Hereinafter, an embodiment and examples according to the present invention are described with reference to the accompanying drawings in order to provide a clear understanding of the present invention. The following embodiment and examples are only instances in which the present invention has been embodied, and do not limit the technical scope of the present invention.
The present invention is incorporated into the deposit removing device that removes deposit adhered to the plate-like member by jetting compressed gas from a jetting hole of a nozzle body in which the jetting hole is formed, the deposit removing device being configured so that the nozzle body is supported so as to be movable in a direction substantially perpendicular to the surfaces of the plate-like member.
With such an arrangement, the present invention allows the nozzle body to float in a state of being always spaced apart from the plate-like member by a substantially fixed distance. For example, when the above-described nozzle body is located on the top surface side of the plate-like member, the nozzle body floats in a state of being spaced apart from the plate-like member by a substantially fixed distance. By virtue of this arrangement, even if the surface of the plate-like member are moved up and down by vibrations occurring to the plate-like member or deformation, such as warpage, of the plate-like member, the nozzle body moves up and down following the up-and-down movements of the plate-like member, so that the spacing distance from the surface of the plate-like member to the nozzle body are always kept at a fixed value. As a result, it is possible to set the distance between the plate-like member and the nozzle body to several millimeters or less, and specifically, to be on the level of 0.1 millimeters. Hitherto, because the spacing distance has been set to several millimeters, a sufficient deposit removing effect has not been obtainable unless compressed gas with a relatively high pressure is supplied. However, according to the present invention, by further reducing the spacing distance, it is possible to obtain the deposit reducing effect that is equivalent to or larger than the conventional deposit removing device, even using compressed gas with a lower pressure. Especially when a plurality of the jetting ports are used, a plurality of acting forces on the nozzle body due to the jetting pressure of compressed gas strike balance therebetween, so that this balance allows the nozzle body to more stably float in a state of being always spaced apart from the plate-like member by a substantially fixed distance.
Also, by reducing the distance between the plate-like member and the nozzle body, the jetting pressure of compressed gas jetted to the plate-like member increases, which makes is possible to remove deposit on the plate-like member rolled by a rolling machine at high speed, i.e., the plate-like member conveyed at a high speed.
It is preferable that the total area of the jetting port be formed so as to be two third the area of the opposed surface. This is a most preferable condition for levitating the nozzle body by the jetting pressure of compressed air and stably maintaining the nozzle body at the levitated position. This condition has been found from the experimental results obtained by the inventors of the present invention.
Possible jetting ports formed in the opposed surface of the nozzle body may include such ones that are arranged at spacings in a direction substantially perpendicular to the conveying direction of the plate-like member and the moving direction.
Also, in the opposed surface of the nozzle body, providing a planar nozzle having a long opening in the direction substantially perpendicular to the conveying direction of the plate-like member and the moving direction of the nozzle body, allows compressed gas to be uniformly jetted across the full width of the plate-like member.
Furthermore, in order to easily separate the nozzle body from the plate-like member, it is preferable that the main material constituting the nozzle body be a lightweight material such as a plastic material.
Moreover, in order to make removable deposit on the surface both on the top surface side and bottom surface side of the plate-like member, it is preferable that the nozzle body be arranged on the surface either one of the top surface side or bottom surface side of the plate-like member, or the nozzle bodies be arranged on both surfaces.
Furthermore, it is preferable that the nozzle body be elastically supported. Thereby, when the nozzle body is disposed on the bottom surface side of the plate-like member, it is possible to hold the nozzle body in a state of being always spaced apart from the plate-like member by a substantially fixed distance by a balance between the jetting pressure of compresses air and an elastic energization force acting on the plate-like member.
Also, configuring the nozzle bodies provided both on the top side and bottom side of the plate-like member to be elastically supported, allows the nozzle body to be prevented from overshooting or undershooting in the up-and-down direction, or hunting, even when the plate-like member abruptly fluctuates up and down.
In an aspect of the present invention, a depressed gas-reservoir is provided in the opposed surface, and the nozzle body has a communicating hole for allowing the inside of the gas reservoir to communicate with the outside of the nozzle body. In such an aspect, when compressed gas is jetted to the plate-like member and the gas reflects from the plate-like member to thereby collide the opposed surface, the compressed gas jetted from the jetting port is accumulated inside the gas reservoir, and gas inside the gas reservoir is guided outside the nozzle body through the communicating hole. This makes it possible that the deposit stripped off by the jetting of the compressed gas stays in the gas reservoir, and that the staying air can be discharged to the outside. As a result, in particular, even if the deposit is a viscous material that is prone to adhere to the opposed surface, e.g., a viscous material such as oil or dust containing oil, it is possible to reliably prevent the deposit from colliding against the opposed surface and adhering thereto, and to reduce clogging of the jetting port or re-adhesion of the deposit to the plate-like member.
