The present invention relates to additive metal casting generally and specifically to additive metal casting employing molten metal deposition and induction heating.
Additive casting systems and methods are described, for example, in US Patent Publication 2020/0206810A1, and in U.S. Patent Applications 63/283,980 and 63/315,096 and in Israel Patent Application No. 283302, all of which are incorporated herein by reference.
Additive manufacturing systems are further described in the article “Shape Deposition Manufacturing” by Merz et al. (L. E. Weiss, R. Merz, F. B. Prinz, G. Neplotnik, P. Padmanabhan, L. Schultz, K. Ramaswami, “Shape deposition manufacturing of heterogeneous structures”, Journal of Manufacturing Systems, Volume 16, Issue 4, 1997, Pages 239-248, ISSN 0278-6125, https://doi.org/10.1016/S0278-6125(97)89095-4, https://www.sciencedirect.com/science/article/pii/S0278612597890954).
Surface treatment of metal layers with induction heating is known in the art, for example, as described in “Evaluation of surface metal layer modification processes under high-frequency induction heating”, AIP Conference Proceedings 2125, 030068 (2019); https://doi.org/10.1063/1.5117450 by V. G. Shchukina and V. N. Popovb.
There is therefore provided, in accordance with a preferred embodiment of the present invention, a deposition system for casting an object additively by producing multiple production layers having mold regions and object regions defined by the mold regions, one currently-produced production layer after the other. The deposition system includes a deposition unit, a first induction heating unit, an induction heating power supply unit, and a controller. The deposition unit deposits molten metal in a working area of the object region of the currently-produced production layer according to a building plan defining a deposition path and a deposition velocity. The first induction heating unit heats the working area and is held at a working distance above a height of a current one of the mold regions. The induction heating power supply unit is coupled to the first induction heating unit and provides current at a desired magnitude and frequency. The first induction heating unit generates from the current a magnetic field which extends to the working area. The controller controls at least the deposition unit, the first induction heating unit and the induction heating power supply unit such that the magnetic field heats a desired zone in the working area to a target temperature.
Further, in accordance with a preferred embodiment of the present invention, the deposition unit includes a movable second induction heating unit, coupled to the induction heating power supply unit and controllable by the controller. In response to the deposition path, the controller selects one of the first induction heating unit and second induction heating unit to heat selected working areas before depositing metal on the selected working areas.
Still further, in accordance with a preferred embodiment of the present invention, the second induction heating unit is physically coupled to the deposition unit and the first induction heating unit.
Moreover, in accordance with a preferred embodiment of the present invention, the controller controls the relative movement of the deposition unit, first induction heating unit and the object such that a lapse time between end of heating a specific working area and metal deposition on the specific working area is in a range between 0.05 seconds to 5 seconds.
Further, in accordance with a preferred embodiment of the present invention, the first induction heating unit includes a hairpin coil at a vertical position with respect to the working area, and a magnetic flux concentrator (MFC) surrounding the hairpin coil, the MFC to increase the range of a magnetic field to include the working area.
Still further, in accordance with a preferred embodiment of the present invention, the MFC is coupled to a heatsink with a cooling fluid flowing therethrough to cool the MFC.
Moreover, in accordance with a preferred embodiment of the present invention, the first induction heating unit includes two or more hairpin coils at a vertical position with respect to the working area, surrounded by one or more magnetic flux concentrator (MFC). The coils are arranged to flow current therein in a common direction.
Further, in accordance with a preferred embodiment of the present invention, the one or more MFCs is coupled to one or more heatsinks with a cooling fluid flowing therethrough to cool the MFC.
Still further, in accordance with a preferred embodiment of the present invention, the molten metal is deposited as one or more molten metal drops or as a molten metal stream at a predetermined deposition rate, deposition temperature and deposition diameter.
Moreover, in accordance with a preferred embodiment of the present invention, the mold region height is in a range between 2 to 12 mm.
Further, in accordance with a preferred embodiment of the present invention, the velocity of the first induction heating unit is in a range between 1 mm/sec to 100 mm/sec.
Still further, in accordance with a preferred embodiment of the present invention, the desired geometry of the desired zone is characterized by at least one parameter of a group consisting of: a width in a range of 3 to 50 mm, a width equal to or larger than a diameter of the molten metal deposited by the metal deposition unit, and a depth in a range between 1 to 20 mm.
