Some applications of the present invention relate in general to valve repair, and more specifically to repair of an atrioventricular valve of a patient.
Ischemic heart disease causes mitral regurgitation by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the left ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the mitral valve annulus.
Dilation of the annulus of the mitral valve prevents the valve leaflets from fully coapting when the valve is closed. Mitral regurgitation of blood from the left ventricle into the left atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the left ventricle secondary to a volume overload and a pressure overload of the left atrium.
US Patent Application Publication 2007/0080188 to Spence et al. describes systems and methods for securing tissue including the annulus of a mitral valve. The systems and methods may employ catheter based techniques and devices to plicate tissue and perform an annuloplasty. Magnets may be used for guidance in deploying fasteners from a catheter. The fasteners are cinched with a flexible tensile member.
U.S. Pat. No. 6,619,291 to Hlavka et al. describes a minimally invasive method of performing annuloplasty. A method for performing a procedure on a mitral valve of a heart includes inserting an implant into a left ventricle and orienting the implant in the left ventricle substantially below the mitral valve. The implant and tissue around the mitral valve are connected and tension is provided to the implant, in one application, in order to substantially reduce an arc length associated with the mitral valve. In another application, the implant is inserted into the left ventricle through the aorta and the aortic valve.
US Patent Application Publication 2006/0241656 to Starksen et al. describes devices, systems and methods for facilitating positioning of a cardiac valve annulus treatment device, thus enhancing treatment of the annulus. Methods generally involve advancing an anchor delivery device through vasculature of the patient to a location in the heart for treating the valve annulus, contacting the anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. Devices generally include an elongate catheter having at least one tensioning member and at least one tensioning actuator for deforming a distal portion of the catheter to help it conform to a valve annulus. The catheter device may be used to navigate a subannular space below a mitral valve to facilitate positioning of an anchor delivery device.
US Patent Application Publication 2006/0025787 to Morales et al. describes methods and devices that provide constriction of a heart valve annulus to treat cardiac valve regurgitation and other conditions. Applications typically include a device for attaching a cinching or tightening apparatus to a heart valve annulus to reduce the circumference of the annulus, thus reducing valve regurgitation. Tightening devices may include multiple tethered clips, multiple untethered crimping clips, stabilizing devices, visualization devices, and the like. In one application, a plurality of tethered clips is secured circumferentially to a valve annulus, and the tether coupling the clips is cinched to reduce the circumference of at least a portion of the annulus. Methods and devices may be used in open heart surgical procedures, minimally invasive procedures, catheter-based procedures, and/or procedures on beating hearts or stopped hearts.
U.S. Pat. No. 7,431,692 to Zollinger et al. describes an adjustable support pad for adjustably holding a tensioning line used to apply tension to a body organ. The adjustable support pad can include a locking mechanism for preventing slidable movement of the tensioning element in one or both directions. The locking mechanism may include spring-loaded locks, rotatable cam-like structures, and/or rotatable spool structures. The adjustable support pad may be formed from rigid, semi-rigid, and/or flexible materials, and may be formed to conform to the outer surface of a body organ. The adjustable support pad can be configured to adjustably hold one or more separate tensioning lines, and to provide for independent adjustment of one or more tensioning lines or groups thereof.
US Patent Application Publication 2007/0016287 to Cartledge et al. describes an implantable device for controlling shape and/or size of an anatomical structure or lumen. The implantable device has an adjustable member configured to adjust the dimensions of the implantable device. The implantable device is housed in a catheter and insertable from a minimally invasive surgical entry. An adjustment tool actuates the adjustable member and provide for adjustment before, during or after the anatomical structure or lumen resumes near normal to normal physiologic function.
US Patent Application Publication 2004/0236419 to Milo describes methods for reconfiguring an atrioventricular heart valve that may use systems comprising a partial or complete annuloplasty rings proportioned to reconfigure a heart valve that has become in some way incompetent, a pair of trigonal sutures or implantable anchors, and a plurality of staples which may have pairs of legs that are sized and shaped for association with the ring at spaced locations along its length. These systems permit relative axial movement between the staples and the ring, whereby a patient's heart valve can be reconfigured in a manner that does not deter subtle shifting of the native valve components. Shape-memory alloy material staples may have legs with free ends that interlock following implantation. Annuloplasty rings may be complete or partial and may be fenestrated. One alternative method routes a flexible wire, preferably of shape-memory material, through the bights of pre-implanted staples. Other alternative systems use linkers of shape-memory material having hooked ends to interengage with staples or other implanted supports which, following implantation, decrease in effective length and pull the staples or other supports toward one another so as to create desired curvature of the reconfigured valve. These linkers may be separate from the supports or may be integral with them and may have a variety of shapes and forms. Various ones of these systems are described as being implanted non-invasively using a delivery catheter.
US Patent Application Publication 2005/0171601 to Cosgrove et al. describes an annuloplasty repair segment and template for heart valve annulus repair. The elongate flexible template may form a distal part of a holder that also has a proximal handle. Alternatively, the template may be releasably attached to a mandrel that slides within a delivery sheath, the template being released from the end of the sheath to enable manipulation by a surgeon. A tether connecting the template and mandrel may also be provided. The template may be elastic, temperature responsive, or multiple linked segments. The template may be aligned with the handle and form a two- or three-dimensional curve out of alignment with the handle such that the annuloplasty repair segment attached thereto conforms to the curve. The template may be actively or passively converted between its straight and curved positions. The combined holder and ring is especially suited for minimally-invasive surgeries in which the combination is delivered to an implantation site through a small access incision with or without a cannula, or through a catheter passed though the patient's vasculature.
The following patents and patent application publications may be of interest:
U.S. Pat. No. 5,306,296 to Wright et al.
U.S. Pat. No. 5,674,279 to Wright et al.
U.S. Pat. No. 5,961,539 to Northrup, I I I et al.
U.S. Pat. No. 6,524,338 to Gundry
U.S. Pat. No. 6,569,198 to Wilson et al.
U.S. Pat. No. 6,602,288 to Cosgrove et al.
U.S. Pat. No. 6,602,289 to Colvin et al.
U.S. Pat. No. 6,689,164 to Seguin
U.S. Pat. No. 6,702,826 to Liddicoat et al.
U.S. Pat. No. 6,718,985 to Hlavka et al.
U.S. Pat. No. 6,764,510 to Vidlund et al.
U.S. Pat. No. 7,004,176 to Lau
U.S. Pat. No. 7,101,395 to Tremulis et al.
U.S. Pat. No. 7,175,660 to Cartledge et al.
U.S. Pat. No. 7,186,262 to Saadat
US Patent Application Publication 2002/0087048 to Brock et al.
US Patent Application Publication 2002/0173841 to Ortiz et al.
US Patent Application Publication 2003/0050693 to Quijano et al.
US Patent Application Publication 2003/0167062 to Gambale et al.
US Patent Application Publication 2004/0024451 to Johnson et al.
US Patent Application Publication 2004/0122514 to Fogarty et al.
US Patent Application Publication 2004/0148021 to Cartledge et al.
US Patent Application Publication 2005/0055087 to Starksen
US Patent Application Publication 2005/0288781 to Moaddeb et al.
US Patent Application Publication 2006/0069429 to Spence et al.
US Patent Application Publication 2007/0051377 to Douk et al.
US Patent Application Publication 2007/0055206 to To et al.
US Patent Application Publication 2007/0162111 to Fukamachi et al.
US Patent Application Publication 2007/0255400 to Parravicini et al.
US Patent Application Publication 2008/0004697 to Lichtenstein et al.
PCT Publication WO 01/26586 to Seguin
PCT Publication WO 02/085251 to Hlavka et al.
PCT Publication WO 02/085252 to Hlavka et al.
PCT Publication WO 06/097931 to Gross et al.
PCT Publication WO 07/136783 to Cartledge et al.
PCT Publication WO 08/068756 to Gross et al.
The following articles may be of interest:
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006)
Dieter R S, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003)
Swain C P et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994)
Odell J A et al., “Early Results of a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995)
In some applications of the present invention, an implant structure is provided that comprises a contracting mechanism. The contracting mechanism comprises a rotatable structure, arranged such that rotation of the rotatable structure contracts the implant structure. The implant further comprises a longitudinal member, such as a wire, which is coupled to the contracting mechanism. A rotation tool is provided for rotating the rotatable structure. The tool is configured to be guided along (e.g., over, alongside, or through) the longitudinal member, to engage the rotatable structure, and to rotate the rotatable structure in response to a rotational force applied to the tool.
In some applications of the present invention, the implant structure comprises an adjustable partial annuloplasty ring for repairing a dilated valve annulus of an atrioventricular valve, such as a mitral valve. The annuloplasty ring comprises a flexible sleeve and a plurality of anchors. An anchor deployment manipulator is advanced into a lumen of the sleeve, and, from within the lumen, deploys the anchors through a wall of the sleeve and into cardiac tissue, thereby anchoring the sleeve around a portion of the valve annulus.
For some applications of the present invention, the anchors are deployed from a distal end of the manipulator while the distal end is positioned such that a central longitudinal axis through the distal end of the manipulator forms an angle with a surface of the cardiac tissue of between about 45 and 90 degrees, e.g., between about 75 and 90 degrees, such as about 90 degrees. Typically, the anchors are deployed from the distal end of the manipulator into the cardiac tissue in a direction parallel to the central longitudinal axis through the distal end of the manipulator.
In some applications of the present invention, the anchors are deployed from the left atrium into the upper region of the ventricular wall near the atrium, tissue of which generally provides more secure anchoring than does the atrial wall. The above-mentioned angle of deployment enables such deployment into the upper region of the ventricular wall.
In some applications of the present invention, the anchor deployment manipulator comprises a steerable outer tube in which is positioned an anchor driver having an elongated, flexible shaft. Rotation of the anchor driver screws the anchors into the cardiac tissue. The anchors may, for example, be helical in shape.
For some applications, the plurality of anchors are applied using the manipulator by loading a first one of the anchors onto the anchor driver, and deploying the anchor into the cardiac tissue. The anchor driver is withdrawn from the body of the subject, and a second one of the anchors is loaded onto the anchor driver. The anchor driver is reintroduced into the sleeve of the annuloplasty ring, and the second anchor is deployed. These steps are repeated until all of the anchors have been deployed. Alternatively, the anchor driver is configured to simultaneously hold a plurality of anchors, and to deploy them one at a time.
Typically, the manipulator is gradually withdrawn in a proximal direction during the anchoring procedure as anchors are deployed. The first anchor is thus deployed most distally in the sleeve (generally at or within a few millimeters of the distal tip of the sleeve), and each subsequent anchor is deployed more proximally.
For some applications, the annuloplasty ring is typically configured to be placed only partially around the valve annulus (e.g., to assume a C-shape), and, once anchored in place, to be contracted so as to circumferentially tighten the valve annulus. To this end, the annuloplasty ring may comprise a flexible contracting member such as a wire, which is typically positioned within the lumen of the sleeve.
For some applications, the contracting mechanism comprises a spool to which a first end of the contracting member is coupled. The spool is positioned in a vicinity of either the proximal or the distal end of the sleeve, or the spool is positioned at any suitable location between the proximal and distal ends of the sleeve. A second end of the contracting member is coupled to the sleeve in a vicinity of the end of the sleeve opposite the end to which the spool is positioned. Rotation of the spool winds a portion of the contracting member around the spool, thereby contracting the implant structure. For some applications, the contracting mechanism comprises a housing that houses the spool, and the rotation tool is configured to engage and rotate the spool with respect to the housing. For some applications, the rotation tool comprises a tube, which is configured to be passed over the longitudinal member coupled to the contracting mechanism, and to engage the housing, such that the housing is held rotationally stationary when the tube is held rotationally stationary.
For some applications, the longitudinal member is removably coupled to the contracting mechanism, e.g., to the rotatable structure of the contracting mechanism. For example, a distal portion of the longitudinal member may be shaped so as to define a screw thread, and the contracting mechanism may shaped so as to define a threaded opening, into which the distal portion of the longitudinal member is screwed so as to removably coupled the longitudinal member to the contracting mechanism.
For some applications, the rotation tool comprises a first tube, which is configured to pass over the longitudinal member. Rotation of the tube decouples the longitudinal member from the contracting mechanism. For some applications, the rotation tool further comprises a second tube, which is configured to pass over the first tube. The second tube engages the rotatable structure, such that rotation of the second tube rotates the rotatable structure.
In some applications of the present invention, a rotation handle is provided. A longitudinal member, such as the proximal end of the longitudinal member coupled to the contracting mechanism, is passed at least partially through the rotation handle. The rotation handle comprises (a) a first-tube rotation knob, which is coupled to the first tube, such that rotation of the first-tube rotation knob rotates the first tube, (b) a second-tube rotation knob, which is coupled to the second tube, such that rotation of the second-tube rotation knob rotates the second tube, and (c) a control knob. When in a first position, the control knob engages both first-tube and second-tube rotation knobs. When in a second position, the control knob engages the second-tube rotation knob but not the first-tube rotation knob. For some applications, when in the first position, the control knob at least partially (typically entirely) covers the first-tube tube rotation knob, thereby preventing access to the knob by the surgeon. When in the second position, the control knob reveals (i.e., no longer covers) the first-tube tube rotation knob. The surgeon thus has convenient access to the exposed knob.
For some application in which the implant structure comprises an annuloplasty ring, all of the tools and elements of the annuloplasty system that are introduced into left atrium are contained within the sleeve of the annuloplasty ring, which reduces the risk that any elements of the system will accidentally be released to the blood circulation, or damage surrounding tissue. In addition, the lumen of the sleeve provides guidance if it should be necessary to return to a previously deployed anchor, such as to tighten, loosen, remove, or relocate the anchor. For some applications, the anchors comprise helical screws, which facilitate such adjusting or removing.
The annuloplasty ring may be advanced toward the annulus of a valve in any suitable procedure, e.g., a transcatheter procedure, a percutaneous procedure, a minimally invasive procedure, or an open heart procedure.
There is therefore provided, in accordance with an application of the present invention, apparatus including:
an implant structure, which includes a contracting mechanism, which includes a rotatable structure, arranged such that rotation of the rotatable structure contracts the implant structure;
a longitudinal member, which is coupled to the contracting mechanism; and
a tool for rotating the rotatable structure, the tool configured to be guided along the longitudinal member, to engage the rotatable structure, and to rotate the rotatable structure in response to a rotational force applied to the tool.
For some applications, the longitudinal member includes at least one wire, and the tool is configured to be guided over the wire. For other applications, the longitudinal member includes a tube, and the tool is configured to be guided through the tube.
For some applications, the implant structure includes an annuloplasty ring. Alternatively, the implant structure includes at least one repair chord, which is configured to pull two portions of heart tissue toward each other upon contraction of the implant structure.
For some applications, the implant structure includes one or more tissue anchors.
For some applications, a portion of the implant structure is shaped so as to define a rack, a portion of the rotatable structure is shaped so as to define a pinion that mates with the rack, and the implant structure is configured such that rotation of the rotatable structure causes the portion of the implant structure to move with respect to the rotatable structure.
For some applications, the implant structure includes a flexible contracting member that is coupled to the rotatable structure, and arranged such that rotation of the rotatable structure tightens the flexible contracting member, thereby contracting the implant structure.
For some applications, the rotatable structure includes a spool, the implant structure is coupled to the spool, and arranged such that rotation of the spool winds a portion of the implant structure around the spool, and the tool is configured to engage and rotate the spool. For some applications, the implant structure includes a flexible contracting member that is coupled to the spool, the portion of the implant structure includes a portion of the contracting member, and the contracting member is arranged such that rotation of the spool winds the portion of the contracting member around the spool.
For some applications, the contracting mechanism includes a housing that houses the spool, and the tool is configured to engage and rotate the spool with respect to the housing. For some applications, the tool includes a tube, which is configured to be passed over the longitudinal member and to engage the housing, such that the housing is held rotationally stationary when the tube is held rotationally stationary.
For some applications, the longitudinal member is removably coupled to the contracting mechanism. For some applications, a distal portion of the longitudinal member is shaped so as to define a screw thread, and the contracting mechanism is shaped so as to define a threaded opening, into which the distal portion of the longitudinal member is screwed so as to removably coupled the longitudinal member to the contracting mechanism. For some applications, the longitudinal member is removably coupled to the rotatable structure of the contracting mechanism. For some applications, the tool includes a tube, which is configured to pass over the longitudinal member, and which is configured such that rotation of the tube decouples the longitudinal member from the contracting mechanism.
For some applications, the tube is a first tube, the tool further includes a second tube, the first tube is positioned within the second tube, and the second tube is configured to engage the rotatable structure, such that rotation of the second tube rotates the rotatable structure. For some applications, the apparatus further includes a rotation handle, through which a proximal end of the longitudinal member at least partially passes, and which includes: a first-tube rotation knob, which is coupled to the first tube, such that rotation of the first-tube rotation knob rotates the first tube; a second-tube rotation knob, which is coupled to the second tube, such that rotation of the second-tube rotation knob rotates the second tube; and a control knob, which, when in a first position, engages both first-tube and second-tube rotation knobs, and when in a second position, engages the second-tube rotation knob but not the first-tube rotation knob. For some applications, the rotation handle includes a handle housing, and the control knob, when in the second position, engages the handle housing, thereby rotationally fixing the control knob to the handle housing.
For some applications, the tool further includes a third tube, the first and second tubes are positioned within the third tube, the rotatable structure includes a spool, the contracting mechanism includes a housing that houses the spool, the implant structure is coupled to the spool, and arranged such that rotation of the spool winds a portion of the implant structure around the spool, and the second tube is configured to engage and rotate the spool with respect to the housing, and the third tube is configured to engage the housing, such that the housing is held rotationally stationary when the third tube is held rotationally stationary.
For some applications, the contracting mechanism includes a locking mechanism, the longitudinal member is shaped so as to define a distal force applicator, which is configured to unlock the locking mechanism when the longitudinal member is coupled to the contracting mechanism, thereby allowing the spool to rotate with respect to the housing.
