1. Field of the Invention
The invention is related to light-weight aircraft. More particularly, the invention is related to a system and method for extending telescoping aircraft structures without use of existing or auxiliary engines.
2. Background Art
For many types of foldable aircraft, telescoping structures have several advantages. They are simple, light, and inherently occupy a very small amount of stowed volume. However, deployment of such structures typically requires very large displacements of an actuating device. In conventional systems, either inflatable bladders with a compressed gas supply, or a cable and winch system would be used. In addition, the power to operate such devices might have to be provided by a main engine or an auxiliary engine, thereby increasing weight, and/or using precious fuel supplies.
Thus, a need exists for a telescoping aircraft structure deployment system that can produce a large amount of work (i.e. force times displacement) for low mass.
It is therefore a general aspect of the invention to provide a telescoping structure deployment system that will obviate or minimize problems of the type previously described.
It is now becoming common to launch an unmanned aircraft in a folded configuration. The folding allows a large aircraft to be stowed and carried or launched in some sort of a small volume container. In many cases, the aircraft is launched by a small booster rocket, such as a typical cruise missile. In this case the aircraft is unfolded immediately after exiting the container, while still at low airspeed, and thus with low air loads. However, in other cases, the aircraft can be launched from a larger aircraft flying at high speed, or it can be launched to a high altitude by a large booster rocket, or it can even be launched to another planet. In all of these cases the aircraft must deploy itself at a high airspeed, with high aerodynamic forces. It is often desirable to use some sort of a parachute system to stabilize the aircraft as it unfolds, and sometimes the parachute is also used to retard or even decelerate the aircraft to further minimize the aerodynamic loads on the aircraft. Accordingly, several exemplary embodiments make use of the drag force on the parachute to provide a large amount of work to effectively deploy the aircraft with little or no additional weight penalty. While the exemplary embodiment has particular applicability to telescoping structures, which inherently require very large displacements for deployment, the structural deployment system is also useful for deploying hinged type structures. If the parachute is large enough to decelerate the aircraft, the force available is greater than the weight of the aircraft.
According to a first aspect of the present invention, a system for deploying a deployable structure in an aircraft is provided comprising a drogue parachute; at least one deployable structure; a riser line attached to the drogue parachute and the at least one deployable structure, wherein when the drogue parachute is deployed, a tension is applied to the riser line; and a parachute deployment system, wherein the parachute deployment system is configured to utilize the applied tension to deploy the at least one deployable structure.
According to the first aspect, the parachute deployment system comprises: one or more pulley wheels; and at least one cable connected to the deployable structure, interfaced with the one or more pulley wheels, and mechanically coupled to the riser line. The first aspect further comprises a cable cutter configured to sever the cable following extension of the at least one deployable structure. According to a first aspect, the parachute deployment system further comprises one or more jam cleats, wherein each of the one or more jam cleats is configured to allow substantially one-way travel of the at least one cable in the direction of the applied tension following deployment of the drogue parachute.
According to the first aspect, the parachute deployment system further comprises one or more deployment rate limiters, wherein the at least one cable interfaces with at least one of the one or more deployment rate limiters, and wherein each of the one or more deployment rate limiters is configured to limit a deployment rate of a corresponding one of the at least one deployable structures.
According to the first aspect, each deployment rate limiter is configured to provide a braking force to the cable, when a rate at which the corresponding deployable structure exceeds a first predetermined deployed rate, and the deployment rate limiter is further configured to reduce a rate of deployment of the deployable structure as a deployment of the corresponding deployable structure approaches a substantially completed condition. According to the first aspect, the deployment rate limiter is further configured to substantially prevent or reduce damage to the deployable structure.
According to the first aspect, the parachute deployment system comprises: a plurality of tubes; and at least one cable connected to the deployable structure, interfaced with each of the plurality of tubes, and mechanically coupled to the drogue parachute, wherein each of the plurality of tubes is configured to redirect the applied tension to one or more components of the at least one deployable structure.
The first aspect further comprises a cable cutter configured to sever the cable following extension of the at least one deployable structure, and one or more jam cleats, wherein each of the one or more jam cleats is configured to allow substantially one-way travel of the at least one cable in the direction of the applied tension following deployment of the drogue parachute.
The first aspect further comprises one or more deployment rate limiters, wherein the at least one cable interfaces with at least one of the one or more deployment rate limiters, and wherein each of the one or more deployment rate limiters is configured to limit a deployment rate of a corresponding one of the at least one deployable structures.
According to the first aspect, each deployment rate limiter is configured to provide a braking force to the cable, when a rate at which the corresponding deployable structure exceeds a first predetermined deployed rate, and wherein the deployment rate limiter is further configured to reduce a rate of deployment of the deployable structure as a deployment of the corresponding deployable structure approaches a substantially completed condition. Further still according to the first aspect, the deployment rate limiter is further configured to substantially prevent or reduce damage to the deployable structure.
According to the first aspect, the at least one the deployable structure comprises a telescoping wing structure, the at least one deployable structure comprises a foldable wing structure, or the at least one deployable structure comprises a landing gear structure.
