The invention is generally directed to remotely detectable, intracorporeal markers and devices and methods for the delivery of such markers to a desired location within a patient's body.
In diagnosing and treating certain medical conditions, it is often desirable to mark a suspicious body site for the subsequent taking of a biopsy specimen, for delivery of medicine, radiation, or other treatment, for the relocation of a site from which a biopsy specimen was taken, or at which some other procedure was performed. As is known, obtaining a tissue sample by biopsy and the subsequent examination are typically employed in the diagnosis of cancers and other malignant tumors, or to confirm that a suspected lesion or tumor is not malignant. The information obtained from these diagnostic tests and/or examinations is frequently used to devise a therapeutic plan for the appropriate surgical procedure or other course of treatment.
In many instances, the suspicious tissue to be sampled is located in a subcutaneous site, such as inside a human breast. To minimize surgical intrusion into a patient's body, it is often desirable to insert a small instrument, such as a biopsy needle, into the body for extracting the biopsy specimen while imaging the procedure using fluoroscopy, ultrasonic imaging, x-rays, magnetic resonance imaging (MRI) or any other suitable form of imaging technique or palpation. Examination of tissue samples taken by biopsy is of particular significance in the diagnosis and treatment of breast cancer. In the ensuing discussion, the biopsy and treatment site described will generally be the human breast, although the invention is suitable for marking biopsy sites in other parts of the human and other mammalian body as well.
Periodic physical examination of the breasts and mammography are important for early detection of potentially cancerous lesions. In mammography, the breast is compressed between two plates while specialized x-ray images are taken. If an abnormal mass in the breast is found by physical examination or mammography, ultrasound may be used to determine whether the mass is a solid tumor or a fluid-filled cyst. Solid masses are usually subjected to some type of tissue biopsy to determine if the mass is cancerous.
If a solid mass or lesion is large enough to be palpable, a tissue specimen can be removed from the mass by a variety of techniques, including but not limited to open surgical biopsy, a technique known as Fine Needle Aspiration Biopsy (FNAB) and instruments characterized as “vacuum assisted large core biopsy devices”.
If a solid mass of the breast is small and non-palpable (e.g., the type typically discovered through mammography), a vacuum assisted large core biopsy procedure is usually used. In performing a stereotactic biopsy of a breast, the patient lies on a special biopsy table with her breast compressed between the plates of a mammography apparatus and two separate x-rays or digital video views are taken from two different points of view. A computer calculates the exact position of the lesion as well as depth of the lesion within the breast. Thereafter, a mechanical stereotactic apparatus is programmed with the coordinates and depth information is calculated by the computer, and such apparatus is used to precisely advance the biopsy needle into the small lesion. The stereotactic technique may be used to obtain histologic specimens. Usually at least five separate biopsy specimens are obtained from locations around the small lesion as well as one from the center of the lesion.
The available treatment options for cancerous lesions of the breast include various degrees of mastectomy or lumpectomy, radiation therapy, chemotherapy and combinations of these treatments. However, radiographically visible tissue features, originally observed in a mammogram, may be removed, altered or obscured by the biopsy procedure, and may heal or otherwise become altered following the biopsy. In order for the surgeon or radiation oncologist to direct surgical or radiation treatment to the precise location of the breast lesion several days or weeks after the biopsy procedure was performed, it is desirable that a biopsy site marker be placed in the patient's body to serve as a landmark for subsequent location of the lesion site. A biopsy site marker may be a permanent marker (e.g., a metal marker visible under x-ray examination), or a temporary marker (e.g., a bioresorbable marker detectable with ultrasound). While current radiographic type markers may persist at the biopsy site, an additional mammography generally must be performed at the time of follow up treatment or surgery in order to locate the site of the previous surgery or biopsy. In addition, once the site of the previous procedure is located using mammography, the site must usually be marked with a location wire which has a hook on the end which is advanced into site of the previous procedure. The hook is meant to fix the tip of the location wire with respect to the site of the previous procedure so that the patient can then be removed from the confinement of the mammography apparatus and the follow-up procedure performed. However, as the patient is removed from the mammography apparatus, or otherwise transported the position of the location wire can change or shift in relation to the site of the previous procedure. This, in turn, can result in follow-up treatments being misdirected to an undesired portion of the patient's tissue.
As an alternative or adjunct to radiographic imaging, ultrasonic imaging (herein abbreviated as “USI”) or visualization techniques can be used to image the tissue of interest at the site of interest during a surgical or biopsy procedure or follow-up procedure. USI is capable of providing precise location and imaging of suspicious tissue, surrounding tissue and biopsy instruments within the patient's body during a procedure. Such imaging facilitates accurate and controllable removal or sampling of the suspicious tissue so as to minimize trauma to surrounding healthy tissue.
For example, during a breast biopsy procedure, the biopsy device is often imaged with USI while the device is being inserted into the patient's breast and activated to remove a sample of suspicious breast tissue. As USI is often used to image tissue during follow-up treatment, it may be desirable to have a marker, similar to the radiographic markers discussed above, which can be placed in a patient's body at the site of a surgical procedure and which are visible using USI. Such a marker enables a follow-up procedure to be performed without the need for traditional radiographic mammography imaging which, as discussed above, can be subject to inaccuracies as a result of shifting of the location wire as well as being tedious and uncomfortable for the patient.
Placement of a marker or multiple markers at a location within a patient's body requires delivery devices capable of holding markers within the device until the device is properly situated within a breast or other body location. Accordingly, devices and methods for retaining markers within a marker delivery device while allowing their expulsion from the devices at desired intracorporeal locations are desired.
In addition to marking functions, frequently it is desirable to provide treatments with the marker members such as hemostatic treatment and the like.
The invention is generally directed to a remotely imagable marker system suitable for deployment at a site within a patient's body, particularly a biopsy site such as in a patient's breast. The imagable marker system has a plurality of marker members containing polysaccharide in sufficient amounts to provide hemostatic properties and has a molecular weight of about 3500 to about 200,000 Daltons. The polysaccharide containing marker members are preferably press-formed from a dry powder into a pellet shape. The polysaccharide and binder powder should have a particle size of about 10 to about 200 micrometers. The polysaccharide markers rapidly absorb body fluid and hydrate and in the process dehydrate blood at the site of deployment to rapidly initiate clotting.
The polysaccharide is preferably starch (corn starch or potato starch) but a variety of bioabsorbable polysaccharides are suitable, including glycogen, cellulose, chitin, chitosan, dextran, pectins, glucans, agar, alginate and carrageen. The binder is preferably methylcellulose but a variety of binders may be employed in lieu of or in addition to methylcellulose. Other suitable binders include hydroxyethyl cellulose, polyethylene glycol, polyvinyl alcohol, polyvinylpyrolidone.
The remotely imagable marker system preferably includes a marker body with a radiopaque element connected thereto or incorporated therein to provide long term identification of the intracorporeal site. Preferably, the radiopaque element is formed of non-magnetic material to avoid interference with magnetic resonance imaging (MRI). Suitable non-magnetic materials include titanium, platinum, gold, iridium, tantalum, tungsten, silver, rhodium, non-magnetic stainless steel (316) and the like. The radiopaque element should have a shape that is readily recognized at the intracorporeal site when remotely imaged. The radiopaque element should have a maximum dimension of about 0.5 to about 5 mm, preferably about 1 to about 3 mm to ensure remote identification, particularly with MRI. The marker body having a radiopaque element is preferably formed of a bioabsorbable polymeric material such as polylactic-polyglycolic acid (polylactide-co-glycolide) with a longer dissolution time than the polysaccharide pellets, although the latter may be used.
The polysaccharide containing pellets will generally have a transverse dimension of about 0.02 to about 0.1 inch (0.5-2.5 mm), preferably about 0.035 to about 0.075 inch (0.9-1.9 mm), and typically about 0.056 inch (1.4 mm) The pellets will have a length of about 0.1 to about 0.4 inch (2.5-10 mm), preferably about 0.15 to about 0.35 inch (3.8-8.9 mm) The pellets provide sufficient column strength to facilitate introduction into and discharge thereof from the tubular delivery device. The markers are preferably arranged for delivery within the delivery tube with the marker having a radiopaque element between two adjacent marker members formed of polysaccharide. As presently contemplated, within the delivery tube there will be two polysaccharide marker members distal and two polysaccharide marker members proximal to the marker having a radiopaque element.
