The present disclosure relates to surgical instruments and, more particularly, to a deployment mechanism for deploying or actuating one or more components of a surgical instrument.
Bipolar electrosurgical instruments typically include two generally opposing electrodes charged to different electric potentials to selectively apply energy to tissue. For example, a bipolar electrosurgical forceps utilizes both mechanical clamping action and electrical energy to effect hemostasis by heating tissue and blood vessels to coagulate and/or cauterize tissue. Certain surgical procedures require more than simply cauterizing tissue and rely on the unique combination of clamping pressure, precise electrosurgical energy control and gap distance (i.e., distance between opposing jaw members when closed about tissue) to “seal” tissue, vessels and certain vascular bundles. Typically, once a vessel is sealed, the surgeon has to accurately sever the vessel along the newly formed tissue seal. Accordingly, many forceps have been designed which incorporate a knife or blade member that effectively severs the tissue after forming a tissue seal.
Monopolar surgical instruments, on the other hand, include an active electrode, and are used in conjunction with a remote return electrode, e.g., a return pad, to apply energy to tissue. Monopolar instruments have the ability to rapidly move through tissue and dissect through narrow tissue planes.
In some surgical procedures, it may be beneficial to use both bipolar and monopolar instrumentation, e.g., procedures where it is necessary to dissect through one or more layers of tissue in order to reach underlying tissue(s) to be sealed. Further, it may be beneficial, particularly with respect to endoscopic surgical procedures, to provide a single instrument incorporating both bipolar and monopolar features, thereby obviating the need to alternatingly remove and insert the bipolar and monopolar instruments in favor of one another.
As used herein, the term “distal” refers to the portion that is being described that is further from a user, while the term “proximal” refers to the portion that is being described that is closer to a user. Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any of the other aspects described herein.
In accordance with the present disclosure, a surgical instrument is provided including an energizable member, an end effector assembly, and a deployment mechanism. The energizable member includes a distal tip disposed at a distal end thereof and a proximal hub engaged to a proximal end thereof. The proximal hub is movable between a proximal position and a distal position for moving the energizable member between a storage position and a deployed position relative to the end effector assembly. The deployment mechanism is configured to move the proximal hub between the proximal position and the distal position and includes a rotatable shaft, a cord, a biasing member, and a gear assembly. The cord includes a proximal end engaged to the rotatable shaft and a distal end engaged to the proximal hub. The biasing member is positioned to bias the proximal hub towards the distal position. The gear assembly is operably coupled to the rotatable shaft and configured to move the proximal hub from the distal position to the proximal position against the bias of the biasing member by rotating the rotatable shaft relative to the cord to at least partially wind-up the cord about the rotatable shaft.
In an aspect of the present disclosure, at least one lever is operably coupled to the gear assembly. The at least one lever is rotatable from an actuated position to an un-actuated position to operate the gear assembly to move the proximal hub from the distal position to the proximal position.
In an aspect of the present disclosure, a latching mechanism is provided for releasably latching the one or more levers in the un-actuated position to thereby maintain the proximal hub in the proximal position against the bias of the biasing member.
In another aspect of the present disclosure, the deployment mechanism is configured such that rotation of one of the one or more levers from the un-actuated position further away from the actuated position disengages the latching mechanism allowing the proximal hub to move to the distal position under the bias of the biasing member.
In still another aspect of the present disclosure, the deployment mechanism is configured such that movement of the proximal hub to the distal position under the bias of the biasing member pulls the cord distally to rotate the rotatable shaft relative to the cord to at least partially unwind the cord about the rotatable shaft.
In yet another aspect of the present disclosure, the deployment mechanism is configured such that rotation of the rotatable shaft relative to the cord to at least partially unwind the cord rotates the one or more levers from the un-actuated position to the actuated position.
In still yet another aspect of the present disclosure, the gear assembly includes one or more first gear components and one or more second gear components disposed in meshed engagement with the respective first gear components. The first gear component(s) is coupled to the one or more levers and the second gear component(s) is coupled to the rotatable shaft.