There is also provided, in accordance with a preferred embodiment of the present invention, a deposition method for casting of an object additively by producing multiple production layers having mold regions and object regions defined by the mold regions, one currently-produced production layer after the other. The method includes depositing molten metal in a working area of the object region of the currently-produced production layer areas according to a building plan defining a deposition path and a deposition velocity, and induction heating the working area from a working distance above a height of a current one of the mold regions, the induction heating including generating a magnetic field which extends to the working area. The heating includes heating a desired zone in the working area to a pre-deposition target temperature before depositing metal on the working area to thereby effect a bonding of the molten metal with the working area, or heating a desired zone in the working area to a post-deposition target temperature after depositing metal on the working area to thereby effect a thermal cooling profile of the working areas.
Further, in accordance with a preferred embodiment of the present invention, a lapse time between end of pre-heating a specific working area and metal deposition on the specific working area is in a range between 0.05 seconds to 5 seconds.
Still further, in accordance with a preferred embodiment of the present invention, the method includes depositing the molten metal as one or more molten metal drops or as a molten metal stream at a predetermined deposition rate, deposition temperature and deposition diameter.
Moreover, in accordance with a preferred embodiment of the present invention, the height of the mold region is in a range between 2 mm to 12 mm.
Further, in accordance with a preferred embodiment of the present invention, the travel velocity is in a range between 1 mm/sec to 100 mm/sec.
Still further, in accordance with a preferred embodiment of the present invention, the desired geometry of the desired zone is characterized by at least one parameter of a group consisting of a width in a range of 3 to 50 mm, a width equal to or larger than a diameter of the molten metal deposited by the metal deposition unit, and a depth in a range between 1 to 20 mm,
Moreover, in accordance with a preferred embodiment of the present invention, the method includes controlling the pre-heating in response to sensor readings indicative of a temperature of the working area before pre-deposition heating and/or after pre-deposition heating.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
According to an aspect of the invention, there is provided a metal deposition system and method thereof. The metal deposition system may be integrated with an additive casting system and may be operable therewith for the casting of an object additively by producing multiple production layers having mold regions of predetermined mold region heights and object regions defined by the mold regions, one currently-produced production layer after the other.
Additive casting system 10 is configured to additively produce multiple production layers, one currently-produced production layer 101 after the other on a build table 116. For each currently-produced production layer 101 (also referred to herein as a build plane), a movable mold construction unit 103, along a mold path MP, may construct mold regions 102 defining object regions 105. Mold regions 102 include at least one cavity into which the molten metal may be deposited. Mold regions 102 may include cavities, inserts, supports, recesses, and the like. Once the mold region/s of a production layer are complete, a movable deposition unit 100 may deposit molten metal 104 along a deposition path DP at working areas 112 in the object regions 105 to be fabricated.
Movable deposition unit 100 comprises a movable molten metal deposition module 106 for depositing molten metal 104 in multiple working areas 112. In some embodiments, molten metal is deposited as one or more molten metal drops. In other embodiments, a stream of molten metal is provided.
In some embodiments, the deposition module 106 utilizes a metal rod with a tip. The tip is heated to a desired deposition temperature. In some embodiments, the deposition module 106 utilizes a crucible containing molten metal. The invention is not limited by the manner in which the deposition module 106 is realized.
Movable deposition unit 100 further comprises a movable first induction heating module 110 (also referred to herein as first heater 110). Deposition unit 100 may optionally comprise a movable second induction heating module 120 (also referred to herein as second heater 120).
For ease of explanation, embodiments of the invention will be explained mainly with reference to the first heater as configured for heating the working areas 112 prior to molten metal deposition (pre-deposition heating) and the second heater as configured for heating the working areas 112 after molten metal deposition (post-deposition heating)—but this is not necessarily so. The invention is not limited to this configuration, as will be detailed herein.
The deposition system scans the multiple working areas. A typical and convenient scanning style is the well-known raster scan. The deposition system may be required to scan the multiple working areas with some overlapping, scan around corners and along curved lines. The invention is not limited by the scanning type and style.
According to embodiments of the invention, the movable molten metal deposition module 106, the movable first induction heating module 110, and optionally the movable second induction heating module may each be associated with a dedicated movement module (not shown). The three dedicated movement modules may provide their assigned module (106, 110, 120) with independent translational movement along the X and Y axes across the build plane and along the Z-axis (height with respect to the build plane). The three dedicated movement modules may provide their assigned module (106, 110, 120) with rotational movement.