In this case, providing suction means for sucking gas in the air reservoir through the communicating hole, allows gas that contains deposit to be discharged.
It is preferable that there be provided deposit separating/recovering means for separating and recovering deposit contained in gas discharged from the communicating hole. This eliminates deposit discharged from the communicating hole being dispersed in the air, thereby implementing a deposit removing device that is friendly to human bodies and the environment. It is also prevented that the discharge deposit flutters down on the plate-like member to thereby re-adheres thereto.
Furthermore, the separating/recovering means is deemed to separate and recover liquid deposit alone from the gas that contains deposit. If the liquid deposit is reusable one such as oil or cleaning liquid, it can be exclusively recovered and reused.
The deposit removing device according to another aspect of the present invention includes drive means that is connected to the nozzle body, and that moves the nozzle body in a direction substantially perpendicular to the surface of the plate-like member; and drive control means that moves the nozzle body in a direction away from the plate-like member by drive-controlling the drive means, when the pressure of compressed gas supplied to the nozzle body becomes lower than a specified pressure that has been predetermined. Thereby, even if, e.g., due to failure or the like of a compressed air tank or a pump for feeding the compressed air, the pressure of the compressed air becomes lower than the specified pressure, and compressed air sufficient for floating (levitating) the nozzle body is not supplied, the nozzle body is forcedly separated from the plate-like member before the nozzle body falls down and collides against the plate-like member. Thus, the plate-like member is protected from failure caused by the collision.
Now, the schematic construction of an air control system of the deposit removing device X according to the embodiment of the present invention with reference to a circuit diagram in
The present deposit removing device X is a device for removing deposit including liquid such as rolling oil or cleaning liquid, or chips adhered to a plate-like member T rolled by a rolling machine or the like and made of a metal or nonmetal. As shown in
The above-described controller 1 is configured to include a control unit such as sequencer, and for example, upon detecting a start signal being inputted from the outside, the control unit magnetizes the solenoid valve 2 to thereby switch the solenoid valve 2 from a closed position to open position. Compressed air supplied via the solenoid valve 2 is decompressed to a fixed pressure predetermined by a pressure reducing valve 3, and after having cleared of water vapor and/or dusts by an air filter 4 with a drain, it is supplied to the nozzle body 100.
Next, the nozzle body 100 will be described with reference to
As shown in
An opposed surface 102 of the nozzle body 100, facing the top surface T1 of the plate-like member T, has four jetting ports 101. These four jetting ports 101 are arranged at spacings (in the illustrated example, at equal spacings) in the direction substantially perpendicular to a moving direction W1 (refer to
In the opposed surface 102, a plurality of grooves 106 (in this embodiment, five grooves) in parallel with the conveying direction W2 of the plate-like member T are formed at predetermined spacings, in order to guide the compressed air jetted from the jetting ports 101 to the upstream side of the conveying direction W2 of the plate-like member T, and blow off the deposit that has been stripped off, toward the upstream side in the conveying direction W2. One end 106a of the groove 106 on the upstream side in the conveying direction W2 of the plate-like member T is formed into a divergent shape, and opened to the side surface of the conveying direction W2.