The marker member embodying features of the invention can be readily delivered to the desired location by suitable delivery systems such as disclosed in application Ser. No. 10/444,770, filed on May 23, 2003, now U.S. Pat. No. 7,983,734 B2, and Ser. No. 10/753,694, filed Jan. 7, 2004. The marker delivery system generally has an elongated cannula or tube with proximal and distal ports and an inner lumen extending between the ports. The marker member is slidably disposed within the inner lumen of the delivery cannula and a plunger slidably disposed within the inner lumen of the delivery cannula proximal to the markers. The plunger is movable from an initial position proximal to the markers within the tube, to a delivery position close to the discharge opening in the distal end of the cannula to push the marker members out of the discharge opening into the target tissue site.
Upon being discharged into the intracorporeal target site, the plurality of polysaccharide containing markers quickly take up body fluid at the site, initiating the clotting process and providing hemostasis. The other marker member with a radiopaque marker element enables short term detection (at least three weeks, preferably at least four weeks but less than a year) by remote USI and preferably long term detection by remote mammographic imaging or MRI identification by the radiopaque element. Typically, the polysaccharide bodies dissolve in situ in about five seconds to about 2 minutes and enzymatically degrade in about 2-5 days.
The cannula of the marker delivery device may be configured to fit within the guide cannula of a biopsy device, such as a Mammotome® (sold by Johnson & Johnson), the SenoCor 360™ biopsy device sold by SenoRx (the present assignee), the EnCor™ biopsy device sold by SenoRx and or a coaxial needle guide. The delivery cannula can also be configured to fit into the proximal end of a tubular cutting element such as found in the EnCor™ biopsy system sold by SenoRx which is the subject of co-pending application Ser. No. 10/911,106, filed on Aug. 3, 2004.
One suitable delivery system suitable for delivery through a tubular cutter (e.g. as with the Encor™ system) is a syringe-type delivery system described in co-pending application Ser. No. 10/911,106, filed on Aug. 3, 2004 having a tubular shaft with a flared guide on or integral with the distal tip to facilitate engagement with the proximal end of the tubular cutter. Another syringe-type delivery system has a plugged distal tip to prevent body fluids from engaging one or more markers which may be in the tubular shaft of the delivery system. Such fluid infusions can retard or restrict discharging the markers within the inner lumen of the delivery cannula by causing the markers to take up water or swell within the lumen of the delivery cannula. Delivery systems with plugged tips are described in co-pending application Ser. No. 10/444,770, filed on May 23, 2003, now U.S. Pat. No. 7,983,734 B2, and Ser. No. 10/753,694, filed Jan. 7, 2004, which are incorporated herein in their entireties. The plugged tip type delivery systems can have a side opening for marker deployment or a plugged needle-type distal tip both of which are disclosed in the above application Ser. No. 10/753,694.
A variety of therapeutic or diagnostic agents may also be incorporated into the marker bodies. Incorporated agents can include for example, anesthetic agents to control pain, chemotherapeutic agents for treating residual neoplastic tissue or coloring agents to facilitate subsequent visual location of the site. Antibiotics, antifungal agents and antiviral agents may also be incorporated into the marker bodies.
Upon delivery to the intracorporeal site, the markers are easily identifiable from surrounding tissue at the site by ultrasonic imaging (USI).
The polysaccharide containing markers embodying features of the present invention provide several advantages. The polysaccharide marker bodies quickly dissolve in the body fluids at the site to provide to provide rapid hemostasis therein even with serious bleeding. Moreover, the materials rapidly degrade so there is no long term irritation or inflammation at the site.
Thus, the invention, in one form thereof, is directed to a method for treating a site within a patient from which tissue has been removed, including providing at least one press-formed marker body formed of polysaccharide and a suitable binder; and placing the at least one of the press-formed marker body within the site where tissue has been removed so as to provide hemostasis therein.
The invention in another form is directed to a method for treating a site within a patient from which tissue has been removed, including providing at least one unitary marker pellet formed of polysaccharide powder and a suitable binder pressed into a desired shape; and placing each individual unitary marker pellet formed of polysaccharide powder within the site where tissue has been removed so as to provide hemostasis therein.
The invention in another form is directed to a method to facilitate treating a site within a patient from which tissue has been removed, including providing a plurality of marker members, each marker member of the plurality of marker members comprising a bioabsorbable polysaccharide and a binder, the bioabsorbable polysaccharide being in sufficient amounts to exhibit hemostatic properties, the plurality of marker members being disposed within an inner lumen of a tubular delivery member; and placing the plurality of marker members in a lumen of a delivery tube configured to deliver the plurality of marker members into the site within the patient from which the tissue has been removed.
These and other advantages of the invention will become more apparent from the following detailed description of embodiments when taken in conjunction with the accompanying exemplary drawings.
One suitable polysaccharide material is U.S.P. Topical Starch. Alternatively, Hemaderm™, which is available from Medafor, Inc. located in Minneapolis, Minn., may also be used. This product is described at least in part in U.S. Pat. No. 6,060,461.
The marker member 10 may be formed in a variety of shapes and sizes, but generally the length of the marker member is at least twice, preferably five times that of the maximum transverse dimension. The marker member 10 should have sufficient column strength to allow it to be pushed within the delivery tube without significant damage. In some instances the marker member may be partially or completely coated with a bioabsorbable polymeric material such as polylactic acid, polyglycolic acid and copolymers thereof to control the dissolution of the material of the marker member.
One suitable marker delivery system 15 is depicted in
Releasable plug 21, preferably formed of polyethylene glycol, may substantially fill the discharge opening 26, as shown in
The delivery cannula 16 may be provided with markings 30 which serve as visual landmarks to aid an operator in accurately placing the distal portion 18 of the cannula 16 in a desired location within a patient's body for discharging the marker 10.
The exterior of the delivery cannula 16 is preferably configured to fit within a guide cannula sized to accept a SenoCor®, EnCor™, Mammotome® or Tru-Cut®, biopsy device. Typically, plug 21 and marker member 10 will have diameters determined by the size of the inner lumen 17 and typically will be about 0.02 inch (0.5 mm) to about 0.5 inch (12 mm), preferably about 0.04 inch (1 mm) to about 0.3 inch (8 mm) Plug 21 may have slightly larger transverse dimensions to provide a tight fit.
When the marker member 10 contacts body fluid within a body cavity such as a lumpectomy or biopsy site, the binding agent is dissolved and the polysaccharide draws moisture away from the blood and other fluids at the site and the clotting cascade begins to form thrombus at the site resulting in hemostasis.
While one or more particular forms of the invention have been illustrated and described herein in the context of a breast biopsy site, it will be apparent that the device and methods having features of the invention may find use in a variety of locations and in a variety of applications, in addition to the human breast, where tissue has been removed. Moreover, various modifications can be made without departing from the spirit and scope of the invention. For example, while the polysaccharide bodies are primarily described herein as press-formed bodies, the polysaccharide materials by be encapsulated in a bioabsorbable body or be in other forms. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. It is therefore intended that this invention to be defined by the scope of the appended claims as broadly as the prior art will permit, and in view of the specification if need be. Moreover, those skilled in the art will recognize that features shown in one embodiment may be utilized in other embodiments. Additional details of pellet or other marker members and delivery systems may be found in application Ser. No. 10/753,694, filed on Jan. 7, 2004, and Ser. No. 10/976,138, filed on Oct. 27, 2004.
Terms such as “element”, “member”, “device”, “section”, “portion”, “step”, “means” and words of similar import when used in the following claims shall not be construed as invoking the provisions of 35 U.S.C. §112(6) unless the following claims expressly use the term “means” followed by a particular function without specific structure or expressly use the term “step” followed by a particular function without specific action. All patents and patent applications referred to above are hereby incorporated by reference in their entirety.
