can be modified for different applications by forming the barriers from materials that exhibit characteristics that are beneficial for specific applications or causing the barriers to exhibit a shape that provides characteristics that are beneficial for specific applications. The characteristics that are beneficial for a specific application, materials that provide the characteristics, and shapes that provide the characteristics may be known by a person having ordinary skill in the art.


In an embodiment, any of the barriers disclosed herein can be configured to be a ballistic barrier, such as a ballistic barrier that meets the same requirements as an armored vest that has an NIJ IIIa rating. Ballistic barriers solve a compelling need—protecting law enforcement, military, and innocent victims from dangerous situations. In most ballistic applications, portability is desired and quick deployment is essential. Possible applications for a ballistic barrier includes law enforcement, civilian, and military application. For example, a ballistic barrier that is configured for law enforcement applications can be configured to be a temporary barrier, be transported and stored in a small compacted state, and to be quickly expandable. In an example, ballistic barriers that are configured for military application can be less transportable and temporary than ballistic barriers that are configured for law enforcement applications since military barriers are often permanent blockades or barriers that are rated for very high power explosives or ammunition. In an example, the barriers may be used as riot shields or ballistic shields when the barriers can be carried.


In an embodiment, when the barriers disclosed herein are ballistic barriers, the barriers may be configured to be incorporated into or positioned proximate to a structure or furniture to provide ballistic protection during a shooting. In an example, a barrier may be incorporated into or positioned proximate to (e.g., disposed into the floor) a receptionist desk. In particular, the barrier may be positioned such that a receptionist can easily and quickly access the barrier. Examples of such locations include in a counter of the reception desk, behind the computer of the reception desk, in a drawer, in the floor where the receptionist stands/sits, etc. The barrier may initially be in the collapsed state thereof. However, the receptionist may be able to quickly and easily access the barrier and switch the barrier from the collapsed state to the expanded state, for example, when an active shooter enter reception thereby providing ballistic cover to the receptionist. For instance, the barrier may exhibit a shape that substantially covers the receptionist or only covers a portion of the receptionist when the barrier is in the expanded state. In an example, the barrier may be incorporated into or positioned proximate to an entrance of a classroom. For instance, the barrier may be built into or positioned proximate to the door, a wall adjacent to the door, a ceiling adjacent to the door, or the floor adjacent to the door. The barrier may be initially in the collapsed state thereof. However, the barrier may be configured such that a teacher may be able to quickly switch the barrier into the expanded state thereof and secure the barrier in the expanded state thereof (e.g., using braces, connecting the barrier to the door or another structure about the door). The barrier may cover the door when the barrier is in the expanded state. As such, the barrier may prevent an active shooter from accessing the classroom. It is noted that one or more barriers may also be built into or located in the classroom to provide additional ballistic support instead of or in conjunction with the barrier at the door (e.g., to provide protection if the shooter shoots through a wall or door). In other examples, any of the barriers disclosed herein may be positioned or incorporated into other structures or furniture.


In an embodiment, any of the barriers disclosed herein can be construction barriers. Construction barriers include protective barriers that are configured to at least one of cover sidewalks, protect pedestrians, or to partition a construction site.


In an embodiment, any of the barriers disclosed herein can be acoustic barriers. Acoustic barriers can include sound absorbing barriers that reduce echo or amplifying barriers.


In an embodiment, any of the barriers disclosed herein can be water barriers that can be configured to prevent flooding. For example, the water barriers can be a flood gates or dams configured to redirect flood waters.


In an embodiment, any of the barriers disclosed herein can be fire/heat barriers, such as fire shelters for firefighters who become trapped in the forest fires, or barriers configured to protect important rooms in houses and buildings.


In an embodiment, any of the barriers disclosed herein can be radiation barriers that can isolate a radiation spill and protect selected areas from radiation damage.


In an embodiment, any of the barriers disclosed herein can be traffic barriers that are configured to be used for traffic stops, directing traffic, or limiting public access.


In an embodiment, any of the barriers disclosed herein can be wind barriers for locations where winds cause potentially dangerous situations.


In an embodiment, any of the barriers disclosed herein can be chemical barriers or light barriers (e.g., opaque barriers).