According to a second aspect of the present invention, a system for deploying a structure in an aircraft is provided comprising: a drogue parachute; at least one deployed structure; a riser line attached to the drogue parachute and the at least one deployable structure, wherein when the drogue parachute is deployed, a tension is applied to the riser line; and a pulley system, wherein the pulley system is configured to utilize the applied tension to deploy the at least one deployable structure.
According the second aspect, the at least one deployable structure comprises a telescoping structure, or the at least one deployable structure comprises a foldable structure.
According to a third aspect of the present invention, an aircraft is provided comprising: a fuselage; a deployable wing structure appended to the fuselage; a plurality of deployable vertical and horizontal stabilizer structures appended to the fuselage; and a system for deploying a deployable structure in the aircraft, the system including a drogue parachute; a riser line attached to the drogue parachute and each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures, wherein when the drogue parachute is deployed, a tension is applied to the riser line; and a parachute deployment system, wherein the parachute deployment system is configured to utilize the parachute riser line tension to deploy each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures.
According to the third aspect, the parachute deployment system comprises: at least one pulley wheel; and at least one cable connected to the deployable structure, interfaced with the at least one more pulley wheel, and mechanically coupled to the drogue parachute.
According to the third aspect, the aircraft further comprises a cable cutter configured to sever the cable following extension of each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures.
According to the third aspect, the aircraft further comprises one or more jam cleats, wherein each of the one or more jam cleats is configured to allow substantially one-way travel of the at least one cable in the direction of the applied tension following deployment of the drogue parachute.
According to the third aspect, the aircraft further comprises one or more deployment rate limiters, wherein the at least one cable interfaces with at least one of the one or more deployment rate limiters, and wherein each of the one or more deployment rate limiters is configured to limit a deployment rate of a corresponding one of each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures.
According to the third aspect, each deployment rate limiter is configured to provide a braking force to the cable, when a rate at which each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures exceeds a first predetermined deployed rate.
According to the third aspect, the deployment rate limiter is further configured to reduce a rate of deployment of each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures as deployment of the corresponding deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures approaches a substantially completed condition.
According to the third aspect, the deployment rate limiter is further configured to prevent or reduce damage to each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures.
According to the third aspect, the parachute deployment system comprises: a plurality of tubes; and at least one cable connected to each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures, interfaced with each of the plurality of tubes, and mechanically coupled to the drogue parachute, wherein each of the plurality of tubes is configured to redirect the applied tension to each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures.
According to the third aspect, the aircraft further comprises a cable cutter configured to sever the cable following extension of each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures, one or more jam cleats, wherein each of the one or more jam cleats is configured to allow substantially one-way travel of the at least one cable in the direction of the applied tension following deployment of the drogue parachute.
According to the third aspect, the aircraft further comprises one or more deployment rate limiters, wherein the at least one cable interfaces with at least one of the one or more deployment rate limiters, and wherein each of the one or more deployment rate limiters is configured to limit a deployment rate of a corresponding one of each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures.
According to the third aspect, each deployment rate limiter is configured to provide a braking force when a rate at which the corresponding deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures exceeds a first predetermined deployment rate.
According to the third aspect, the deployment rate limiter is further configured to reduce a rate of deployment of each of the deployable wing structure and plurality of deployable vertical and horizontal stabilizer structures, and the deployment rate limiter is further configured to prevent or reduce damage to the deployable structure.
According to the third aspect, the aircraft comprises a lightweight aircraft, the aircraft comprises a solar powered aircraft, and the aircraft comprises a sail plane.
According to a fourth aspect of the present invention, a method for deploying a deployable structure on an airborne aircraft is provided comprising the steps of: deploying a drogue parachute from the airborne aircraft, wherein the drogue parachute is mechanically coupled to the deployable structure; and using a tension force being applied as a result of the deployed drogue parachute to enable deployment of the deployable structure.
According to the fourth aspect, the step of using the tension force comprises: redirecting the applied tension force through at least one pulley wheel and at least one cable connected to the deployable structure, the at least one cable being interfaced with the at least one pulley wheel, and mechanically coupled to the drogue parachute.
According to the fourth aspect, the step using the tension force comprises: redirecting the applied tension force through at least one tube and at least one cable connected to the deployable structure, the at least one cable being interfaced with the at least one pulley wheel, and mechanically coupled to the drogue parachute.
According to the fourth aspect, the method further comprises: using at least one deployment rate limiter to limit a rate of deployment of the deployable structure, and the step of using at least one deployment rate limiter comprises: providing a braking force should deployment of the deployable structure exceed a first predetermined deployment rate.
According to the fourth aspect, the step of providing a braking force comprises: reducing the rate of deployment of the deployable structure as the corresponding deployable structure approaches a substantially completed condition.
According to the fourth aspect, the method further comprises reducing the rate of deployment of the deployable structure to substantially prevent or reduce damage to the deployable structure.
According to the fourth aspect, the deployable structure comprises a telescoping wing structure, the deployable structure comprises a foldable wing structure, and the deployable structure comprises a landing gear structure.
