This invention relates generally to deployable truss structures, and more particularly to a three-dimensional truss with orthogonally-hinged chords which expands and retracts in a continuous, stable, and sequential fashion, and has low manufacturing cost and favorable design/packaging characteristics.
There have been many attempts to design, for various operating environments, a practical compact folding or flexing truss structure which can transition easily between the retracted and the useful extended state while exhibiting favorable characteristics of size/volume ratio, kinematic stability, simplicity and reliability, structural efficiency and weight, complexity, auxiliary mechanism requirements, manufacturing costs, speed of operation, and operating cost. Relatively few designs have appeared in the marketplace. Notable high-profile, and high-flying, examples are deployable trusses used in space missions such as for solar array deployment on NASA's International Space Station. Another example is the deployable truss disclosed in U.S. Pat. No. 7,028,442, which claims priority to U.S. Provisional Patent Application No. 60/302,997 (the complete disclosures, specifications and drawings of U.S. Pat. No. 7,028,442 and Provisional Application No. 60/302,997 are incorporated herein in their entireties by specific reference for all purposes).
Yet a further example is the rectangular deployable/folding truss structure with panels disclosed in U.S. patent application Ser. No. 12/765,532, the complete disclosure, specification and drawings of which are incorporated herein in their entireties by specific reference for all purposes. The present application is an improvement over the latter structure, providing new operational and functional capabilities, design flexibilities, and manufacturing alternatives.
The present invention comprises a deployable truss with modified primary orthogonal joints. The construction of these joints causes the center-hinged primary chords on opposite sides of a truss bay to fold inward in a plane orthogonal to the folding planes of the side diagonals while the two secondary chords fold in planes orthogonal to the plane of the in-folding primary chords. This provides for stiffness and stability during deploy and retract. The unique joint configuration permits the truss to optionally deploy one bay at a time in a stable manner while having lateral bending stiffness. The truss of the present invention thus can extend and retract in a sequential manner. It can deploy integral flat panels nested between the secondary folding chords, or use cross bracing in lieu of panels. With or without integral panels the folded members and joints form a basic rectangular truss beam structure.
With an alternate embodiment of the truss diagonals, it can also form a triangular beam using the same in-folding center-hinged chords and joints. The triangular truss kinematic behavior is the same as for the rectangular truss. In all cases the trusses are symmetrical about one axis. They can retract in a length typically 4-8% of the extended length until ready for deployment, either with integral panels or simply as a rigid beam. As a panel truss, various types of square or rectangular panels can therefore be folded together compactly for transportation and handling.
There are numerous applications benefitting from sequential bay-wise deploy/retract as compared with synchronous motion exhibited by the prior art. This is accomplished while being kinematically stable about two axes, which is particularly important for zero-gravity, low-gravity and undersea applications, and does not require a complex and costly mechanism to form each bay as in prior deployable truss inventions, most prominently exemplified by solar array trusses used on the International Space Station, previous U.S. Space Shuttle missions, and numerous space satellites. For use as a compact deployer of solar photovoltaic panels, there are important applications in which critical deploy/retract operations of long multi-bay trusses are enabled. Space applications exist for secondary structures which are kinematically extendible from a very compact packaging, for space habitats and other space or surface structures in orbit or on the Moon, Mars and asteroids. The basic configuration of this new invention opens the potential for replacement of its pin/hole revolute joints with flexible materials such as shape-memory or superelastic, for critical applications requiring zero joint free-play and dust-tolerant operation. Among the many envisioned commercial, industrial, and military applications, there are applications to mobile and fixed solar panels, towers, bridging, access platforms, conveyors, rescue platforms, fire ladders, large folding panel displays, and several others.
In one exemplary embodiment, as shown in
As seen in
The primary orthogonal joints of the prior art comprised two angled fittings to which the truss diagonals and folding chords were attached. The new joint disclosed herein, as shown in
The joints connecting the diagonals at their respective ends in a z-fold manner, have an offset hinge pin to allow the diagonal members to fold parallel to each other as the truss retracts. The primary chords (and the secondary chords) have the same hinging, but the primary chords connect to the diagonals with the fitting 7, 7a, or 8 as described above, while the secondary chords connect with a single axis hinge pin 10 in the secondary orthogonal joint 30. This allows the secondary chords to fold orthogonally to the primary chords creating the stability and stiffness of the extending or retracting truss. The primary chords, which are center-hinged in the preferred embodiment, can optionally be replaced by flexible tension members.