In the groove 106 formed parallel to the conveying direction W2, there is a possibility that the stripped-off deposit may be again adhered to the plate-like member T. This being the case, as shown in
In the surface 103 opposite to the opposed surface 102, there is provided a supply port 104 of compressed air that has been supplied from the air pressure source 5 (
Also, on the surface 103 of the nozzle body 100, there are provided slide bars 111, and at an upper portion thereof, a slide guide 112 that supports the slide bar 111 so as to be movable vertically is arranged as appropriate. The slide bar 111 and slide guide 112 (hereinafter, these are collectively referred to as a slide mechanism 110) are one example of means for supporting the nozzle body 100 so as to be movable in the direction W1 substantially perpendicular to the top surface T1 of the plate-like member T. Of course, the above-described means is not limited to the slide mechanism 110. For example, the above-described means may include one for elastically supporting the nozzle body 100 so as to be movable in the direction W1 substantially perpendicular to the top surface T1, by using a mechanism (refer to
Here, the description will be made of operations of the nozzle body 100 when compressed air is supplied to the nozzle body 100 with the above-described arrangement. When compressed air is supplied from the supply port 104, the supplied compressed air is jetted from jetting ports 101 through the communicating path 105 (refer to
After the compressed air has been blown on the top surface T1 of the plate-like member T, the pressure of the compressed air acts on the nozzle body 100, as a force attempting to separate the nozzle body 100 from the plate-like member T, namely, a force attempting to boost the nozzle body 100 upward in the moving direction W1. That is, the pressure of the compressed air operates on the nozzle body 100 as the boosting force. Under the action of the boosting force on the nozzle body 100, the nozzle body 100 levitates from the plate-like member T. When the nozzle body 100 levitates under the boosting force, there occurs a gap d between the opposed surface 102 of the nozzle body 100 and the plate-like member T. As a result, an air pressure layer is formed in this gap by a pressure of the air jetted from the nozzle body 100, and thereby, the nozzle body 100 levitates at a position spaced apart from the plate-like member T by a distance of d0. In this embodiment, on a principle described later, the compression pressure of the compressed air is adjusted by the pressure reducing valve 3 so that the nozzle body 100 is levitated from the top surface T1 of the plate-like member T by the distance d0, and that the nozzle body 100 floats at the pertinent position.
The nozzle body 100 is floated by the jetting pressure of the compressed air that is blown on in this manner, and simultaneously, liquid such as rolling oil or cleaning liquid, and chips, soils, or the like that have been adhered to the top surface T1 of the plate-like member T, are stripped off. Also, because the jetted compressed air is let to flow toward the upstream side of the conveying direction W2 of the plate-like member T along the grooves 106, the stripped-off deposit moves with the flow and is blown off toward the upstream side of the conveying direction W2 through the gap between the nozzle body 100 and the top surface T1 of the plate-like member T.
Next, the relationship between the force F (vertical axis; hereinafter referred to as an acting force F) acting on the nozzle body 100, and the spacing distance d (horizontal axis) between the nozzle body 100 and the top surface T1 of the plate-like member T will be described with reference to
As can be seen from the graph in
When the top surface T1 of the plate-like member T moves downward due to vibrations or the like occurring during the rolling or conveying of the plate-like member T, and the spacing distance d becomes a distance d1, which is larger than the distance d0 (i.e., d1>d0), the resistance against the flow of compressed air in the space corresponding to the spacing distance d decreases, so that the compressed air becomes easy to escape, leading to an increase in the flow speed of flowing-out air. As a consequence, as shown in
On the other hand, when the spacing distance d becomes a distance d2 that is smaller than the distance d0 (i.e., d2<d0), contrary to the foregoing, the resistance against the flow of compressed air in the space corresponding to the spacing distance d increases, so that the compressed air becomes difficult to escape, leading to an decrease in the flow speed of flowing-out air. As a consequence, as shown in
In this way, in the present deposit removing device X, even if the top surface T1 of the plate-like member T moves up and down, the nozzle body 100 moves up and down following the up-and-down moving of the top surface T1, and therefore, the spacing distance d from the top surface T1 of the plate-like member T to the nozzle body 100 is always kept at a fixed value. That is, even if the plate-like member T vibrates, the fixed spacing distance is maintained. Hence, even if the spacing distance d is set to a distance d0 that is as close as possible to zero, e.g., 0.1 mm, there is no possibility that the nozzle body 100 may make contact with the plate-like member T, and that the plate-like member T is suffer damage as a result of the above-described contact.
When the plate-like member T abruptly moves up and down, the nozzle body 100 also abruptly moves up and down following the up-and-down moving of the top surface T1, and therefore, there is an apprehension that the nozzle body 100 may overshoot or undershoot in the up-and-down direction. Furthermore, these overshoot and undershoot may periodically occur to thereby cause hunting of the nozzle body 100. Therefore, in order to prevent the overshoot, hunting, or the like, it is desirable for the nozzle body 100 to be elastically supported by elastic members such as springs. Possible concrete countermeasures include a method of interposing helical springs to the slide bars 111, or a method using slide bars 111 constituted of damping members such as oil dampers.