This application is a continuation of U.S. patent application Ser. No. 13/301,024, filed Nov. 21, 2011, now U.S. Pat. No. 9,149,341. U.S. patent application Ser. No. 13/301,024, filed Nov. 21, 2011, now U.S. Pat. No. 9,149,341, is a continuation-in-part of U.S. patent application Ser. No. 12/070,786, entitled “DEPLOYMENT OF POLYSACCHARIDE MARKERS”, filed Feb. 21, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/881,264, filed Jul. 26, 2007, now abandoned, which is related to and claims priority from provisional application Ser. No. 60/835,740, filed on Aug. 4, 2006. Also, U.S. patent application Ser. No. 13/301,024, filed Nov. 21, 2011, now U.S. Pat. No. 9,149,341, is a continuation-in-part of U.S. patent application Ser. No. 13/155,628 entitled “FIBROUS MARKER AND INTRACORPOREAL DELIVERY THEREOF”, filed Jun. 8, 2011, now U.S. Pat. No. 8,626,269, which is a continuation of U.S. patent application Ser. No. 10/444,770, filed May 23, 2003, now U.S. Pat. No. 7,983,734 B2. Also, U.S. patent application Ser. No. 13/301,024, filed Nov. 21, 2011, now U.S. Pat. No. 9,149,341, is a continuation-in-part of U.S. patent application Ser. No. 13/037,971 entitled “MARKER DELIVERY DEVICE WITH RELEASABLE PLUG”, filed Mar. 1, 2011, now U.S. Pat. No. 8,361,082, which is a continuation-in-part of U.S. patent application Ser. No. 10/753,694, filed Jan. 7, 2004, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 10/444,770, filed May 23, 2003, now U.S. Pat. No. 7,983,734 B2. Also, U.S. patent application Ser. No. 13/301,024, filed Nov. 21, 2011, now U.S. Pat. No. 9,149,341, is a continuation-in-part of U.S. patent application Ser. No. 12/852,286 entitled CAVITY-FILLING BIOPSY SITE MARKERS, filed Aug. 6, 2010, now U.S. Pat. No. 8,219,182, which is a continuation of U.S. patent application Ser. No. 10/990,327, filed Nov. 16, 2004, now U.S. Pat. No. 7,792,569, which is a continuation of U.S. patent application Ser. No. 10/124,757, filed Apr. 16, 2002, now U.S. Pat. No. 6,862,470, which is a continuation-in-part of U.S. patent application Ser. No. 09/717,909, filed Nov. 20, 2000, now U.S. Pat. No. 6,725,083, which is a continuation-in-part of U.S. patent application Ser. No. 09/343,975, filed Jun. 30, 1999, now U.S. Pat. No. 6,347,241, which is a continuation-in-part of U.S. patent application Ser. No. 09/241,936, filed Feb. 2, 1999, now U.S. Pat. No. 6,161,034. Also, U.S. patent application Ser. No. 13/301,024, filed Nov. 21, 2011, now U.S. Pat. No. 9,149,341, is a continuation-in-part of U.S. patent application Ser. No. 12/592,020 entitled PLUGGED TIP DELIVERY TUBE FOR MARKER PLACEMENT, filed Nov. 18, 2009, now U.S. Pat. No. 8,177,792, which is a continuation of U.S. patent application Ser. No. 10/174,401, filed Jun. 17, 2002, now U.S. Pat. No. 7,651,505. Also, U.S. patent application Ser. No. 13/301,024, filed Nov. 21, 2011, now U.S. Pat. No. 9,149,341, is a continuation-in-part of U.S. patent application Ser. No. 10/911,106 entitled BIOPSY DEVICE WITH SELECTABLE TISSUE RECEIVING APERTURE ORIENTATION AND SITE ILLUMINATION, filed Aug. 3, 2004, now U.S. Pat. No. 8,282,573, which is a continuation-in-part of U.S. patent application Ser. No. 10/642,406, filed Aug. 15, 2003, now U.S. Pat. No. 7,819,819, which is a continuation-in-part of U.S. patent application Ser. No. 10/374,915, filed Feb. 24, 2003, now U.S. Pat. No. 7,189,206. All the above from which priority is claimed are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2899362 | Sieger, Jr. et al. | Aug 1959 | A |
2907327 | White | Oct 1959 | A |
3005457 | Millman | Oct 1961 | A |
3128744 | Jefferts et al. | Apr 1964 | A |
3402712 | Eisenhand | Sep 1968 | A |
3516412 | Ackerman | Jun 1970 | A |
3818894 | Wichterle et al. | Jun 1974 | A |
3820545 | Jefferts | Jun 1974 | A |
3823212 | Chvapil | Jul 1974 | A |
3892731 | Austin | Jul 1975 | A |
3921632 | Bardani | Nov 1975 | A |
4005699 | Bucalo | Feb 1977 | A |
4007732 | Kvavle et al. | Feb 1977 | A |
4041931 | Elliott et al. | Aug 1977 | A |
4086914 | Moore | May 1978 | A |
4103690 | Harris | Aug 1978 | A |
4105030 | Kercso | Aug 1978 | A |
4127774 | Gillen | Nov 1978 | A |
4172449 | LeRoy et al. | Oct 1979 | A |
4197846 | Bucalo | Apr 1980 | A |
4217889 | Radovan et al. | Aug 1980 | A |
4276885 | Tickner et al. | Jul 1981 | A |
4294241 | Miyata | Oct 1981 | A |
4298998 | Naficy | Nov 1981 | A |
4331654 | Morris | May 1982 | A |
4347234 | Wahlig et al. | Aug 1982 | A |
4390018 | Zukowski | Jun 1983 | A |
4400170 | McNaughton et al. | Aug 1983 | A |
4401124 | Guess et al. | Aug 1983 | A |
4405314 | Cope | Sep 1983 | A |
4428082 | Naficy | Jan 1984 | A |
4438253 | Casey et al. | Mar 1984 | A |
4442843 | Rasor et al. | Apr 1984 | A |
4470160 | Cavon | Sep 1984 | A |
4487209 | Mehl | Dec 1984 | A |
4545367 | Tucci | Oct 1985 | A |
4582061 | Fry | Apr 1986 | A |
4582640 | Smestad et al. | Apr 1986 | A |
4588395 | Lemelson | May 1986 | A |
4597753 | Turley | Jul 1986 | A |
4647480 | Ahmed | Mar 1987 | A |
4655226 | Lee | Apr 1987 | A |
4661103 | Harman | Apr 1987 | A |
4682606 | DeCaprio | Jul 1987 | A |
4693237 | Hoffman et al. | Sep 1987 | A |
4718433 | Feinstein | Jan 1988 | A |
4740208 | Cavon | Apr 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4813062 | Gilpatrick | Mar 1989 | A |
4820267 | Harman | Apr 1989 | A |
4832680 | Haber et al. | May 1989 | A |
4832686 | Anderson | May 1989 | A |
4847049 | Yamamoto | Jul 1989 | A |
4863470 | Carter | Sep 1989 | A |
4870966 | Dellon et al. | Oct 1989 | A |
4874376 | Hawkins, Jr. | Oct 1989 | A |
4889707 | Day et al. | Dec 1989 | A |
4909250 | Smith | Mar 1990 | A |
4938763 | Dunn et al. | Jul 1990 | A |
4950234 | Fujioka et al. | Aug 1990 | A |
4950665 | Floyd | Aug 1990 | A |
4963150 | Brauman | Oct 1990 | A |
4970298 | Silver et al. | Nov 1990 | A |
4989608 | Ratner | Feb 1991 | A |
4994013 | Suthanthiran et al. | Feb 1991 | A |
4994028 | Leonard et al. | Feb 1991 | A |
5012818 | Joishy | May 1991 | A |
5013090 | Matsuura | May 1991 | A |
5018530 | Rank et al. | May 1991 | A |