There is further provided, in accordance with an application of the present invention, apparatus including:
a longitudinal member;
a first tube, which passes over the longitudinal member;
a second tube, which passes over the first tube; and
a rotation handle, through which the longitudinal member at least partially passes, and which includes:
For some applications, the longitudinal member includes at least one wire.
For some applications, the rotation handle is configured such that the rotation of the control knob, (a) when in the first position, rotates both the first-tube and second-tube rotation knobs, and (b) when in the second position, rotates the second-tube rotation knob but not the first-tube rotation knob.
For some applications, the rotation handle is configured such that the control knob, (a) when in the first position, at least partially covers the first-tube rotation knob, thereby preventing access to the first-tube rotation knob, and (b) when in the second position, reveals the first-tube rotation knob, thereby allowing access to the first-tube rotation knob. For some applications, the control knob is configured to slide between the first and second positions.
For some applications, the control knob is configured such that a transition between the first and second positions is not effected by rotation of the control knob.
For some applications, the control knob is configured to slide between the first and second positions. For some applications, the control knob is configured such that when in the first position, an inner surface of the control knob engages the first-tube rotation knob and the second-tube rotation knob. For some applications, the rotation handle includes a handle housing, and the sliding control knob, when in the second position, engages the handle housing, thereby rotationally fixing the control knob to the handle housing. For some applications, the control knob is configured that when in the second position, an outer surface of the control knob engages the handle housing.
For some applications, the apparatus further includes a third tube, which passes over the second tube, and which is coupled to the rotation handle such that the third tube cannot rotate with respect to the rotation handle.
For some applications, the first and second tubes extend from a distal end of the rotation handle, and the rotation handle includes one or more springs which are configured to push at least one of the first and second tubes in a distal direction. For some applications, the rotation handle includes a spring locking mechanism, which is configured to assume locking and released states, and, when in the locking state, to prevent at least one of the springs from pushing on at least one of the first and second tubes in the distal direction.
For some applications, the longitudinal member is longitudinally fixed to the rotation handle, but is allowed to rotate with respect to the rotation handle. For some applications, the first and second tubes extend from a distal end of the rotation handle, and the rotation handle includes a lever that is configured to allow the longitudinal member to be advanced toward a proximal end of the rotation handle, while preventing withdrawal of the longitudinal member toward the distal end of the rotation handle.
For some applications, the apparatus further includes an implant structure, which includes a contracting mechanism, which includes a rotatable structure, arranged such that rotation of the rotatable structure contracts the implant structure, the longitudinal member is removably coupled to the contracting mechanism, the first tube is configured such that rotation of the tube decouples the longitudinal member from the contracting mechanism, and the second tube is configured to engage the rotatable structure, such that rotation of the second tube rotates the rotatable structure.
There is still further provided, in accordance with an application of the present invention, apparatus including:
a sleeve having a lumen;
a deployment manipulator tube, which is configured to be removably positioned partially within the lumen of the sleeve, such that the deployment manipulator tube extends out of a proximal end of the sleeve; and
a pusher tube, which is configured to pass over a portion of the deployment manipulator tube, such that a distal end of the pusher tube is in contact with the proximal end of the sleeve.
For some applications, the apparatus further includes an annuloplasty ring, which includes the sleeve. For some applications, the annuloplasty ring further includes at least one tissue anchor. For some applications, the annuloplasty ring includes a partial annuloplasty ring.
For some applications, the distal end of the pusher tube is removably coupled to the proximal end of the sleeve. For some applications, the pusher tube includes one or more coupling elements, which are configured to removably couple the distal end of the pusher tube to the proximal end of the sleeve. For some applications, the apparatus is configured such that (a) when the deployment manipulator tube is positioned within the lumen of the sleeve, the deployment manipulator tube causes the coupling elements to engage the sleeve, thereby removably coupling the distal end of the pusher tube to the proximal end of the sleeve, and (b) when the deployment manipulator tube is withdrawn from the sleeve, the coupling elements disengage from the sleeve, thereby decoupling the distal end of the pusher tube from the proximal end of the sleeve. For some applications, the coupling elements are configured to have a natural tendency to flex inwards toward a central longitudinal axis of the sleeve that passes through the proximal end of the sleeve, and the deployment manipulator tube, when positioned within the lumen of the sleeve, pushes the coupling elements outwards away from the longitudinal axis, thereby causing the coupling elements to engage the sleeve.
For some applications, the apparatus further includes an external control handle, which is coupled to a proximal portion of the deployment manipulator tube and to a proximal end of the pusher tube, and which is configured to controllably release the pusher tube in a distal direction as the sleeve is withdrawn from the deployment manipulator tube. For some applications, the external control handle is configured to controllably release the pusher tube incrementally in the distal direction by one or more set distances.
For some applications, the annuloplasty system further includes: at least one tissue anchor; and an anchor deployment manipulator, which includes: the deployment manipulator tube; and an anchor driver, which is configured to be at least partially positioned within the deployment manipulator tube, and, while so positioned, to deploy the at least one anchor through a wall of the sleeve.
There is additionally provided, in accordance with an application of the present invention, apparatus for use with tissue of a subject, the apparatus including:
an anchor driver, which includes a driver head, which is shaped so as to define one or more mechanical coupling elements, and which includes a flexible ring; and
an anchor, which includes:
wherein the rotation of the mechanical coupling elements causes the tissue coupling element of the anchor to screw itself into the tissue, thereby causing separation of: (a) the outer coupling surface of the coupling head from the flexible ring, and (b) the mating elements of the coupling head from the corresponding mechanical coupling elements.
For some applications, the driver head includes: an inner mating component, which is shaped so as to define the one or more mechanical coupling elements; and an outer element, which at least partially surrounds the inner mating component and extends in a distal direction beyond a distal end of the inner mating component, and the flexible ring is coupled to an inner surface of the outer element. For some applications, the outer element is configured to rotate freely with respect to the inner mating component.
For some applications, the coupling surface of the coupling head is shaped so as to define a screw thread, such that rotation of the mechanical coupling elements causes the outer coupling surface to unscrew from the flexible ring.
For some applications, the mechanical coupling elements of the driver head include protrusions, and the mating elements of the coupling head include slots.
For some applications, the anchor driver further includes a shaft, and the driver head is coupled to a distal end of the shaft. For some applications, the inner mating component is coupled to the distal end of the shaft such that the inner mating component is rotationally fixed to the shaft.
For some applications, the apparatus further includes an annuloplasty ring, which includes a sleeve having a lumen, and the anchor driver is configured to be removably positioned within the lumen of the sleeve.
For some applications, the coupling element is shaped so as to define a shape selected from the group consisting of: a helix, a spiral, and a screw shaft.
There is yet additionally provided, in accordance with an application of the present invention, a method including:
placing, into a body of a subject, an implant structure, which includes a contracting mechanism that includes a rotatable structure, such that a longitudinal member coupled to the contracting mechanism extends outside of the body;
guiding a tool along the longitudinal member to the rotatable subject;
engaging the rotatable structure with the tool; and
contracting the implant structure by rotating the rotatable structure using the tool.
For some applications, the longitudinal member includes at least one wire, and guiding the tool includes guiding the tool over the wire.
For some applications, the longitudinal includes at least one tube, and guiding the tool includes guiding the tool through the tube.
For some applications, placing the implant structure includes placing an annuloplasty ring into an atrium of the body in a vicinity of an annulus of an atrioventricular valve.
For some applications, placing the implant structure includes placing at least one repair chord into a ventricle of the body such that, upon contracting of the implant structure, the repair chord pulls two portions of heart tissue toward each other.
For some applications, a portion of the implant structure is shaped so as to define a rack, a portion of the rotatable structure is shaped so as to define a pinion that mates with the rack, and contracting the implant structure includes moving the portion of the implant structure with respect to the rotatable structure by rotating the rotatable structure using the tool.
For some applications, the implant structure includes a flexible contracting member that is coupled to the rotatable structure, and contracting the implant structure includes tightening the flexible contracting member by rotating the rotatable structure using the tool.
For some applications, the rotatable structure includes a spool, the implant structure is coupled to the spool, engaging includes engaging the spool with the tool, and contracting the implant structure includes winding a portion of the implant structure around the spool by rotating the spool using the tool. For some applications, the implant structure includes a flexible contracting member that is coupled to the spool, the portion of the implant structure includes a portion of the contracting member, and winding includes winding the portion of the contracting member around the spool by rotating the spool using the tool.
For some applications, the contracting mechanism including a housing that houses the spool, and winding includes winding includes rotating the spool with respect to the housing. For some applications, the tool includes a tube, and guiding the tool over the longitudinal member includes passing the tube over the longitudinal member and engaging the housing with the tube such that the housing is held rotationally stationary when the tube is held rotationally stationary.
For some applications, the method further includes decoupling the longitudinal member from the contracting mechanism after rotating the rotatable structure. For some applications, a distal portion of the longitudinal member is shaped so as to define a screw thread, the contracting mechanism is shaped so as to define a threaded opening, into which the distal portion of the longitudinal member is initially screwed, and decoupling includes unscrewing the longitudinal member from the threaded opening. For some applications, the longitudinal member is removably coupled to the rotatable structure of the contracting mechanism, and decoupling includes decoupling the longitudinal member from the rotatable structure.
For some applications, the tool includes a tube, guiding the tool over the longitudinal member includes passing the tube over the longitudinal member, and decoupling the longitudinal member from the contracting mechanism includes rotating the tube. For some applications, the tube is a first tube, rotating the tube includes rotating the first tube, the tool further includes a second tube, the first tube is positioned within the second tube, engaging includes engaging the rotatable structure with the second tube, and contracting the implant structure includes rotating the rotatable structure by rotating the second tube. For some applications, the method further includes passing a proximal end of the longitudinal member at least partially through a rotation handle, which includes a first-tube rotation knob coupled to the first tube, a second tube-rotation knob coupled to the second tube, and a control knob, which (a) when in a first position, engages both the first-tube and second-tube rotation knobs, and (b) when in a second position, engages the second-tube rotation knob but not the first-tube rotation knob, and engages a housing of the handle, thereby rotationally fixing the control knob to the handle housing, contracting the implant structure includes rotating the first and second tubes by rotating the control knob when in the first position, and decoupling the longitudinal member from the contracting mechanism includes moving the control knob into the second position, and subsequently rotating the first tube by rotating the first-tube rotation knob.
For some applications, the tool further includes a third tube, the first and second tubes are positioned within the third tube, the rotatable structure includes a spool, the contracting mechanism includes a housing that houses the spool, the implant structure is coupled to the spool, and contracting the implant includes: rotating a portion of the implant structure around the spool by rotating the spool with respect to the housing by rotating the second tube; engaging the housing with the third tube; and holding the housing rotationally stationary by holding the third tube rotationally stationary.
For some applications, the contracting mechanism includes a locking mechanism, and the longitudinal member is shaped so as to define a distal force applicator, which is configured to unlock the locking mechanism when the longitudinal member is coupled to the contracting mechanism, thereby allowing the spool to rotate with respect to the housing.
There is also provided, in accordance with an application of the present invention, a method including:
passing a longitudinal member at least partially through a rotation handle, which includes (a) a first-tube rotation knob, which is coupled to a first tube that passes over the longitudinal member, (b) a second-tube rotation knob, which is coupled to a second tube that passes over the first tube, and (c) a control knob, which (i) when in a first position, engages both the first-tube and second-tube rotation knobs, and (ii) when in a second position, engages the second-tube rotation knob but not the first-tube rotation knob, and engages a housing of the handle, thereby rotationally fixing the control knob to the handle housing;
rotating the first and second tubes by rotating the control knob when in the first position; and
moving the control knob into the second position, and subsequently rotating the first tube by rotating the first-tube rotation knob.
For some applications, the longitudinal includes at least one wire, and passing includes passing the wire at least partially through the rotation handle.
For some applications, moving the control knob into the second position does not include rotating the control knob.
For some applications, moving the control knob into the second position includes sliding the control knob into the second position.
For some applications, passing the longitudinal member at least partially through the rotation handle includes longitudinally fixing the longitudinal member to the rotation handle such that the longitudinal member is allowed to rotate with respect to the rotation handle.
For some applications, the method further includes:
placing, into a body of a subject, an implant structure, which includes a contracting mechanism that includes a rotatable structure, arranged such that rotation of the rotatable structure contracts the implant structure, wherein the longitudinal member is removably coupled to the contracting mechanism;
engaging the rotatable structure with the second tube such that rotation of the second tube rotates the rotatable structure; and
engaging the longitudinal member with the first tube, such that rotation of the first tube decouples the longitudinal member from the contracting mechanism.
There is further provided, in accordance with an application of the present invention, a method including:
removably positioning a deployment manipulator tube partially within a lumen of a sleeve of an annuloplasty ring, such that the deployment manipulator tube extends out of a proximal end of the sleeve; and placing a pusher tube over the deployment manipulator tube such that a distal end of the pusher tube is in contact with the proximal end of the sleeve.
For some applications, the method further includes withdrawing the sleeve from the deployment manipulator tube in a distal direction, and, while withdrawing, pushing the pusher tube against the proximal end of the sleeve. For some applications, withdrawing the sleeve includes, while withdrawing the sleeve, controllably releasing the pusher tube in the distal direction, using an external control handle to which is coupled a proximal portion of the deployment manipulator tube and a proximal end of the pusher tube. For some applications, controllably releasing includes controllably releasing the pusher tube incrementally in the distal direction by one or more set distances.
For some applications, placing includes removably coupling the distal end of the pusher tube to the proximal end of the sleeve. For some applications, removably coupling includes using one or more one or more coupling elements of the pusher tube to removably couple the distal end of the pusher tube to the proximal end of the sleeve. For some applications, removably coupling includes positioning the deployment manipulator tube within the lumen of the sleeve such that the deployment manipulator tube causes the coupling elements to engage the sleeve, and the method further includes decoupling the distal end of the pusher tube from the proximal end of the sleeve by withdrawing the deployment manipulator tube from the sleeve such that the coupling elements disengage from the sleeve. For some applications, the coupling elements are configured to have a natural tendency to flex inwards toward a central longitudinal axis of the sleeve that passes through the proximal end of the sleeve, and the deployment manipulator tube, when positioned within the lumen of the sleeve, pushes the coupling elements outwards away from the longitudinal axis, thereby causing the coupling elements to engage the sleeve.
For some applications, the method further includes deploying at least one anchor through a wall of the sleeve using an anchor driver that is at least partially positioned within the deployment manipulator tube.
For some applications, the annuloplasty ring is a partial annuloplasty ring, and removably positioning includes removably positioning the deployment manipulator tube partially within the lumen of the partial annuloplasty ring.
There is still further provided, in accordance with an application of the present invention, a method including:
advancing, into a body of a subject, (a) an anchor driver, which includes a driver head, which is shaped so as to define one or more mechanical coupling elements, and which includes a flexible ring, and (b) an anchor, which includes (i) a coupling head, which is shaped so as to define: (A) one or more mating elements corresponding to the mechanical coupling elements, and configured to engage the mechanical coupling elements such that rotation of the mechanical coupling elements rotates the mating elements, which in turn rotate the coupling head, and (B) an outer coupling surface, sized to be inserted into and engage the flexible ring, and (ii) a tissue coupling element, which is fixed to the coupling head; and
rotating the mechanical coupling elements to cause the tissue coupling element of the anchor to screw itself into tissue of the body, thereby causing separation of: (a) the outer coupling surface of the coupling head from the flexible ring, and (b) the mating elements of the coupling head from the corresponding mechanical coupling elements.
For some applications, the outer element is configured to rotate freely with respect to the inner mating component.
For some applications, the coupling surface of the coupling head is shaped so as to define a screw thread, such that rotating the mechanical coupling elements causes the outer coupling surface to unscrew from the flexible ring.
For some applications, the mechanical coupling elements of the driver head include protrusions, and the mating elements of the coupling head include slots.
For some applications, advancing the anchor driver includes removably positioning the anchor driver within a lumen of a sleeve of an annuloplasty ring.
For some applications, the coupling element is shaped so as to define a shape selected from the group consisting of: a helix, a spiral, and a screw shaft.
There is further provided, in accordance with an embodiment of the present invention, a method including:
positioning an anchor deployment manipulator at least partially within a lumen of a sleeve of an annuloplasty ring;
placing, into an atrium of a subject in a vicinity of an annulus of an atrioventricular valve, at least a portion of the sleeve that contains a distal end of the deployment manipulator; and
deploying at least one anchor from the distal end of the deployment manipulator through a wall of the sleeve such that a coupling element of the anchor enters cardiac tissue of the subject in a direction parallel to a central longitudinal axis of the deployment manipulator through the distal end of the deployment manipulator.
In an embodiment, deploying includes deploying the at least one anchor from the distal end of the deployment manipulator through the wall of the sleeve into the cardiac tissue, while the distal end of the deployment manipulator is positioned such that the central longitudinal axis of the deployment manipulator through the distal end of the deployment manipulator forms an angle of between 45 and 90 degrees with the wall of the sleeve at a point at which the anchor penetrates the wall. For some applications, the point on the wall is a first point on the wall, and the angle is a first angle, the at least one anchor is a first anchor of a plurality of anchors that also includes a second anchor most recently deployed before the first anchor through a second point on the wall, and deploying the first anchor includes deploying the first anchor while the distal end of the deployment manipulator is positioned such that the central longitudinal axis forms a second angle of between 45 and 90 degrees with a line defined by the first point and the second point.
Typically, the annuloplasty ring includes a partial annuloplasty ring, and positioning the deployment manipulator includes positioning the deployment manipulator within the lumen of the partial annuloplasty ring.
In an embodiment, the deployment manipulator includes steering functionality, and placing the sleeve includes steering the deployment manipulator using the steering functionality.