Meanwhile, the opening area of each of the jetting ports 101 formed in the opposed surface 102 of the nozzle body 100 and the area of the opposed surface 102 constitute important elements in levitating the nozzle body 100. The reason for that is described below with reference to
As shown in
On the other hand, since deposit on the plate-like member T is removed by compressed air flowing on the opposed surface 102 of the nozzle body 100, making the area S2 too small as compared with the S1 makes it difficult to remove deposit, resulting in a reduced deposit reducing effect.
With this being the situation, by repeated experiments and researches, the inventors of this application has found that, as a condition satisfying both of the condition for floating the nozzle body 100 with the distance d0 maintained, and the condition for increasing the deposit reducing effect, the following relation is optimum.
S1<2S2 (1)
3S1<2S (2)
That is, if the jetting ports 101 are formed so that the sum of the area of all openings of the jetting ports 101 is smaller than substantially two third the area of the opposed surface 102, the balance between the boosting force and the adsorption force become easy to be struck without being affected by the pressure of compressed air, so that it is possible to cause the nozzle body 100 to stably float following vibrations of the plate-like member T, and to obtain a sufficient deposit removing effect.
In this embodiment, the compressed air pressure to be supplied to nozzle body 100 is adjusted so that the distance d0 becomes 0.1 mm, which is relatively close to 0. The reason why the spacing distance d is thus set to a value close to 0 will be explained below.
As shown in
WV2≈QV (3)
In general, when compressed air is jetted from the jetting ports 101 of the nozzle body 100, since its compression pressure is released and the compressed air is radially blown out, the flow speed V decreases as the compressed air gets away from the jetting ports 101. The air intervening in the space corresponding to the spacing distance d causes the reduction in the flow speed V, as a resistance. Therefore, when the flow rate Q is constant, the smaller the spacing distance d, the higher is the flow speed V, thereby increasing the force for removing deposit. For the above-described reason, in this embodiment, the compressed air pressure to be supplied to the nozzle body 100 is set so that the distance d0 becomes 0.1 mm, which is a value close to 0.
Next, a deposit removing device X1 according to an example 1 of the present invention will be described with reference to
The deposit removing device X1 according to this embodiment is embodied into the deposit removing device X of the above-described embodiment in that, as shown in
As shown in
Next, a deposit removing device X2 according to an example 2 of the present invention will be described with reference to
In this example, a nozzle body 100b shown in
Also, in nozzle body 100b, there is provided a planar nozzle 108 having a long opening in the direction W3 substantially perpendicular to the conveying direction W2 of the plate-like member T and the moving direction W1 of the nozzle body 100b. The planar nozzle 108 is connected to the communicating path 105 via the communicating path (not shown), and supplies compressed air from the supply port 104 thereto. Forming such a planar nozzle 108 allows the compressed air to be uniformly jetted across the full width of the top surface T1 of the plate-like member T. For the purpose of securing a discharge amount or the like, another air supply source may be connected to the planar nozzle 108.
In order to move the nozzle body 100, 100a, or the like to its moving direction W1, the above-described jetting ports 101 are each formed so as to jet compressed air substantially vertically to the plate-like member T. However, the compressed air having been vertically jetted to the plate-like member T solely performs the function of stripping off deposit, and does not perform so much function of blowing off the adhered deposit toward the upstream side in the conveying direction W2 of the plate-like member T. Also, because some of the compressed air jetted flows into the groove 106, a force for stripping off deposit decreases. This being the case, in this example, as shown in
Also, as shown in
In this example, a depressed gas-reservoir 109a is provided in the opposed surface 102, and the nozzle body 100b has the air release hole 109b for allowing the inside of the gas reservoir 109a to communicate with the outside of the nozzle body 100b. As a result, in this example, when compressed gas is jetted to the plate-like member T and the gas reflects from the plate-like member T to thereby collide the opposed surface 102, the compressed gas jetted from the jetting ports 101 is accumulated inside the gas reservoir 109a, and gas inside the gas reservoir 109a is guided outside the nozzle body 100b through the air release hole 109b. As a result, in particular, even if the deposit is a viscous material that is prone to adhere to the opposed surface 102, e.g., a viscous material such as oil or dust containing oil, it is possible to reliably prevent the deposit from colliding against the opposed surface 102 and adhering thereto, and to reduce clogging of the jetting ports 101 or re-adhesion of the deposit to the plate-like member T.
There may be provided a blower fan (one example of suction means) connected to the air release hole 109b using piping or a flexible hose. Driving the blower fan to suck air in the air reservoir 190a through the air release hole 109b, allows air that contains deposit to be even more efficiently discharged.
