The present invention relates generally to implantable sensors. More specifically, the present invention relates to implantable sensors and systems and methods for deploying an implantable sensor at a location within a patient's heart or vasculature.
Implantable medical devices are often used to treat a variety of medical conditions. Examples of implantable medical devices include drug delivery devices, pain management devices, and devices that treat heart arrhythmias. One example of an implantable medical device used to treat heart arrhythmias is a cardiac pacemaker, which is commonly implanted in a patient to treat bradycardia (i.e., an abnormally slow heart rate). A pacemaker includes a pulse generator and one or more leads, which form electrical connection(s) between the pulse generator and the heart. An implantable cardioverter defibrillator (ICD) may be used to treat tachycardia (i.e., an abnormally rapid heart rate). An ICD also includes a pulse generator and leads that deliver electrical energy to the heart.
Implantable medical devices are also useful in the treatment of heart failure. For example, cardiac resynchronization therapy (CRT) (also commonly referred to as biventricular pacing) is an emerging treatment for heart failure, which involves stimulation of both the right and left ventricles to increase hemodynamic efficiency and cardiac output. In some cases, the treatment of heart failure and heart arrhythmias can be enhanced through the use of implanted sensors. In some systems, for example, a pressure sensor implanted within a chamber of the heart or in a body vessel such as an artery or vein can be used to sense blood pressure, which can be used to compute cardiac output, pulmonary vascular resistance, as well as other hemodynamic parameters. The sensor data from the sensor can be downloaded by a clinician and can be used to modify the therapy delivered by the implantable medical device.
The present invention relates to implantable sensors and systems and methods for deploying an implantable sensor at a location within a patient's heart or vasculature.
In some embodiments, the present invention is a medical electrical lead. The medical electrical lead includes a lead body having a proximal section adapted to connect to a pulse generator, a distal section, and at least one electrical conductor extending within the lead body. At least one electrode is located on the lead body and is operatively coupled to the at least one electrical conductor. Additionally, the lead includes a resilient cuff frictionally engaged on an outer surface of the lead body; and at least one sensor coupled to the cuff and adapted to detect at least one physiological parameter.
In some embodiments, the present invention is a sensor assembly deployment system for deploying a sensor assembly onto a medical electrical lead. The system includes a delivery catheter having a lumen through which the medical electrical lead is adapted to be delivered. A sensor assembly is coupled to an outer surface of the delivery catheter and includes a resilient cuff and at least one sensor module adapted to detect a physiological parameter. A deployment member is slideably disposed over an outer surface of the delivery catheter and is located proximal to the sensor assembly. In certain embodiments, the deployment system includes an outer catheter having an interior lumen. The delivery catheter including the sensor assembly coupled thereto and deployment member are slideable within the interior lumen of the outer catheter.
In still some embodiments, the present invention is a method of coupling a sensor to an implantable medical electrical lead. An illustrative method includes providing a sensor assembly deployment system including: an outer catheter having an interior lumen; an inner catheter slideably disposed within the interior lumen of the outer catheter; a sensor assembly coupled to an outer surface of the inner catheter, the sensor assembly including a resilient cuff and at least one sensor module; and a deployment member located proximal to the sensor assembly. Additionally, the method includes delivering a medical electrical lead through the interior lumen of the inner catheter to a target location within the heart and securing the lead at the target location within. Next, the deployment member is advanced in a distal direction to deploy the sensor assembly from the inner catheter and onto an outer surface of the lead body. Upon deployment onto the lead body, the sensor assembly frictionally engages the outer surface of the lead body.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
According to some embodiments, and as shown in
In some embodiments, the data from the sensor assembly 40 can be used to adjust the parameters of the therapy being delivered. For example, the sensor assembly 40 can communicate with the pulse generator 4 via a wired or wireless communication link. The pulse generator 4 is configured to store and/or process the information received from the sensor assembly 40. The data received by the pulse generator 4 can be used to adjust the therapy parameters according to a pre-determined therapy protocol. In some embodiments, the sensor assembly 40 may wirelessly transmit sensor data directly to an external device 42. The sensor data received by the external device 42 may be stored and/or downloaded by a physician and used to adjust the therapy as necessary according to the therapy protocol.