For some applications, deploying the anchor includes deploying the anchor from the atrium into an upper region of a ventricular wall near the atrium.
For some applications, the method further includes positioning a pusher element at least partially within the lumen of the sleeve of the annuloplasty ring; and moving the distal end of the deployment manipulator proximally within the sleeve by pushing the pusher element distally such that the pusher element engages an interior surface of the sleeve.
In an embodiment, the method further includes tightening the annuloplasty ring by winding a flexible contracting member of the ring around a spool coupled to the ring.
There is additionally provided, in accordance with an embodiment of the present invention, a method including:
positioning an anchor deployment manipulator at least partially within a lumen of a sleeve of an annuloplasty ring;
placing, into an atrium of a subject in a vicinity of an annulus of an atrioventricular valve, at least a portion of the sleeve that contains a distal end of the deployment manipulator; and
deploying at least one anchor from the distal end of the deployment manipulator through a wall of the sleeve into cardiac tissue of the subject, while the distal end of the deployment manipulator is positioned such that a central longitudinal axis of the deployment manipulator through the distal end of the deployment manipulator forms an angle of between 45 and 90 degrees with the wall of the sleeve at a point at which the anchor penetrates the wall.
For some applications, deploying includes deploying the at least one anchor while the angle is between 75 and 90 degrees.
In an embodiment, the deployment manipulator includes steering functionality, and placing the sleeve includes steering the deployment manipulator using the steering functionality.
Typically, the annuloplasty ring includes a partial annuloplasty ring, and positioning the anchor deployment manipulator includes positioning the anchor deployment manipulator at least partially within the lumen of the partial annuloplasty ring.
For some applications, the point on the wall is a first point on the wall, and the angle is a first angle, the at least one anchor is a first anchor of a plurality of anchors that also includes a second anchor most recently deployed before the first anchor through a second point on the wall, and deploying the first anchor includes deploying the first anchor while the distal end of the deployment manipulator is positioned such that the central longitudinal axis forms a second angle of between 45 and 90 degrees with a line defined by the first point and the second point.
For some applications, deploying the anchor includes deploying the anchor from the distal end of the deployment manipulator such that a coupling element of the anchor enters the cardiac tissue in a direction parallel to the central longitudinal axis.
For some applications, the anchor is shaped so as to define a coupling head and a tissue coupling element, which is shaped so as to define a shape selected from the group consisting of: a helix, a spiral, and a screw shaft, and deploying the anchor includes screwing the tissue coupling element into the cardiac tissue.
In an embodiment, the method further includes tightening the annuloplasty ring by winding a flexible contracting member of the ring around a spool coupled to the ring.
For some applications, deploying the anchor includes deploying the anchor from the atrium into an upper region of a ventricular wall near the atrium.
For some applications, the deployment manipulator includes an anchor driver positioned within a sheath, the at least one anchor includes a plurality of anchors, and deploying the at least one anchor includes:
For some applications, placing the at least a portion of the sleeve includes placing the at least a portion of the sleeve into a right atrium of the subject in a vicinity of a tricuspid valve. Alternatively, placing the at least a portion of the sleeve includes placing the at least a portion of the sleeve into a left atrium of the subject in a vicinity of the annulus of a mitral valve.
There is yet additionally provided, in accordance with an embodiment of the present invention, a method including:
positioning, during a transcatheter procedure, an anchor deployment manipulator at least partially in an atrium of a subject;
placing, into the atrium in a vicinity of an annulus of an atrioventricular valve, at least a portion of an annuloplasty ring; and
coupling the annuloplasty ring to cardiac tissue by deploying at least one anchor from the deployment manipulator in the atrium and into an upper region of a ventricular wall near the atrium.
Typically, the atrioventricular valve is selected from the group consisting of: a mitral valve and a tricuspid valve.
In an embodiment, positioning the anchor deployment manipulator includes positioning at least a distal end of the deployment manipulator within a lumen of a sleeve of the annuloplasty ring, and coupling includes coupling the ring to the cardiac tissue by deploying the at least one anchor from the distal end of the deployment manipulator in the atrium, through a wall of the sleeve, and into the upper region of the ventricular wall. For some applications, deploying the anchor includes deploying the anchor into the upper region of the ventricular wall while the distal end of the deployment manipulator is positioned such that a central longitudinal axis of the deployment manipulator through the distal end of the deployment manipulator forms an angle of between 45 and 90 degrees with the wall of the sleeve at a point at which the anchor penetrates the wall.
For some applications, deploying the anchor includes deploying the anchor from the distal end of the deployment manipulator into the upper region of ventricular wall such that a coupling element of the anchor enters the ventricular wall in a direction parallel to a central longitudinal axis of the deployment manipulator through the distal end of the deployment manipulator.
There is further provided, in accordance with an embodiment of the present invention, a method including:
positioning an anchor deployment manipulator and a pusher element at least partially within a lumen of a sleeve of an annuloplasty ring;
placing, into an atrium of a subject in a vicinity of an annulus of an atrioventricular valve, at least a portion of the sleeve that contains a distal end of the deployment manipulator and a distal end of the pusher element;
moving the distal end of the deployment manipulator proximally within the sleeve by pushing the pusher element distally such that the pusher element engages an interior surface of the sleeve; and
after moving the distal end of the deployment manipulator, deploying an anchor from the distal end of the deployment manipulator through a wall of the sleeve into cardiac tissue.
For some applications, the deployment manipulator includes an outer tube that is shaped so as to define an opening that is within 3 mm of a distal end of the tube, and positioning the pusher element at least partially within the lumen of the sleeve includes positioning the pusher element such that (a) a distal portion of the pusher element extends out of the tube through the opening and into the lumen of the sleeve, and (b) a proximal portion of the pusher element passes through the tube from the opening to a proximal end of the tube.
For some applications, the deployment manipulator includes an outer tube, and positioning the pusher element at least partially within the lumen of the sleeve includes positioning the pusher element outside of the outer tube.
For some applications, moving includes moving the distal end of the deployment manipulator by pushing the pusher element distally such that the pusher element engages a distal end of the sleeve. Alternatively or additionally, moving includes moving the distal end of the deployment manipulator by pushing the pusher element distally such that the pusher element engages the wall of the sleeve.
For some applications, moving the distal end of the deployment manipulator includes moving the distal end of the deployment manipulator a certain distance by pushing the pusher element the certain distance.
There is additionally provided, in accordance with an embodiment of the present invention, a method including:
coupling a sleeve of an annuloplasty ring to cardiac tissue of a subject at a plurality of sites in a vicinity of an annulus of an atrioventricular valve;
partially inserting a screwdriver tool into a lumen of the sleeve, the tool having a head and a shaft; and
rotating the screwdriver tool such that the head, while within the lumen of the sleeve, shortens the ring by rotating a contracting mechanism of the ring that tightens an elongated contracting member coupled to the sleeve.
Typically, the annuloplasty ring includes a partial annuloplasty ring, and coupling includes coupling the sleeve of the partial annuloplasty ring to the cardiac tissue.
The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:
Annuloplasty ring 22 further comprises a contracting mechanism 40, which facilitates contracting of the annuloplasty ring. Contracting mechanism 40 is described in more detail hereinbelow. In addition, the ring comprises a plurality of anchors 38, typically between about 5 and about 20 anchors, such as about 10 or about 16 anchors. In
Flexible sleeve 26 may comprise a braided, knitted, or woven mesh or a tubular structure comprising ePTFE. For some applications, the braid comprises metal and fabric fibers. The metal fibers, which may comprise Nitinol for example, may help define the shape of the sleeve, e.g., hold the sleeve open to provide space for passage and manipulation of deployment manipulator 24 within the sleeve. The fabric fibers may promote tissue growth into the braid. Optionally, the sleeve is somewhat elastic, which gives the sleeve a tendency to longitudinally contract, thereby helping tighten the sleeve. For example, the sleeve may be bellows- or accordion-shaped.
Typically, the sleeve is configured to have a tendency to assume a straight shape. This straightness helps the surgeon locate the next site for each subsequent anchor during the implantation procedure, as described hereinbelow with reference to
For some applications, the sleeve is configured to have a controllably variable stiffness. For example, a somewhat stiff wire may be placed in the sleeve to provide the stiffness, and subsequently be removed at the conclusion of the implantation procedure when the stiffness is no longer useful.
Elongated contracting member 30 comprises a wire, a ribbon, a rope, or a band, which typically comprises a flexible and/or superelastic material, e.g., nitinol, polyester, stainless steel, or cobalt chrome. For some applications, the wire comprises a radiopaque material. For some applications, contracting member 30 comprises a braided polyester suture (e.g., Ticron). For some applications, contracting member 30 is coated with polytetrafluoroethylene (PTFE). For some applications, contracting member 30 comprises a plurality of wires that are intertwined to form a rope structure.
For some applications, contracting member 30 is positioned at least partially within a lumen of the sleeve 26, such as entirely within the lumen (as shown in
For some applications of the present invention, contracting mechanism 40 comprises a rotatable structure, such as a spool 46. The rotatable structure is arranged such that rotation thereof contracts annuloplasty ring 22. For some applications, a first end 47 of contracting member 30 is coupled to the spool. For some applications, contracting mechanism 40 further comprises a housing 44 that houses the rotatable structure, e.g., the spool. Spool 46 is positioned in a vicinity of (e.g., within 1 cm of) either a distal end 51 of sleeve 26, as shown in
Alternatively, in some configurations, spool 46 is positioned at an intermediary position along the sleeve, rather than in a vicinity of one of the ends. For these configurations, contracting member 30 comprises two contracting members, which are respectively connected to the two ends of the sleeve, and both of which are connected to the spool. Rotating the spool contracts both contracting members. These configuration may be implemented using techniques described in U.S. patent application Ser. No. 12/341,960 to Cabin, which published as US Patent Application Publication 2010/0161047 and is incorporated herein by reference, with reference to
For some applications, spool 46 is shaped to provide a hole 42 or other coupling mechanism for coupling first end 47 of contracting member 30 to the spool, and thereby to contracting mechanism 40.
For other applications, contracting member 30 comprises at least one wire (e.g., exactly one wire) that passes through a coupling mechanism of spool 46, in order to couple the wire to the spool. The ends of the wire are brought together, and together serve as second end 53 of contracting member 30, and may be coupled to one of the several locations of the sleeve mentioned hereinabove. In this configuration, approximately the longitudinal center of the wire serves as first end 47 of the contracting member.
For some applications, spool 46 is shaped to define a driving interface 48. For some applications, driving interface 48 is female. For example, the interface may be shaped to define a channel which extends through the cylindrical portion of spool 46 from an opening provided by an upper surface 50 of spool 46 to an opening provided by a lower surface 52 of spool 46. Alternatively, driving interface 48 is shaped so as to define an indentation (e.g., a groove) that does not extend entirely through the cylindrical portion of the spool. Further alternatively, driving interface 48 is male, and defines a protrusion, e.g., a hexagonal head or a head having another shape.
For some applications, a distal portion of a rotation tool 80, which is described hereinbelow with reference to
Spool 46 typically comprises a locking mechanism that prevents rotation of the spool after contracting member 30 has been tightened. For example, locking techniques may be used that are described with reference to
Alternatively, for some applications, contracting mechanism 40 is configured to tighten contracting member 30, crimp the contracting member to hold the contracting member taut, and subsequently cut the excess length of the contracting member.
For some applications, at least one of anchors 38 is deployed from a distal end 60 of deployment manipulator 24 while the distal end is positioned such that a central longitudinal axis 62 through distal end 60 of deployment manipulator 24 forms an angle α (alpha) of between about 45 and 90 degrees with the wall of sleeve 26 at the point at which the anchor penetrates the wall, such as between about 75 and 90 degrees, e.g., about 90 degrees. (In
For some applications, at least one of anchors 38 is deployed from distal end 60 of deployment manipulator 24 while distal end 60 is positioned such that longitudinal axis 62 through distal end 60 of deployment manipulator 24 forms an angle β (beta) of between about 45 and 90 degrees (such as between about 75 and 90 degrees, e.g., about 90 degrees) with a line 65 defined by (a) a first point 67 at which the anchor currently being deployed penetrates the wall of the sleeve and (b) a second point 69 at which a most recently previously deployed anchor penetrates the wall of sleeve 26. Typically, all of the anchors are deployed at such angles, with the exception of the first anchor deployed near the distal end of the sleeve.
Typically, the anchors are deployed from distal end 60 of deployment manipulator 24 into the cardiac tissue in a direction parallel to central longitudinal axis 62.
For some applications, anchor deployment manipulator 24 comprises an outer tube 66 (sometimes referred to herein, including in the claims, as a “deployment manipulator tube”) and an anchor driver 68 which is at least partially positioned within tube 66. Anchor driver 68 comprises an elongated, flexible shaft 70, having at its distal end a driver head 72. Rotation of the anchor driver screws the anchors into the cardiac tissue. Each of anchors 38 is shaped so as to define a coupling head 74 and a tissue coupling element 76. The anchors are typically rigid. Tissue coupling elements 76 may, for example, be helical or spiral in shape (e.g., having the shape of a corkscrew), as shown in the figures, may comprise screws, or may have other shapes. Coupling heads 74 may be either male (e.g., a hex or square protrusion) or female (e.g., a straight slot, a hex opening, a Phillips opening, or a Robertson opening). The use of helical anchors, which are screwed into the cardiac tissue, generally minimizes the force that needs to be applied during deployment of the anchors into the cardiac tissue. Alternatively, the anchors may comprise staples, clips, spring-loaded anchors, or other tissue anchors described in the references incorporated hereinabove in the Background section, or otherwise known in the art. For some applications, anchor deployment manipulator 24 and/or anchors 38 are implemented using techniques described hereinbelow with reference to
For some applications, outer tube 66 of deployment manipulator 24 is steerable, as known in the catheter art, while for other applications, a separate steerable tube is provided, as described hereinbelow with reference to
For some applications of the present invention, each of tissue coupling elements 76 is shaped so as to define a longitudinal axis 78 (shown in
For some applications, the plurality of anchors are applied using the deployment manipulator by loading a first one of the anchors onto the anchor driver, and deploying the anchor into the cardiac tissue. The anchor driver is withdrawn from the subject's body (typically while leaving outer tube 66 of the deployment manipulator in place in the sleeve), and a second one of the anchors is loaded onto the anchor driver. The anchor driver is reintroduced into the outer tube of the deployment manipulator, and the second anchor is deployed. These steps are repeated until all of the anchors have been deployed. Alternatively, the entire deployment manipulator, including the anchor driver, is removed from the body and subsequently reintroduced after being provided with another anchor. Further alternatively, the deployment manipulator is configured to simultaneously hold a plurality of anchors, and to deploy them one at a time (configuration not shown).
Typically, the first anchor 38 is deployed most distally in sleeve 26 (generally at or within a few millimeters of a distal end 51 of the sleeve), and each subsequent anchor is deployed more proximally, such that sleeve 26 is gradually pulled off (i.e., withdrawn from) deployment manipulator 24 in a distal direction during the anchoring procedure. Typically, as the sleeve is pulled off the deployment manipulator, the deployment manipulator is moved generally laterally along the cardiac tissue, as shown in
For some applications, an implant structure is provided. The implant structure comprises a contracting mechanism, such as contracting mechanism 40. The contracting mechanism comprises a rotatable structure, arranged such that rotation of the rotatable structure contracts the implant structure. The implant further comprises a longitudinal member, which is coupled to the contracting mechanism. A tool, such as rotation tool 80, is provided for rotating the rotatable structure. The tool is configured to be guided over the longitudinal member, to engage the rotatable structure, and to rotate the rotatable structure in response to a rotational force applied to the tool.
Reference is now made to
In the configuration shown in
In the configuration shown in
For some applications, longitudinal member 86 is looped through contracting mechanism 40, and both ends of the longitudinal member are brought together and extend outside of the subject's body. The longitudinal member is decoupled from the contracting mechanism by releasing one end of the longitudinal member, and pulling on the other end to draw the longitudinal member away from the contracting mechanism.
For some applications, contracting mechanism 40 is positioned in a vicinity of (e.g., within 1 cm of) distal end 51 of sleeve 26, and access to driving interface 48 is provided from outside sleeve 26, as described with reference to
For some applications in which access to driving interface 48 is provided from outside sleeve 26, the rotation tool is initially removably attached to the driving interface, prior to the commencement of the implantation procedure, and is subsequently decoupled from the driving interface after spool 46 has been rotated. In these applications, contracting mechanism 40 may be positioned in a vicinity of distal end 51 or proximal end 49 of sleeve 26, or at an intermediate location along the sleeve. Optionally, at least a portion of a shaft of the rotation tool is positioned within sheath 104, which is described hereinbelow with reference to
Reference is now made to
As mentioned above, for some application longitudinal member comprises a wire, which may comprise metal. Because the wire is fairly stiff, the wire generally maintains its direction and orientation with respect to contracting mechanism 40. The wire thus readily guides the tubes to the contracting mechanism such that the tubes have a desired orientation and position with respect to the contracting mechanism.
Longitudinal member 86 is removably coupled to contracting mechanism 40, typically to a central portion of upper surface 50 of spool 46. For some applications, a distal portion 88 of longitudinal member 86 is shaped so as to define a screw thread 90. Distal portion 88 is screwed into a threaded opening 92 of upper surface 50, in order to removably couple longitudinal member 86 to contracting mechanism 40. Typically, the distal portion is initially coupled to the contracting mechanism before annuloplasty ring 22 is placed into an atrium of the patient. As described below, the distal portion is decoupled from the contracting mechanism after spool 46 has been rotated to tighten ring 22. For some applications, distal portion 88 comprises a discrete element that is fixed to longitudinal member 86, while for other application, distal portion 88 is integral with longitudinal member 86.