According to an embodiment of the invention, the movable molten metal deposition module 106, the movable first induction heating module 110, and optionally the movable second induction heating module may be physically coupled and may share a common movement module (not shown). The common movement module may provide modules 106, 110, and 120 with a shared translational movement along the X and Y axes across the build plane and along the Z-axis (to change the unit's working distance above the build plane).
In some embodiments, modules 110 and 120 may be provided with a rotational movement mechanism for rotational movement in the X-Y plane around the deposition module 106 (rotation with respect to axis A shown in
In some embodiments, the movable heating module/s may be provided with a rotational movement mechanism for a yaw rotational movement with respect to the deposition path or with respect to crucible 106. If there are multiple heating modules, they may rotate separately or together.
The invention is not limited by the type of motion technique. In some embodiments, robots may be used. In other embodiments, a gantry system or other system may provide movement in the X, Y, and Z directions. Further, the invention is not limited to the example of
Additive casting system 100 further comprises a controller 153 for controlling at least the movable mold constructing unit 103 and the movable deposition unit 100 to form the mold regions 102 and object regions 105 in accordance with a building plan. Controller 153 may be implemented digitally or via one or more analog control systems.
According to the embodiment of the invention employing pre-deposition heating, controller 153 may be further operative to control a desired pre-deposition induction heating of the working areas by controlling the operation of the first and/or second movable induction heating units.
According to the embodiment of the invention employing post-deposition heating, the controller is further operative to control a thermal cooling profile of the deposited metal by controlling the operation of the first and/or second movable induction heating units.
According to an embodiment of the invention, the first induction heating module 110 is designed to provide heat, under the control of controller 153, to the working areas 112 at a working distance WD which is greater than a height MR of the mold region 102a. In some embodiments, the mold region height MR may be in a range between 2 mm to 12 mm.
According to embodiments of the invention, the first heating module 110 may provide heat before metal deposition, and the second heating module 120 may provide heat after metal deposition. For example, the first induction heating module 110 may be configured to travel on the deposition path DP ahead of the deposition module 106; the second heating module 120 may be configured to travel on the deposition path DP after the deposition module 106. In some embodiments, the first heating module 110 and the second heating module 120 may be physically coupled to the deposition module 106 and may share a common travel mechanism allowing the first heating module 110 to lead the way along deposition path DP. Other types of unidirectional travel may apply.
According to embodiments of the invention, the function of the first induction heating module 110 and the second induction heating module 120 as providers of pre-deposition heating and/or post-deposition heating depends on the positioning of the deposition unit 106 on the deposition path. For example, the deposition unit may travel back and forth over the built plane. In one direction, the first induction heating module 110 may lead the way and may provide heating before metal deposition (pre-deposition heating). In the other direction, the second induction heating module 120 may lead the way and may provide heating before metal deposition. Other types of bidirectional travel may apply.
Additive casting system 100 may further comprise a power supply 152 for supplying power to at least the deposition system 100. Power supply 152 may be coupled to and controlled by controller 153.
Additive casting system 100 may further comprise one or more sensors 154. Sensors 154 may be configured to sense at least a temperature of working areas 112 in the object regions 105 to be fabricated. Controller 153 may be further operative to respond to the readings of sensors 154, for example, by adjusting the operation of at least the movable molten metal deposition module 106, the movable heating module 110, and optionally, the operation of the movable heating module 120.
Sensors 154 may sense additional parameters, including one or more of: the temperature of the molten metal to be deposited before and/or during deposition; the chemical composition of the molten metal to be deposited before and/or during deposition; to measure the height of the deposition unit 100 or components thereof (e.g., the heights of the first heater 110, deposition module 106 and the second heater above the build plane); to measure the volume of deposited metal, and more.
Controller 153, in response to the readings of sensors 154, may instruct the movement system (not shown) to adjust and hold a constant height above the build plane.
The invention is not limited by the mold fabrication technique. In some embodiments, in-situ techniques may be used. For example, mold construction unit 103 may comprise a mold material reservoir (not shown) and a mold material dispensing assembly (not shown) in connection therewith, to additively dispense a mold material in predefined locations to form mold regions 102 according to the build plan. In other embodiments, ex-situ mold fabrication may be applied. For example, the mold construction unit may include a plurality of remotely-produced mold structures (not shown) and may comprise a mold transfer unit (not shown) operative to transfer a remotely-produced mold structure to a predefined location in the current fabrication layer 101 according to the build plan.