5035891 | Runkel et al. | Jul 1991 | A |
5059197 | Urie et al. | Oct 1991 | A |
5081997 | Bosley, Jr. et al. | Jan 1992 | A |
5108421 | Fowler | Apr 1992 | A |
5120802 | Mares et al. | Jun 1992 | A |
5125413 | Baran | Jun 1992 | A |
5137928 | Erbel et al. | Aug 1992 | A |
5141748 | Rizzo | Aug 1992 | A |
5147295 | Stewart | Sep 1992 | A |
5147307 | Gluck | Sep 1992 | A |
5147631 | Glajch et al. | Sep 1992 | A |
5162430 | Rhee et al. | Nov 1992 | A |
5163896 | Suthanthiran et al. | Nov 1992 | A |
5195540 | Shiber | Mar 1993 | A |
5197482 | Rank et al. | Mar 1993 | A |
5199441 | Hogle | Apr 1993 | A |
5201704 | Ray | Apr 1993 | A |
5219339 | Saito | Jun 1993 | A |
5221269 | Miller et al. | Jun 1993 | A |
5234426 | Rank et al. | Aug 1993 | A |
5236410 | Granov et al. | Aug 1993 | A |
5242759 | Hall | Sep 1993 | A |
5250026 | Ehrlich et al. | Oct 1993 | A |
5271961 | Mathiowitz et al. | Dec 1993 | A |
5273532 | Niezink et al. | Dec 1993 | A |
5280788 | Janes et al. | Jan 1994 | A |
5281197 | Arias et al. | Jan 1994 | A |
5281408 | Unger | Jan 1994 | A |
5282781 | Liprie | Feb 1994 | A |
5284479 | de Jong | Feb 1994 | A |
5289831 | Bosley | Mar 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
5312435 | Nash et al. | May 1994 | A |
5320100 | Herweck et al. | Jun 1994 | A |
5320613 | Houge et al. | Jun 1994 | A |
5328955 | Rhee et al. | Jul 1994 | A |
5334216 | Vidal et al. | Aug 1994 | A |
5334381 | Unger | Aug 1994 | A |
5344640 | Deutsch et al. | Sep 1994 | A |
5353804 | Kornberg et al. | Oct 1994 | A |
5354623 | Hall | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5360416 | Ausherman et al. | Nov 1994 | A |
5366756 | Chesterfield et al. | Nov 1994 | A |
5368030 | Zinreich et al. | Nov 1994 | A |
5388588 | Nabai et al. | Feb 1995 | A |
5394875 | Lewis et al. | Mar 1995 | A |
5395319 | Hirsch et al. | Mar 1995 | A |
5405402 | Dye et al. | Apr 1995 | A |
5409004 | Sloan | Apr 1995 | A |
5417708 | Hall et al. | May 1995 | A |
5422730 | Barlow et al. | Jun 1995 | A |
5425366 | Reinhardt et al. | Jun 1995 | A |
5431639 | Shaw | Jul 1995 | A |
5433204 | Olson | Jul 1995 | A |
5444113 | Sinclair et al. | Aug 1995 | A |
5449560 | Antheunis et al. | Sep 1995 | A |
5451406 | Lawin et al. | Sep 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5460182 | Goodman et al. | Oct 1995 | A |
5469847 | Zinreich et al. | Nov 1995 | A |
5475052 | Rhee et al. | Dec 1995 | A |
5490521 | Davis et al. | Feb 1996 | A |
5494030 | Swartz et al. | Feb 1996 | A |
5499989 | LaBash | Mar 1996 | A |
5507807 | Shippert | Apr 1996 | A |
5508021 | Grinstaff et al. | Apr 1996 | A |
5514085 | Yoon | May 1996 | A |
5522896 | Prescott | Jun 1996 | A |
5538726 | Order | Jul 1996 | A |
5542915 | Edwards et al. | Aug 1996 | A |
5545180 | Le et al. | Aug 1996 | A |
5549560 | Van de Wijdeven | Aug 1996 | A |
5567413 | Klaveness et al. | Oct 1996 | A |
RE35391 | Brauman | Dec 1996 | E |
5580568 | Greff et al. | Dec 1996 | A |
5585112 | Unger et al. | Dec 1996 | A |
5599552 | Dunn et al. | Feb 1997 | A |
5611352 | Kobren et al. | Mar 1997 | A |
5626611 | Liu et al. | May 1997 | A |
5628781 | Williams et al. | May 1997 | A |
5629008 | Lee | May 1997 | A |
5636255 | Ellis | Jun 1997 | A |
5643246 | Leeb et al. | Jul 1997 | A |
5646146 | Faarup et al. | Jul 1997 | A |
5651772 | Arnett | Jul 1997 | A |
5657366 | Nakayama | Aug 1997 | A |
5665092 | Mangiardi et al. | Sep 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5669882 | Pyles | Sep 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5676146 | Scarborough | Oct 1997 | A |
5676925 | Klaveness et al. | Oct 1997 | A |
5688490 | Tournier et al. | Nov 1997 | A |
5690120 | Jacobsen et al. | Nov 1997 | A |
5695480 | Evans et al. | Dec 1997 | A |
5702128 | Maxim et al. | Dec 1997 | A |
5702682 | Thompson | Dec 1997 | A |
5702716 | Dunn et al. | Dec 1997 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5747060 | Sackler et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5762903 | Park et al. | Jun 1998 | A |
5769086 | Ritchart et al. | Jun 1998 | A |
5776496 | Violante et al. | Jul 1998 | A |
5779647 | Chau et al. | Jul 1998 | A |
5782764 | Werne | Jul 1998 | A |
5782771 | Hussman | Jul 1998 | A |
5782775 | Milliman et al. | Jul 1998 | A |
5795308 | Russin | Aug 1998 | A |
5799099 | Wang et al. | Aug 1998 | A |
5800362 | Kobren et al. | Sep 1998 | A |
5800389 | Burney et al. | Sep 1998 | A |
5800445 | Ratcliff et al. | Sep 1998 | A |
5800541 | Rhee et al. | Sep 1998 | A |
5808007 | Lee et al. | Sep 1998 | A |
5817022 | Vesely | Oct 1998 | A |
5820918 | Ronan et al. | Oct 1998 | A |
5821184 | Haines et al. | Oct 1998 | A |
5823198 | Jones et al. | Oct 1998 | A |
5824042 | Lombardi et al. | Oct 1998 | A |
5824081 | Knapp et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5830222 | Makower | Nov 1998 | A |
5842477 | Naughton et al. | Dec 1998 | A |
5842999 | Pruitt et al. | Dec 1998 | A |
5845646 | Lemelson | Dec 1998 | A |
5846220 | Elsberry | Dec 1998 | A |
5851461 | Bakis et al. | Dec 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5853366 | Dowlatshahi | Dec 1998 | A |
5865806 | Howell | Feb 1999 | A |
5869080 | McGregor et al. | Feb 1999 | A |
5871501 | Leschinsky et al. | Feb 1999 | A |
5876340 | Tu et al. | Mar 1999 | A |
5879357 | Heaton et al. | Mar 1999 | A |
5891558 | Bell et al. | Apr 1999 | A |
5897507 | Kortenbach et al. | Apr 1999 | A |
5902310 | Foerster et al. | May 1999 | A |
5911705 | Howell | Jun 1999 | A |
5916164 | Fitzpatrick et al. | Jun 1999 | A |
5921933 | Sarkis et al. | Jul 1999 | A |
5922024 | Janzen et al. | Jul 1999 | A |
5928626 | Klaveness et al. | Jul 1999 | A |
5928773 | Andersen | Jul 1999 | A |
5941439 | Kammerer et al. | Aug 1999 | A |
5941890 | Voegele et al. | Aug 1999 | A |
5942209 | Leavitt et al. | Aug 1999 | A |
5948425 | Janzen et al. | Sep 1999 | A |
5954670 | Baker | Sep 1999 | A |
5972817 | Haines et al. | Oct 1999 | A |
5976146 | Ogawa et al. | Nov 1999 | A |
5980564 | Stinson | Nov 1999 | A |
5989265 | Bouquet De La Joliniere et al. | Nov 1999 | A |