For some applications, rotation tool 80 comprises an inner (first) tube 98, an intermediate (second) tube 96, and, optionally, an outer (third) tube 94. Rotation of each of the tubes is independently controlled, such as using techniques described hereinbelow with reference to
Intermediate tube 96 is configured to rotate spool 46. To this end, intermediate tube 96 (such as distal-most portion 96D thereof) is configured to engage upper surface 50 of spool 46. To enable such engagement, the upper surface typically is shaped so as to define one or more indentations 99 (e.g., grooves), in which corresponding protrusions at the distal end of intermediate tube 96 are positioned, such as by gently rotating tube 96 (or all of the tubes) until such engagement occurs. (Springs 460, described hereinbelow with reference to
Rotation of intermediate tube 96 causes corresponding rotation of spool 46, thereby winding contracting member 30 around the spool, and tightening the contracting member.
Outer tube 94, if provided, is configured to prevent rotation of spool housing 44 during rotation of spool 46. To this end, outer tube 94 (such as distal-most portion 94D thereof) is configured to engage an upper surface 160 of spool housing 44. To enable such engagement, the upper surface typically is shaped so as to define one or more indentations 162 (e.g., grooves), in which corresponding protrusions at the distal end of outer tube 94 are positioned, such as by gently rotating the tube (or all of the tubes) until such engagement occurs. (Springs 460, described hereinbelow with reference to
During rotation of intermediate tube 96 for rotating spool 46, outer tube 94 is held rotationally stationary, thereby stabilizing spool housing 44 and enabling spool 46 to rotate with respect to housing 44.
Inner tube 98 is configured to decouple longitudinal member 86 from spool 46 after contracting member 30 has been sufficiently wound around the spool, as described above. To this end, a distal portion of the inner tube (such as distal-most portion 98D thereof) is shaped so as to engage a distal portion of longitudinal member 86, which is typically shaped so as to couple with the distal portion of the inner tube.
Rotation of the inner tube, while intermediate tube 96 is prevented from rotating and thus prevents rotation of spool 46, causes corresponding rotation of longitudinal member 86, and unscrews the longitudinal member from spool 46. Longitudinal member 86 and spool 46 are typically configured such that this unscrewing rotation is in the opposite direction of the rotation of the spool that tightens the contracting member. For example, clockwise rotation of the spool (looking down on the spool) may wind the contracting member around the spool, while counterclockwise rotation of longitudinal member 86 unscrews the longitudinal member from the spool. To enable the engagement of inner tube 98 with the distal portion of the longitudinal member, the distal portion may include a flat portion.
Lower surface 180 of spool 46 is shaped to define one or more (e.g., a plurality, as shown) recesses 182 which define structural barrier portions 188 of lower surface 180. It is to be noted that any suitable number of recesses 182 may be provided, e.g., between 1 and 10 recesses, circumferentially with respect to lower surface 180 of spool 46.
For some applications, as mentioned above, spool 46 comprises a locking mechanism 164. For some applications, locking mechanism 164 is coupled, e.g., welded, at least in part to a lower surface of spool housing 44. Typically, locking mechanism 164 defines a mechanical element having a planar surface that defines slits 184. The surface of locking mechanism 164 may also be curved, and not planar. Locking mechanism 164 is shaped to provide a protrusion 166 which projects out of a plane defined by the planar surface of the mechanical element. The slits define a depressible portion 168 of locking mechanism 164 that is disposed in communication with and extends toward protrusion 166. Depressible portion 168 is moveable in response to a force applied thereto by a distal element 70 that extends in a distal direction from distal portion 88 of longitudinal member 86, beyond threaded opening 92 of upper surface 50, as shown in
It is to be noted that the planar, mechanical element of locking mechanism 164 is shown by way of illustration and not limitation and that any suitable mechanical element having or lacking a planar surface but shaped to define at least one protrusion may be used together with locking mechanism 164.
A cap 170 is provided that is shaped so as to define a planar surface and an annular wall having an upper surface 186 that is coupled to, e.g., welded to, a lower surface of spool housing 44. The annular wall of cap 170 is shaped so as to define a recessed portion 172 of cap 170 that is in alignment with recessed portion 176 of spool housing 44.
Reference is again made to
In the unlocked state shown in
Cap 170 functions to restrict distal pushing of depressible portion 168 beyond a desired distance so as to inhibit deformation of locking mechanism 164. For applications in which contracting mechanism 40 is implanted in heart tissue, cap 170 also provides an interface between contracting mechanism 40 and the heart tissue. This prevents interference of heart tissue on contracting mechanism 40 during the locking and unlocking thereof. Additionally, cap 170 prevents damage to heart tissue by depressible portion 168 as it is pushed downward.
In the locked state shown in
Reference is now made to
Rotation handle 400 comprises a handle housing 410 and one or more knobs for controlling the rotation of the tubes. The housing is typically configured to be coupled to outer tube 94, such that the outer tube cannot rotate with respect to the housing. The handle may comprise a hollow coupling element 412, into which the outer tube is inserted and fixed. Intermediate tubes 96 and 98 are coupled to other elements of handle 400, as described below.
As mentioned above, for some applications handle 400 is used with rotation tool 80. For these applications, after annuloplasty ring 22 has been implanted, a proximal portion of longitudinal member 86 extends outside the patient's body, such as via sheath 104 (shown, for example, in
Longitudinal member 86 is coupled to the handle such that the longitudinal member is longitudinally fixed to the housing (i.e., cannot be withdrawn), but is allowed to rotate with respect to the housing. For some applications, handle 400 comprises a longitudinal member coupling assembly 418, for example positioned in a vicinity of proximal end 416 of the housing. Typically, longitudinal member coupling assembly 418 is configured to rotate with respect to the housing, thereby allowing longitudinal member 86 to rotate with respect to the housing. For some applications, longitudinal member coupling assembly 418 comprises a lever 452 that is biased by a spring 454 to pivot such that an end of the lever at a central longitudinal axis of handle 400 applies a force in a distal direction. The end of the level is shaped to allow longitudinal member 86 to be advanced toward proximal end 416 of handle 400, while preventing withdrawal of the longitudinal member in a distal direction.
For some applications, rotation handle 400 comprises an intermediate-tube (second-tube) rotation knob 430 and an inner-tube (first-tube) rotation knob 432. Optionally, intermediate-tube rotation knob 430 is positioned closer to distal end 414 of handle 400 than is inner-tube rotation knob 432. Intermediate-tube rotation knob 430 is coupled to intermediate tube 96 (e.g., using an adhesive), such that rotation of the knob rotates the tube. Inner-tube rotation knob 432 is coupled to inner tube 98 (e.g., using an adhesive), such that rotation of the knob rotates the tube. The two knobs thus enable convenient rotation of the tubes, either separately or together.
For some applications, rotation handle 400 further comprises a control knob 434, which, for some applications, is configured to slide longitudinally in distal and proximal directions over knobs 430 and 432. When control knob 434 is positioned in a first position (e.g., a first longitudinal position, such as a proximal position, as shown in
When control knob 434 is positioned in a second position (e.g., a second longitudinal position, such as a distal position, as shown in
The outer surface of control knob 434 may be shaped so as to define ridges, protrusions 440 (as best seen in
For some applications, when in the first position control knob 434 is closer to proximal end 416 of handle 400, as shown in
For some applications, when control knob 434 is positioned in the first longitudinal position (such as a proximal position, as shown in
For some applications, control knob 434 does not slide, and instead assumes the first and second positions in response to a non-sliding motion.
For some applications, handle 400 comprises one or more springs 460 that spring-load one or more of tubes 94, 96, and 98, pushing the tubes in a distal direction. Such spring-loading pushes the tubes against the respective elements of contracting mechanism 40, helping the tubes to engage the respective elements of the contracting mechanism, as described hereinabove with reference to
For some applications, rotation handle 400 comprises a spring locking mechanism 462, which is configured to assume locking and released states. In the locking state, as shown in
For some applications, spring locking mechanism 462 comprises one or more pins 464, such as three pins, which are configured to be inserted into housing 410 (e.g., into respective openings in the housing), and, when so inserted, to block the distal motion of respective elements of the rotation handle, such as coupling element 412, intermediate-tube rotation knob 430, and inner-tube rotation knob 432.
In the released state, as shown in
Reference is still made to
Reference is now made to
The procedure typically begins by advancing a semi-rigid guidewire 102 into a right atrium 120 of the patient, as shown in
As show in
For some applications of the present invention, sheath 104 is advanced through an inferior vena cava 122 of the patient (as shown) and into right atrium 120 using a suitable point of origin typically determined for a given patient.
Sheath 104 is advanced distally until the sheath reaches the interatrial septum.
As shown in
The advancement of sheath 104 through the septum and into the left atrium is followed by the extraction of the dilator and needle 106 from within sheath 104, as shown in
As shown in
As shown in
As shown in
For some applications, in order to provide the second and subsequent anchors, anchor driver 68 is withdrawn from the subject's body via sheath 104 (typically while leaving outer tube 66 of the deployment manipulator in place in the sleeve), provided with an additional anchor, and then reintroduced into the subject's body and into the outer tube. Alternatively, the entire deployment manipulator, including the anchor driver, is removed from the body and subsequently reintroduced upon being provided with another anchor. Further alternatively, deployment manipulator 24 is configured to simultaneously hold a plurality of anchors, and to deploy them one at a time at the selected sites.
As shown in
As described hereinabove with reference to
For some applications, sleeve 26 is filled with a material (e.g., polyester, polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), or expanded polytetrafluoroethylene (ePTFE)) after being implanted. The material is packed within at least a portion, e.g., 50%, 75%, or 100%, of the lumen of sleeve 26. The filler material functions to prevent (1) formation within the lumen of sleeve 26 of clots or (2) introduction of foreign material into the lumen which could obstruct the sliding movement of contracting member 30.
For some applications, proximal end 49 of sleeve 26 is closed upon completion of the implantation procedure. Alternatively, the proximal end of the sleeve may have a natural tendency to close when not held open by deployment manipulator 24.
Reference is made to
Annuloplasty ring 22 may be advanced toward annulus 140 in any suitable procedure, e.g., a transcatheter procedure, a percutaneous procedure, a minimally invasive procedure, or an open heart procedure (in which case one or more elements of system 20 are typically rigid). Regardless of the approach, the procedure typically includes the techniques described hereinabove with reference to
For some applications, following initial contraction of annuloplasty ring 22 during the implantation procedure, the ring may be further contracted or relaxed at a later time after the initial implantation, such as between several weeks and several months after the initial implantation. Using real-time monitoring, tactile feedback and optionally in combination with fluoroscopic imaging, a rotation tool or anchor driver 68 of deployment manipulator 24 is reintroduced into the heart and used to contract or relax annuloplasty ring 22.
Reference is now made to
Pusher element 200 helps move the distal end of deployment manipulator 24 from a first site of the annulus at which the deployment manipulator has already deployed a first anchor (e.g., anchor 38A in
For some applications, as deployment manipulator 24 is positioned at successive deployment sites of the cardiac tissue, pusher element 200 is extended respective distances through opening 206, each of which distances is successively greater. For other applications, after deployment manipulator 24 is positioned at each successive deployment site, the pusher element is pulled back in a proximal direction, and again extended a desired distance in a distal direction, such that the pusher element pushes again the wall of the sleeve (at a different location on the wall for each successive relocation of deployment manipulator 24).
This technique thus aids in locating each subsequent anchoring site for deployment manipulator 24. The pusher element may also help control the distance between adjacent anchoring sites, because they surgeon may push the pusher element a known distance after deploying each anchor.
Pusher element 200 typically comprises a strip, wire, ribbon, or band, and has a cross-section that is circular, elliptical, or rectangular. Pusher element 200 typically comprises a flexible and/or superelastic material, such as a metal such as nitinol, stainless steel, or cobalt chrome. Distal end 212 of pusher element 200 is dull, so that it does not penetrate sleeve 26. For example, the distal end may be folded back, as shown in
Pulling wire 340 holds sleeve 26 surrounding deployment manipulator 24. The pulling wire is released in a distal direction as sleeve 26 is withdrawn from outer tube 66 of deployment manipulator 24 in a distal direction. The release of the sleeve allows the sleeve to gradually be withdrawn from the outer tube 66 of deployment manipulator 24, in a controlled manner. In
For some applications, control handle 346 is configured to release pulling wire 340 incrementally in the distal direction, such that each time the wire is further released by respective set distances (typically, the distances are equal to one another). As a result, the sleeve is withdrawn from outer tube 66 of the deployment manipulator by this set distance (or respective distances), and subsequently-deployed anchors are approximately this set distance (or respective set distances) apart from one another. For example, the set distances may be between 2 mm and 15 mm, such as 4.5 mm. For some applications, the handle comprises a control ring 350 that is coupled to proximal portions 344 of the wire, and removably engages slots 352 on the handle that are spaced apart by this set distance. The slots thus set discrete positions for the ring and the wire. For some applications, control handle 346 is configured to allow control ring 350 to move only in the distal direction during a surgical procedure. Upon completion of the implantation procedure, in order to detach the pulling wire from the sleeve, one end of the wire may be cut or released, and the wire detached from the sleeve by pulling on the other end of the wire.
In the configuration shown in
For some applications, coupling elements 456 have a natural tendency to flex inwards (toward a central longitudinal axis of sleeve 26 that passes through the proximal end of the sleeve). Outer tube 66, when positioned within the sleeve in a vicinity of the coupling elements, pushes the coupling elements outwards (away from the central longitudinal axis), causing the coupling elements to engage the sleeve. For example, the coupling elements may be curved to define outwardly-directed ends that push against or pierce the sleeve. Such pushing against or piercing engages the sleeve, which, as mentioned above, may comprise braided or woven fabric.
External control handle 490 is configured to release pusher tube 250 in a distal direction as sleeve 26 is withdrawn from outer tube 66 of deployment manipulator 24. The release of pusher tube 250 releases sleeve 26, and allows the sleeve to gradually be withdrawn from outer tube 66, in a controlled manner. In
For some applications, control handle 490 is configured to release pusher tube 250 incrementally in the distal direction, such that each time the pusher tube is further released by respective set distances (typically, the distances are equal to one another). As a result, the sleeve is withdrawn from outer tube 66 of the deployment manipulator by this set distance (or respective distances), and subsequently-deployed anchors are approximately this set distance (or respective distances) apart from one another. For example, the set distances may be between 2 mm and 15 mm, such as 4.5 mm. For some applications, the handle comprises control ring 350 that is coupled to a proximal end of pusher tube 250, and removably engages slots 352 on the handle that are spaced apart by this set distance. The slots thus set discrete positions for the ring and the pusher tube. For some applications, control handle 490 is configured to allow control ring 350 to move only in the distal direction during a surgical procedure. For some applications, upon completion of the implantation procedure, in order to detach the pusher tube from the sleeve, outer tube 66 of deployment manipulator 24 is proximally withdrawn completely from the sleeve, thereby causing the coupling elements to release the sleeve, such as described hereinabove with reference to
Although annuloplasty ring 22 has been described hereinabove as comprising a partial annuloplasty ring, for some applications of the present invention, the ring instead comprises a full annuloplasty ring.
Reference is made to
Anchor driver 68 is described hereinabove, for example, with reference to
Driver head 72 further comprises an outer element 478, which at least partially surrounds inner mating component 470 and extends in a distal direction beyond a distal end of inner mating component 470. (In this context, “outer” means further from longitudinal axis 473 of driver head 72.) Typically, outer element 478 is free to rotate with respect to inner mating component 470. Outer element 478 is typically longitudinally fixed to the inner mating component. For example, the inner mating component may be shaped so as to define at least one lateral protrusion 480, and the outer element may be shaped to define at least one corresponding recess 482. Alternatively, one or more of inner mating component 470, distal end 472 of flexible shaft 70, and outer element 478 are welded together, or comprise a single element.
An outer surface of coupling head 74 of anchor 38 is typically shaped so as to define a screw thread 484. The screw thread is initially screwed into a flexible ring 486 that is coupled to an inner surface of outer element 478. The ring is sized to tightly engage the screw thread. The ring may comprise, for example, silicone, rubber, or a springy metal. For some applications, a distal portion of coupling head 74 (such as the portion that defines screw thread 484) is conical.
During deployment of anchor 38 into tissue, such as described hereinabove with reference to
This configuration of driver head 72 and anchor 38 thus enables the anchor to self-disconnect from the driver head.
For some applications, anchor 38 is coupled to driver head 72 (typically during manufacture) by:
Reference is now made to
Implant structure 500 comprises a contracting mechanism assembly 514, which comprises contracting mechanism 512 and a tissue anchor 550. The tissue anchor facilitates implantation of the contracting mechanism assembly in a first portion of tissue of the heart which faces and surrounds the ventricular lumen, such as a papillary muscle 518. Tissue anchor 550 is shown as a helical anchor by way of illustration and not limitation, and may comprise staples, clips, spring-loaded anchors, or other tissue anchors known in the art. Alternatively, contracting mechanism assembly 514 does not include tissue anchor 50 and is, instead, sutured to a portion of tissue of a ventricle wall which faces a ventricular lumen of a heart of a patient.
For some applications, contracting mechanism 512 comprises a rotatable structure, such as a spool (not visible in
Implant structure 500 comprises one or more longitudinal members 86, which are coupled to contracting mechanism 512, such as to housing 516 or to the spool. A rotation tool 530 is configured to pass over longitudinal members 86, engage the spool of contracting mechanism 512, and rotate the spool, thereby tightening the contracting mechanism, and shortening and tensioning longitudinal members 520 and 522.
For some applications, implant structure 500 utilizes techniques described hereinabove with reference to
Reference is made to
Implant structure 600 comprises contracting mechanism assembly 514, described hereinabove with reference to
Following the attaching of longitudinal members 520 and 522 to the first and second implantation sites, respectively, rotation tool 530 is passed over longitudinal members 86, and used to rotate the spool of contracting mechanism 512, such as described hereinabove. As described hereinabove, using tool 530, the spool of contracting mechanism 512 is rotated in order to adjust a distance between the first and second implantation sites. Responsively, the first and second portions of the ventricle wall are drawn together. Consequently, the dimensions of the heart wall are restored to physiological dimensions, and the leaflets are drawn toward one another.