Referring to
Although the truss can be readily deployed on a flat surface or in low gravity, in one exemplary embodiment an important method for powered truss deployment and retraction is the use of a support frame 16 with side rails into which rollers 18 fit to support and guide the deployment motion, as seen in
In one embodiment of the rail-supported powered truss, a transverse bar 17 moves longitudinally up and down the rail structures, and can grasp or engage each of the primary orthogonal joints. The bar successively engages the joints and moves them until truss chords lock (or, conversely, unlock), thus forming or collapsing each truss bay in succession. The transverse bar and truss structure may be powered by a motor or other suitable means known in the art.
With or without integral panels, the folded members and joints can form a rectangular or a square truss beam. With an alternate embodiment of the truss diagonals, it can be configured as a triangular beam using the same in-folding center-hinged chords and joints, but with a single chord of center-hinged secondary chordal members 4 at the apex of the resulting hinged triangular frames. In this triangular configuration pairs of opposite truss diagonals 14 are connected to the secondary (apex) chordal members 4, as seen in
As shown in
In all cases the trusses have at least one-axis symmetry. They can be retracted as shown in
The primary and secondary truss joints, as well as the chordal center hinges can also be adapted to use flexible material hinges replacing certain or all of the pin/hole revolute joint hinges, with potential for spring-powered deployment using energy stored in the hinge material. The flexible material may comprise shape-memory alloy (SMA) or spring material.
With further reference to
The basic truss of the present invention can also be configured in a system as a plurality of truss bays merged laterally.
Thus, it should be understood that the embodiments and examples described herein have been chosen and described in order to best illustrate the principles of the invention and its practical applications to thereby enable one of ordinary skill in the art to best utilize the invention in various embodiments and with various modifications as are suited for particular uses contemplated. Even though specific embodiments of this invention have been described, they are not to be taken as exhaustive. There are several variations that will be apparent to those skilled in the art.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/708,666, filed Dec. 7, 2012, which claims benefit of and priority to U.S. Provisional Application No. 61/567,697, filed Dec. 7, 2011, by Donald V. Merrifield, and is entitled to those filing dates for priority in whole or in part. The specifications, figures and complete disclosures of U.S. patent application Ser. No. 13/708,666 and U.S. Provisional Application No. 61/567,697 are incorporated herein by specific reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2511613 | Woolslayer et al. | Jun 1950 | A |
3435570 | Berry | Apr 1969 | A |
3783573 | Vaughan | Jan 1974 | A |
3830031 | Soisson | Aug 1974 | A |
4480415 | Truss | Nov 1984 | A |
4527362 | Tobey et al. | Jul 1985 | A |
4539786 | Nelson | Sep 1985 | A |
4557083 | Zanardo | Dec 1985 | A |
4557097 | Mikulas et al. | Dec 1985 | A |
4569176 | Hedgepeth et al. | Feb 1986 | A |
4575975 | Eisenberg | Mar 1986 | A |
4587777 | Vasques et al. | May 1986 | A |
4633566 | Coppa | Jan 1987 | A |
4805368 | Wesselski | Feb 1989 | A |
4819399 | Onoda | Apr 1989 | A |
4829726 | de Potter d'Indoye | May 1989 | A |
4958474 | Adams | Sep 1990 | A |
5040349 | Onoda et al. | Aug 1991 | A |
5085018 | Kitamura et al. | Feb 1992 | A |
5228258 | Onoda et al. | Jul 1993 | A |
6076770 | Nygren et al. | Jun 2000 | A |
20070044415 | Merrifield et al. | Mar 2007 | A1 |
20070145195 | Thomson et al. | Jun 2007 | A1 |
20080283670 | Harvey et al. | Nov 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20150101261 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61567697 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13708666 | Dec 2012 | US |
Child | 14461485 | US |