In some embodiments, as shown in
The cuff 54 can be made of a resilient, pliable material to facilitate insertion of the sensor assembly 40 over the lead body 10 during delivery. Exemplary materials include biocompatible materials such as silicone rubber and polyurethane. In certain embodiments, the cuff 54 may be made of a shape memory alloy or a shape memory polymer. Using a shape memory material such as, for example, Nitinol, allows the cuff 54 to be expanded to permit insertion of a lead body 10 into the interior section of the cuff 54 without permanent deformation of the cuff 54.
According to various embodiments, and as further shown in
The sensor module 48 can be configured to detect a variety of physiological parameters. For example, the sensor module 48 can be configured for sensing blood pressure, temperature, blood gas content, strain, fluid flow, chemical properties, electrical properties, magnetic properties, as well as various other physiological parameters. The sensor module 48 can be configured to interact with the implanted pulse generator 4 and transmit data indicative of the physiological parameter being monitored. In some embodiments, the data may be transmitted via the electrical conductor 52 (
According to various embodiments, and as shown in
The inner catheter 78 includes a lumen 86 though which the lead body 10 can be delivered. Prior to deployment onto the lead body 10, and as shown in
Unlike stent-like or basket-like fixation devices, the sensor platform 144 illustrated in
As shown in
The lead body 10 can be delivered to the target location within the patient's heart using a stylet, catheter, or other suitable delivery device. Once the lead body 10 has been implanted at the target location within the patient's heart or in a body vessel leading to or from the heart, the position of the sensor module 248 can be adjusted by pulling on one end of the tether 252. Once a desired position for the sensor module has been identified, the tether 252 can be secured at the proximal end 12 of the lead body 10.
In certain embodiments, a sensor assembly such as described above according to the various embodiments can also be deployed onto an existing, implanted lead. For example, in one embodiment, a method of deploying a sensor assembly onto an existing implanted lead includes guiding a sensor deployment system to a location adjacent the existing implanted lead located within a patient's heart, engaging the lead body, and deploying a sensor assembly including at least a sensor module onto the lead body.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application claims the benefit under 35 U.S.C. §119 of U.S. Provisional Application No. 61/152,486, filed on Feb. 13, 2009, entitled “DEPLOYABLE SENSOR PLATFORM ON THE LEAD SYSTEM OF AN IMPLANTABLE DEVICE,” which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3874388 | King et al. | Apr 1975 | A |
4391124 | Drost et al. | Jul 1983 | A |
4407296 | Anderson | Oct 1983 | A |
4485813 | Anderson et al. | Dec 1984 | A |
4492107 | Sandhu | Jan 1985 | A |
4672976 | Kroll | Jun 1987 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4846191 | Brockway et al. | Jul 1989 | A |
4900303 | Lemelson | Feb 1990 | A |
4917089 | Sideris | Apr 1990 | A |
4966148 | Millar | Oct 1990 | A |
5040538 | Mortazavi | Aug 1991 | A |
5218965 | Ring | Jun 1993 | A |
5284138 | Kujawski | Feb 1994 | A |
5303207 | Brady et al. | Apr 1994 | A |
5334217 | Das | Aug 1994 | A |
5411551 | Winston et al. | May 1995 | A |
5415630 | Gory et al. | May 1995 | A |
5451235 | Lock et al. | Sep 1995 | A |