While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting.

Claims
  • 1. A barrier, comprising: a sheet;a plurality of rigid sections attached to or incorporated into the sheet;a plurality of hinges between the plurality of rigid sections, the plurality of hinges formed from portions of the sheet, the plurality of hinges intersect with each other at at least one vertex, wherein at least some of the plurality of hinges that intersect at the at least one vertex are non-collinear; andwherein the barrier is configured to be switchable between an at least partially collapsed state and an at least partially expanded state.
  • 2. The barrier of claim 1, wherein the sheet includes a continuous sheet.
  • 3. The barrier of claim 1, wherein the sheet includes a discontinuous sheet.
  • 4. The barrier of claim 1, wherein the sheet includes a non-ballistic material.
  • 5. The barrier of claim 1, wherein the sheet includes a plurality of layers, the plurality of layers includes at least one first layer and at least one second layer, and wherein the at least one first layer and the at least one second layer form at least one pocket therebetween that is configured to receive a corresponding one of the plurality of rigid sections.
  • 6. The barrier of claim 1, wherein the plurality of rigid sections includes a plurality of rigid panels that are distinct from the sheet.
  • 7. The barrier of claim 6, wherein each of the plurality of rigid panels is coupled to an exterior surface of the sheet.
  • 8. The barrier of claim 6, wherein each of the plurality of rigid panels exhibit a non-rectangular quadrilateral shape.
  • 9. The barrier of claim 1, wherein: the barrier includes a first surface and a second surface vertically spaced from the first surface when the barrier is in the at least partially expanded state; andthe plurality of rigid sections form a plurality of stories between the first surface and the second surface.
  • 10. The barrier of claim 1, wherein the barrier exhibits a single degree of freedom when switching between the at least partially collapsed state and the at least partially expanded state.
  • 11. The barrier of claim 1, wherein each of the portions of the sheet that form the plurality of hinges exhibits a thick membrane fold.
  • 12. The barrier of claim 1, wherein the plurality of hinges that intersect with each other at the at least one vertex includes at least two generally horizontal hinges, and wherein the at least two generally horizontal hinges are non-collinear.
  • 13. The barrier of claim 1, wherein the barrier exhibits a size that is sufficient to be positioned between at least one of a seat of a vehicle and an adjacent console.
  • 14. The barrier of claim 1, wherein the barrier is configured to be primarily carried.
  • 15. The barrier of claim 1, further comprising one or more handles attached to at least one of the sheet or the plurality of rigid sections.
  • 16. The barrier of claim 15, wherein the one or more handles includes at least one of a strap, hook, or bar.
  • 17. The barrier of claim 1, further comprising at least one light coupled to at least one of the sheet or one or more of the plurality of rigid sections.
  • 18. The barrier of claim 1, further comprising at least one clear section.
  • 19. A method to make a barrier, the method comprising: providing a sheet;defining a plurality of rigid sections on the sheet, wherein the plurality of rigid sections are attached to or incorporated into the sheet; andforming a plurality of hinges from portions of the sheet that are disposed between the plurality of rigid sections, the plurality of hinges intersect with each other at at least one vertex, wherein at least some of the plurality of hinges that intersect at the at least one vertex are non-collinear;wherein the barrier is configured to be switchable between an at least partially collapsed state and an at least partially expanded state.
  • 20. A method to deploy a barrier, the method comprising: providing the barrier that is in an at least partially collapsed state, the barrier including a continuous sheet, a plurality of rigid sections attached to or incorporated into the continuous sheet, and a plurality of hinges formed from the continuous sheet that are disposed between the plurality of rigid sections, the plurality of hinges intersect with each other at at least one vertex, wherein at least some of the plurality of hinges that intersect at the at least one vertex are non-collinear; andswitching the barrier from the at least partially collapsed state to an at least partially expanded state by unfolding the plurality of hinges, wherein the barrier in the at least partially expanded state exhibits at least one of a length, width, or thickness that is greater than the barrier in the at least partially collapsed state.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 16/330,141 filed on 4 Mar. 2019, which is a national stage entry of International Application No. PCT/US2017/050329 filed on 6 Sep. 2017, which claims priority to U.S. Provisional Patent Application No. 62/384,398 filed on 7 Sep. 2016; U.S. Provisional Patent Application No. 62/409,186 filed on 17 Oct. 2016; and U.S. Provisional Patent Application No. 62/456,275 filed on 8 Feb. 2017. This application claims priority to U.S. Provisional Patent Application No. 62/833,008 filed on 12 Apr. 2019. The disclosure of each of the foregoing applications is incorporated herein, in its entirety, by this reference.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under contract EFRI-ODISSEI-1240417 awarded by the National Science Foundation and Air Force Office of Scientific Research. The government has certain rights in the invention.

