Technical Field
The present disclosure relates to surgical instruments and, more particularly, to deployment mechanisms for deploying, e.g., actuating, one or more components of a surgical instrument.
Background of Related Art
Many surgical instruments include one or more movable handles, levers, actuators, triggers, etc. for actuating and/or manipulating one or more functional components of the surgical instrument. For example, a surgical forceps may include a movable handle that is selectively compressible relative to a stationary handle for moving first and second jaw members of the forceps between spaced-apart and approximated positions for grasping tissue therebetween. Such a forceps may further include a trigger for selectively deploying a knife between the jaw members to cut tissue grasped therebetween.
As can be appreciated, as additional functional components are added to the surgical instrument, additional deployment structures or deployment structures capable of actuating more than one component are required. However, multiple deployment structures and/or combined deployment structures may be limited by spatial constraints within the housing of the surgical instrument and/or functional constraints of the components, e.g., where a combined deployment structure imparts additional force requirements for deploying one or more of the components coupled thereto.
As used herein, the term “distal” refers to the portion that is being described that is further from a user, while the term “proximal” refers to the portion that is being described that is closer to a user. Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any of the other aspects described herein.
In accordance with the present disclosure, a surgical instrument is provided including an end effector assembly, a knife, a trigger assembly, a biasing member, a monopolar assembly, a lever assembly, and a linkage. The end effector assembly includes first and second jaw members. One or both of the jaw members is movable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. The knife is selectively movable relative to the jaw members between a retracted position and an extended position, wherein the knife extends between the jaw members to cut tissue grasped therebetween. The trigger assembly is coupled to the knife and is selectively movable from an un-actuated position to an actuated position to move the knife from the retracted position to the extended position. The biasing member is coupled to the trigger assembly and is configured to apply a biasing force to the trigger assembly to bias the trigger assembly towards the un-actuated position. The monopolar assembly includes an energizable member and is selectively movable relative to the jaw members between a stored position and a use position, wherein the energizable member extends distally from the jaw members. The lever assembly is coupled to the monopolar assembly and is selectively movable from a first position to a second position to move the monopolar assembly from the stored position to the use position. The lever assembly is also coupled to the trigger assembly such that movement of the lever assembly from the first position to the second position effects movement of the trigger assembly from the un-actuated position towards the actuated position. The linkage assembly is coupled to the lever assembly and the biasing member and is configured to reduce the biasing force applied to the trigger assembly when the lever assembly effects movement of the trigger assembly from the un-actuated position towards the actuated position.
In one aspect, the monopolar assembly further includes an insulative sleeve. Upon movement of the monopolar assembly from the stored position to the use position, the insulative sleeve is moved from a proximal position to a distal position, wherein the insulative sleeve is disposed about the jaw members.
In another aspect, the lever assembly is configured to contact the trigger assembly upon actuation of the lever assembly to urge the trigger assembly from the un-actuated position towards the actuated position.
In yet another aspect, the trigger assembly and lever assembly are partially (or entirely) disposed within a housing configured to guide movement of the trigger assembly and/or lever assembly.
A surgical instrument provided in accordance with the present disclosure includes a first actuation assembly, a biasing member, a second actuation assembly, and a linkage assembly. The first actuation assembly is coupled to a first component and is selectively movable from a first position to a second position to actuate the first component. The biasing member is coupled to the first actuation assembly and is configured to apply a biasing force to the first actuation assembly to bias the first actuation assembly towards the first position. The second actuation assembly is coupled to a second component and is selectively actuatable to actuate the second component. The second actuation assembly is also coupled to the first actuation assembly such that actuation of the second actuation assembly effects movement of the first actuating assembly from the first position towards the second position. The linkage assembly is coupled to the second actuation assembly and the biasing member. The linkage assembly is configured to reduce the biasing force applied to the first actuation assembly when the second actuation assembly effects movement of the first actuation assembly from the first position towards the second position.
In one aspect, a portion of the second actuation assembly is configured to contact a portion of the first actuation assembly upon actuation of the second actuation assembly to urge the first actuation assembly from the first position towards the second position.
In another aspect, the first actuation assembly includes a trigger pivotable from an un-actuated position to an actuated position for moving the first actuation assembly from the first position to the second position.
In another aspect, the second actuation assembly includes a lever pivotable from a proximal position to a distal position for actuating the second actuation assembly.
In yet another aspect, the first and second actuation assemblies are at least partially disposed within a housing.