In another aspect of the present disclosure, the deployment mechanism is configured such that rotation of the first gear component(s) in a first direction effects rotation of the second gear component(s) in a second, opposite direction.
In yet another aspect of the present disclosure, the biasing member is disposed within a cartridge and the proximal hub is slidably disposed about the cartridge.
In still another aspect of the present disclosure, an insulative member is engaged to the proximal hub at a proximal end of the insulative member. Movement of the proximal hub between the proximal position and the distal position moves the insulative member between a storage position and a deployed position relative to the end effector assembly.
Another surgical instrument provided in accordance with the present disclosure includes a housing, a shaft extending distally from the housing, an end effector assembly disposed at a distal end of the shaft, a monopolar assembly, and a deployment mechanism. The end effector assembly is adapted to connect to a source of energy for treating tissue with bipolar energy. The monopolar assembly includes a proximal hub disposed within the housing and an energizable member engaged to the proximal hub and extending distally therefrom. The energizable member includes a distal tip adapted to connect to a source of energy for treating tissue with monopolar energy. The proximal hub is movable relative to the housing between a proximal position and a distal position for moving the energizable member between a storage position, wherein the distal tip is positioned adjacent the end effector assembly, and a deployed position, wherein the distal tip extends distally from the end effector assembly. The deployment mechanism is configured to move the proximal hub between the proximal position and the distal position. The deployment mechanism includes a biasing member positioned to bias the proximal hub towards the distal position, a rotatable shaft disposed within the housing, a cord disposed within the housing, and one or more levers rotatably disposed on the housing. The cord includes a proximal end engaged to the rotatable shaft and a distal end engaged to the proximal hub. The one or more levers are operably coupled to the rotatable shaft and are rotatable between an actuated position and an un-actuated position. Rotation of one or more of the one or more levers from the actuated position to the un-actuated position rotates the rotatable shaft relative to the cord to at least partially wind-up the cord about the rotatable shaft, thereby pulling the proximal hub from the proximal position to the distal position against the bias of the biasing member.
In an aspect of the present disclosure, the surgical instrument further includes a gear assembly disposed within the housing. The gear assembly is operably couples between the one or more levers and the rotatable shaft. More specifically, the gear assembly includes one or more first gear components coupled to the one or more levers and one or more second gear components coupled to the rotatable shaft. The first gear component(s) and the second gear component(s) are disposed in meshed engagement with one another.
In another aspect of the present disclosure, the deployment mechanism is configured such that rotation of the first gear component(s) in a first direction effects rotation of the second gear component(s) in a second, opposite direction.
In yet another aspect of the present disclosure, the surgical instrument further includes a latching mechanism configured to releasably latch the one or more levers in the un-actuated position thereby maintaining the proximal hub in the proximal position against the bias of the biasing member.
In still another aspect of the present disclosure, the latching mechanism includes one or more latching tabs coupled to the deployment mechanism and one or more tracks defined on an interior surface of the housing. The latching tab(s) is configured to move along the track(s) to releasably latch the one or more levers in the un-actuated position.
In yet another aspect of the present disclosure, the deployment mechanism is configured such that movement of the proximal hub to the distal position under the bias of the biasing member pulls the cord distally to rotate the rotatable shaft relative to the cord to at least partially unwind the cord about the rotatable shaft.
In still yet another aspect of the present disclosure, the deployment mechanism is configured such that rotation of the rotatable shaft relative to the cord to at least partially unwind the cord rotates the one or more levers from the un-actuated position to the actuated position.
In another aspect of the present disclosure, the biasing member is disposed within a cartridge mounted within the housing and the proximal hub is slidably disposed about the cartridge.
In yet another aspect of the present disclosure, the monopolar assembly further includes an insulative member engaged to the proximal hub at a proximal end of the insulative member. Movement of the proximal hub between the proximal position and the distal position moves the insulative member between a storage position, wherein the insulative member is positioned proximally of the end effector assembly, and a deployed position, wherein the insulative member is disposed about the end effector assembly.
In still another aspect of the present disclosure, the end effector assembly includes first and second jaw members. At least one of the jaw members is movable relative to the other for grasping tissue therebetween. At least one of the jaw members is adapted to connect to a source of energy for treating tissue grasped therebetween.