For some applications, implant structure 500 utilizes techniques described hereinabove with reference to
Reference is made to
For applications in which implant structure 800 comprises a full band, such as a full annuloplasty ring, the first and second portions 813 and 820 of implant structure 800 are opposite ends of the same continuous structure. For applications in which implant structure comprises a partial band, such as a partial annuloplasty ring, the respective portions of first and second portions 813 and 820 are coupled near respective ends of a sleeve, or themselves define the ring.
Implant structure 800 comprises longitudinal member 86, which is coupled to contracting mechanism 40. Rotation tool 80 is provided for rotating first rotatable structure 810. The tool is configured to be guided over the longitudinal member, to engage the rotatable structure, and to rotate the rotatable structure in response to a rotational force applied to the tool, such as using techniques described hereinabove with reference to
Reference is made to
Valve 910 further comprises an annular base 932, to which artificial leaflets 930 are coupled. Annular base 932 is configured to be couplable to base ring 922 during an implantation procedure. For example, as show in
Base ring 922 implements one or more of the techniques of annuloplasty ring 22 described hereinabove. In particular, base ring 922 may be coupled to the annulus of the native diseased valve using the anchoring techniques described hereinabove. In addition, base ring 922 typically comprises a rotatable structure 936, such as a spool, which is typically implemented using techniques described herein. The rotatable structure is arranged such that rotation thereof contracts base ring 922, typically using techniques described herein. Such tightening may serve to couple base ring 922 to annular base 932, as shown in
For some applications, base ring 922 comprises a partial ring, as shown in
Valve prosthesis assembly 900 is typically implanted in a minimally invasive transcatheter or percutaneous procedure. The procedure begins with the introduction and implantation of base ring 922 into the heart, such as using techniques for implanting annuloplasty ring 22, described hereinabove with reference to
For some applications of the present invention, system 20 is used to treat an atrioventricular valve other than the mitral valve, i.e., the tricuspid valve. For these applications, annuloplasty ring 22 and other components of system 20 described hereinabove as being placed in the left atrium are instead placed in the right atrium. Although annuloplasty ring 22 is described hereinabove as being placed in an atrium, for some application the ring is instead placed in either the left or right ventricle.
For some applications, techniques described herein are practiced in combination with techniques described in one or more of the references cited in the Background section of the present patent application.
Additionally, the scope of the present invention includes applications described in the following applications, which are incorporated herein by reference. In an application, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
The present application is a continuation of U.S. patent application Ser. No. 13/319,030, filed Dec. 16, 2011, which is the U.S. national stage of International Patent Application PCT/IL2010/000358, filed May 4, 2010, which: (a) is a continuation-in-part of and claims the priority from U.S. patent application Ser. No. 12/435,291 to Maisano et al., entitled, “Adjustable repair chords and spool mechanism therefor,” filed May 4, 2009, now U.S. Pat. No. 8,147,542; (b) is a continuation-in-part of and claims the priority from U.S. patent application Ser. No. 12/437,103 to Zipory et al., entitled, “Annuloplasty ring with intra-ring anchoring,” filed May 7, 2009, now U.S. Pat. No. 8,715,342; (c) is a continuation-in-part of and claims the priority from U.S. patent application Ser. No. 12/548,991 to Maisano et al., entitled, “Implantation of repair chords in the heart,” filed Aug. 27, 2009, now U.S. Pat. No. 8,808,368; (d) is a continuation-in-part of and claims the priority from U.S. patent application Ser. No. 12/689,635 to Zipory et al., entitled, “Over-wire rotation tool,” filed Jan. 19, 2010, now U.S. Pat. No. 8,545,553; and (e) is a continuation-in-part of and claims the priority from U.S. patent Ser. No. 12/689,693 to Hammer et al., entitled, “Deployment techniques for annuloplasty ring,” filed Jan. 19, 2010, now U.S. Pat. No. 8,911,494. All of the above-mentioned applications are assigned to the assignee of the present application and are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3604488 | Wishart | Sep 1971 | A |
3656185 | Carpentier | Apr 1972 | A |
3840018 | Heifetz | Oct 1974 | A |
3881366 | Bradley et al. | May 1975 | A |
3898701 | La Russa | Aug 1975 | A |
4042979 | Angell | Aug 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4214349 | Munch | Jul 1980 | A |
4261342 | Aranguren Duo | Apr 1981 | A |
4290151 | Massana | Sep 1981 | A |
4434828 | Trincia | Mar 1984 | A |
4473928 | Johnson | Oct 1984 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4625727 | Leiboff | Dec 1986 | A |
4712549 | Peters et al. | Dec 1987 | A |
4778468 | Hunt et al. | Oct 1988 | A |
4917698 | Carpentier et al. | Apr 1990 | A |
4961738 | Mackin | Oct 1990 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5201880 | Wright | Apr 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5300034 | Behnke | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5325845 | Adair | Jul 1994 | A |
5346498 | Greelis et al. | Sep 1994 | A |
5450860 | O'Connor | Sep 1995 | A |
5474518 | Farrer -Velazquez | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5593424 | Northrup, III | Jan 1997 | A |
5601572 | Middleman | Feb 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5683402 | Cosgrove et al. | Nov 1997 | A |
5702397 | Goble et al. | Dec 1997 | A |
5702398 | Tarabishy | Dec 1997 | A |
5709695 | Northrup, III | Jan 1998 | A |
5716370 | Williamson et al. | Feb 1998 | A |
5716397 | Myers | Feb 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5730150 | Peppel et al. | Mar 1998 | A |
5749371 | Zadini et al. | May 1998 | A |
5810882 | Bolduc | Sep 1998 | A |
5824066 | Gross | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5935098 | Blaisdell | Aug 1999 | A |
5957953 | DiPoto | Sep 1999 | A |
5961440 | Schweich et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5984959 | Robertson | Nov 1999 | A |
6042554 | Rosenman | Mar 2000 | A |
6045497 | Schweich et al. | Apr 2000 | A |
6050936 | Schweich et al. | Apr 2000 | A |
6059715 | Schweich et al. | May 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6074417 | Peredo | Jun 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6106550 | Magovern | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6143024 | Campbell | Nov 2000 | A |
6159240 | Sparer | Dec 2000 | A |
6165119 | Schweich et al. | Dec 2000 | A |
6174332 | Loch | Jan 2001 | B1 |
6183411 | Mortier | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6217610 | Carpentier | Apr 2001 | B1 |
6231602 | Carpentier | May 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6296656 | Bodluc et al. | Oct 2001 | B1 |
6315784 | Djurovic | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6402780 | Williamson, IV | Jun 2002 | B2 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6406493 | Tu | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6451054 | Stevens | Sep 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6503274 | Howanec | Jan 2003 | B1 |
6524338 | Gundry | Feb 2003 | B1 |
6533772 | Sherts et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6547801 | Dargent | Apr 2003 | B1 |
6554845 | Fleenor | Apr 2003 | B1 |
6564805 | Garrison et al. | May 2003 | B2 |
6565603 | Cox | May 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6579297 | Bicek et al. | Jun 2003 | B2 |
6589160 | Schweich et al. | Jul 2003 | B2 |
6602288 | Cosgrove | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6613078 | Barone | Sep 2003 | B1 |
6613079 | Wolinsky et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626917 | Craig | Sep 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629921 | Schweich et al. | Oct 2003 | B1 |
6651671 | Donlon et al. | Nov 2003 | B1 |
6652556 | VanTasel | Nov 2003 | B1 |
6682558 | Tu et al. | Jan 2004 | B2 |
6689125 | Keith et al. | Feb 2004 | B1 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6702846 | Mikus et al. | Mar 2004 | B2 |
6706065 | Langberg | Mar 2004 | B2 |
6709385 | Forsell | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6711444 | Koblish | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719786 | Ryan | Apr 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6730121 | Ortiz et al. | May 2004 | B2 |
6749630 | McCarthy et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764310 | Ichihashi et al. | Jul 2004 | B1 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6764810 | Ma et al. | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6786924 | Ryan et al. | Sep 2004 | B2 |
6786925 | Schoon | Sep 2004 | B1 |
6790231 | Liddicoat | Sep 2004 | B2 |
6797001 | Mathis | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6802319 | Stevens et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6855126 | Flinchbaugh | Feb 2005 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6960217 | Bolduc | Nov 2005 | B2 |
6964684 | Ortiz | Nov 2005 | B2 |
6964686 | Gordon | Nov 2005 | B2 |
6976995 | Mathis | Dec 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6997951 | Solem | Feb 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7077850 | Kortenbach | Jul 2006 | B2 |
7077862 | Vidlund | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7101395 | Tremulis | Sep 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7118595 | Ryan | Oct 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7150737 | Purdy et al. | Dec 2006 | B2 |
7159593 | McCarthy | Jan 2007 | B2 |
7166127 | Spence | Jan 2007 | B2 |
7169187 | Datta et al. | Jan 2007 | B2 |
7172625 | Shu et al. | Feb 2007 | B2 |
7175660 | Cartledge et al. | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7186264 | Liddicoat | Mar 2007 | B2 |
7189199 | McCarthy et al. | Mar 2007 | B2 |
7192443 | Solem | Mar 2007 | B2 |
7220277 | Arru et al. | May 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7226477 | Cox | Jun 2007 | B2 |
7226647 | Kasperchik et al. | Jun 2007 | B2 |
7229452 | Kayan | Jun 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7297150 | Cartledge et al. | Nov 2007 | B2 |
7311728 | Solem et al. | Dec 2007 | B2 |
7311729 | Mathis | Dec 2007 | B2 |
7314485 | Mathis | Jan 2008 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7329279 | Haug et al. | Feb 2008 | B2 |
7329280 | Bolling et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7361190 | Shoulian | Apr 2008 | B2 |
7364588 | Mathis | Apr 2008 | B2 |
7377941 | Rhee | May 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7431692 | Zollinger et al. | Oct 2008 | B2 |
7442207 | Rafiee | Oct 2008 | B2 |
7452376 | Lim et al. | Nov 2008 | B2 |
7455690 | Cartledge et al. | Nov 2008 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7485143 | Webler et al. | Feb 2009 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7507252 | Lashinski et al. | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7510577 | Moaddeb | Mar 2009 | B2 |
7527647 | Spence | May 2009 | B2 |
7530995 | Quijano | May 2009 | B2 |
7549983 | Roue et al. | Jun 2009 | B2 |
7559936 | Levine | Jul 2009 | B2 |
7562660 | Saadat | Jul 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7569062 | Kuehn | Aug 2009 | B1 |
7588582 | Starksen et al. | Sep 2009 | B2 |
7591826 | Alferness | Sep 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7608103 | McCarthy | Oct 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7625403 | Krivoruchko | Dec 2009 | B2 |
7632303 | Stalker et al. | Dec 2009 | B1 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton | Feb 2010 | B2 |
7682319 | Martin | Mar 2010 | B2 |
7682369 | Seguin | Mar 2010 | B2 |
7686822 | Shayani | Mar 2010 | B2 |
7699892 | Rafiee | Apr 2010 | B2 |
7704269 | Goar | Apr 2010 | B2 |
7704277 | Zakay et al. | Apr 2010 | B2 |
7722666 | Lafontaine | May 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7753924 | Starksen et al. | Jul 2010 | B2 |
7758632 | Hojeibane et al. | Jul 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7871368 | Zollinger et al. | Jan 2011 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7883538 | To et al. | Feb 2011 | B2 |
7927370 | Webier et al. | Apr 2011 | B2 |
7927371 | Navia | Apr 2011 | B2 |
7942927 | Kaye et al. | May 2011 | B2 |
7947056 | Griego et al. | May 2011 | B2 |
7955377 | Melsheimer | Jun 2011 | B2 |
7988725 | Gross | Aug 2011 | B2 |
7992567 | Hirotsuka | Aug 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
7993397 | Lashinski | Aug 2011 | B2 |
8012201 | Lashinski et al. | Sep 2011 | B2 |
8034103 | Burriesci | Oct 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8057493 | Goldfarb et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8070804 | Hyde | Dec 2011 | B2 |
8070805 | Vidlund | Dec 2011 | B2 |
8075616 | Solem | Dec 2011 | B2 |
8100964 | Spence | Jan 2012 | B2 |
8123800 | McCarthy | Feb 2012 | B2 |
8123801 | Milo | Feb 2012 | B2 |
8142493 | Spence et al. | Mar 2012 | B2 |
8142495 | Hasenkam | Mar 2012 | B2 |
8142496 | Berreklouw | Mar 2012 | B2 |
8147542 | Maisano et al. | Apr 2012 | B2 |
8152844 | Rao | Apr 2012 | B2 |
8163013 | Machold | Apr 2012 | B2 |
8187299 | Goldfarb et al. | May 2012 | B2 |
8187324 | Webler | May 2012 | B2 |
8202315 | Hlavka | Jun 2012 | B2 |
8206439 | Gomez-Duran | Jun 2012 | B2 |
8216302 | Wilson et al. | Jul 2012 | B2 |
8226711 | Mortier | Jul 2012 | B2 |
8231671 | Kim | Jul 2012 | B2 |
8241351 | Cabiri | Aug 2012 | B2 |
8252050 | Maisano et al. | Aug 2012 | B2 |
8262725 | Subramanian | Sep 2012 | B2 |
8277502 | Miller | Oct 2012 | B2 |
8287584 | Salahieh | Oct 2012 | B2 |
8287591 | Keidar | Oct 2012 | B2 |
8303608 | Goldfarb et al. | Nov 2012 | B2 |
8323334 | Deem | Dec 2012 | B2 |
8328868 | Paul | Dec 2012 | B2 |
8333777 | Schaller | Dec 2012 | B2 |
8343173 | Starksen et al. | Jan 2013 | B2 |
8343174 | Goldfarb | Jan 2013 | B2 |
8343213 | Salahieh et al. | Jan 2013 | B2 |
8349002 | Milo | Jan 2013 | B2 |
8353956 | Miller et al. | Jan 2013 | B2 |
8357195 | Kuehn | Jan 2013 | B2 |
8382829 | Call et al. | Feb 2013 | B1 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8393517 | Milo | Mar 2013 | B2 |
8430926 | Kirson | Apr 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8460370 | Zakay et al. | Jun 2013 | B2 |
8460371 | Hlavka et al. | Jun 2013 | B2 |
8475491 | Milo | Jul 2013 | B2 |
8480732 | Subramanian | Jul 2013 | B2 |
8500800 | Maisano et al. | Aug 2013 | B2 |
8518107 | Tsukashima et al. | Aug 2013 | B2 |
8523881 | Cabiri | Sep 2013 | B2 |
8523940 | Richardson | Sep 2013 | B2 |
8545553 | Zipory | Oct 2013 | B2 |
8551161 | Dolan | Oct 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8591576 | Hasenkam | Nov 2013 | B2 |
8608797 | Gross | Dec 2013 | B2 |
8628569 | Benichou et al. | Jan 2014 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
8641727 | Starksen et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8690939 | Miller et al. | Apr 2014 | B2 |
8715342 | Zipory et al. | May 2014 | B2 |
8728097 | Sugimoto et al. | May 2014 | B1 |
8728155 | Montorfano et al. | May 2014 | B2 |
8734467 | Miller et al. | May 2014 | B2 |
8740920 | Goldfarb et al. | Jun 2014 | B2 |
8747463 | Fogarty et al. | Jun 2014 | B2 |
8778021 | Cartledge | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790367 | Nguyen et al. | Jul 2014 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8795298 | Hernlund et al. | Aug 2014 | B2 |
8795355 | Alkhatib | Aug 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8808366 | Braido et al. | Aug 2014 | B2 |
8808368 | Maisano et al. | Aug 2014 | B2 |
8808371 | Cartledge | Aug 2014 | B2 |
8845717 | Khairkhahan et al. | Sep 2014 | B2 |
8845723 | Spence et al. | Sep 2014 | B2 |
8852261 | White | Oct 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8858623 | Miller et al. | Oct 2014 | B2 |
8864822 | Spence et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870949 | Rowe | Oct 2014 | B2 |
8888843 | Khairkhahan et al. | Nov 2014 | B2 |
8894702 | Quadri et al. | Nov 2014 | B2 |
8911461 | Traynor et al. | Dec 2014 | B2 |
8911494 | Hammer et al. | Dec 2014 | B2 |
8926695 | Gross et al. | Jan 2015 | B2 |
8926696 | Cabiri et al. | Jan 2015 | B2 |
8926697 | Gross et al. | Jan 2015 | B2 |
8932343 | Alkhatib et al. | Jan 2015 | B2 |
8932348 | Solem et al. | Jan 2015 | B2 |
8940042 | Miller et al. | Jan 2015 | B2 |
8940044 | Hammer et al. | Jan 2015 | B2 |
8945211 | Sugimoto | Feb 2015 | B2 |
8951285 | Sugimoto et al. | Feb 2015 | B2 |
8951286 | Sugimoto et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8961602 | Kovach et al. | Feb 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011520 | Miller et al. | Apr 2015 | B2 |
9011530 | Reich et al. | Apr 2015 | B2 |
9017399 | Gross et al. | Apr 2015 | B2 |
9023100 | Quadri et al. | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9072603 | Tuval et al. | Jul 2015 | B2 |
9107749 | Bobo et al. | Aug 2015 | B2 |
9119719 | Zipory et al. | Sep 2015 | B2 |
9125632 | Loulmet et al. | Sep 2015 | B2 |
9125742 | Yoganathan et al. | Sep 2015 | B2 |
9173646 | Fabro | Nov 2015 | B2 |
9180005 | Lashinski et al. | Nov 2015 | B1 |
9180007 | Reich et al. | Nov 2015 | B2 |
9192472 | Gross et al. | Nov 2015 | B2 |
9226825 | Starksen et al. | Jan 2016 | B2 |
9241702 | Maisano et al. | Jan 2016 | B2 |
9265608 | Miller et al. | Feb 2016 | B2 |