In still yet another aspect, the housing defines at least one track configured to guide movement of at least one of the first actuation assembly between the first and second positions and actuation of the second actuation assembly.
In another aspect, the biasing member is coupled to the first actuation assembly at a first end thereof and to the linkage assembly at a second end thereof.
In yet another aspect, the first actuation assembly is configured to move the first end of the biasing member distally upon movement of the first actuation assembly from the first position towards the second position.
In still another aspect, the linkage is configured to maintain the second end of the biasing member in substantially fixed position when the second actuation assembly is un-actuated.
In still yet another aspect, the linkage is configured to move the second end of the biasing member distally upon actuation of the second actuation assembly.
In another aspect, the linkage is configured to move the second end of the biasing member distally a distance that is substantially equal to a distance the first actuation assembly is configured to move the first end of the biasing member distally upon movement of the first actuation assembly from the first position towards the second position.
A method of actuating components of a surgical instrument is also provided in accordance with the present disclosure. The method includes moving a first actuation assembly against a biasing force from a first position to a second position to actuate a first component, returning the first actuation assembly from the second position back to the first position, and moving a second actuation assembly to actuate a second component. Moving the second actuation assembly effects movement of the first actuation assembly from the first position to the second position under a reduced biasing force.
In one aspect, a trigger is moved from an un-actuated position to an actuated position to move the first actuation assembly from the first position to the second position.
In another aspect, a lever is moved from a proximal position to a distal position to move the second actuation assembly.
In another aspect, a biasing member applies the biasing force to bias the first actuation assembly towards the first position.
In still another aspect, the first actuation assembly is returned from the second position to the first position under the biasing force.
Various aspects of the present disclosure are described herein with reference to the drawings wherein like reference numerals identify similar or identical elements:
Referring now to
Continuing with reference to
Referring to
End effector assembly 100 is designed as a unilateral assembly, i.e., where jaw member 120 is fixed relative to shaft 12 and jaw member 110 is movable relative to shaft 12 and fixed jaw member 120. However, end effector assembly 100 may alternatively be configured as a bilateral assembly, i.e., where both jaw member 110 and jaw member 120 are movable relative to one another and to shaft 12. In one some embodiments, a knife channel 115, 125 (
With reference to
Continuing with reference to
Mandrel 152 is fixedly engaged about the proximal end of an elongated drive member 156. Elongated drive member 156 extends distally from housing 20 and through shaft 12, ultimately coupling to end effector assembly 100. More specifically, elongated drive member 156 includes a transverse drive pin 158 disposed towards a distal end thereof that is pivotably disposed within aperture 116 defined within proximal flange 114 of movable jaw member 110, such that proximal translation of elongated drive member 156 pulls jaw member 110 to pivot relative to jaw member 120 towards the approximated position, while distal translation of elongated drive member 156 pushes jaw member 110 to pivot relative to jaw member 120 towards the spaced-apart position. As such, pivoting of movable handle 40 between the initial and compressed positions effects movement of drive member 156 (between a first, un-actuated position and a second, actuated position), to pivot jaw members 110, 120 between the spaced-apart and approximated positions.