5990194 | Dunn et al. | Nov 1999 | A |
6015541 | Greff et al. | Jan 2000 | A |
6027471 | Fallon et al. | Feb 2000 | A |
6030333 | Sioshansi et al. | Feb 2000 | A |
6053925 | Barnhart | Apr 2000 | A |
6056700 | Burney et al. | May 2000 | A |
6066122 | Fisher | May 2000 | A |
6066325 | Wallace et al. | May 2000 | A |
6071301 | Cragg et al. | Jun 2000 | A |
6071310 | Picha et al. | Jun 2000 | A |
6071496 | Stein et al. | Jun 2000 | A |
6090996 | Li | Jul 2000 | A |
6096065 | Crowley | Aug 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6106473 | Violante et al. | Aug 2000 | A |
6117108 | Woehr et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6135993 | Hussman | Oct 2000 | A |
6142955 | Farascioni et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6159445 | Klaveness et al. | Dec 2000 | A |
6162192 | Cragg et al. | Dec 2000 | A |
6166079 | Follen et al. | Dec 2000 | A |
6173715 | Sinanan et al. | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6177062 | Stein et al. | Jan 2001 | B1 |
6181960 | Jensen et al. | Jan 2001 | B1 |
6183497 | Sing et al. | Feb 2001 | B1 |
6190350 | Davis et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6200258 | Slater et al. | Mar 2001 | B1 |
6203507 | Wadsworth et al. | Mar 2001 | B1 |
6203524 | Burney et al. | Mar 2001 | B1 |
6203568 | Lombardi et al. | Mar 2001 | B1 |
6213957 | Milliman et al. | Apr 2001 | B1 |
6214045 | Corbitt, Jr. et al. | Apr 2001 | B1 |
6214315 | Greff et al. | Apr 2001 | B1 |
6220248 | Voegele et al. | Apr 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6228049 | Schroeder et al. | May 2001 | B1 |
6228055 | Foerster et al. | May 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6234177 | Barsch | May 2001 | B1 |
6241687 | Voegele et al. | Jun 2001 | B1 |
6241734 | Scribner et al. | Jun 2001 | B1 |
6251135 | Stinson et al. | Jun 2001 | B1 |
6251418 | Ahern et al. | Jun 2001 | B1 |
6261243 | Burney et al. | Jul 2001 | B1 |
6261302 | Voegele et al. | Jul 2001 | B1 |
6264917 | Klaveness et al. | Jul 2001 | B1 |
6270464 | Fulton, III et al. | Aug 2001 | B1 |
6270472 | Antaki et al. | Aug 2001 | B1 |
6287278 | Woehr et al. | Sep 2001 | B1 |
6287332 | Bolz et al. | Sep 2001 | B1 |
6289229 | Crowley | Sep 2001 | B1 |
6306154 | Hudson et al. | Oct 2001 | B1 |
6312429 | Burbank et al. | Nov 2001 | B1 |
6316522 | Loomis et al. | Nov 2001 | B1 |
6325789 | Janzen et al. | Dec 2001 | B1 |
6335029 | Kamath et al. | Jan 2002 | B1 |
6336904 | Nikolchev | Jan 2002 | B1 |
6340367 | Stinson et al. | Jan 2002 | B1 |
6343227 | Crowley | Jan 2002 | B1 |
6347240 | Foley et al. | Feb 2002 | B1 |
6350244 | Fisher | Feb 2002 | B1 |
6350274 | Li | Feb 2002 | B1 |
6354989 | Nudeshima | Mar 2002 | B1 |
6356112 | Tran et al. | Mar 2002 | B1 |
6356782 | Sirimanne et al. | Mar 2002 | B1 |
6358217 | Bourassa | Mar 2002 | B1 |
6363940 | Krag | Apr 2002 | B1 |
6371904 | Sirimanne et al. | Apr 2002 | B1 |
6394965 | Klein | May 2002 | B1 |
6403758 | Loomis | Jun 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6409742 | Fulton, III et al. | Jun 2002 | B1 |
6419621 | Sioshansi et al. | Jul 2002 | B1 |
6424857 | Henrichs et al. | Jul 2002 | B1 |
6425903 | Voegele | Jul 2002 | B1 |
6427081 | Burbank et al. | Jul 2002 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6447524 | Knodel et al. | Sep 2002 | B1 |
6447527 | Thompson et al. | Sep 2002 | B1 |
6450937 | Mercereau et al. | Sep 2002 | B1 |
6450938 | Miller | Sep 2002 | B1 |
6471700 | Burbank et al. | Oct 2002 | B1 |
6478790 | Bardani | Nov 2002 | B2 |
6506156 | Jones et al. | Jan 2003 | B1 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6511650 | Eiselt et al. | Jan 2003 | B1 |
6537193 | Lennox | Mar 2003 | B1 |
6540981 | Klaveness et al. | Apr 2003 | B2 |
6544185 | Montegrande | Apr 2003 | B2 |
6544231 | Palmer et al. | Apr 2003 | B1 |
6551253 | Worm et al. | Apr 2003 | B2 |
6554760 | Lamoureux et al. | Apr 2003 | B2 |
6562317 | Greff et al. | May 2003 | B2 |
6564806 | Fogarty et al. | May 2003 | B1 |
6565551 | Jones et al. | May 2003 | B1 |
6567689 | Burbank et al. | May 2003 | B2 |
6575888 | Zamora et al. | Jun 2003 | B2 |
6575991 | Chesbrough et al. | Jun 2003 | B1 |
6585773 | Xie | Jul 2003 | B1 |
6605047 | Zarins et al. | Aug 2003 | B2 |
6610026 | Cragg et al. | Aug 2003 | B2 |
6613002 | Clark et al. | Sep 2003 | B1 |
6616630 | Woehr et al. | Sep 2003 | B1 |
6626850 | Chau et al. | Sep 2003 | B1 |
6626899 | Houser et al. | Sep 2003 | B2 |
6628982 | Thomas et al. | Sep 2003 | B1 |
6629947 | Sahatjian et al. | Oct 2003 | B1 |
6636758 | Sanchez et al. | Oct 2003 | B2 |
6638234 | Burbank et al. | Oct 2003 | B2 |
6638308 | Corbitt, Jr. et al. | Oct 2003 | B2 |
6652442 | Gatto | Nov 2003 | B2 |
6656192 | Espositio et al. | Dec 2003 | B2 |
6659933 | Asano | Dec 2003 | B2 |
6662041 | Burbank et al. | Dec 2003 | B2 |
6699205 | Fulton, III et al. | Mar 2004 | B2 |
6712774 | Voegele et al. | Mar 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6716444 | Castro et al. | Apr 2004 | B1 |
6730042 | Fulton et al. | May 2004 | B2 |
6730044 | Stephens et al. | May 2004 | B2 |
6746661 | Kaplan | Jun 2004 | B2 |
6746773 | Llanos et al. | Jun 2004 | B2 |
6752154 | Fogarty et al. | Jun 2004 | B2 |
6766186 | Hoyns et al. | Jul 2004 | B1 |
6774278 | Ragheb et al. | Aug 2004 | B1 |
6780179 | Lee et al. | Aug 2004 | B2 |
6824507 | Miller | Nov 2004 | B2 |
6824527 | Gollobin | Nov 2004 | B2 |
6846320 | Ashby et al. | Jan 2005 | B2 |
6863685 | Davila et al. | Mar 2005 | B2 |
6881226 | Corbitt, Jr. et al. | Apr 2005 | B2 |
6889833 | Seiler et al. | May 2005 | B2 |
6899731 | Li et al. | May 2005 | B2 |
6918927 | Bates et al. | Jul 2005 | B2 |
6936014 | Vetter et al. | Aug 2005 | B2 |
6939318 | Stenzel | Sep 2005 | B2 |
6945973 | Bray | Sep 2005 | B2 |
6951564 | Espositio et al. | Oct 2005 | B2 |
6958044 | Burbank et al. | Oct 2005 | B2 |
6992233 | Drake et al. | Jan 2006 | B2 |
6993375 | Burbank et al. | Jan 2006 | B2 |
6994712 | Fisher et al. | Feb 2006 | B1 |
6996433 | Burbank et al. | Feb 2006 | B2 |
7001341 | Gellman et al. | Feb 2006 | B2 |