9326857 | Cartledge et al. | May 2016 | B2 |
9351830 | Gross et al. | May 2016 | B2 |
9414921 | Miller et al. | Aug 2016 | B2 |
9427316 | Schweich et al. | Aug 2016 | B2 |
9474606 | Zipory et al. | Oct 2016 | B2 |
9526613 | Gross et al. | Dec 2016 | B2 |
9561104 | Miller et al. | Feb 2017 | B2 |
20010021874 | Carpentier | Sep 2001 | A1 |
20010044656 | Williamson | Nov 2001 | A1 |
20020022862 | Grafton et al. | Feb 2002 | A1 |
20020029080 | Mortier | Mar 2002 | A1 |
20020042621 | Liddicoat | Apr 2002 | A1 |
20020082525 | Oslund et al. | Jun 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020133180 | Ryan et al. | Sep 2002 | A1 |
20020151916 | Muramatsu | Oct 2002 | A1 |
20020151961 | Lashinski | Oct 2002 | A1 |
20020151970 | Garrison | Oct 2002 | A1 |
20020169358 | Mortier et al. | Nov 2002 | A1 |
20020173841 | Ortiz et al. | Nov 2002 | A1 |
20020177904 | Huxel et al. | Nov 2002 | A1 |
20020188301 | Dallara et al. | Dec 2002 | A1 |
20020198586 | Inoue | Dec 2002 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078653 | Vesely | Apr 2003 | A1 |
20030083742 | Spence | May 2003 | A1 |
20030100943 | Bolduc | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030114901 | Loeb et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030130731 | Vidiund | Jul 2003 | A1 |
20030144657 | Bowe et al. | Jul 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030171760 | Gambale | Sep 2003 | A1 |
20030191528 | Quijano et al. | Oct 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20030204195 | Keane | Oct 2003 | A1 |
20030229350 | Kay | Dec 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20030233142 | Morales et al. | Dec 2003 | A1 |
20040010287 | Bonutti | Jan 2004 | A1 |
20040019359 | Worley et al. | Jan 2004 | A1 |
20040019377 | Taylor | Jan 2004 | A1 |
20040024451 | Johnson et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040049207 | Goldfarb et al. | Mar 2004 | A1 |
20040059413 | Argento | Mar 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040122514 | Forgarty et al. | Jun 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133274 | Webler | Jul 2004 | A1 |
20040133374 | Kattan | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040148019 | Vidlund et al. | Jul 2004 | A1 |
20040148020 | Vidlund et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040153146 | Lashinski et al. | Aug 2004 | A1 |
20040172046 | Hlavka | Sep 2004 | A1 |
20040176788 | Opolski | Sep 2004 | A1 |
20040181287 | Gellman | Sep 2004 | A1 |
20040186566 | Hindrichs | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040236419 | Milo | Nov 2004 | A1 |
20040243227 | Starsken et al. | Dec 2004 | A1 |
20040249453 | Cartledge | Dec 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20040260394 | Douk et al. | Dec 2004 | A1 |
20040267358 | Reitan | Dec 2004 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050010287 | Macoviak et al. | Jan 2005 | A1 |
20050010787 | Tarbouriech | Jan 2005 | A1 |
20050016560 | Voughlohn | Jan 2005 | A1 |
20050055038 | Kelleher et al. | Mar 2005 | A1 |
20050055087 | Statksen | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050065601 | Lee et al. | Mar 2005 | A1 |
20050070999 | Spence | Mar 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050085903 | Lau | Apr 2005 | A1 |
20050090827 | Gedebou | Apr 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050107812 | Starksen et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050119734 | Spence | Jun 2005 | A1 |
20050125002 | Baran et al. | Jun 2005 | A1 |
20050125011 | Spence et al. | Jun 2005 | A1 |
20050131533 | Alfieri | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh | Jun 2005 | A1 |
20050159728 | Armour et al. | Jul 2005 | A1 |
20050171601 | Cosgrove et al. | Aug 2005 | A1 |
20050177180 | Kaganov | Aug 2005 | A1 |
20050177228 | Solem et al. | Aug 2005 | A1 |
20050187613 | Bolduc et al. | Aug 2005 | A1 |
20050192596 | Jugenheimer et al. | Sep 2005 | A1 |
20050197696 | Gomez Duran | Sep 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222665 | Aranyi | Oct 2005 | A1 |
20050222678 | Lashinski et al. | Oct 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20050267478 | Corradi et al. | Dec 2005 | A1 |
20050273138 | To et al. | Dec 2005 | A1 |
20050288776 | Shaoulian et al. | Dec 2005 | A1 |
20050288778 | Shaoulian | Dec 2005 | A1 |
20050288781 | Moaddeb et al. | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060004443 | Liddicoat | Jan 2006 | A1 |
20060020326 | Bolduc et al. | Jan 2006 | A9 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060020333 | Lashinski et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060025855 | Lashinski et al. | Feb 2006 | A1 |
20060025858 | Alameddine | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060041319 | Taylor et al. | Feb 2006 | A1 |
20060052868 | Mortier | Mar 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060069429 | Spence et al. | Mar 2006 | A1 |
20060074486 | Liddicoat | Apr 2006 | A1 |
20060085012 | Dolan | Apr 2006 | A1 |
20060095009 | Lampropoulos | May 2006 | A1 |
20060106423 | Weisel | May 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060122633 | To | Jun 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060149280 | Harvine et al. | Jul 2006 | A1 |
20060149368 | Spence | Jul 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060184240 | Jiminez | Aug 2006 | A1 |
20060184242 | Lichtenstein | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060241622 | Zergiebel | Oct 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20060247763 | Slater | Nov 2006 | A1 |
20060259135 | Navia | Nov 2006 | A1 |
20060271175 | Woolfson | Nov 2006 | A1 |
20060282161 | Huyn et al. | Dec 2006 | A1 |
20060287661 | Bolduc | Dec 2006 | A1 |
20060287716 | Banbury et al. | Dec 2006 | A1 |
20070001627 | Lin et al. | Jan 2007 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070016288 | Gurskis | Jan 2007 | A1 |
20070021781 | Jervis | Jan 2007 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070027536 | Mihaljevic et al. | Feb 2007 | A1 |
20070038221 | Fine | Feb 2007 | A1 |
20070039425 | Wang | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070055206 | To et al. | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070078297 | Rafiee et al. | Apr 2007 | A1 |
20070080188 | Spence et al. | Apr 2007 | A1 |
20070083168 | Whiting et al. | Apr 2007 | A1 |
20070100427 | Perouse | May 2007 | A1 |
20070106328 | Wardle et al. | May 2007 | A1 |
20070112359 | Kimura | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118154 | Crabtree | May 2007 | A1 |
20070118213 | Loulmet | May 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070142907 | Moaddeb | Jun 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070213582 | Zollinger et al. | Sep 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070233239 | Navia et al. | Oct 2007 | A1 |
20070239208 | Crawford | Oct 2007 | A1 |
20070244555 | Rafiee et al. | Oct 2007 | A1 |
20070244556 | Rafiee et al. | Oct 2007 | A1 |
20070244557 | Rafiee et al. | Oct 2007 | A1 |
20070250160 | Rafiee | Oct 2007 | A1 |
20070255397 | Ryan et al. | Nov 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20070270755 | Von Oepen et al. | Nov 2007 | A1 |
20070270943 | Solem et al. | Nov 2007 | A1 |
20070276437 | Call | Nov 2007 | A1 |
20070282375 | Hindrichs et al. | Dec 2007 | A1 |
20070282429 | Hauser et al. | Dec 2007 | A1 |
20070295172 | Swartz | Dec 2007 | A1 |
20070299424 | Cumming et al. | Dec 2007 | A1 |
20080004697 | Lichtenstein et al. | Jan 2008 | A1 |
20080027483 | Cartledge | Jan 2008 | A1 |
20080027555 | Hawkins | Jan 2008 | A1 |
20080035160 | Woodson et al. | Feb 2008 | A1 |
20080039935 | Buch | Feb 2008 | A1 |
20080051703 | Thornton et al. | Feb 2008 | A1 |
20080058595 | Snoke et al. | Mar 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080065204 | Macoviak | Mar 2008 | A1 |
20080071366 | Tuval | Mar 2008 | A1 |
20080086138 | Stone et al. | Apr 2008 | A1 |
20080086203 | Roberts | Apr 2008 | A1 |
20080091257 | Andreas et al. | Apr 2008 | A1 |
20080097523 | Bolduc et al. | Apr 2008 | A1 |
20080103572 | Gerber | May 2008 | A1 |
20080125861 | Webler et al. | May 2008 | A1 |
20080140116 | Bonutti | Jun 2008 | A1 |
20080167714 | St. Goar | Jul 2008 | A1 |
20080177382 | Hyde et al. | Jul 2008 | A1 |
20080195126 | Solem | Aug 2008 | A1 |
20080195200 | Vidlund | Aug 2008 | A1 |
20080208265 | Frazier et al. | Aug 2008 | A1 |
20080221672 | Lamphere | Sep 2008 | A1 |
20080243245 | Thambar | Oct 2008 | A1 |
20080262480 | Stahler et al. | Oct 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080275300 | Rothe | Nov 2008 | A1 |
20080275469 | Fanton | Nov 2008 | A1 |
20080275551 | Alfieri | Nov 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080288062 | Andrieu et al. | Nov 2008 | A1 |
20080300537 | Bowman | Dec 2008 | A1 |
20080300629 | Surti | Dec 2008 | A1 |
20090028670 | Garcia et al. | Jan 2009 | A1 |
20090043153 | Zollinger et al. | Feb 2009 | A1 |
20090043381 | Macoviak | Feb 2009 | A1 |
20090054969 | Salahieh | Feb 2009 | A1 |
20090062866 | Jackson | Mar 2009 | A1 |
20090076586 | Hauser | Mar 2009 | A1 |
20090076600 | Quinn | Mar 2009 | A1 |
20090088837 | Gillinov | Apr 2009 | A1 |
20090093877 | Keidar et al. | Apr 2009 | A1 |
20090099650 | Bolduc | Apr 2009 | A1 |
20090105816 | Olsen et al. | Apr 2009 | A1 |
20090125102 | Cartledge | May 2009 | A1 |
20090149872 | Gross et al. | Jun 2009 | A1 |
20090171439 | Nissl | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090177274 | Scorsin | Jul 2009 | A1 |
20090177277 | Milo | Jul 2009 | A1 |
20090222083 | Nguyen et al. | Sep 2009 | A1 |
20090248148 | Shaolian | Oct 2009 | A1 |
20090254103 | Deustch | Oct 2009 | A1 |
20090259307 | Gross et al. | Oct 2009 | A1 |
20090264994 | Saadat | Oct 2009 | A1 |
20090264995 | Subramanian | Oct 2009 | A1 |
20090287231 | Brooks et al. | Nov 2009 | A1 |
20090287304 | Dahlgren | Nov 2009 | A1 |
20090299409 | Coe | Dec 2009 | A1 |
20090326648 | Machold et al. | Dec 2009 | A1 |
20100001038 | Levin | Jan 2010 | A1 |
20100010538 | Juravic | Jan 2010 | A1 |
20100023117 | Yoganathan | Jan 2010 | A1 |
20100023118 | Medlock et al. | Jan 2010 | A1 |
20100030014 | Ferrazzi | Feb 2010 | A1 |
20100030328 | Seguin | Feb 2010 | A1 |
20100042147 | Janovsky et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100063542 | Van der Burg | Mar 2010 | A1 |
20100063550 | Felix | Mar 2010 | A1 |
20100063586 | Hasenkam | Mar 2010 | A1 |
20100076499 | McNamara et al. | Mar 2010 | A1 |
20100094248 | Nguyen et al. | Apr 2010 | A1 |
20100114180 | Rock | May 2010 | A1 |
20100121349 | Meier | May 2010 | A1 |
20100121435 | Subratnanian et al. | May 2010 | A1 |
20100121437 | Subratnanian et al. | May 2010 | A1 |
20100130992 | Machold et al. | May 2010 | A1 |
20100152845 | Bloom | Jun 2010 | A1 |
20100161041 | Maisano et al. | Jun 2010 | A1 |
20100161042 | Maisano et al. | Jun 2010 | A1 |
20100161043 | Maisano et al. | Jun 2010 | A1 |
20100161047 | Cabiri | Jun 2010 | A1 |
20100168845 | Wright | Jul 2010 | A1 |
20100174358 | Rabkin et al. | Jul 2010 | A1 |
20100179574 | Longoria | Jul 2010 | A1 |
20100198347 | Zakay et al. | Aug 2010 | A1 |
20100211166 | Miller et al. | Aug 2010 | A1 |
20100217184 | Koblish et al. | Aug 2010 | A1 |
20100217382 | Chau | Aug 2010 | A1 |
20100234935 | Bashiri et al. | Sep 2010 | A1 |
20100249915 | Zhang | Sep 2010 | A1 |
20100249920 | Bolling | Sep 2010 | A1 |
20100262232 | Annest | Oct 2010 | A1 |
20100262233 | He | Oct 2010 | A1 |
20100280603 | Maisano et al. | Nov 2010 | A1 |
20100280604 | Zipory | Nov 2010 | A1 |
20100280605 | Hammer | Nov 2010 | A1 |
20100286628 | Gross | Nov 2010 | A1 |
20100286767 | Zipory | Nov 2010 | A1 |
20100305475 | Hinchliffe et al. | Dec 2010 | A1 |
20100324598 | Anderson | Dec 2010 | A1 |
20110004210 | Johnson | Jan 2011 | A1 |
20110004298 | Lee et al. | Jan 2011 | A1 |
20110009956 | Cartledge et al. | Jan 2011 | A1 |
20110011917 | Loulmet | Jan 2011 | A1 |
20110026208 | Otsuro et al. | Feb 2011 | A1 |
20110029066 | Gilad | Feb 2011 | A1 |
20110035000 | Nieminen et al. | Feb 2011 | A1 |
20110066231 | Cartledge | Mar 2011 | A1 |
20110067770 | Pederson et al. | Mar 2011 | A1 |
20110071626 | Wright et al. | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087146 | Ryan et al. | Apr 2011 | A1 |
20110093002 | Rucker et al. | Apr 2011 | A1 |
20110106245 | Miller et al. | May 2011 | A1 |
20110106247 | Miller | May 2011 | A1 |
20110118832 | Punjabi | May 2011 | A1 |
20110137410 | Hacohen | Jun 2011 | A1 |
20110144703 | Krause | Jun 2011 | A1 |
20110166649 | Gross | Jul 2011 | A1 |
20110184510 | Maisano et al. | Jul 2011 | A1 |
20110190879 | Bobo et al. | Aug 2011 | A1 |
20110202130 | Cartledge | Aug 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110230941 | Markus | Sep 2011 | A1 |
20110230961 | Langer | Sep 2011 | A1 |
20110238088 | Bolduc et al. | Sep 2011 | A1 |
20110257433 | Walker | Oct 2011 | A1 |
20110257633 | Cartledge | Oct 2011 | A1 |
20110257728 | Kuehn | Oct 2011 | A1 |
20110264208 | Duffy | Oct 2011 | A1 |
20110276062 | Bolduc | Nov 2011 | A1 |
20110282361 | Miller et al. | Nov 2011 | A1 |
20110288435 | Christy et al. | Nov 2011 | A1 |
20110288635 | Miller | Nov 2011 | A1 |
20110301498 | Maenhout et al. | Dec 2011 | A1 |
20110301698 | Miller et al. | Dec 2011 | A1 |
20120022557 | Cabiri | Jan 2012 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120022644 | Reich | Jan 2012 | A1 |
20120035712 | Maisano et al. | Feb 2012 | A1 |
20120078355 | Zipory | Mar 2012 | A1 |
20120078359 | Li et al. | Mar 2012 | A1 |
20120089022 | House et al. | Apr 2012 | A1 |
20120095552 | Spence | Apr 2012 | A1 |
20120109155 | Robinson et al. | May 2012 | A1 |
20120123531 | Tsukashima et al. | May 2012 | A1 |
20120136436 | Cabiri | May 2012 | A1 |
20120143323 | Hasenkam | Jun 2012 | A1 |
20120150290 | Gabbay | Jun 2012 | A1 |
20120158021 | Morrill | Jun 2012 | A1 |
20120179086 | Shank | Jul 2012 | A1 |
20120191182 | Hauser et al. | Jul 2012 | A1 |
20120197388 | Khairkhahan et al. | Aug 2012 | A1 |
20120226349 | Tuval et al. | Sep 2012 | A1 |
20120239142 | Liu et al. | Sep 2012 | A1 |
20120245604 | Tegzes | Sep 2012 | A1 |
20120271198 | Whittaker et al. | Oct 2012 | A1 |
20120283757 | Miller | Nov 2012 | A1 |
20120296349 | Smith et al. | Nov 2012 | A1 |
20120296417 | Hill et al. | Nov 2012 | A1 |
20120296419 | Richardson | Nov 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20120323313 | Seguin | Dec 2012 | A1 |
20120330410 | Hammer | Dec 2012 | A1 |
20120330411 | Gross | Dec 2012 | A1 |
20130023758 | Fabro | Jan 2013 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
20130035759 | Gross et al. | Feb 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130079873 | Migliazza | Mar 2013 | A1 |
20130297013 | Klima et al. | Mar 2013 | A1 |
20130085529 | Housman | Apr 2013 | A1 |
20130090724 | Subramanian | Apr 2013 | A1 |
20130096672 | Reich | Apr 2013 | A1 |
20130096673 | Hill | Apr 2013 | A1 |
20130116776 | Gross et al. | May 2013 | A1 |
20130116780 | Miller | May 2013 | A1 |
20130123910 | Cartledge | May 2013 | A1 |
20130131791 | Hlavka et al. | May 2013 | A1 |
20130131792 | Miller | May 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130172992 | Gross et al. | Jul 2013 | A1 |
20130190863 | Call et al. | Jul 2013 | A1 |
20130190866 | Zipory | Jul 2013 | A1 |
20130197632 | Kovach | Aug 2013 | A1 |
20130204361 | Adams | Aug 2013 | A1 |
20130226289 | Shaolian | Aug 2013 | A1 |
20130226290 | Yellin et al. | Aug 2013 | A1 |
20130268069 | Zakai et al. | Oct 2013 | A1 |
20130289718 | Tsukashima et al. | Oct 2013 | A1 |
20130304093 | Serina et al. | Nov 2013 | A1 |
20130325118 | Cartledge | Dec 2013 | A1 |
20140018914 | Zipory et al. | Jan 2014 | A1 |
20140088368 | Park | Mar 2014 | A1 |
20140094826 | Sutherland et al. | Apr 2014 | A1 |
20140094903 | Miller et al. | Apr 2014 | A1 |
20140094906 | Spence et al. | Apr 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140142619 | Serina et al. | May 2014 | A1 |
20140142695 | Gross et al. | May 2014 | A1 |
20140148849 | Serina et al. | May 2014 | A1 |
20140148898 | Gross et al. | May 2014 | A1 |
20140155783 | Starksen et al. | Jun 2014 | A1 |
20140163670 | Alon et al. | Jun 2014 | A1 |
20140163690 | White | Jun 2014 | A1 |
20140188108 | Goodine et al. | Jul 2014 | A1 |
20140188140 | Meier et al. | Jul 2014 | A1 |
20140188215 | Hlavka et al. | Jul 2014 | A1 |
20140194976 | Starksen et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140222137 | Miller et al. | Aug 2014 | A1 |
20140243859 | Robinson | Aug 2014 | A1 |
20140243894 | Groothuis et al. | Aug 2014 | A1 |
20140243963 | Sheps et al. | Aug 2014 | A1 |
20140257475 | Gross et al. | Sep 2014 | A1 |
20140275757 | Goodwin et al. | Sep 2014 | A1 |
20140276648 | Hammer et al. | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140303649 | Nguyen et al. | Oct 2014 | A1 |
20140303720 | Sugimoto et al. | Oct 2014 | A1 |
20140309661 | Sheps et al. | Oct 2014 | A1 |
20140309730 | Alon | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140343668 | Zipory et al. | Nov 2014 | A1 |
20140379006 | Sutherland et al. | Dec 2014 | A1 |
20150012087 | Miller et al. | Jan 2015 | A1 |
20150018940 | Quill et al. | Jan 2015 | A1 |
20150051697 | Spence et al. | Feb 2015 | A1 |
20150081014 | Gross et al. | Mar 2015 | A1 |
20150105855 | Cabiri et al. | Apr 2015 | A1 |
20150112432 | Reich et al. | Apr 2015 | A1 |
20150127097 | Neumann et al. | May 2015 | A1 |
20150182336 | Zipory et al. | Jul 2015 | A1 |
20150230924 | Miller | Aug 2015 | A1 |
20150272586 | Herman et al. | Oct 2015 | A1 |
20150272734 | Sheps et al. | Oct 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20150297212 | Reich et al. | Oct 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20160008132 | Cabiri et al. | Jan 2016 | A1 |
20160058557 | Reich et al. | Mar 2016 | A1 |
