This invention relates to the deployment and retrieval of submerged power generating apparatus designed to generate electricity from tidal currents or ocean waves.
A key aspect in the design of water current and wave generating equipment is the method by which the power generating apparatus (PGA) is periodically accessed for inspection and maintenance, and deployed again for operation. This can have a significant effect on the cost of maintaining the entire machine over its lifetime.
Installations in which the PGA is fully submerged during normal operation and must on occasion be brought to the surface for inspection/maintenance can be divided into two categories:
Water current or wave generating devices are, by their very nature, deployed in extreme marine environments where weather and sea state conditions can often make marine operations difficult. The speed and simplicity of the method of deployment and retrieval of the PGA, and in particular the tolerance of this method to moderately bad weather and sea state conditions are therefore particularly important.
Generally speaking, it is considerably more difficult to deploy a submerged PGA than it is to retrieve it. The deployment requires accurate alignment and attachment of the PGA with the support structure underwater, where it is difficult to see what is happening and where accurate control of the PGA position may be difficult to achieve.
Retrieval of the PGA is easier because, once detached, the PGA can be raised off the support structure quickly without the need for careful control of its alignment.
Known methods for deploying and retrieving submerged PGAs to/from the surface comprise:
In accordance with a first aspect of the invention, there is provided power generating equipment comprising a buoyant power generating apparatus and a support structure for the power generating apparatus, which support structure, in use, is disposed on the bed of a body of water, the power generating apparatus comprising a motor-driven winching device having a tether which is connectable at its free end to the support structure whereby retraction of the tether causes the power generating apparatus to be drawn downwardly through the body of water into engagement with the support structure, the power generating apparatus and the support structure being provided with means for aligning and latching the power generating apparatus with respect to the support structure upon engagement with the support structure.
In a second aspect of the invention, there is provided a method of deploying a submersible buoyant power generating apparatus onto a support structure submerged beneath a body of water, the power generating apparatus comprising a winching device and a tether which is retractable by the winching device, the method comprising the steps of attaching the free end of the tether to the submerged support structure; and operating the winching device to winch the power generating apparatus towards the submerged support structure.
For a better understanding of the present invention, and to show more clearly how it may be carried into effect, reference will now be made, by way of example, to the following drawings, in which:
a to 4d illustrate a method of deploying the power generating equipment of
a to 5d illustrate a method of retrieving the power generating equipment of
The power generating equipment shown in
The term “alignment means” as used in this specification is intended to encompass any means by which the PGA 1 and support structure 7 may be brought together in a defined alignment. For example, such alignment means may not have male and female parts as described herein, but two parts which mutually fit together in a predefined relationship.
The positive buoyancy of the PGA 1 may either be inherent to the PGA 1 itself, or, if the PGA 1 is not inherently buoyant, buoyancy aids may be added to the PGA 1. Positioned on the male part 3 of the alignment means is an electrical connector 11. A power cable 13 runs from an electrical generator within the PGA 1 and terminates at the electrical connector 11. A complementary electrical connector 6 is positioned in the female part 5 of the alignment means, with a further power cable 8 running from the complementary electrical connector 6 to shore. In this way, when the PGA 1 and support structure 7 are brought together, as will be described in more detail below, the power generated by the PGA 1 may be supplied to shore. There may also exist certain other connections between the male and female parts 3, 5, for example, fibre optic connectors or hydraulic connectors.
Also shown attached to the PGA 1 is a winching device 4. The winching device 4 is powered by a motor drive 2. In
A tether 10 extends from the winching device 4, through guides 12 in the PGA 1, to a tether connection 9 which is connected to the support structure 7. The tether 10 can be any flexible length of line, rope, cable, chain, or similar means.
The centre of buoyancy A of the PGA 1 is positioned in line with the central mating axis B of the alignment means 3, 5. The guides 12 may also be positioned in line with the central mating axis B of the alignment means 3, 5. This has the advantage that the PGA 1 will be lowered in a stable manner, ensuring that the PGA 1 remains suitably orientated in terms of pitch, roll and lateral position.
In the embodiment shown in
In the embodiment shown in
a shows the first step in deploying the PGA 1 of
In this example, a motor unit 2 is detachably connected to the winching device 4, and linked with the surface vessel 16 via a second line. This second line may be used to power or control the motor unit 2, or it may simply provide a means for retrieving the motor unit 2 after operation.