7008382 | Adams et al. | Mar 2006 | B2 |
7014610 | Koulik | Mar 2006 | B2 |
7025765 | Balbierz et al. | Apr 2006 | B2 |
7041047 | Gellman et al. | May 2006 | B2 |
7044957 | Foerster et al. | May 2006 | B2 |
7047063 | Burbank et al. | May 2006 | B2 |
7083576 | Zarins et al. | Aug 2006 | B2 |
7125397 | Woehr et al. | Oct 2006 | B2 |
7135978 | Gisselberg et al. | Nov 2006 | B2 |
7160258 | Imran et al. | Jan 2007 | B2 |
7172549 | Slater et al. | Feb 2007 | B2 |
7214211 | Woehr et al. | May 2007 | B2 |
7229417 | Foerster et al. | Jun 2007 | B2 |
7236816 | Kumar et al. | Jun 2007 | B2 |
7264613 | Woehr et al. | Sep 2007 | B2 |
7280865 | Adler | Oct 2007 | B2 |
7294118 | Saulenas et al. | Nov 2007 | B2 |
7297725 | Winterton et al. | Nov 2007 | B2 |
7329402 | Unger et al. | Feb 2008 | B2 |
7329414 | Fisher et al. | Feb 2008 | B2 |
7407054 | Seiler et al. | Aug 2008 | B2 |
7416533 | Gellman et al. | Aug 2008 | B2 |
7424320 | Chesbrough et al. | Sep 2008 | B2 |
7449000 | Adams et al. | Nov 2008 | B2 |
7527610 | Erickson | May 2009 | B2 |
7534452 | Chernomorsky et al. | May 2009 | B2 |
7535363 | Gisselberg et al. | May 2009 | B2 |
7565191 | Burbank et al. | Jul 2009 | B2 |
7569065 | Chesbrough et al. | Aug 2009 | B2 |
7577473 | Davis et al. | Aug 2009 | B2 |
7637948 | Corbitt, Jr. | Dec 2009 | B2 |
7668582 | Sirimanne et al. | Feb 2010 | B2 |
7670350 | Selis | Mar 2010 | B2 |
7671100 | Gaserod et al. | Mar 2010 | B2 |
7783336 | Macfarlane et al. | Aug 2010 | B2 |
7819820 | Field et al. | Oct 2010 | B2 |
7844319 | Susil et al. | Nov 2010 | B2 |
7877133 | Burbank et al. | Jan 2011 | B2 |
7914553 | Ferree | Mar 2011 | B2 |
7945307 | Lubock et al. | May 2011 | B2 |
7978825 | Ngo | Jul 2011 | B2 |
8011508 | Seiler et al. | Sep 2011 | B2 |
8027712 | Sioshansi et al. | Sep 2011 | B2 |
8052658 | Field | Nov 2011 | B2 |
8052708 | Chesbrough et al. | Nov 2011 | B2 |
8064987 | Carr, Jr. | Nov 2011 | B2 |
8128641 | Wardle | Mar 2012 | B2 |
8157862 | Corbitt, Jr. | Apr 2012 | B2 |
8306602 | Sirimanne et al. | Nov 2012 | B2 |
8311610 | Ranpura | Nov 2012 | B2 |
8320993 | Sirimanne et al. | Nov 2012 | B2 |
8320994 | Sirimanne et al. | Nov 2012 | B2 |
8320995 | Schwamb, Jr. | Nov 2012 | B2 |
8334424 | Szypka | Dec 2012 | B2 |
8401622 | Talpade et al. | Mar 2013 | B2 |
8414602 | Selis | Apr 2013 | B2 |
8437834 | Carr, Jr. | May 2013 | B2 |
8442623 | Nicoson et al. | May 2013 | B2 |
8454629 | Selis | Jun 2013 | B2 |
8486028 | Field | Jul 2013 | B2 |
8579931 | Chesbrough et al. | Nov 2013 | B2 |
8626270 | Burbank et al. | Jan 2014 | B2 |
8639315 | Burbank et al. | Jan 2014 | B2 |
8668737 | Corbitt, Jr. | Mar 2014 | B2 |
8670818 | Ranpura et al. | Mar 2014 | B2 |
8680498 | Corbitt et al. | Mar 2014 | B2 |
8718745 | Burbank et al. | May 2014 | B2 |
8784433 | Lubock et al. | Jul 2014 | B2 |
9028872 | Gaserod et al. | May 2015 | B2 |
9044162 | Jones et al. | Jun 2015 | B2 |
9237937 | Burbank et al. | Jan 2016 | B2 |
20010006616 | Leavitt et al. | Jul 2001 | A1 |
20020004060 | Heublein et al. | Jan 2002 | A1 |
20020016625 | Falotico et al. | Feb 2002 | A1 |
20020022883 | Burg | Feb 2002 | A1 |
20020026201 | Foerster et al. | Feb 2002 | A1 |
20020044969 | Harden | Apr 2002 | A1 |
20020045842 | Van Bladel et al. | Apr 2002 | A1 |
20020052572 | Franco et al. | May 2002 | A1 |
20020055731 | Atala et al. | May 2002 | A1 |
20020058868 | Hoshino et al. | May 2002 | A1 |
20020058882 | Fulton, III et al. | May 2002 | A1 |
20020077687 | Ahn | Jun 2002 | A1 |
20020082517 | Klein | Jun 2002 | A1 |
20020082519 | Miller et al. | Jun 2002 | A1 |
20020082682 | Barclay et al. | Jun 2002 | A1 |
20020082683 | Stinson et al. | Jun 2002 | A1 |
20020095204 | Thompson et al. | Jul 2002 | A1 |
20020095205 | Edwin et al. | Jul 2002 | A1 |
20020107437 | Sirimanne et al. | Aug 2002 | A1 |
20020133148 | Daniel et al. | Sep 2002 | A1 |
20020143359 | Fulton, III et al. | Oct 2002 | A1 |
20020165608 | Llanos et al. | Nov 2002 | A1 |
20020177776 | Crawford Kellar et al. | Nov 2002 | A1 |
20020188195 | Mills | Dec 2002 | A1 |
20020193815 | Foerster et al. | Dec 2002 | A1 |
20020193867 | Gladdish, Jr. et al. | Dec 2002 | A1 |
20030032969 | Gannoe et al. | Feb 2003 | A1 |
20030036803 | McGhan | Feb 2003 | A1 |
20030051735 | Pavcnik et al. | Mar 2003 | A1 |
20030116806 | Kato | Jun 2003 | A1 |
20030165478 | Sokoll | Sep 2003 | A1 |
20030191355 | Ferguson | Oct 2003 | A1 |
20030199887 | Ferrera et al. | Oct 2003 | A1 |
20030225420 | Wardle | Dec 2003 | A1 |
20030236573 | Evans et al. | Dec 2003 | A1 |
20040001841 | Nagavarapu et al. | Jan 2004 | A1 |
20040002650 | Mandrusov et al. | Jan 2004 | A1 |
20040016195 | Archuleta | Jan 2004 | A1 |
20040024304 | Foerster et al. | Feb 2004 | A1 |
20040059341 | Gellman et al. | Mar 2004 | A1 |
20040068312 | Sigg et al. | Apr 2004 | A1 |
20040073107 | Sioshansi et al. | Apr 2004 | A1 |
20040073284 | Bates et al. | Apr 2004 | A1 |
20040097981 | Selis | May 2004 | A1 |
20040101479 | Burbank et al. | May 2004 | A1 |
20040101548 | Pendharkar | May 2004 | A1 |
20040106891 | Langan et al. | Jun 2004 | A1 |
20040116802 | Jessop et al. | Jun 2004 | A1 |
20040127765 | Seiler et al. | Jul 2004 | A1 |
20040133124 | Bates et al. | Jul 2004 | A1 |
20040153074 | Bojarski et al. | Aug 2004 | A1 |
20040162574 | Viola | Aug 2004 | A1 |
20040167619 | Case et al. | Aug 2004 | A1 |
20040204660 | Fulton et al. | Oct 2004 | A1 |
20040210208 | Paul et al. | Oct 2004 | A1 |
20040213756 | Michal et al. | Oct 2004 | A1 |
20040253185 | Herweck et al. | Dec 2004 | A1 |
20040265371 | Looney et al. | Dec 2004 | A1 |
20050019262 | Chernomorsky et al. | Jan 2005 | A1 |
20050020916 | MacFarlane et al. | Jan 2005 | A1 |
20050033157 | Klein et al. | Feb 2005 | A1 |
20050033195 | Fulton et al. | Feb 2005 | A1 |
20050036946 | Pathak et al. | Feb 2005 | A1 |
20050045192 | Fulton et al. | Mar 2005 | A1 |
20050059887 | Mostafavi et al. | Mar 2005 | A1 |
20050059888 | Sirimanne et al. | Mar 2005 | A1 |
20050065354 | Roberts | Mar 2005 | A1 |
20050080337 | Sirimanne et al. | Apr 2005 | A1 |