Next, an example 3 will be described with reference to
Possible types of the oil separator include various ones, but here, a device is exemplified that has therein an oil filter 120a for separating rolling oil alone from air, and that has a drain layer 120b with a drain hole 120c, for storing the rolling oil separated by the oil filter 120a.
The above-described injector 122 is connected to drain hole 120c and used for sucking rolling oil from the drain layer 120b and guiding it to the oil tank 130, taking advantage of a negative pressure occurring in the injector 122 by recycling back compressed air supplied from the outside by the injector 122. During operation of the blower 121, in the oil separator 120, air flows along a flow path from the nozzle body 100b through the oil filter 120a to the blower 121, and a negative pressure caused by this air flow makes it difficult that the rolling oil in the drain layer 120b is discharged from the drain hole 120c. However, since the deposit removing device X3 has the injector 122, it is possible to forcedly discharge the rolling oil even during operation of the blower 121.
In the deposit removing device X3 with this arrangement, when air discharged from the air release hole 190b is fed into the oil separator 120, the rolling oil is separated. The air cleared of the rolling oil is sucked out by the oil separator 120 and discharged outside. On the other hand, the rolling oil separated by the oil filter 120a is stored in the drain layer 120b. Then, the rolling oil accumulated in the drain layer 120b is sucked out from the drain hole 120c by the injector 122 and discharged toward the oil tank 130.
If compressed air is supplied all the time, when the rolling oil in the drain layer 120b is all discharged, air is undesirably discharged from the drain hole 120c. As a result, there occurs a possibility that not only the separation efficiency of rolling oil decreases, but also the blower 121 is subjected to a high load. It is therefore desirable to supply the injector 122 with compressed air intermittently, i.e., at predetermined intervals. Alternatively, the arrangement may be such that a flow switch or the like is provided in the drain layer 120b in advance, and that, on the condition that an output signal indicating that a predetermined amount of rolling oil has been stored has been received, a compressed air changeover valve or the like is activated.
In this manner, in the deposit removing device X3, since air and rolling oil are separated, and the rolling oil is recovered in the oil tank 130, air that contains rolling oil does not have to be discharged in the air, thereby allowing damage to human bodies and environment to be eliminated. Since the discharged rolling oil is recovered, the reuse of rolling oil is feasible.
In this example, the case where rolling oil is separated and recovered has been described, but for example, even in the case where liquid deposit other than rolling oil is separated and recovered, the deposit removing device X3 according to this example can be applied.
Also, providing a filter (not shown) that separates solid deposit such as dusts from the discharged air, instead of using the above-described oil filter, allows solid deposit to be separated and recovered.
Next, an example 4 of the present invention will be described with reference to
A deposit removing device X5 according to an example 5 of the present invention described here is constructed so as to maintain buoyancy of the nozzle body 100.
Specifically, as shown in the circuit diagram in
The above-described cylinder 140 is a single-acting cylinder having therein an elastic member 140a such as a spring, and a piston 140b. When compressed air having a pressure not lower than a predetermined pressure (air pressure allowing the piston 140b to exert at least a force higher than an energization force by the elastic member 140a) is supplied to an air supply chamber 140d, the above-described piston 140b operates in a direction opposite to that of the energization force of the elastic member 140a. This cylinder 140 is installed to a support member 141 so that the piston 140b operates in a vertical direction, and that the piston 140b operates in an upward direction under the supply of the compressed air.
Also, a piston shaft 140c extending under the piston 140b is connected to a support member 142 for supporting the nozzle body 100 via the above-described elastic member 113 (refer to
The above-described solenoid valve 2a is a three-way solenoid valve having one input port and two output ports, and its input port P1 is pipe-connected to the air pressure source 5. On the other hand, out of the two output ports, a port 2 that communicates with the air pressure source 5 under demagnetization is pipe-connected to the air supply chamber 140d of the cylinder 140, while a port 3 that communicates with the air pressure source 5 under magnetization is pipe-connected to the pressure reducing valve 3.
The pressure switch 7 transmits a detection signal to the controller 1 when the pressure of compressed air becomes lower than a specified pressure that has been predetermined. This specified pressure is a minimum pressure required for levitating the nozzle body 100.