Trigger assembly 60, as shown in
Trigger assembly 60 includes a trigger 62 having a toggle member 63 and a bifurcated arm 66 extending upwardly from toggle member 63 and into housing 20. Trigger 62 is pivotably coupled to housing 20 via pivot 65, which extends through an intermediate portion 64 of trigger 62. Arm 66 is bifurcated to define first and second spaced-apart flanges 67 to permit passage of arm 66 about drive assembly 150. A pin 69 pivotably couples flanges 67 of trigger 62 to connector 68. Connector 68 extends proximally through housing 20, ultimately coupling to the proximal end of knife drive rod 182 of knife assembly 180. Accordingly, upon pivoting of trigger 62 about pivot pin 65 and relative to housing 20 from the un-actuated position towards the actuated position, flanges 67 are rotated to pull connector 68 distally such that knife drive rod 182 is pushed distally (from a first, un-actuated position to a second, actuated position) to translate knife 184 from the retracted position towards the extended position. On the other hand, upon return of trigger 62 towards the un-actuated position, flanges 67 are rotated to push connector 68 proximally such that knife drive rod 182 is pulled proximally (from the second, actuated position back to the first, un-actuated position) to translate knife 184 back towards the retracted position. A biasing member 140, e.g., a coil spring, is coupled to pin 69 at a distal end 142 thereof and to a linkage assembly 300, which will be described in greater detail below, at a proximal end 144 thereof for biasing trigger 62 towards the un-actuated position, thereby biasing knife 184 towards the retracted position. Further, with additional reference to
Referring to
Lever assembly 80 is disposed within a recess 24 defined on an exterior side surface of housing 20 (although lever assembly 80 may also be positioned at any other suitable location) and includes a lever 82 that is rotatable about a pivot 84 between a proximal position, wherein free end 86 of lever 82 is disposed at a proximal end 25 of recess 24, and a distal position, wherein free end 86 of lever 82 is disposed at a distal end 26 of recess 24. In configurations where lever assembly 80 defines a symmetrical configuration, a pair of levers 82 are provided on either side of housing 20, each of which is coupled to one end of pivot 84. Pivot 84 is rotatably coupled to housing 20 and extends through housing 20. A pair of arms 90 disposed within housing 20 on opposed sides thereof are coupled to pivot 84 and extend therefrom. More specifically, each arm 90 is engaged about pivot 84 of lever assembly 80 at the first end 92 thereof such that rotation of pivot 84 relative to housing 20, e.g., via rotation of lever 82, effects rotation of second ends 94 of arms 90 about first ends 92 thereof. Each arm 90 further includes a slot 96 defined therethrough towards second end 94 thereof. Slots 96 are configured to slidably receive transverse pin 204 of hub 203 of drive shaft 202 of monopolar assembly 200 therein such that, upon rotation of arms 90 about pivot 84, e.g., upon actuation of lever 82, the angular displacement of arms 90 is converted into longitudinal translation of hub 203 and, thus, longitudinal translation of drive shaft 202 of monopolar assembly 200 (from a first, un-actuated position, to a second, actuated position) to move insulative sleeve 210 and energizable rod member 220 of monopolar assembly 200 from the retracted position (
With reference to
Drive shaft 202 is slidably disposed within knife drive rod 182 and elongated drive member 156 and is coupled to ferrule 208 towards the distal end thereof. More specifically, knife drive rod 182 and elongated drive member 156 each define a longitudinal slot 187, 159, respectively, therethrough, that allows engagement of ferrule 208, which is disposed about shaft 12, to drive shaft 202 of monopolar assembly 200 via one or more pins 209, although other suitable engagements may also be provided. Ferrule 208 engages insulative sleeve 210 and energizable rod member 220 to drive shaft 202 such that longitudinal translation of drive shaft 202 effects corresponding longitudinal translation of insulative sleeve 210 and energizable rod member 220. Accordingly, actuation of lever 82 may be effected to translate drive shaft 202 distally, thereby moving insulative sleeve 210 and energizable rod member 220 from the retracted position (
Insulative sleeve 210 is slidably disposed about shaft 12 and is configured for translation about and relative to shaft 12 between a retracted position (
In the retracted position, as shown in
With reference to
In order to reduce the force required to actuate lever 82 while still providing the space-conserving benefits described above, a linkage assembly 300 is operably coupled between biasing member 140 of trigger assembly 60 and arms 90 of lever assembly 80. However, the presently disclosed linkage assembly 300 is not limited to this particular use, as linkage assembly 300 may alternatively be used with any suitable components and/or assemblies of a surgical instrument.
Linkage assembly 300 includes a pair of spaced-apart linkage members 310, each of which defines a first end 312 and a second end 314. A first pin 316 extends between and outwardly from linkage members 310 at the first ends 312 thereof. Proximal end 144 of biasing member 140 is coupled to the portion of first pin 316 that extends between linkage members 310, while the outwardly-extending portions of first pin 316 are configured for slidable receipt within linkage tracks 27 defined within housing 20, as will be described in greater detail below. A second pin 318 extends between linkage members 310 at the second ends 314 thereof for pivotably coupling linkage members 310 to arms 90 of lever assembly 80. As such, and as will be described in greater detail below, although the distal advancement of connector 68, which is effected by actuation of lever 82 to translate monopolar assembly 200 to the deployed position, pulls distal end 142 of biasing member 140 distally, actuation of lever 82 also moves linkage members 310 and, thus, proximal end 144 of biasing member 140 distally, such that the tension on biasing member 140 is reduced (or removed) and a reduced biasing force (or no biasing force) from biasing member 140 is imparted to lever 82, despite the fact that knife assembly 180 is being advanced towards the extended position.