20050080339 | Sirimanne et al. | Apr 2005 | A1 |
20050100580 | Osborne et al. | May 2005 | A1 |
20050112151 | Horng | May 2005 | A1 |
20050113659 | Pothier et al. | May 2005 | A1 |
20050119562 | Jones et al. | Jun 2005 | A1 |
20050142161 | Freeman et al. | Jun 2005 | A1 |
20050143650 | Winkel | Jun 2005 | A1 |
20050165305 | Foerster et al. | Jul 2005 | A1 |
20050175657 | Hunter et al. | Aug 2005 | A1 |
20050181007 | Hunter et al. | Aug 2005 | A1 |
20050208122 | Allen et al. | Sep 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050234336 | Beckman et al. | Oct 2005 | A1 |
20050268922 | Conrad et al. | Dec 2005 | A1 |
20050273002 | Goosen et al. | Dec 2005 | A1 |
20050277871 | Selis | Dec 2005 | A1 |
20060004440 | Stinson | Jan 2006 | A1 |
20060009800 | Christianson et al. | Jan 2006 | A1 |
20060025677 | Verard et al. | Feb 2006 | A1 |
20060025795 | Chesbrough et al. | Feb 2006 | A1 |
20060036158 | Field et al. | Feb 2006 | A1 |
20060036159 | Sirimanne et al. | Feb 2006 | A1 |
20060074443 | Foerster et al. | Apr 2006 | A1 |
20060079770 | Sirimanne et al. | Apr 2006 | A1 |
20060079805 | Miller et al. | Apr 2006 | A1 |
20060079829 | Fulton et al. | Apr 2006 | A1 |
20060079888 | Mulier et al. | Apr 2006 | A1 |
20060122503 | Burbank et al. | Jun 2006 | A1 |
20060134185 | Odermatt et al. | Jun 2006 | A1 |
20060155190 | Burbank et al. | Jul 2006 | A1 |
20060173280 | Goosen et al. | Aug 2006 | A1 |
20060173296 | Miller et al. | Aug 2006 | A1 |
20060177379 | Asgari | Aug 2006 | A1 |
20060217635 | McCombs et al. | Sep 2006 | A1 |
20060235298 | Kotmel et al. | Oct 2006 | A1 |
20060241385 | Dietz | Oct 2006 | A1 |
20060241411 | Field et al. | Oct 2006 | A1 |
20060292690 | Liu et al. | Dec 2006 | A1 |
20070021642 | Lamoureux et al. | Jan 2007 | A1 |
20070038145 | Field | Feb 2007 | A1 |
20070057794 | Gisselberg et al. | Mar 2007 | A1 |
20070083132 | Sharrow | Apr 2007 | A1 |
20070106152 | Kantrowitz et al. | May 2007 | A1 |
20070135711 | Chernomorsky et al. | Jun 2007 | A1 |
20070142725 | Hardin et al. | Jun 2007 | A1 |
20070167736 | Dietz et al. | Jul 2007 | A1 |
20070167749 | Yarnall et al. | Jul 2007 | A1 |
20070239118 | Ono et al. | Oct 2007 | A1 |
20070276492 | Andrews et al. | Nov 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20080058640 | Jones et al. | Mar 2008 | A1 |
20080091120 | Fisher | Apr 2008 | A1 |
20080097199 | Mullen | Apr 2008 | A1 |
20080121242 | Revie et al. | May 2008 | A1 |
20080188768 | Zarins et al. | Aug 2008 | A1 |
20080249436 | Darr | Oct 2008 | A1 |
20080269638 | Cooke et al. | Oct 2008 | A1 |
20080294039 | Jones et al. | Nov 2008 | A1 |
20090000629 | Hornscheidt et al. | Jan 2009 | A1 |
20090024225 | Stubbs | Jan 2009 | A1 |
20090030309 | Jones et al. | Jan 2009 | A1 |
20090069713 | Adams et al. | Mar 2009 | A1 |
20090076484 | Fukaya | Mar 2009 | A1 |
20090131825 | Burbank et al. | May 2009 | A1 |
20090171198 | Jones et al. | Jul 2009 | A1 |
20090216118 | Jones et al. | Aug 2009 | A1 |
20090287078 | Burbank et al. | Nov 2009 | A1 |
20100010342 | Burbank et al. | Jan 2010 | A1 |
20100030072 | Casanova et al. | Feb 2010 | A1 |
20100042041 | Tune et al. | Feb 2010 | A1 |
20100082102 | Govil et al. | Apr 2010 | A1 |
20100121445 | Corbitt, Jr. | May 2010 | A1 |
20100198059 | Burbank et al. | Aug 2010 | A1 |
20100204570 | Lubock | Aug 2010 | A1 |
20100298696 | Field et al. | Nov 2010 | A1 |
20100298698 | Burbank et al. | Nov 2010 | A1 |
20110028836 | Ranpura | Feb 2011 | A1 |
20110092815 | Burbank et al. | Apr 2011 | A1 |
20110184280 | Jones et al. | Jul 2011 | A1 |
20110184449 | Lubock et al. | Jul 2011 | A1 |
20120078086 | Hoffa | Mar 2012 | A1 |
20120078087 | Curry | Mar 2012 | A1 |
20120277859 | Govil et al. | Nov 2012 | A1 |
20130184562 | Talpade et al. | Jul 2013 | A1 |
20130190616 | Casanova et al. | Jul 2013 | A1 |
20130281847 | Jones et al. | Oct 2013 | A1 |
20130310686 | Jones et al. | Nov 2013 | A1 |
20140058258 | Chesbrough et al. | Feb 2014 | A1 |
20140094698 | Burbank et al. | Apr 2014 | A1 |
20140114186 | Burbank et al. | Apr 2014 | A1 |
20140142696 | Corbitt, Jr. | May 2014 | A1 |
20140194892 | Ranpura et al. | Jul 2014 | A1 |
20150164610 | Field et al. | Jun 2015 | A1 |
20150245883 | Talpade et al. | Sep 2015 | A1 |
20150257872 | Corbitt, Jr. | Sep 2015 | A1 |
20160120510 | Burbank et al. | May 2016 | A1 |
20160128797 | Burbank et al. | May 2016 | A1 |
20160199150 | Field et al. | Jul 2016 | A1 |
20170100203 | Field et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1029528 | May 1958 | DE |
0146699 | Jul 1985 | EP |
0255123 | Feb 1988 | EP |
0292936 | Nov 1988 | EP |
0458745 | Nov 1991 | EP |
0475077 | Mar 1992 | EP |
0552924 | Jul 1993 | EP |
0769281 | Apr 1997 | EP |
1114618 | Jul 2001 | EP |
1163888 | Dec 2001 | EP |
1281416 | Jun 2002 | EP |
1364628 | Nov 2003 | EP |
1493451 | Jan 2005 | EP |
1767167 | Mar 2007 | EP |
2646674 | Nov 1990 | FR |
2853521 | Oct 2004 | FR |
708148 | Apr 1954 | GB |
2131757 | May 1990 | JP |
2006516468 | Jul 2006 | JP |
2007537017 | Dec 2007 | JP |
8906978 | Aug 1989 | WO |
9112823 | Sep 1991 | WO |
9314712 | Aug 1993 | WO |
9317671 | Sep 1993 | WO |
9317718 | Sep 1993 | WO |
9416647 | Aug 1994 | WO |
9507057 | Mar 1995 | WO |
9806346 | Feb 1998 | WO |
9908607 | Feb 1999 | WO |
9935966 | Jul 1999 | WO |
9951143 | Oct 1999 | WO |
0023124 | Apr 2000 | WO |
0024332 | May 2000 | WO |
0028554 | May 2000 | WO |
0054689 | Sep 2000 | WO |
0108578 | Feb 2001 | WO |
WO 0108578 | Feb 2001 | WO |
0170114 | Sep 2001 | WO |
0207786 | Jan 2002 | WO |
03000308 | Jan 2003 | WO |
2004045444 | Jun 2004 | WO |
2005013832 | Feb 2005 | WO |
2005089664 | Sep 2005 | WO |
2005112787 | Dec 2005 | WO |
2006012630 | Feb 2006 | WO |
2006056739 | Jun 2006 | WO |
2006097331 | Sep 2006 | WO |
2006105353 | Oct 2006 | WO |
2007067255 | Jun 2007 | WO |
2007069105 | Jun 2007 | WO |
2008073965 | Jun 2008 | WO |
2008077081 | Jun 2008 | WO |
Entry |
---|
Press release for Biopsys Ethicon Endo-Surgery (Europe) GmbH; The Mammotome Vacuum Biopsy System. From: http://www.medicine-news.com/articles/devices/mammotome.html. 3 pages. |