20160113767 | Miller et al. | Apr 2016 | A1 |
20160158008 | Miller et al. | Jun 2016 | A1 |
20160242762 | Gilmore et al. | Aug 2016 | A1 |
20160262755 | Zipory et al. | Sep 2016 | A1 |
20160302917 | Schewel | Oct 2016 | A1 |
20160317302 | Madjarov et al. | Nov 2016 | A1 |
20160324633 | Gross et al. | Nov 2016 | A1 |
20160361168 | Gross et al. | Dec 2016 | A1 |
20160361169 | Gross et al. | Dec 2016 | A1 |
20170000609 | Gross et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
2671966 | Jun 2008 | CA |
101653365 | Feb 2010 | CN |
0611561 | Aug 1994 | EP |
0614342 | Sep 1994 | EP |
1006905 | Jun 2000 | EP |
0954257 | Aug 2000 | EP |
1258437 | Nov 2002 | EP |
0871417 | Oct 2003 | EP |
1266641 | Oct 2004 | EP |
1034753 | Feb 2005 | EP |
1258232 | Jan 2006 | EP |
1990014 | Nov 2008 | EP |
1562522 | Dec 2008 | EP |
1420723 | Jan 2009 | EP |
1903991 | Sep 2009 | EP |
1418865 | Oct 2009 | EP |
2119399 | Nov 2009 | EP |
1531762 | Apr 2010 | EP |
1450733 | Feb 2011 | EP |
1861045 | Mar 2015 | EP |
1465555 | May 2015 | EP |
223448 | Dec 2012 | IL |
9205093 | Apr 1992 | WO |
1993015690 | Aug 1993 | WO |
9639963 | Dec 1996 | WO |
9640344 | Dec 1996 | WO |
9701369 | Jan 1997 | WO |
9846149 | Oct 1998 | WO |
1999030647 | Jun 1999 | WO |
99033414 | Jul 1999 | WO |
99063907 | Dec 1999 | WO |
99063910 | Dec 1999 | WO |
2000009048 | Feb 2000 | WO |
0022981 | Apr 2000 | WO |
0126586 | Apr 2001 | WO |
0156457 | Aug 2001 | WO |
2001087191 | Nov 2001 | WO |
02085250 | Oct 2002 | WO |
02085251 | Oct 2002 | WO |
02085252 | Oct 2002 | WO |
03028558 | Apr 2003 | WO |
03047467 | Jun 2003 | WO |
2003049647 | Jun 2003 | WO |
2003105667 | Dec 2003 | WO |
2004012583 | Feb 2004 | WO |
2004019816 | Mar 2004 | WO |
2004019826 | Mar 2004 | WO |
04103434 | Dec 2004 | WO |
05021063 | Mar 2005 | WO |
05046488 | May 2005 | WO |
2005062931 | Jul 2005 | WO |
06012013 | Feb 2006 | WO |
06012038 | Feb 2006 | WO |
06086434 | Aug 2006 | WO |
06097931 | Sep 2006 | WO |
06105084 | Oct 2006 | WO |
06116558 | Nov 2006 | WO |
07011799 | Jan 2007 | WO |
2007080595 | Jul 2007 | WO |
07121314 | Oct 2007 | WO |
07136783 | Nov 2007 | WO |
07136981 | Nov 2007 | WO |
2008014144 | Jan 2008 | WO |
2008031103 | Mar 2008 | WO |
08068756 | Jun 2008 | WO |
2009160631 | Oct 2009 | WO |
10004546 | Jan 2010 | WO |
2010000454 | Jan 2010 | WO |
2010006905 | Jan 2010 | WO |
2010044851 | Apr 2010 | WO |
2010065274 | Jun 2010 | WO |
10073246 | Jul 2010 | WO |
2010085649 | Jul 2010 | WO |
2010128502 | Nov 2010 | WO |
2010128503 | Nov 2010 | WO |
2010150178 | Dec 2010 | WO |
2011051942 | May 2011 | WO |
11067770 | Jun 2011 | WO |
2011089401 | Jul 2011 | WO |
2011089601 | Jul 2011 | WO |
2011111047 | Sep 2011 | WO |
2011148374 | Dec 2011 | WO |
2011154942 | Dec 2011 | WO |
2012011108 | Jan 2012 | WO |
2012014201 | Feb 2012 | WO |
9310714 | Mar 2012 | WO |
2012068541 | May 2012 | WO |
2012106346 | Aug 2012 | WO |
2012176195 | Dec 2012 | WO |
2013021374 | Feb 2013 | WO |
2013021375 | Feb 2013 | WO |
2013069019 | May 2013 | WO |
2013078497 | Jun 2013 | WO |
2013088327 | Jun 2013 | WO |
2014064694 | May 2014 | WO |
2014064695 | May 2014 | WO |
2014064964 | May 2014 | WO |
2014076696 | May 2014 | WO |
2014087402 | Jun 2014 | WO |
2014108903 | Jul 2014 | WO |
2014115149 | Jul 2014 | WO |
2014195786 | Dec 2014 | WO |
2015059699 | Apr 2015 | WO |
2015193728 | Dec 2015 | WO |
2016059639 | Apr 2016 | WO |
2016087934 | Jun 2016 | WO |
2016174669 | Nov 2016 | WO |
Entry |
---|
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3):73, 99-108 (2006). |
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003). |
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994). |
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995). |
U.S. Appl. No. 60/873,075, filed Dec. 5, 2006. |
An International Preliminary Report on Patentability dated Nov. 9, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000357. |
U.S. Appl. No. 60/902,146, filed Feb. 16, 2007. |
An International Preliminary Report on Patentability dated Jun. 5, 2012, which issued during the prosecution of Applicant's PCT/IL2010/001024. |
U.S. Appl. No. 61/001,013, filed Oct. 9, 2007. |
An International Preliminary Report on Patentability dated Nov. 27, 2012 which issued during the prosecution of Applicant's PCT/IL2011/000404. |
U.S. Appl. No. 61/132,295, filed Jun. 16, 2008. |
Notice of Allowance dated Apr. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/341,960. |
“Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978. |
An Office Action dated Mar. 29, 2011, which issued during the prosecution of U.S. Appl. No. 12/341,960. |
An Office Action dated Aug. 2, 2011, which issued during the prosecution of U.S. Appl. No. 12/435,291. |
A Restriction Requirement dated Mar. 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/785,717. |
An International Search Report and a Written Opinion both dated Jun. 10, 2010, which issued during the prosecution of Applicant's PCT/IL09/01209. |
An Office Action dated Jan. 27, 2012 which issued during the prosecution of U.S. Appl. No. 12/548,991. |
An Office Action dated Apr. 6, 2010, which issued during the prosecution of Applicant's U.S. Appl. No. 12/484,512. |
An Office Action dated Nov. 5, 2012, which issued during, the prosecution of U.S. Appl. No. 12/795,026. |
Notice of Allowance dated Feb. 19, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,192. |
An International Search Report and a Written Opinion both dated Aug. 17, 2010, which issued during the prosecution of Applicant's PCT/IL10/00357. |
An Office Action dated Sep. 16, 2009 which issued during the prosecution of U.S. Appl. No. 11/950,930. |
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999). |
A Restriction Requirement dated Nov. 19, 2012, which issued during the prosecution of U.S. Appl. No. 12/926,673. |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001). |
A Supplementary European Search Report dated Jan. 20, 2015, which issued during the prosecution of European Patent Application No. 12803037.6. |
An International Preliminary Report on Patentability dated Jun. 29, 2011, which issued during the prosecution of Applicant's PCT/IL2009/001209. |
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000). |
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005). |
An International Search Report and a Written Opinion both dated Feb. 10, 2011, which issued during the prosecution of Applicant's PCT/IL10/00890. |
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493. |
A Notice of Allowance dated Jun. 26, 2012, which issued during the prosecution of U.S. Appl. No. 12/608,316. |
An International Search Report and a Written Opinion both dated Sep. 12, 2008, which issued during the prosecution of Applicant's PCT/IL07/01503. |
An Office Action dated Jan. 23, 2012, which issued during the prosecution of U.S. Appl. No. 12/692,061. |
An International Search Report dated May 19, 2011, which issued during the prosecution of Applicant's PCT/IL2011/00064. |
A Supplementary European Search Report dated Feb. 1, 2011, which issued during the prosecution of European Patent Application No. EP 07849540. |
An International Search Report together with Written Opinion both dated Mar. 30, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001024. |
An Office Action dated Aug. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991. |
An Office Action dated Jul. 20, 2012, which issued during the prosecution of U.S. Appl. No. 12/843,412. |
Notice of Allowance dated Mar. 25, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153. |
An Office Action dated Aug. 24, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,930. |
An Office Action dated May 10, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026. |
An Office Action dated Mar. 9, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,635. |
A Restriction Requirement dated Sep. 14, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,192. |
Notice of Allowance dated Dec. 24, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,026. |
An Office Action dated Sep. 28, 2011, which issued during the prosecution of U.S. Appl. No. 12/437,103. |
An International Search Report and Written Opinion dated Nov. 8, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000358. |
An Office Action dated Dec. 29, 2011, which issued during the prosecution of U.S. Appl. No. 12/563,952. |
An International Search Report and a Written Opinion both dated Nov. 23, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000446. |
An International Search Report with Written Opinion both dated Feb. 2, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000600. |
An International Preliminary Report on Patentability dated Nov. 9, 2011 which issued during the prosecution of Applicant's PCT/IL/2010/000358. |
An Office Action dated Aug. 4, 2010, which issued during the prosecution of U.S. Appl. No. 12/341,960. |
An Office Action dated Nov. 14, 2011, which issued during the prosecution of U.S. Appl. No. 12/608,316. |
An Office Action dated Aug. 15, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192. |
An Office Action dated Jan. 17, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192. |
An Office Action dated Feb. 12, 2013, which issued during the prosecution of U.S. Appl. No. 12/926,673. |
Notice of Allowance dated Dec. 7, 2011, which issued during the prosecution of U.S. Appl. No. 12/435,291. |
A Restriction Requirement dated Oct. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/563,952. |
A Notice of Allowance dated May 24, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,952. |
A Restriction Requirement dated Jul. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,930. |
A Notice of Allowance dated Apr. 3, 2013, which issued during the prosecution of U.S. Appl. No. 12/563,930. |
An Office Action dated Apr. 2, 2013, which issued during the prosecution of U.S. Appl. No. 12/785,717. |
An Advisory Action dated Sep. 6, 2012 which issued during the prosecution of U.S. Appl. No. 12/548,991. |
A Restriction Requirement dated Feb. 4, 2013 which issued during the prosecution of U.S. Appl. No. 13/141,606. |
An Office Action dated Feb. 14, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,492. |
An International Search Report and a Written Opinion both dated Feb. 22, 2013, which issued during the prosecution of Applicant's PCT/IL201/050451. |
An Office dated Apr. 1, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,476. |
A Restriction Requirement dated Jun. 7, 2013 which issued during the prosecution of U.S. Appl. No. 13/141,606. |
An Office Action dated Aug. 23, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,444. |
U.S. Appl. No. 61/265,936, filed Dec. 2, 2009. |
U.S. Appl. No. 61/283,445, filed Dec. 2, 2009. |
U.S. Appl. No. 61/207,908, filed Feb. 17, 2009. |
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011). |
An Office Action dated Dec. 16, 2013, which issued during the prosecution of U.S. Appl. No. 13/666,262. |
Notce of Allowance dated Nov. 19, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192. |
An Office Action dated Oct. 2, 2013, which issued during the prosecution of U.S. Appl. No. 13/167.492. |
An Office Action dated Nov. 21, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,476. |
An Office Action dated Dec. 18, 2013. which issued during the prosecution of U.S. Appl. No. 13/666,141. |
A Restriction Requirement dated Apr. 19, 2010 which issued during the prosecution of U.S. Appl. No. 12/341,960. |
An Office Action dated Jun. 13, 2012, which issued during the prosecution of U.S. Appl. No. 12/437,103. |
An Office Action dated Nov. 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,635. |
An Office Action dated Oct. 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/926,673. |
A Restriction Requirement dated Oct. 25, 2012 which issued during the prosecution of U.S. Appl. No. 13/167,444. |
An Office Action dated Jan. 17, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,444. |
A Restriction Requirement dated Nov. 2, 2012, which issued during the prosecution of U.S. Appl. No. 13/167,492. |
An International Preliminary Report on Patentability dated Feb. 4, 2014, which issued during the prosecution of Applicant's PCT/IL2011/000446. |
A Supplementary European Search Report dated Dec. 4, 2012, which issued during the prosecution of European Patent Application No. EP 09834225.6. |
A Supplementary European Search Report dated Mar. 28, 2013, which issued during the prosecution of European Patent Application No. EP 1077 2091.4. |
U.S. Appl. No. 61/713,979, filed Dec. 6, 2012. |
U.S. Appl. No. 61/717,303, filed Oct. 23, 2012. |
U.S. Appl. No. 61/820,979, filed May 8, 2013. |
U.S. Appl. No. 61/745,848, filed Dec. 6, 2012. |
An Office Action dated May 19, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868. |
An Office Action dated Sep. 1, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868. |
An Office Action dated Dec. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/785,717. |
An Office Action dated May 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/706,868. |
An Office Action dated Apr. 7, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007. |
An International Preliminary Report on Patentability dated Jan. 29, 2013, which issued during the prosecution of Applicant's PCT/IL2011/000600. |
An International Search Report and a Written Opinion both dated Dec. 6, 2012 which issued during the prosecution of Applicant's PCT/IL2012/000250. |
Notice of Allowance dated Nov. 13, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,026. |
U.S. Appl. No. 61/557,082, filed Nov. 8, 2011. |
A Restriction Requirement dated Jul. 12, 2011, which issued during the prosecution of U.S. Appl. No. 12/437,103. |
An Office Action dated Mar. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/843,412. |
An Office Action dated May 6, 2013, which issued during the prosecution of U.S. Appl. No. 12/689,693. |
A Restriction Requirement dated May 1, 2012, which issued during the prosecution of U.S. Appl. No. 12/843,412. |
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007. |
Langer et al. RING+STRING, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008. |
U.S. Appl. No. 61/555,570, filed Nov. 4, 2011. |
A Notice of Allowance dated Sep. 18, 2012, which issued during the prosecution of U.S. Appl. No. 12/706,868. |
An Office Action dated, Aug. 13, 2012, which issued during the prosecution of U.S. Appl. No. 13/044,694. |
An Office Action dated, Dec. 31, 2012, which issued during the prosecution of U.S. Appl. No. 13/044,694. |
A Restriction Requirement dated Apr. 1, 2011, which issued during the prosecution of U.S. Appl. No. 12/608,316. |
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009). |
An Office Action dated Oct. 6, 2010, which issued during the prosecution of Applicant's U.S. Appl. No. 12/484,512. |
An Office Action dated Jul. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/692,061. |
An Interview Summary dated Jul. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/341,960. |
A Notice of Allowance dated May 2, 2013, which issued during the prosecution of U.S. Appl. No. 12/843,412. |
An Office Action dated Jul. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/044,694. |
Search Report in European Patent Application 10772090.6 dated Jan. 17, 2014. |
An Office Action dated Feb. 3, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693. |
Communication regarding amended claims filed dated Dec. 27, 2012, regarding European App No. 11792047.0. |
Notice of Allowance dated Mar. 6, 2014, which issued during the prosecution of U.S. Appl. No. 12/437,103. |
An Office Action dated Oct. 9, 2013, which issued during the prosecution of U.S. Appl. No. 12/996,954. |
AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008. |
Notice of Allowance dated Sep. 12, 2014, which issued during the prosecution of U.S. Appl. No. 11/950,930. |
An Office Action dated Dec. 19, 2013, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
An International Preliminary Report on Patentability dated Dec. 18, 2010, which issued during the prosecution of Applicant's PCT/IL09/00593. |
An English translation of an Office Action dated Apr. 23, 2014 which issued during the prosecution of Chinese Patent Application No. 201080059948.4. |
Notice of Allowance dated Jun. 23, 2014, which issued during the prosecution of U.S. Appl. No. 12/548,991. |
Notice of Allowance dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693. |
Notice of Allowance dated Jun. 25, 2014, which issued during the prosecution of U.S. Appl. No. 13/666,262. |
An International Search Report and Written Opinion both dated Apr. 9, 2014, which issued during the prosecution of Applicant's PCT/IL13/50860. |
Notice of Allowance dated Nov. 7, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,492. |
An Office Action dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
A Restriction Requirement dated Jun. 2, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030. |
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008. |
A communication from the European Patent Office dated Sep. 28, 2011 which issued during the prosecution of European Application No. 09834225.6. |
A Restriction Requirement dated Sep. 17, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,693. |
An Office Action dated Aug. 22, 2014, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
An Office Action dated Aug. 26, 2014 which issued during the prosecution the prosecution of U.S. Appl. No. 13/167,444. |
Communication dated Jul. 25, 2014, issued by the State Intellectual Property Office of the P.R. of China in counterpart Application No. 200980157331.3. |
An Office Action dated Oct. 14, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030. |