According to an embodiment of the invention, system 10 further comprises an inert gas unit (not shown). At least a portion of system 10 may be maintained in an inert atmospheric environment during pre-heating and metal deposition.
As mentioned hereinabove, movable deposition unit 106 may deposit molten metal in multiple working areas 112 at the object region of the currently-produced production layer according to a building plan. The building plan may set a deposition path and a deposition velocity.
As mentioned hereinabove, due to the presence of the mold regions 102, metal deposition system 100 may remain at a working distance WD above the deposition surface.
In some embodiments, the working distance WD may be maintained over the entire build plane. For example, the working distance WD is maintained as mold height+a fixed delta in the range of 2 mm to 5 mm. In some embodiments, the working distance WD may vary in specific areas of the build plane. In some embodiments, the deposition system 100 may be positioned close to the build plane, with a working distance WD that is smaller than the mold region height. For example, in large objects (e.g., with a diameter larger than 20 cm), at working areas that are located away from the mold regions.
Applicant has realized that when depositing molten metal at a working area (a “voxel”) at a working distance above the mold region height, the voxel may not attach to the previous layer if the previous layer is cold. Therefore, the first and/or second induction heater may be designed to convey sufficient energy from the working distance WD to the working area in the object region where new molten metal will be deposited so as to support the receipt of the molten metal by the receiving working area.
According to embodiments of the invention (referred to herein as melt pool embodiments), the molten metal to be deposited and the working area should ideally have the same temperature. Therefore, the pre-heater or the heating induction module, may be configured to convey energy to the working area in the object region sufficient to generate a desired melt pool in the working area.
According to other embodiments of the invention (referred to herein as over-heating embodiments), the molten metal to be deposited may carry some of the energy to be conveyed to the working area (for example, by over-heating the molten metal to be deposited above a metal melting temperature). Therefore, the pre-heater may be configured to convey energy to the working area in the object region sufficient to heat the working areas to a below-melting state.
In addition, Applicant has realized that the first heating unit and optionally the second heating unit and the deposition unit continuously move over the workpiece. Thus, in the melt-pool embodiments, a continuous melt pool trail and continuous molten metal flow may be created. In each working area, the melt pool cools down mm behind the pre-heater, while the deposition unit moves above the working area.
For example, the deposition unit may deposit metal voxels of 1 cm3 at a rate of 1 cm3/s. The deposition unit may advance at a deposition velocity of 1 cm/s.
Applicant has realized that a shallow melt pool cools down fast and possibly too fast; however, making the melt pool too deep is a waste of energy and time. Applicant has determined that a melt pool of 15-25 mm width, for example 17 mm, which provides a depth of 3-10 mm, for example, 5 mm is sufficient to receive such 1 cm3 voxels. However, given that (1) the molten metal is only deposited after pre-heating has stopped, and (2) the angle of heating may not be perpendicular, and taking into consideration (3) the thermal and electrical properties of the metal, Applicant has determined that, for grey iron, a common manufacturing material, the desired geometry of a melt pool may be an initial width of 20 mm and an initial 5 mm depth and that the desired energy density to create such a melt pool may be 10 Kw/cm2 and above.
Similar considerations may apply to the over-heating embodiments of the invention.
In some embodiments, power supply 152 may be a high-current power supply which may generate the desired heating. In other embodiments, the pre-heating induction module may provide focused induction heating at a distance via a magnetic flux concentrator (MFC) placed around a hairpin coil having cooling means therein.
Reference is now made to
In accordance with an embodiment of the invention, pre-deposition heater 204 comprises a magnetic flux concentrator MFC 210 through which runs a hairpin coil 212, typically formed of a copper tube. Hairpin coil 212 may be bent to a U shape, the U-shape bottom part defining the active heating length, but this is not necessarily so. The invention is not limited by the geometrical properties, and other coil cross-sections and shapes may be provided, as described hereinbelow. The invention is not limited by the material used for coil 212. Copper alloys such as bronze and any other conductive material may be used.