Johnson & Johnson: Breast Biopsy (minimally invasive): Surgical Technique: Steps in the Mamotome Surgical Procedure. From http://www.jnjgateway.com. 3 pages. |
Johnson & Johnson: New Minimally Invasive Breast Biopsy Device Receives Marketing Clearance in Canada; Aug. 6, 1999. From http://www.jnjgateway.com. 4 pages. |
Johnson & Johnson: Mammotome Hand Held Receives FDA Marketing Clearance for Minimally Invasive Breast Biopises; Sep. 1, 1999. From From http://www.jnjgateway.com. 5 pages. |
Johnson & Johnson: The Mammotome Breast Biopsy System. From: http://www.breastcareinfo.com/aboutm.htm. 6 pages. |
Cook Incorporated: Emoblization and Occlusion. From: www.cookgroup.com 6 pages. |
Liberman, Laura, et al. Percutaneous Removal of Malignant Mammographic Lesions at Stereotactic Vacuum-assisted Biopsy. From: The Departments of Radiology, Pathology, and Surgery. Memorial Sloan-Kettering Cancer Center. From the 1997 RSNA scientific assembly. vol. 206, No. 3. pp. 711-715. |
Fajardo, Laurie, et al., “Placement of Endovascular Embolization Microcoils to Localize the Site of Breast Lesions Removed at Stereotactic Core Biopsy”, Radiology, Jan. 1998, pp. 275-278, vol. 206—No. 1 |
H. J. Gent, M.D., et al., Stereotaxic Needle Localization and Cytological Diagnosis of Occult Breast Lesions, Annals of Surgery, Nov. 1986, pp. 580-584, vol. 204—No. 5. |
Meuris, Bart, “Calcification of Aortic Wall Tissue in Prosthetic Heart Valves: Initiation, Influencing Factors and Strategies Towards Prevention”, Thesis, 2007, pp. 21-36, Leuven University Press; Leuven, Belgium. |
Jong-Won Rhie, et al. “Implantation of Cultured Preadipocyte Using Chitosan/Alginate Sponge”, Key Engineering Materials, Jul. 1, 2007, pp. 346-352, XP008159356, ISSN: 0252-1059, DOI: 10.4028/www.scientific.net/KEM.342-343.349, Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul Korea. |
Shah, et al. (Polyethylene Glycol as a Binder for Tablets, vol. 66, No. 11, Nov. 1977, Journal of Pharmaceutical Sciences). |
Crook, et al. (Prostate Motion During Standard Radiotherapy as Assessed by Fiducial Markers, 1995, Radiotherapy and Oncology 37:35-42.). |
Zmora, et al. (Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication, 2001, Elsevier Science Ltd.). |
Madihally, et al. (Porous chitosan scaffolds for tissue engineering, 1998, Elsevier Science Ltd.). |
Hyeong-Ho, et al. (Preparation of Macroporous Hydroxyapatite/Chitosan-Alginate Composite Scaffolds for Bone Implants, 2007, Trans Tech Publications). |
International Search Report for PCT/US2009/000945 dated Jul. 16, 2009. |
Written Opinion of the International Searching Authority for PCT/US2009/000945 dated Jul. 16, 2009. |
International Search Report for PCT/US2007/016902 dated Feb. 28, 2008. |
International Search Report for PCT/US2007/016902 dated Feb. 4, 2009. |
Written Opinion of the International Searching Authority for PCT/US2007/016902 dated Feb. 4, 2009. |
International Search Report for PCT/US2007016918 dated Nov. 26, 2007. |
Written Opinion of the International Searching Authority for PCT/US2007016918 dated Feb. 4, 2009. |
Ma, Jianbiao, et al. “A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts.” 8iomaterials 22.4 (2001 ): 331-336. |
Pignolet, Louis H., et al. “The alginate demonstration: Polymers, food science, and ion exchange.” J. Chem. Educ 75.11 (1998): 1430. |
Dewanjee et al., “Identification of New Collagen Formation with 1251-Labeled Antibody in Bovine Pericardia? Tissue Valves Implanted in Calves”, Nucl. Med. Biol. vol. 13, No. 4, pp. 413-422, 1986. |
Armstong, J.S., et al., “Differential marking of Excision Planes in Screened Breast lesions by Organically Coloured Gelatins”, Journal of Clinical Pathology, Jul. 1990, No. 43 (7) pp. 604-607, XP000971447 abstract; tables 1,2. |
Fucci, V., et al., “Large Bowel Transit Times Using Radioopaque Markers in Normal Cats”, J. of Am. Animal Hospital Assn., Nov.-Dec. 1995 31 (6) 473-477. |
Schindlbeck, N. E., et al., “Measurement of Colon Transit Time”, J. of Gastroenterology, No. 28, pp. 399-404, 1990. |
Shiga, et al., Preparation of Poly(D, L-lactide) and Copoly(lactide-glycolide) Microspheres of Uniform Size, J. Pharm. Pharmacol. 1996 48:891-895. |
Eiselt, P. et al, “Development of Technologies Aiding Large—Tissue Engineering”, Biotechnol. Prog., vol. 14, No. 1, pp. 134-140, 1998. |
Number | Date | Country | |
---|---|---|---|
20160015475 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
60835740 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13301024 | Nov 2011 | US |
Child | 14868663 | US | |
Parent | 10444770 | May 2003 | US |
Child | 13155628 | US | |
Parent | 13301024 | US | |
Child | 13155628 | US | |
Parent | 10990327 | Nov 2004 | US |
Child | 12852286 | US | |
Parent | 10124757 | Apr 2002 | US |
Child | 10990327 | US | |
Parent | 10174401 | Jun 2002 | US |
Child | 12592020 | US | |
Parent | 13301024 | US | |
Child | 12592020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12070786 | Feb 2008 | US |
Child | 13301024 | US | |
Parent | 11881264 | Jul 2007 | US |
Child | 12070786 | US | |
Parent | 13301024 | US | |
Child | 12070786 | US | |
Parent | 13155628 | Jun 2011 | US |
Child | 13301024 | US | |
Parent | 13037971 | Mar 2011 | US |
Child | 13301024 | US | |
Parent | 10753694 | Jan 2004 | US |
Child | 13037971 | US | |
Parent | 10444770 | May 2003 | US |
Child | 10753694 | US | |
Parent | 13301024 | US | |
Child | 10753694 | US | |
Parent | 12852286 | Aug 2010 | US |
Child | 13301024 | US | |
Parent | 09717909 | Nov 2000 | US |
Child | 10124757 | US | |
Parent | 09343975 | Jun 1999 | US |
Child | 09717909 | US | |
Parent | 09241936 | Feb 1999 | US |
Child | 09343975 | US | |
Parent | 13301024 | US | |
Child | 09343975 | US | |
Parent | 12592020 | Nov 2009 | US |
Child | 13301024 | US | |
Parent | 10911106 | Aug 2004 | US |
Child | 13301024 | US | |
Parent | 10642406 | Aug 2003 | US |
Child | 10911106 | US | |
Parent | 10374915 | Feb 2003 | US |
Child | 10642406 | US |