5604531 | Iddan et al. | Feb 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5656036 | Palmaz | Aug 1997 | A |
5662711 | Douglas | Sep 1997 | A |
5704352 | Tremblay et al. | Jan 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5733313 | Barreras, Sr. et al. | Mar 1998 | A |
5772669 | Vrba | Jun 1998 | A |
5775331 | Raymond et al. | Jul 1998 | A |
5800497 | Bakels et al. | Sep 1998 | A |
5824053 | Khosravi et al. | Oct 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5860923 | Lenker et al. | Jan 1999 | A |
5891154 | Loeffler | Apr 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5967986 | Cimochowski et al. | Oct 1999 | A |
5967989 | Cimochowski et al. | Oct 1999 | A |
5995876 | Kruse et al. | Nov 1999 | A |
6002969 | Machek et al. | Dec 1999 | A |
6015386 | Kensey et al. | Jan 2000 | A |
6015387 | Schwartz et al. | Jan 2000 | A |
6030413 | Lazarus | Feb 2000 | A |
6033366 | Brockway et al. | Mar 2000 | A |
6053873 | Govari et al. | Apr 2000 | A |
6076016 | Feierbach | Jun 2000 | A |
6077227 | Miesel et al. | Jun 2000 | A |
6097984 | Douglas | Aug 2000 | A |
6106464 | Bass et al. | Aug 2000 | A |
6140740 | Porat et al. | Oct 2000 | A |
6159156 | Van Bockel | Dec 2000 | A |
6179858 | Squire et al. | Jan 2001 | B1 |
6193745 | Fogarty et al. | Feb 2001 | B1 |
6214025 | Thistle et al. | Apr 2001 | B1 |
6231516 | Keilman | May 2001 | B1 |
6236889 | Soykan et al. | May 2001 | B1 |
6239724 | Doron et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6277078 | Porat et al. | Aug 2001 | B1 |
6278790 | Davis et al. | Aug 2001 | B1 |
6309350 | VanTassel | Oct 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6331163 | Kaplan | Dec 2001 | B1 |
6379308 | Brockway et al. | Apr 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6416474 | Penner et al. | Jul 2002 | B1 |
6432050 | Porat et al. | Aug 2002 | B1 |
6442413 | Silver | Aug 2002 | B1 |
6447522 | Gambale et al. | Sep 2002 | B2 |
6475170 | Doron et al. | Nov 2002 | B1 |
6486588 | Doron et al. | Nov 2002 | B2 |
6527780 | Wallace et al. | Mar 2003 | B1 |
6543272 | Vitek | Apr 2003 | B1 |
6585763 | Keilman et al. | Jul 2003 | B1 |
6592553 | Zhang et al. | Jul 2003 | B2 |
6628989 | Penner et al. | Sep 2003 | B1 |
6645143 | VanTassel et al. | Nov 2003 | B2 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6685638 | Taylor et al. | Feb 2004 | B1 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6699186 | Wolinsky et al. | Mar 2004 | B1 |
6702847 | DiCarlo | Mar 2004 | B2 |
6730108 | Van Tassel et al. | May 2004 | B2 |
6738671 | Christophersom et al. | May 2004 | B2 |
6743173 | Penner et al. | Jun 2004 | B2 |
6746404 | Schwartz | Jun 2004 | B2 |
6747916 | Fleury et al. | Jun 2004 | B1 |
6755855 | Yurek et al. | Jun 2004 | B2 |
6764446 | Wolinsky et al. | Jul 2004 | B2 |
6783499 | Schwartz | Aug 2004 | B2 |
6800060 | Marshall | Oct 2004 | B2 |
6840956 | Wolinsky et al. | Jan 2005 | B1 |
6855115 | Fonseca et al. | Feb 2005 | B2 |
6868288 | Thompson | Mar 2005 | B2 |
6890303 | Fitz | May 2005 | B2 |
6899729 | Cox | May 2005 | B1 |
6904308 | Frisch et al. | Jun 2005 | B2 |
6920347 | Simon et al. | Jul 2005 | B2 |
6926670 | Rich | Aug 2005 | B2 |
6934573 | Glukhovsky et al. | Aug 2005 | B1 |
6950690 | Meron et al. | Sep 2005 | B1 |
6958034 | Iddan | Oct 2005 | B2 |
6970742 | Mann et al. | Nov 2005 | B2 |
6972017 | Smith et al. | Dec 2005 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
7001329 | Kobayashi et al. | Feb 2006 | B2 |
7006858 | Silver et al. | Feb 2006 | B2 |
7009634 | Iddan et al. | Mar 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7024248 | Penner et al. | Apr 2006 | B2 |
7033322 | Silver | Apr 2006 | B2 |