With reference to
Each linkage track 27 defined within housing 20 is configured to guide translation of first pin 316 of linkage members 310 through housing 20 and to provide a safety lockout feature that inhibits accidental actuation of monopolar assembly 200. More specifically, linkage tracks 27 each include a first, generally longitudinal portion 28 and a second portion 29 that angles downwardly and distally from the proximal end of first portion 28. Thus, as will be described in greater detail below, with first pin 316 disposed at the bases of second portions 29 of linkage tracks 27 and biased distally via biasing member 140, linkage members 310 are maintained in position and, thus, monopolar assembly 200 is locked in the retracted position. In this position, proximal end 144 of biasing member 140 is substantially fixed in position such that biasing member 140 may function to bias trigger assembly 60 towards the un-actuated position, thereby biasing knife 184 towards the retracted position. Once removed from second portions 29 of linkage tracks 27, first pin 316 is permitted to translate along first portions 28 of linkage tracks 27 such that the tension on biasing member 140 remains substantially unchanged during actuation of monopolar assembly 200, thereby substantially removing the biasing force of biasing member 140 from application during actuation of lever assembly 80.
Turning now to
With jaw members 110, 120 disposed in the spaced-apart position, end effector assembly 100 may be maneuvered into position such that tissue to be grasped, treated, e.g., sealed, and/or cut, is disposed between jaw members 110, 120. Next, movable handle 40 is depressed, or pulled proximally relative to fixed handle 50 such that jaw member 110 is pivoted relative to jaw member 120 from the spaced-apart position to the approximated position to grasp tissue therebetween, as shown in
Once tissue treatment is complete (or to cut untreated tissue), knife 184 of knife assembly 180 may be deployed from within shaft 12 to between jaw members 110, 120, e.g., via actuation of trigger 62 of trigger assembly 60, to cut tissue grasped therebetween. More specifically, upon actuation of trigger 62, knife 184 is advanced distally from shaft 12 to extend at least partially through knife channels 115, 125 of jaw members 110, 120, respectively, to cut tissue grasped between jaw members 110, 120 (
When tissue cutting is complete, trigger 62 may be released to allow connector 68 and knife drive rod 182 to return proximally under the bias of biasing member 142 such that knife 184 is returned to the retracted position within shaft 12. Next, jaw members 110, 120 may be moved back to the spaced-apart position (
For operation of forceps 10 in the monopolar mode, movable handle 40 is first depressed relative to fixed handle 50 to pivot jaw member 110 relative to jaw member 120 from the spaced-apart position to the approximated position. With jaw members 110, 120 disposed in the approximated position, monopolar assembly 200 may be translated from the retracted position (
At the same time as monopolar assembly 200 is advanced distally, arms 90 urge connector 68 distally such that pin 69 is advanced distally and such that knife 184 is translated from the extended position towards the retracted position. However, rotation of arms 90 also effects distal advancement of linkage members 310, as first pin 316 is moved along linkage slots 27 from the second portion 29 thereof to the first portion 28 thereof. Once first pin 316 reaches first portion 28 of linkage slots 27 and is thus permitted to translate distally therealong, linkage members 310 are permitted to move distally to urge proximal end 144 of biasing member 140 distally a substantially equal distance as the distal translation of distal end 142 of biasing member 140, which is engaged to pin 69. As such, with a reduced (or removed) tension on biasing member 140, a reduced biasing force (or no biasing force) from biasing member 140 is felt upon actuation of lever 82.