Supplementary European Search Report dated Oct. 23, 2014 which issued during the prosecution of Applicant's European App No. 10826224.7. |
An International Search Report & Written Opinion both dated Mar. 21, 2014, which issued during the prosecution of Applicant's PCT/IL13/50992. |
An Office Action dated Sep. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/504,870. |
An Office Action dated Oct. 3, 2014, which issued during the prosecution of U.S. Appl. No. 13/749,153. |
An International Search Report & Written Opinion both dated Sep. 8, 2009, which issued during the prosecution of Applicant's PCT/IL09/00593. |
An International Preliminary Report on Patentability dated Jun. 10, 2009, which issued during the prosecution of Applicant's PCT/IL07/01503. |
Notice of Allowance dated Jan. 22, 2015, which issued during the prosecution of U.S. Appl. No. 13/167,444. |
Notice of Allowance dated Dec. 9, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,476. |
An English translation of an Office Action dated Dec. 12, 2013 which issued during the prosecution of Chinese Patent Application No. 200980157331.3. |
An International Search Report and a Written Opinion both dated Nov. 14, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000404. |
Dictionary.com definition of “lock”, Jul. 29, 2013. |
A Restriction Requirement dated Jan. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026. |
A Restriction Requirement dated Nov. 14, 2011 which issued during the prosecution of U.S. Appl. No. 12/548,991. |
An Office Action dated Jan. 13, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013. |
A Notice of Allowance dated May 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/689,635. |
An International Preliminary Report on Patentability dated May 1, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000890. |
A Notice of Allowance dated Jan. 7, 2014, which issued during the prosecution of U.S. Appl. No. 12/926,673. |
Restriction Requirement dated May 5, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868. |
Supplementary European Search Report dated Aug. 4, 2014 which issued during the prosecution of Applicant's European App No. 11 81 1934.6. |
An Office Action dated Aug. 5, 2010 which issued during the prosecution of U.S. Appl. No. 11/950,930. |
An Office Action dated Feb. 17, 2010 which issued during the prosecution of U.S. Appl. No. 11/950,930. |
Restriction Requirement dated Nov. 14. 2011, which issued during the prosecution of U.S. Appl. No. 12/689,635. |
Supplementary European Search Report dated Jan. 21, 2014 which issued during the prosecution of Applicant's European App No. 11 78 6226. |
An Office Action dated Jun. 4, 2014, which issued during the prosecution of U.S. Appl. No. 12/840,463. |
Maisano, The double-orifice technique as a standardized approach to treat mitral . . . European Journal of Cardio-thoracic Surgery 17 (2000) 201-205. |
AMPLATZER® Cribriform Occluder. A patient Guide to Percutaneous, Transcatheter, Atrial Septal Defect Ciosuer, AGA Medical Corporation, Apr. 2008. |
An Office Action dated Jun. 10, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,492. |
Supplementary European Search Report dated Sep. 25, 2015, which issued during the prosecution of Applicant's European App No. 09794095.1. |
An Office Action dated Apr. 2, 2015, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
An Office Action dated Mar. 23, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013. |
Supplementary European Search Report dated Dec. 23, 2014 which issued during the prosecution of Applicant's European App No. 10834311. |
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954. |
Notice of Allowance dated Dec. 20, 2013, which issued during the prosecution of U.S. Appl. No. 12/437,103. |
An International Preliminary Report on Patentability dated Dec. 23, 2014, which issued during the prosecution of Applicant's PCT/IL2012/050451. |
An International Preliminary Report on Patentability dated Dec. 23, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000250. |
An Office Action dated Oct. 5, 2015, which issued during the prosecution of U.S. Appl. No. 14/246,417. |
An Office Action dated Aug. 7, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756. |
An Invitation to pay additional fees dated Jan. 31, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050861. |
An Invitation to pay additional fees dated Jan. 31, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050860. |
An Office Action dated Sep. 19, 2014, which issued during the prosecution of U.S. Appl. No. 13/044,694. |
A communication from the European Patent Office dated Oct. 19, 2012 which issued during the prosecution of European Application No. 11792047.0. |
An Office Action dated. Oct. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/996,954. |
An Office Action dated Oct. 1, 2015, which issued during the prosecution of U.S. Appl. No. 14/141,228. |
Notice of Allowance dated May 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/667,090. |
Notice of Allowance dated Apr. 12, 2016, which issued during the prosecution of U.S. Appl. No. 14/667,090. |
Amendment, Terminal Disclaimer and Extension dated Jun. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991. |
An Office Action dated Jun. 18, 2015, which issued during the prosecution of U.S. Appl. No. 14/551,951. |
A Notice of Allowance dated Feb. 2, 2015, which issued during the prosecution of U.S. Appl. No. 13/504,870. |
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
An Office Action dated Mar. 16, 2015, which issued during the prosecution of U.S. Appl. No. 14/084,426. |
European Search Report dated Jun. 24, 2016, which issued during the prosecution of European Patent Application No. EP 12847363. |
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226. |
An Office Action dated Jul. 20, 2016, which issued during the prosecution of U.S. Appl. No. 14/246,417. |
Notice of Allowance dated May 22, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153. |
An Office Action dated Jun. 18, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,030. |
An Office Action dated Jun. 13, 2014, which issued during the prosecution of U.S. Appl. No. 13/141,606. |
An English translation of an Office Action dated Jul. 17, 2015 which issued during the prosecution of Chinese Patent Application No. 201080059948.4. |
Notice of Allowance dated Sep. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/141,606. |
An International Search Report and a Written Opinion both dated Oct. 27, 2016, which issued during the prosecution of Applicant's PCT/IL2015/050792. |
An International Preliminary Report on Patentability dated Jun. 9, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050992. |
An Office Action dated May 3, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,030. |
A Notice of Allowance dated. Sep. 2, 2016, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
An Office Action dated Feb. 3, 2015, which issued during the prosecution of U.S. Appl. No. 14/084,426. |
Search Report in European Patent Application 10826224.7 dated Nov. 16, 2015. |
An International Preliminary Report on Patentability dated Apr. 28, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050861. |
An English Translation of an Office Action dated Nov. 24, 2015, which issued during the prosecution of Israel Patent Application No. 223448. (the relevant part only). |
Notice of Allowance dated Nov. 12, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007. |
Notice of Allowance dated Jan. 7, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,007. |
Notice of Allowance dated Apr. 20, 2011, which issued during the prosecution of U.S. Appl. No. 12/484,512. |
Notice of Allowance dated Mar. 23, 2011, which issued during the prosecution of U.S. Appl. No. 12/484,512. |
An Office Action dated May 23, 2016, which issued during the prosecution of U.S. Appl. No. 14/209,171. |
European Search Report dated Jul. 8, 2016, which issued during the prosecution of Applicant's European App No. 13849843.1. |
Notice of Allowance dated Nov. 23, 2016, which issued during the prosecution of U.S. Appl. No. 14/141,228. |
Supplementary European Search Report dated Mar. 23, 2015, which issued during the prosecution of Applicant's European App No. 11792047.0. |
Supplementary European Search Report dated Apr. 29, 2015, which issued during the prosecution of Applicant's European App No. 14200202. |
An International Search Report and a Written Opinion both dated Apr. 15, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050861. |
Notice of Allowance dated Nov. 17, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226. |
European Search Report dated Nov. 4, 2015, which issued during the prosecution of European Patent Application No. EP 1077 2091.4. |
Notice of Allowance dated Dec. 19, 2016, which issued during the prosecution of U.S. Appl. No. 14/242,151. |
European Search Report dated Jul. 15, 2016, which issued during the prosecution of Applicant's European App No. 13849947.0. |
An Office Action dated Jun. 17, 2016, which issued during the prosecution of U.S. Appl. No. 14/357,040. |
Notice Notice of Allowance dated Dec. 30, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,030. |
An Office Action dated Mar. 23, 2015, which issued during the prosecution of European Patent Application No. EP 09834225.6. |
Notice of Allowance dated Aug. 3, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153. |
A Notice of Allowance dated Sep. 16, 2016, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
A Notice of Allowance dated Jul. 30, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007. |
A Notice of Allowance dated Sep. 3, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693. |
An International Preliminary Report on Patentability dated Apr. 28 2015, which issued during the prosecution of Applicant's PCT/IL2013/050860. |
An Office Action dated Jan. 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/128,756. |
An Office Action dated Apr. 8, 2016, which issued during the prosecution of U.S. Appl. No. 14/141,228. |
An Office Action dated Apr. 7, 2016, which issued during the prosecution of U.S. Appl. No. 14/242,151. |
An Office Action dated Jan. 4, 2016, which issued during the prosecution of U.S. Appl. No. 14/589,100. |
Communication from the European Patent Office dated Jun. 11, 2015, which issued during the prosecution of European Patent Application No. 11811934. |
Notice of Allowance dated Aug. 19, 2013, which issued during the prosecution of U.S. Appl. No. 11/908,906. |
An Office Action dated Jun. 8, 2012, which issued during the prosecution of U.S. Appl. No. 11/908,906. |
An Office Action dated Dec. 21, 2013, which issued during the prosecution of U.S. Appl. No. 11/908,906. |
A Restriction Requirement dated Aug. 5, 2011, which issued during the prosecution of U.S. Appl. No. 11/908,906. |
An Office Action dated Oct. 23, 2012, which issued during the prosecution of Japanese Patent Application No. 2009-539871. |
U.S. Appl. No. 60/662,616, filed Mar. 17, 2005. |
U.S. Appl. No. 60/700,542, filed Jul. 18, 2005. |
An Office Action dated May 4, 2016, which issued during the prosecution of U.S. Appl. No. 14/589,100. |
An Office Action dated Jun. 14, 2016, which issued during the prosecution of U.S. Appl. No. 14/273,155. |
An International Search Report and a Written Opinion both dated Jan. 25, 2016, which issued during the prosecution of Applicant's PCT/IL2015/051027. |
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/084,426. |
An International Preliminary Report on Patentability dated Apr. 26, 2016, which issued during the prosecution of Applicant's PCT/IL2014/050914. |
An Office Action dated May 11, 2016, which issued during the prosecution of U.S. Appl. No. 14/128,756. |
An English Translation of an Office Action dated Sep. 15, 2016, which issued during the prosecution of Israel Patent Application No. 243837. (the relevant part only). |
Notice of Allowance dated Sep. 14, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013. |
Notice of Allowance dated Jul. 24, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013. |
Notice of Allowance dated Jul. 8, 2015. which issued during the prosecution of U.S. Appl. No. 13/707,013. |
Ahmadi, Ali, et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522. |
Assad. Renato S. “Adjustable Pulmonary Artery Banding.” (2014). |
Ahmadi A., G. Spllner, and Th Johannesson. “Heodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319. |
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545. |
Park, Sang C., et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484. |
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154. |
An Invitation to pay additional fees dated Aug. 18, 2016, which issued during the prosecution of Applicant's PCT/IL2016/050433. |
Daebritz, S., et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52. |
Notice of Allowance dated Mar. 1, 2017, which issued during the prosecution of U.S. Appl. No. 14/357,040. |
An Office Action dated Sep. 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/141,228. |
An International Search Report and a Written Opinion both dated Oct. 17, 2016, which issued during the prosecution of Applicant's PCT/IL2016/050433. |
An Office Action dated Oct. 21, 2016, which issued during the prosecution of U.S. Appl. No. 14/567,472. |
Notice of Allowance dated Jul. 7, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954. |
Notice Notice of Allowance dated Nov. 18, 2016, which issued during the prosecution of U.S. Appl. No. 13/740,582. |
Notice of Allowance dated Oct. 20, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954. |
Amendment and Extension dated Apr. 11, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,952. |
Notice of Allowance dated Dec. 8, 2016, which issued during the prosecution of U.S. Appl. No. 14/246,417. |
Notice of Allowance dated Dec. 21, 2016, which issued during the prosecution of U.S. Appl. No. 14/246,417. |
Notice of Allowance dated Dec. 29, 2016, which issued during prosecution of U.S. Appl. No. 14/246,417. |
Notice of Allowance dated Jan. 3, 2017, which issued during the prosecution of U.S. Appl. No. 14/128,756. |
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391. |
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3. |
An International Preliminary which issued during the prosecution Report on Patentability dated Sep. 18, 2007, which issued during the prosecution of Applicant's PCT/IL2006/000342. |
An International Search Report and a Written Opinion both dated May 30, 2007, which issued during the prosecution of Applicant's PCT/IL2006/000342. |
An Advisory Action dated Feb. 4, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,476. |
An English Translation of an Office Action dated May 31, 2012, which issued during the prosecution of Israel Patent Application No. 209946. (the relevant part only). |
A Restriction Requirement dated Jul. 8, 2015, which issued during the prosecution of U.S. Appl. No. 14/141,228. |
Notice of Allowance dated Sep. 22, 2016, which issued during the prosecution of U.S. Appl. No. 13/740,582. |
A Restriction Requirement dated Sep. 4, 2015, which issued during the prosecution of U.S. Appl. No. 14/589,100. |
Notice of Allowance dated Jan. 29, 2016, which issued during the prosecution of U.S. Appl. No. 14/551,951. |
An International Search Report and a Written Opinion both dated May 28, 2014, which issued during the prosecution of Applicant's PCT/IL14/050027. |
An Office Action dated Aug. 22, 2016, which issued during the prosecution of U.S. Appl. No. 14/084,426. |
An Office Action dated Dec. 20, 2016, which issued during the prosecution of UK Patent Application No. 1611910.9. |
Notice of Allowance dated Aug. 7, 2015, which issued during the prosecution of Chinese Patent Application No. 200980157331.3. |
An Office Action dated Jan. 20, 2017, which issued during the prosecution of U.S. Appl. No. 14/650,114. |
An Office Action dated Feb. 27, 2017, which issued during the prosecution of U.S. Appl. No. 15/249,957. |
An Office Action dated Feb. 2, 2017, which issued during the prosecution of U.S. Appl. No. 14/209,171. |
An Office Action dated Jan. 25, 2017, which issued during the prosecution of Chinese Patent Application No. 201510681407.X. |
An Office Action dated. Dec. 13, 2016, which issued during the prosecution of Applicant's European App No. 11786226.8. |
An Interview Summary dated Apr. 4, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,952. |
An Office Action dated Mar. 3, 2017, which issued during the prosecution of Applicant's European App No. 11792047.0. |
An Office Action dated May 28, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756. |
An International Search Report & Written Opinion both dated May 12, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050914. |
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting Oct. 7-11, Book of Procees. (2000). |
An Office Action dated Feb. 10, 2017, which issued during the prosecution of U.S. Appl. No. 14/990,172. |
An Office Action dated Apr. 6, 2017, which issued during the prosecution of U.S. Appl. No. 14/437,062. |
Notice of Allowance dated Apr. 13. 2017, which issued during the prosecution of U.S. Appl. No. 14/650,114. |
An Office Action dated Mar. 24, 2017, which issued during the prosecution of U.S. Appl. No. 14/273,155. |
Number | Date | Country | |
---|---|---|---|
20170258588 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13319030 | US | |
Child | 15474632 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12435291 | May 2009 | US |
Child | 13319030 | US | |
Parent | 12437103 | May 2009 | US |
Child | 12435291 | US | |
Parent | 12548991 | Aug 2009 | US |
Child | 12437103 | US | |
Parent | 12689635 | Jan 2010 | US |
Child | 12548991 | US | |
Parent | 12689693 | Jan 2010 | US |
Child | 12689635 | US |