A remotely operated vehicle (ROV) 18 is used to take the tether connection 9 down through the water column and attach it to the top of the support structure 7, whilst the winching device 4 pays out the tether 10 (
In another embodiment of the invention, the support structure 7 may comprise an automatic release buoy (not shown), which on activation deploys a separate tether to the surface for attachment to the winching device 4. This has the advantage that a ROV 18 or diver will not be required to attach the tether connection 9 to the support structure 7 itself.
At this stage, the PGA 1 is cast off from the surface vessel 16 by releasing the line 17.
The motor unit 2 is then used to power the winching device 4, thereby pulling the PGA 1 down through the water column towards the support structure 7 (
d shows the PGA 1 after it has mechanically mated with the support structure 7. The male 3 and female 5 parts of the alignment means connect together, automatically aligning the PGA 1 in its correct orientation, and the two latch together so that the PGA 1 is retained on the support structure by the latched alignment means. In this example, the electrical connections 6, 11 (and fibre optic and hydraulic connections if there are any) are also made automatically upon mating of the male 3 and female 5 parts of the alignment means. This may be through the use of stab-plate type underwater mate connectors. Alternatively, electric, hydraulic, and/or fibre optic connections may be performed by divers or ROVs.
As shown in
The subsequent retrieval of the PGA 1 is achieved by the steps shown in
a shows the PGA 1 attached to the support structure 7 as described above. A remotely operated vehicle (ROV) 18 is deployed from the surface vessel 16 to release the latch holding the PGA 1 and the support structure 7 together. Alternatively, this action could be performed by a diver or other suitable means.
b shows the situation after the latch between the PGA 1 and the support structure 7 has been released. Under its own positive buoyancy, the PGA 1 rises towards the surface whilst the winching device 4 pays out the tether 10. The tether 10 remains connected to the support structure during this stage. However, the motor unit 2 may be used to power the winching device 4 if necessary. The tether connection 9 preferably remains attached to the support structure 7 during this stage, to avoid the PGA 1 rising uncontrollably under its own buoyancy.
c shows the situation when the PGA 1 has reached the surface. The PGA 1 is made fast to the surface vessel 16 by the line 17.
As shown in
Although some inspection or maintenance of the PGA 1 may be performed while the PGA 1 floats above the support structure 7, it will be more usual for the PGA 1 to be towed by the vessel 16 to shore or to a suitably equipped ship for such maintenance.
The invention has the particular advantage that no large surface vessel with a heavy lift crane/winch is required to deploy the PGA 1 onto the support structure 7, or subsequently to retrieve it. This obviates the need for heavy vessel lifting equipment and eliminates problems associated with the motion/heave of the vessel pulling in an unpredictable manner on the PGA. Consequently, it is possible to deploy or retrieve the PGA 1 in moderately severe weather conditions.
A further advantage is that no mechanical guide arrangement is required whilst lowering the PGA down through the water column, since the natural buoyancy of the PGA keeps the tether pulling in a predominantly vertical direction.
A further advantage is that no seabed-mounted anchor/pulley block apparatus or complex tether connection devices are required.
A further advantage is the accessible location of the winch and tether on the PGA where they can be serviced whenever the PGA is retrieved.
A further advantage is that deployment or retrieval can be safely aborted at any time by releasing the tether from the support structure or cutting it, thus allowing the PGA to float freely to the surface and be recovered by a surface vessel.
Number | Date | Country | Kind |
---|---|---|---|
0522133.8 | Oct 2005 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2006/003823 | 10/13/2006 | WO | 00 | 4/29/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/051968 | 5/10/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4355511 | Jones | Oct 1982 | A |
5774421 | Vincent, II | Jun 1998 | A |
7737568 | Vowles et al. | Jun 2010 | B2 |
20040070210 | Johansen et al. | Apr 2004 | A1 |
20070284882 | Costin | Dec 2007 | A1 |
20080226398 | Gibberd et al. | Sep 2008 | A1 |
20100230971 | Mackie | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
980575 | Jan 1965 | GB |
WO 02066828 | Aug 2002 | WO |
WO 2004015264 | Feb 2004 | WO |
WO 2004048774 | Jun 2004 | WO |
WO 2004085845 | Oct 2004 | WO |
WO 2005057006 | Jun 2005 | WO |
WO 2005061887 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090045631 A1 | Feb 2009 | US |