During operation, water (or other coolant material) may flow through the coil and/or a heatsink may be coupled to magnetic flux concentrator MFC 210 (a so-called cooling jacket, not shown in
Heater 204 may be of low resistance, thus requiring a low voltage to generate a high current, and may be capable of operating at a high frequency. Heater 204 may be load-matched with a power supply (element 152 in
Both heaters 302.1 and 302.2 may be capable, under the control of a controller (e.g., controller 153 of
As illustrated in
In the embodiment illustrated in
The exemplary geometrical arrangement of the deposition system 300 in
In some embodiments, heat generated by one or both induction heating units 302.1 and 302.2 is also utilized to heat the molten metal along the passage from the deposition unit 306 to the working area.
As shown in
As mentioned hereinabove, current I, which flows through the N turns of coil 212, induces magnetic field B. Magnetic field B operates on workpiece 220 from working distance WD, where the farther away workpiece 220 is, the less of magnetic field B workpiece 220 will feel and thus, the less heat will be generated in workpiece 220.
The frequency f of power supply 230 induces a current B in workpiece 220, which current B has skin depth d. The frequency of the current B affects the skin depth d, which affects the electric coupling of the coil 212 to the workpiece. Higher frequency f improves coupling and thus improves the transfer of energy from coil 212 to the workpiece.
The power P at workpiece 220 is a function of magnetic field B, working distance WD, and skin depth d. The size of the resultant melt pool 202 is also a function of the properties of the metal being heated.
Once the desired size of melt pool 202 is defined, the parameters of power supply 230 may be determined as a function of the number of turns N of coil 212. Once these are fixed, additive casting system 100 (
For example, a melt pool in Grey Iron of initial width of 20 mm and 5 mm depth may be generated by a power supply of 2400 A and a double hairpin coil (i.e. N=2) or a power supply of 3000 A and a single hairpin (i.e. N=1).
The simulated melt pool 202 was generated with an initial width of 20 mm and a depth of 5 mm. In about 1 sec after heating has stopped (i.e., when molten metal 104 is expected to reach workpiece 220), the material within inner phase contour curve 240 may be at a temperature above the melting temperature (e.g., 1150° C. for grey iron) and thus liquid. The temperature of the material within intermediate phase contour curve 242 may be above the Curie temperature (Curie point), the temperature above which magnetic materials lose their ferromagnetic properties (770 deg. C for gray iron).
Note that, while outer curve 242 may extend from 20 mm (from −10 mm to +10 mm), at this point in time, inner curve 240 extends only from −8 mm to +8 mm. As depicted in
Thus, in order to achieve the desired melt pool with a 20 mm width and 5 mm depth at the deposition time (1 sec after melt pool creation time), additional heating of melt pool 202 is needed. The additional heating may be achieved, for example, by pre-setting the design parameters of the pre-deposition heater (for example, the effective heating length of the pre-deposition heating unit, the geometrical design, and more) or by affecting controllable parameters such as progression velocity, the total current applied to the pre-deposition heater and more, as will be discussed with reference to
Reference is now made to
Reference is now made to
Hairpin coil 212 may have a rectangular cross-section of any aspect ratio—three examples are depicted in
The width of the rectangular cross-section sets the current density and thus the energy flux density that is conveyed into the workpiece. The cooling of the MFC is set by the circumference of the coil—except for the coil's bottom face. The height of the rectangular cross-section impacts cooling—a larger height allows for running more cooling water through the cooling pipe/s.
As shown in
In the trapezoidal cross-section of view (1), the bottom section of coil 212 and the bottom section of MFC 210 share the same working distance from the workpiece 220. In the trapezoidal cross-section of view (3), the bottom section of coil 212 is closer to the workpiece 220—a shorter working distance from the workpiece 220. In the triangular cross-section of view (2), the bottom section of coil 212 extends beyond the bottom section of MFC 210 and is closer to workpiece 220. The term working distance WD (as depicted in view (3) of
In some embodiments, for an operational scenario that prioritizes maximal current density (maximal current at minimal coil footprint), combination (1) of
For the multiple-coil configurations, various options for coil cross-section and relations between MFC and coil geometry are feasible, in alignment with the concepts illustrated in
Applicant has determined that, for a working distance of 8 mm, a hairpin coil having a rectangular cross-section with a 5 mm width and fully covered by a magnetic flux concentrator except at the active heating length at the coil's bottom, provides the desired magnetic field to generate a 20 mm×5 mm melt pool.