In the present deposit removing device X5 with such an arrangement, when the detection signal is outputted from the pressure switch 7 to the controller 1 in the process of the floating (levitating) of the nozzle body 100 under the supply of compressed air, the three-way solenoid valve 2a is demagnetized by the controller 1. In response to this, the three-way solenoid valve 2a operates, the output port P3 is closed, and output port P2 is opened. Thereafter, compressed air is supplied to the air supply chamber 140d via the output port P2. Here, the controller 1, which controls the three-way solenoid valve 2a as described above, corresponds to the drive control means.
In the cylinder 140, when compressed air is supplied to the air supply chamber 140d, the piston 140b moves upward, and the nozzle body 100 is lifted upward as the result of the movement of the piston 140b.
In this way, when the pressure of compressed gas supplied to the nozzle body 100 becomes lower than the specified pressure, since the nozzle body 100 is lifted by the cylinder 140, the plate-like member T is protected from failure due to the fall of the nozzle body 100.
In this example 5, the case where the nozzle body 100 is disposed on the top surface side of the plate-like member T has been explained, but of course, as described in the above-described example 4, the present invention is likewise applicable when the nozzle body 100 is disposed on the bottom surface of the plate-like member T. Meanwhile, in this case, the cylinder 140 is arranged so as to lower the nozzle body 100 downward from the bottom surface by an operation of the piston 140b.
In this example, the instance in which a single-acting cylinder is used as drive means has been explained, but, for example, a double-acting cylinder may be used.
As stated above, the present invention is incorporated into the deposit removing device that removes deposit adhered to the plate-like member by jetting compressed gas from at least one jetting hole of the nozzle body in which the at least one jetting hole is formed. Since this deposit removing device is configured so that the nozzle body is supported so as to be movable in a direction substantially perpendicular to the surfaces of the plate-like member, it is possible to allow the nozzle body to float in a state of being always spaced apart from the plate-like member by a substantially fixed distance. By virtue of this arrangement, even if the surface of the plate-like member are moved up and down by vibrations occurring to the plate-like member or deformation, such as warpage, of the plate-like member, the nozzle body moves up and down following the up-and-down movements of the plate-like member, so that the spacing distance from the surface of the plate-like member to the nozzle body are always kept at a fixed value. As a result, it is possible to set the distance between the plate-like member and the nozzle body to several millimeters or less, and specifically, to be on the level of 0.1 millimeters. Hitherto, because the spacing distance has been set to several millimeters, a sufficient deposit removing effect has not been obtainable unless compressed gas with a relatively high pressure is supplied. However, according to the present invention, by further reducing the spacing distance, it is possible to obtain the deposit reducing effect that is equivalent to or larger than the conventional deposit removing device, even using compressed gas with a lower pressure. Especially when a plurality of the jetting ports are used, a plurality of acting forces on the nozzle body due to the jetting pressure of compressed gas strike balance therebetween, so that this balance allows the nozzle body to more stably float in a state of being always spaced apart from the plate-like member by a substantially fixed distance.
Also, by reducing the distance between the plate-like member and the nozzle body, the jetting pressure of compressed gas jetted to the plate-like member T increases, which makes it possible to remove deposit on the plate-like member rolled by a rolling machine at high speed, i.e., the plate-like member conveyed at a high speed.
Furthermore, since the depressed gas-reservoir is provided in the opposed surface, and the communicating hole is formed in the nozzle body, gas that contains deposit in the gas reservoir is discharged outside, thereby allowing a reduction in clogging of the jetting port or re-adhesion of the deposit to the plate-like member.
Moreover, since gas in the gas reservoir is forcedly sucked and discharged by the suction means, it is possible to efficiently discharge gas that contains deposit.
Also, since there is provided the deposit separating/recovering means, it is prevented that deposit discharged from the communicating hole from being dispersed in the air, thereby implementing a deposit removing device that is friendly to human bodies and the environment. It is also prevented that the discharge deposit re-adheres to the plate-like member.
Furthermore, since the separating/recovering means separates and recovers liquid deposit alone from gas that contains deposit, if the liquid deposit is reusable one such as oil or cleaning liquid, it can be exclusively recovered and reused.
Since the drive means and drive control means are provided, the nozzle body is forcedly separated from the plate-like member before the nozzle body collides against the plate-like member, thereby protecting the plate-like member from failure.
The present invention is preferably used in the industry as a technique for removing rolling oil or cleaning liquid adhered to the plate-like member after rolling, when a plate-like member such as a metal plate or resin plate is manufactured by a rolling machine.
Number | Date | Country | Kind |
---|---|---|---|
2004-229468 | Aug 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP05/14099 | 8/2/2005 | WO | 00 | 12/5/2006 |