Once monopolar assembly 200 is disposed in the deployed position, activation switch 4 may be actuated to supply energy to energizable rod member 220 to treat, e.g., dissect, tissue. During application of energy to tissue via energizable rod member 220, forceps 10 may be moved relative to tissue, e.g., longitudinally along longitudinal axis “X-X” and/or radially therefrom, to facilitate electromechanical treatment of tissue. At the completion of tissue treatment, e.g., dissection, monopolar assembly 200 may be returned to the retracted position (
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/726,980, filed on Nov. 15, 2012, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4005714 | Hiltebrandt | Feb 1977 | A |
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
5026379 | Yoon | Jun 1991 | A |
D343453 | Noda | Jan 1994 | S |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
5342359 | Rydell | Aug 1994 | A |
D354564 | Medema | Jan 1995 | S |
D358887 | Feinberg | May 1995 | S |
5611813 | Lichtman | Mar 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
H1745 | Paraschac | Apr 1998 | H |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
D416089 | Barton et al. | Nov 1999 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
H1904 | Yates et al. | Oct 2000 | H |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
H2037 | Yates et al. | Jul 2002 | H |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
6558385 | McClurken et al. | May 2003 | B1 |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D502994 | Blake, III | Mar 2005 | S |
D509297 | Wells | Sep 2005 | S |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
7208005 | Frecker | Apr 2007 | B2 |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
D582038 | Swoyer et al. | Dec 2008 | S |
7481810 | Dumbauld et al. | Jan 2009 | B2 |
7628791 | Garrison | Dec 2009 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
D621503 | Otten et al. | Aug 2010 | S |
7771425 | Dycus | Aug 2010 | B2 |
7789878 | Dumbauld et al. | Sep 2010 | B2 |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
D630324 | Reschke | Jan 2011 | S |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
D661394 | Romero et al. | Jun 2012 | S |
8342379 | Whitman | Jan 2013 | B2 |
8490713 | Furnish | Jul 2013 | B2 |
8672939 | Garrison | Mar 2014 | B2 |
8702749 | Twomey | Apr 2014 | B2 |
9161807 | Garrison | Oct 2015 | B2 |
20020072766 | Hunt | Jun 2002 | A1 |
20050113827 | Dumbauld | May 2005 | A1 |
20060129146 | Dycus et al. | Jun 2006 | A1 |
20070106297 | Dumbauld et al. | May 2007 | A1 |
20090012556 | Boudreaux et al. | Jan 2009 | A1 |
20090048625 | Pedersen | Feb 2009 | A1 |
20090112206 | Dumbauld et al. | Apr 2009 | A1 |
20090182327 | Unger | Jul 2009 | A1 |
20100292690 | Livneh | Nov 2010 | A1 |
20110087218 | Boudreaux | Apr 2011 | A1 |
20110319889 | Chojin et al. | Dec 2011 | A1 |
20120083827 | Artale et al. | Apr 2012 | A1 |
20120209263 | Sharp et al. | Aug 2012 | A1 |
20130218198 | Larson et al. | Aug 2013 | A1 |
20140025052 | Nau, Jr. | Jan 2014 | A1 |
20160106496 | Artale | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2011253698 | Dec 2011 | AU |
201299462 | Sep 2009 | CN |
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jun 1986 | DE |
03612646 | Apr 1987 | DE |
8712328 | Feb 1988 | DE |
4242143 | Jun 1994 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
19946527 | Jul 2001 | DE |
20121161 | Apr 2002 | DE |
10045375 | Oct 2002 | DE |
202007009165 | Aug 2007 | DE |
202007009317 | Aug 2007 | DE |
202007009318 | Aug 2007 | DE |
10031773 | Nov 2007 | DE |
202007016233 | Jan 2008 | DE |
19738457 | Jan 2009 | DE |
102004026179 | Jan 2009 | DE |
102008018406 | Jul 2009 | DE |
1281878 | Feb 2003 | EP |
1159926 | Mar 2003 | EP |
1530952 | May 2005 | EP |
1769765 | Apr 2007 | EP |
61-501068 | Sep 1984 | JP |
10-24051 | Jan 1989 | JP |
11-47150 | Jun 1989 | JP |
6-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
0006030945 | Feb 1994 | JP |
6-121797 | May 1994 | JP |