Various aspects of the present disclosure are described herein with reference to the drawings wherein like reference numerals identify similar or identical elements:
Referring generally to
Continuing with reference to
Handle assembly 30 includes a movable handle 40 and a fixed handle 50. Fixed handle 50 is integrally associated with housing 20 and movable handle 40 is movable relative to fixed handle 50. Movable handle 40 is movable relative to fixed handle 50 between an initial position, wherein movable handle 40 is spaced from fixed handle 50, and a compressed position, wherein movable handle 40 is compressed towards fixed handle 50. A biasing member (not shown) may be provided to bias movable handle 40 towards the initial position. Movable handle 40 is ultimately connected to a drive assembly (not shown) that, together, mechanically cooperate to impart movement of jaw members 110, 120 between the spaced-apart position, corresponding to the initial position of movable handle 40, and the approximated position, corresponding to the compressed position of movable handle 40. Any suitable drive assembly for this purpose may be provided.
Trigger assembly 60 includes trigger 62 that is operably coupled to a knife assembly (not shown). Trigger 62 is selectively actuatable to advance a knife (not shown) of the knife assembly from a retracted position, wherein the knife is disposed proximally of jaw members 110, 120, to an extended position, wherein the knife extends at least partially between jaw members 110, 120 to cut tissue grasped between jaw members 110, 120. Alternatively or additionally, electrical or electromechanical cutting features may be provided.
Referring to
End effector assembly 100 is designed as a unilateral assembly, i.e., where jaw member 120 is fixed relative to shaft 12 and jaw member 110 is movable relative to shaft 12 and fixed jaw member 120. However, end effector assembly 100 may alternatively be configured as a bilateral assembly, i.e., where both jaw member 110 and jaw member 120 are movable relative to one another and to shaft 12. In some embodiments, a knife channel 125 may be defined within one or both of jaw members 110, 120 to permit reciprocation of the knife therethrough, e.g., upon actuation of a trigger 62 of trigger assembly 60, to cut tissue grasped between jaw members 110, 120. Alternatively or additionally, as noted above, electrical cutting mechanisms may be provided for electrically or electromechanically cutting tissue grasped between jaw members 110, 120.
Referring to
Energizable rod member 220 extends through sleeve 210 and distally therefrom, ultimately defining an electrically-conductive distal tip 224. Energizable rod member 220 and, more specifically, distal tip 224 thereof, functions as the active electrode of monopolar assembly 200. The one or more wires (not shown) extending from cable 2 through housing 20 (see
In the storage position of enerigzable rod member 220, as shown in
Referring additionally to
With reference to
Gear assembly 84 includes a bar 85 that extends transversely through housing 20 and outwardly from each side of housing 20. Bar 85 is rotatably coupled to housing 20. Levers 82 are engaged to the portions of bar 85 that extend from housing 20 on either side thereof, thus enabling selective actuation of deployment mechanism 80 from either side of housing 20. Each lever 82 may further include a finger tab 83 (
With particular reference to
Each gear body 87b further includes a resiliently flexible latching tab 87e, extending laterally outwardly therefrom towards a respective inner surface of housing 20. Referring additionally to
With reference again to
Continuing with reference to
Cartridge 92 is mounted within housing 20 and houses biasing member 94, e.g., a coil spring, that is interdisposed between the proximal end of cartridge 92 and proximal bushing 230. Proximal bushing 230 is slidably disposed about cartridge 92 and is biased distally relative to cartridge 92 via biasing member 94. This distal biasing of proximal bushing 230 biases monopolar assembly 200 towards the deployed condition (
Referring to
With respect to the bipolar mode of operation, monopolar assembly 200 is maintained in the storage condition (
For use in the bipolar mode of operation, with jaw members 110, 120 initially disposed in the spaced-apart position (
Once tissue treatment is complete (or to cut untreated tissue), the knife (not shown) may be deployed from within shaft 12 to between jaw members 110, 120, e.g., via actuation of trigger 62 of trigger assembly 60, to cut tissue grasped between jaw members 110, 120. When tissue treatment and/or cutting are complete, jaw members 110, 120 may be returned to the spaced-apart position to release the treated and/or divided tissue.