US Referenced Citations (45)
Number Name Date Kind
1273371 Hudziak Jul 1918 A
1649996 Toth Nov 1927 A
2020702 Russell Nov 1935 A
2109831 Szalkay Mar 1938 A
3979861 Fromme Sep 1976 A
4412495 Sankar Nov 1983 A
4949490 Miller Aug 1990 A
5293807 Hajdu Mar 1994 A
5377577 Bounkong et al. Jan 1995 A
5392686 Sankar Feb 1995 A
6161462 Michaelson Dec 2000 A
6581505 Levell Jun 2003 B1
6807890 Fuqua Oct 2004 B1
6907811 White Jun 2005 B2
7424844 Carter Sep 2008 B2
7730925 Pereira Jun 2010 B1
7891283 Kleniatis Feb 2011 B2
7980166 Fuqua Jul 2011 B1
8015910 Fuqua Sep 2011 B1
8176830 Tan May 2012 B1
8276498 Hannibal et al. Oct 2012 B1
8418595 Saucedo Apr 2013 B1
8646372 Lee Feb 2014 B1
9512618 Lang Dec 2016 B2
9885539 Spransy Feb 2018 B2
10351195 Schieffelin Jul 2019 B1
10677566 Dantzer Jun 2020 B2
20020184936 Gitlin Dec 2002 A1
20070193441 Carter Aug 2007 A1
20080200095 Guenette Aug 2008 A1
20080283205 Zimmer Nov 2008 A1
20090235814 Cashin Sep 2009 A1
20090294077 Zimmer Dec 2009 A1
20120186435 Garcia Jul 2012 A1
20130284002 White Oct 2013 A1
20150059990 Adrain Mar 2015 A1
20160061569 Fernandez Mar 2016 A1
20160209181 Adrain Jul 2016 A1
20160272359 Kim Sep 2016 A1
20190085517 Thota Mar 2019 A1
20190113312 Adrain Apr 2019 A1
20190381755 Tachi Dec 2019 A1
20200023257 Speed Jan 2020 A1
20200037771 Ketels Feb 2020 A1
20200393217 Adrain Dec 2020 A1
Foreign Referenced Citations (1)
Number Date Country
2018048940 Mar 2018 WO
Non-Patent Literature Citations (9)
Entry
International Search Report and Written Opinion for International Application No. PCT/US2017/050329 dated Dec. 27, 2017.
U.S. Appl. No. 62/384,398, filed Sep. 7, 2016.
U.S. Appl. No. 62/409,186, filed Oct. 17, 2016.
U.S. Appl. No. 62/456,275, filed Feb. 8, 2017.
Corrected Notice of Allowability for U.S. Appl. No. 16/330,141 dated Dec. 9, 2021.
Issue Notification for U.S. Appl. No. 16/330,141 dated Dec. 15, 2021.
Non-Final Office Action for U.S. Appl. No. 16/330,141 dated May 12, 2021.
Notice of Allowance for U.S. Appl. No. 16/330,141 dated Sep. 2, 2021.
U.S. Appl. No. 17/539,436, filed Dec. 1, 2021.
Related Publications (1)
Number Date Country
20200256647 A1 Aug 2020 US
Provisional Applications (4)
Number Date Country
62833008 Apr 2019 US
62456275 Feb 2017 US
62409186 Oct 2016 US
62384398 Sep 2016 US
Continuation in Parts (1)
Number Date Country
Parent 16330141 US
Child 16663903 US