6-285078 | Oct 1994 | JP |
6-511401 | Dec 1994 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
8-56955 | May 1996 | JP |
08252263 | Oct 1996 | JP |
8-289895 | Nov 1996 | JP |
8-317934 | Dec 1996 | JP |
8-317936 | Dec 1996 | JP |
9-10223 | Jan 1997 | JP |
09000538 | Jan 1997 | JP |
9-122138 | May 1997 | JP |
0010000195 | Jan 1998 | JP |
10-155798 | Jun 1998 | JP |
11-47149 | Feb 1999 | JP |
11-070124 | Mar 1999 | JP |
11-169381 | Jun 1999 | JP |
11-192238 | Jul 1999 | JP |
11244298 | Sep 1999 | JP |
2000-102545 | Apr 2000 | JP |
2000-135222 | May 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001-29355 | Feb 2001 | JP |
2001029356 | Feb 2001 | JP |
2001-03400 | Apr 2001 | JP |
2001128990 | May 2001 | JP |
2001-190564 | Jul 2001 | JP |
2002-136525 | May 2002 | JP |
2002-528166 | Sep 2002 | JP |
2003-116871 | Apr 2003 | JP |
2003-175052 | Jun 2003 | JP |
2003245285 | Sep 2003 | JP |
2004-517668 | Jun 2004 | JP |
2004-528869 | Sep 2004 | JP |
2005-152663 | Jun 2005 | JP |
2005-253789 | Sep 2005 | JP |
2006-015078 | Jan 2006 | JP |
2006-501939 | Jan 2006 | JP |
2006-095316 | Apr 2006 | JP |
2011125195 | Jun 2011 | JP |
401367 | Oct 1973 | SU |
0036986 | Jun 2000 | WO |
0059392 | Oct 2000 | WO |
0115614 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
0245589 | Sep 2002 | WO |
06021269 | Mar 2006 | WO |
05110264 | Apr 2006 | WO |
2007118608 | Oct 2007 | WO |
08040483 | Apr 2008 | WO |
20111018154 | Feb 2011 | WO |
Entry |
---|
U.S. Appl. No. 08/926,869, James G. Chandler. |
U.S. Appl. No. 09/177,950, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, Paul R. Sremeich. |
U.S. Appl. No. 13/421,373, John R. Twomey. |
U.S. Appl. No. 13/430,325, William H. Nau, Jr. |
U.S. Appl. No. 13/433,924, Keir Hart. |
U.S. Appl. No. 13/448,577, David M. Garrison. |
U.S. Appl. No. 13/460,455, Luke Waaler. |
U.S. Appl. No. 13/461,335, James D. Allen, IV. |
U.S. Appl. No. 13/461,378, James D. Allen, IV. |
U.S. Appl. No. 13/461,397, James R. Unger. |
U.S. Appl. No. 13/461,410, James R. Twomey. |
U.S. Appl. No. 13/466,274, Stephen M. Kendrick. |
U.S. Appl. No. 13/467,767, Duane E. Kerr. |
U.S. Appl. No. 13/470,775, James D. Allen, IV. |
U.S. Appl. No. 13/482,589, Eric R. Larson. |
U.S. Appl. No. 13/483,733, Dennis W. Butcher. |
U.S. Appl. No. 13/537,517, David N. Heard. |
U.S. Appl. No. 13/537,577, Tony Moua. |
U.S. Appl. No. 13/708,335, Dumbauld. |
U.S. Appl. No. 13/731,674, Siebrecht. |
U.S. Appl. No. 13/799,173, Larson. |
U.S. Appl. No. 13/803,636, Kerr. |
U.S. Appl. No. 13/803,762, Kerr. |
U.S. Appl. No. 13/803,884, Kerr. |
U.S. Appl. No. 13/804,010, Kerr. |
U.S. Appl. No. 13/833,823, Garrison. |
U.S. Appl. No. 13/834,703, Garrison. |
U.S. Appl. No. 13/835,004, Twomey. |
U.S. Appl. No. 13/838,945, Stoddard. |
U.S. Appl. No. 13/868,732, Mueller. |
U.S. Appl. No. 13/893,527, Horner. |
U.S. Appl. No. 13/903,091, Nau. |
U.S. Appl. No. 13/903,116, Nau. |
U.S. Appl. No. 13/903,223, Payne. |
U.S. Appl. No. 13/909,362, Kerr. |
U.S. Appl. No. 13/911,674, Kerr. |
U.S. Appl. No. 13/920,643, Nau. |
U.S. Appl. No. 13/922,377, Allen. |
U.S. Appl. No. 13/922,975, McKenna. |
U.S. Appl. No. 13/933,409, Mueller. |
U.S. Appl. No. 13/933,683, Nau. |
U.S. Appl. No. 13/936,510, Kerr. |
U.S. Appl. No. 13/947,991, Kerr. |
U.S. Appl. No. 13/969,204, Bucciaglia. |
U.S. Appl. No. 13/969,278, Kerr. |
U.S. Appl. No. 14/017,572, Arya. |
U.S. Appl. No. 14/019,031, Garrison. |
U.S. Appl. No. 14/019,094, Garrison. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Instrument” ; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps” , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
European Search Report EP13174297 dated Nov. 7, 2013. |
International Search Report PCT/US2013/065659 dated Jan. 8, 2014. |
Extended European Search Report issued in corresponding application No. 13855800.2 dated Jul. 11, 2016. |
Number | Date | Country | |
---|---|---|---|
20140135763 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61726980 | Nov 2012 | US |