Referring to
Referring to
In the deployed condition of monopolar assembly 200, as shown in
At the completion of tissue treatment, e.g., dissection, monopolar assembly 200 may be returned to the storage condition (
As monopolar assembly 200 is returned to the storage condition, latching tabs 87e are moved along tracks 22 from position P4 through position P5, wherein latching tabs 87e contact stop members 24 and are flexed from their neutral positions by stop members 24. Upon once again reaching the un-actuated position of levers 82 (
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation of U.S. patent application ser. No. 15/633,105, filed on Jun. 26, 2017, which is a continuation of U.S. patent application Ser. No. 14/543,121, filed on Nov. 17, 2014, now U.S. Pat. No. 9,687,294, the entire contents of each of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1908201 | Welch | May 1933 | A |
5312391 | Wilk | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324254 | Phillips | Jun 1994 | A |
5401274 | Kusunoki | Mar 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5556397 | Long et al. | Sep 1996 | A |
5611813 | Lichtman | Mar 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5735873 | MacLean | Apr 1998 | A |
5792164 | Lakatos et al. | Aug 1998 | A |
5893863 | Yoon | Apr 1999 | A |
5919202 | Yoon | Jul 1999 | A |
5984939 | Yoon | Nov 1999 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6156009 | Grabek | Dec 2000 | A |
6190386 | Rydell | Feb 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6299625 | Bacher | Oct 2001 | B1 |
6387094 | Eitenmuller | May 2002 | B1 |
6551313 | Levin | Apr 2003 | B1 |
6679882 | Komerup | Jan 2004 | B1 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6942662 | Goble et al. | Sep 2005 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7402162 | Ouchi | Jul 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7510562 | Lindsay | Mar 2009 | B2 |
7588570 | Wakikaido et al. | Sep 2009 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7758577 | Nobis et al. | Jul 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7815636 | Ortiz | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
8257352 | Lawes et al. | Sep 2012 | B2 |
8353437 | Boudreaux | Jan 2013 | B2 |
20020049442 | Roberts et al. | Apr 2002 | A1 |
20040236326 | Schulze et al. | Nov 2004 | A1 |
20050187547 | Sugi | Aug 2005 | A1 |
20060271042 | Latterell | Nov 2006 | A1 |
20070043352 | Garrison et al. | Feb 2007 | A1 |
20070135813 | Yamamoto | Jun 2007 | A1 |
20070225754 | Measamer et al. | Sep 2007 | A1 |
20080077154 | Edwards et al. | Mar 2008 | A1 |
20080215050 | Bakos | Sep 2008 | A1 |
20090125026 | Rioux et al. | May 2009 | A1 |
20090125027 | Fischer | May 2009 | A1 |
20090131974 | Pedersen et al. | May 2009 | A1 |
20090254084 | Naito | Oct 2009 | A1 |
20100076430 | Romero | Mar 2010 | A1 |
20100185196 | Sakao et al. | Jul 2010 | A1 |
20100185197 | Sakao et al. | Jul 2010 | A1 |
20100292690 | Livneh | Nov 2010 | A1 |
20110004209 | Lawes | Jan 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110098703 | Suzuki | Apr 2011 | A1 |
20110130757 | Horlle et al. | Jun 2011 | A1 |
20110264093 | Schall | Oct 2011 | A1 |
20110290854 | Timm | Dec 2011 | A1 |
20120330351 | Friedman et al. | Dec 2012 | A1 |
20130197516 | Kappel et al. | Aug 2013 | A1 |
20140135763 | Kappus et al. | May 2014 | A1 |
20140276797 | Batchelor et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2679176 | Jan 2014 | EP |
Entry |
---|
Extended European Search Report issued in corresponding European Patent Application No. 15191287.0 on Apr. 12, 2016. |
Number | Date | Country | |
---|---|---|---|
20200093538 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15633105 | Jun 2017 | US |
Child | 16697320 | US | |
Parent | 14543121 | Nov 2014 | US |
Child | 15633105 | US |