The novel features and advantages of the present invention will best be understood by reference to the detailed description of the preferred embodiments that follows, when read in conjunction with the accompanying drawings, in which:
The various features of the preferred embodiments will now be described with reference to the drawing figures, in which like parts are identified with the same reference characters. The following description of the presently contemplated best mode of practicing the invention is not to be taken in a limiting sense, but is provided merely for the purpose of describing the general principles of the invention.
According to an exemplary embodiment, a drogue parachute telescoping aircraft structure deployment pulley and cable system (parachute deployment system) 100 uses a series of cables and pulleys to deploy telescoping/foldable aircraft structures (hereinafter referred to as “deployable structures”) for light-weight aircraft 50. According to an exemplary embodiment, light-weight aircraft 50 is defined to weigh less than about 5,000 lbs or less. According to a preferred embodiment, the telescoping structure is a wing spar structure. According to further exemplary embodiments, other aircraft structures that can be deployed include foldable wings, fold-out landing gear, vertical and horizontal flight control surfaces, portions of an aircraft fuselage, propellers, among other aircraft structures. There can be at least one or more wing spar segments that can be telescoped within each other. According to an exemplary embodiment, a significantly large mechanical advantage can be obtained using standard block and tackle configurations, depending upon the forces required. As shown in
As those of ordinary skill in the art can appreciate, light-weight aircraft 50 that are released or propelled to an altitude for use require some sort of a drogue parachute (chute) 2 to limit the airspeed and air loads during deployment of the deployable aircraft structures. Once in equilibrium descent, the drag on parachute 2 can be roughly equal to the weight of light-weight aircraft 50, and this results in a tension on parachute riser line (riser line) 4. The tension in riser line 4 can be referred to as parachute (chute) riser line tension T, as shown in
According to a further exemplary embodiment, the deployment rate can be limited in order to prevent or minimize opening shock. According to a preferred embodiment, riser line 4 can be routed through a sail type winch (winch) 16 (not shown), wherein the winch 16 can utilize a braking or escapement mechanism to limit and control the deployment rate of the telescoping aircraft structure. Other types of rate limiting devices can also be used, including, for example, a motor-pulley arrangement, flexible and non-flexible hoses or tubes, clamping devices (using motors and speed sensors), among other devices. Collectively, the devices for limiting the deployment rate can be referred to as a braking force application system. Furthermore, “reefing” devices, well known to those of ordinary skill in the parachute arts, slow deployment of parachute 2. Even though deployment of parachute 2 can be slowed down in any one of several different methods, enough riser line tension T can be available to “jerk” the deployable structure from its stored state, and get it moving.
According to an exemplary embodiment, winches 16 and pulleys 10 are another example of a braking force application system. Other non-limiting examples of a braking force application system include a plurality of flexible tubes within which are located cables 14. Flexible tubes can also be used to slow deployment of deployable structures by imparting friction to cables 14.
Braking force B, as shown in
Accordingly,
According to an exemplary embodiment, stiff tubes or pulleys 10 can be made to be relatively frictionless and can therefore redirect parachute riser line tension T to required locations within light-weight aircraft 50 without imposing any braking force. According to a further exemplary embodiment, cables 14 can be replaced with chain, metal cables, rope (both natural and manmade rope), and linkages with pivots and other mechanical components for redirecting the parachute riser line tension T. All of the described examples for redirecting the riser tension force and the braking force application system are merely illustrative and are within the exemplary embodiments, and should not be construed to be limiting as to others that exist and can be used as well.
According to an exemplary embodiment, parachute 2 deploys, tensioning parachute riser line (riser line) 4, which runs through cable cutter 6, jam cleats 8 and pulleys 10a-c, becoming cable 14a. Pulleys 10a-c, redirect cable 14a as desired. According to an exemplary embodiment, cable 14a runs to the center of light-weight aircraft 50 then aft. As those of ordinary skill in the art can appreciate, the particular embodiment described herein should not be taken in a limiting manner, as it is only one such example of how parachute deployment system 100 can be configured. Each of cables 14a, b goes through its respective jam cleat 8a, b, to hold the deployable structure open once it is deployed. Both cables 14a, b run through cable cutter 6 that is activated to sever cable 14, thereby releasing drogue parachute 2 once deployment is complete.
As discussed above, other deployable structures include foldable wings 18a, b, shown in
In
The present invention has been described with reference to certain exemplary embodiments thereof. However, it will be readily apparent to those skilled in the art that it is possible to embody the invention in specific forms other than those of the exemplary embodiments described above. This may be done without departing from the spirit and scope of the invention. The exemplary embodiments are merely illustrative and should not be considered restrictive in any way. The scope of the invention is defined by the appended claims and their equivalents, rather than by the preceding description.
All United States patents and applications, foreign patents, and publications discussed above are hereby incorporated herein by reference in their entireties.
The present application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 60/943,830, filed Jun. 13, 2007, the entire contents of which are herein expressly incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60943830 | Jun 2007 | US |