7035684 | Lee | Apr 2006 | B2 |
7039453 | Mullick et al. | May 2006 | B2 |
7060038 | Letort et al. | Jun 2006 | B2 |
7064472 | Peline et al. | Jun 2006 | B2 |
7065409 | Mazar | Jun 2006 | B2 |
7076305 | Imran et al. | Jul 2006 | B2 |
7083822 | Brightbill | Aug 2006 | B2 |
7116352 | Yaron | Oct 2006 | B2 |
7118529 | Glukhovsky et al. | Oct 2006 | B2 |
7118531 | Krill | Oct 2006 | B2 |
7131986 | Sirhan et al. | Nov 2006 | B2 |
7160258 | Imran et al. | Jan 2007 | B2 |
7181261 | Silver et al. | Feb 2007 | B2 |
7198603 | Penner et al. | Apr 2007 | B2 |
7211045 | Dala-Krishna et al. | May 2007 | B2 |
7273457 | Penner | Sep 2007 | B2 |
7283874 | Penner | Oct 2007 | B2 |
7308319 | Lovett et al. | Dec 2007 | B2 |
7338512 | McGuckin, Jr. et al. | Mar 2008 | B2 |
7347868 | Burnett et al. | Mar 2008 | B2 |
7392094 | Zhang et al. | Jun 2008 | B2 |
7437193 | Parramon et al. | Oct 2008 | B2 |
7452334 | Gianchandani et al. | Nov 2008 | B2 |
7477946 | Tockman et al. | Jan 2009 | B2 |
7555351 | Zhang et al. | Jun 2009 | B2 |
7572228 | Wolinsky et al. | Aug 2009 | B2 |
7744542 | Piaget et al. | Jun 2010 | B2 |
7780694 | Palmer et al. | Aug 2010 | B2 |
7801626 | Moser | Sep 2010 | B2 |
7850708 | Pal | Dec 2010 | B2 |
7890188 | Zhang et al. | Feb 2011 | B2 |
20020045920 | Thompson | Apr 2002 | A1 |
20020123672 | Christophersom et al. | Sep 2002 | A1 |
20020165601 | Clerc | Nov 2002 | A1 |
20020183628 | Reich et al. | Dec 2002 | A1 |
20020188207 | Richter | Dec 2002 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030139796 | Sequin et al. | Jul 2003 | A1 |
20030200031 | de Kok | Oct 2003 | A1 |
20040006377 | Behm | Jan 2004 | A1 |
20040116992 | Wardle et al. | Jun 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040204744 | Penner et al. | Oct 2004 | A1 |
20040215228 | Simpson et al. | Oct 2004 | A1 |
20050080472 | Atkinson et al. | Apr 2005 | A1 |
20050096702 | Denker et al. | May 2005 | A1 |
20050115561 | Stahmann et al. | Jun 2005 | A1 |
20050124875 | Kawano et al. | Jun 2005 | A1 |
20050136385 | Mann et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050149128 | Heil, Jr. et al. | Jul 2005 | A1 |
20050149155 | Scheiner et al. | Jul 2005 | A1 |
20050149156 | Libbus et al. | Jul 2005 | A1 |
20050165456 | Mann et al. | Jul 2005 | A1 |
20050209678 | Henkes et al. | Sep 2005 | A1 |
20050245840 | Christopherson et al. | Nov 2005 | A1 |
20060009818 | Von Arx et al. | Jan 2006 | A1 |
20060047205 | Ludomirsky et al. | Mar 2006 | A1 |
20060064133 | Von Arx et al. | Mar 2006 | A1 |
20060064134 | Mazar et al. | Mar 2006 | A1 |
20060064142 | Chavan et al. | Mar 2006 | A1 |
20060064143 | Von Arx et al. | Mar 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060089627 | Burnett et al. | Apr 2006 | A1 |
20060089694 | Zhang et al. | Apr 2006 | A1 |
20060122522 | Chavan et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060142819 | Penner et al. | Jun 2006 | A1 |
20060149329 | Penner | Jul 2006 | A1 |
20060149330 | Mann et al. | Jul 2006 | A1 |
20060178586 | Dobak, III | Aug 2006 | A1 |
20060206153 | Libbus et al. | Sep 2006 | A1 |
20060241735 | Tockman et al. | Oct 2006 | A1 |
20060259085 | Zhang et al. | Nov 2006 | A1 |
20060287700 | White et al. | Dec 2006 | A1 |
20060293741 | Johnson et al. | Dec 2006 | A1 |
20070049833 | Tearney et al. | Mar 2007 | A1 |
20070129637 | Wolinsky et al. | Jun 2007 | A1 |
20070156126 | Flaherty | Jul 2007 | A1 |
20070156205 | Larson et al. | Jul 2007 | A1 |
20070162090 | Penner | Jul 2007 | A1 |
20070179583 | Goetzinger et al. | Aug 2007 | A1 |
20070191904 | Libbus et al. | Aug 2007 | A1 |
20070208390 | Von Arx et al. | Sep 2007 | A1 |
20070247565 | Sasiaki et al. | Oct 2007 | A1 |
20070250126 | Maile et al. | Oct 2007 | A1 |
20070274565 | Penner | Nov 2007 | A1 |
20070282413 | Tockman et al. | Dec 2007 | A1 |
20070282415 | Tockman et al. | Dec 2007 | A1 |
20080071178 | Greenland et al. | Mar 2008 | A1 |
20080071248 | Delgado et al. | Mar 2008 | A1 |
20080071339 | Stalker et al. | Mar 2008 | A1 |
20080108904 | Heil | May 2008 | A1 |
20080176271 | Silver et al. | Jul 2008 | A1 |
20080275350 | Liao et al. | Nov 2008 | A1 |
20080283066 | Delgado et al. | Nov 2008 | A1 |
20090054793 | Nunez et al. | Feb 2009 | A1 |
20090171274 | Harlev et al. | Jul 2009 | A1 |
20090270742 | Wolinsky et al. | Oct 2009 | A1 |
20100016840 | Stahmann et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
0 897 690 | Feb 1999 | EP |
0 928 598 | Aug 2000 | EP |
1 068 836 | Jan 2001 | EP |
1068836 | Jan 2001 | EP |
1 488 735 | Jun 2007 | EP |
2 333 044 | Jul 1999 | GB |
H11-089942 | Apr 1999 | JP |
2000-507142 | Jun 2000 | JP |
2001-061790 | Mar 2001 | JP |
2006-500991 | Jan 2006 | JP |
WO 8303348 | Oct 1983 | WO |
WO 9934731 | Jul 1999 | WO |
WO 0016686 | Mar 2000 | WO |
WO 0059376 | Oct 2000 | WO |
WO 0167989 | Sep 2001 | WO |
WO 0187137 | Nov 2001 | WO |
WO 2004024034 | Mar 2004 | WO |
WO 2004110263 | Dec 2004 | WO |
WO 2005058202 | Jun 2005 | WO |
WO 2005066849 | Jul 2005 | WO |
WO 2005067817 | Jul 2005 | WO |
WO 2006062725 | Jun 2006 | WO |
WO 2007057739 | May 2007 | WO |
WO 2007062299 | May 2007 | WO |
WO 2007082115 | Jul 2007 | WO |
2008002654 | Jan 2008 | WO |
WO 2008002654 | Jan 2008 | WO |
WO 2008034077 | Mar 2008 | WO |
WO 2008057720 | May 2008 | WO |
WO 2008060197 | May 2008 | WO |
WO 2008144191 | Nov 2008 | WO |
2009006610 | Jan 2009 | WO |
WO 2009006610 | Jan 2009 | WO |
Entry |
---|
Goodall, Eleanor V. et al., “Position-Selective Activation of Peripheral Nerve Fibers with a Cuff Electrode”, IEEE Transactions on Biomedical Engineering, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 8, Aug. 1, 1996. |
International Search Report and Written Opinion issued in PCT/US2010/020756, mailed Sep. 27, 2010. |
Invitation to Pay Fees and Partial Search Report issued in PCT/US2010/020756, mailed May 12, 2010. |
Goodall, Eleanor V. et al., “Position-Seletive Activation of Peripheral Nerve Fibers with a Cuff Electrode”, IEEE Transactions on Biomedical Engineering, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 8, Aug. 1, 1996. |
Holmes et al. “SirolimusEluting Stents vs. Vascular Brachytherapy for InStent Restenosis Within BareMetal Stents” JAMA295 (11): 1264-1273 Mar. 15, 2006. |
Lanning & Shandas, “Development and Validation of Implantable Sensors for Monitoring Function of Prosthetic Heart Valves: In Vitro Studies”, Medical & Biological Engineering & Computing, Jul. 2003, vol. 41, issue 4, pp. 416-424. |
Sheth et al. “Subacute Thrombosis and Vascular Injury Resulting From Slotted-Tube Nitinol and Stainless Steel Stents in a Rabbit Carotid Artery Model” Circulation 1996, 94: 1733-1740. |
Stone et al. “Paclitaxel-Eluting Stents vs.Vascular Brachytherapy for In-Stent Restenosis Within Bare-Metal Stents” JAMA 295(11): 1253-1263, Mar. 15, 2006. |
Wenaweser et al. “Stent thrombosis following baremetal stent implantation: success of emergency percutaneous coronary intervention and predictors of adverse outcome” European Heart Journal 26: 1180-1187 2005. |
International Search Report and Written Opinion from PCT/US2008/062229, mailed Jan. 5, 2009. |
Number | Date | Country | |
---|---|---|---|
20100210923 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
61152486 | Feb 2009 | US |