Reference is now made to
As can be seen in
As can be seen in
Applicant has determined that a higher current density in hairpin coil 812 may translate to wider and deeper melt pools.
According to embodiments of the invention, the maximum current density is achieved by a combination of pre-set design parameters of the heater and controllable parameters that can be affected during operation.
The pre-set design parameters of the heater may comprise one or more parameters from a group consisting of: coil material; coil geometry—shape, cross-section shape, length of the coil section facing the area to be heated (effective heating length of the heater); a number of coils (for example, a single hairpin coil, double hairpin coil or other multiple coils); magnetic flux concentrator parameters such as material and shape; the geometrical relationships between the coil's and the MFC; MFC cooling heatsink parameters such as material, shape, coolant material, cooling configuration; minimal working distance; deposition-related parameters such as the target deposition temperature, minimal and maximal metal deposition rate.
Controllable parameters of the heater that can be affected during operation may comprise one or more parameters from a group consisting of: total current applied to the heater; current frequency; progression velocity of the heater; progression velocity of the deposition unit (which, in case the heater is physically coupled to the deposition unit, is identical to the progression velocity of the heater); heat exposure period, and metal deposition rate.
The combination of design parameters and controllable parameters may be selected to address operational needs for optimizing the total energy provided to the working area and the current density at the active heating part of the heating unit.
For example, to maximize current density, the total current to be applied may need to be increased. The current increase may be achieved by supplying higher current levels, and in such a case, the use of magnetic flux concentrators (and consequently, MFC heatsink) may be obviated. However, the use of a high current supply may not suit all operational needs.
Current density may be maximized by decreasing the coil width (footprint)—the effective geometrical dimension of the coil section facing the area to be heated. Thus, narrow coils may be preferred for some embodiments. In some embodiments, double, triple, or another number of multiple coil arrangements may be used. Multiple coil arrangements facilitate, for the same current supply, the increase of the total current at the cost of increased coil footprint.
As can be seen in
In some embodiments, the heat exposure period may be extended: to attempt to give initial areas of each trail of melt pools similar conditions as for other portions of the trail, the heater (e.g., heater 200 of
Method 1001 of metal deposition in the currently-produced production layer comprises the following operations, carried out sequentially:
In operation 1100: depositing molten metal in multiple working areas at the object region of the currently-produced production layer areas according to a building plan setting a deposition path and a deposition velocity.
In operation 1200: by induction heating and while traveling over the deposition path at a predetermined travel velocity, heating the single or multiple working areas, one working area after another. The heating is performed at a working distance which is greater than the mold region height and comprises at least one additional operation from among the following operations:
In some embodiments, a lapse time between the end of pre-heating a specific working area and metal deposition on the specific working area is in a range between 0.05 seconds to 5 seconds.
In some embodiments, the pre-deposition target temperature is substantially identical to a temperature of the molten metal.
In some embodiments, the pre-deposition target temperature is below metal melting temperature and depends on a temperature of the molten metal, which is above metal melting temperature.
In some embodiments, the molten metal is deposited in a specific working area as one or more molten metal drops or as a molten metal stream at a predetermined deposition rate, deposition temperature, and deposition diameter.
In some embodiments, the mold region height is in a range between 2 mm to 12 mm.
In some embodiments, the travel velocity is in a range between 1 mm/sec to 100 mm/sec.
The desired heating zone may have a desired geometry characterized by at least one parameter of a group consisting of: a width in a range of 3 mm to 50 mm; a width equal to or larger than a diameter of the molten metal deposited by the metal deposition unit; and a depth in a range between 1 millimeter to 20 mm.
The invention was described with reference to the use of induction heating for metal deposition in an additive casting process and the integration of the heating system with a deposition system of an additive casting system. The metal deposition system was described with reference to embodiments of the invention where the metal deposition system is integrated by the additive casting system (for example, elements 10, 100 are shown in
In the additive casting and metal deposition embodiments, the use of mold regions of a certain height prevents the ability to operate the induction heating as close to the workpiece as possible. Working distance constraints may apply to other situations. For example, in a case where sensing the temperature of the working areas before, during, and after heating, a gap between the heating unit and the workpiece may be needed to enable the sensor's line of sight.
Thus, as illustrated in
In some embodiments, the heating system 1101 is configured for heating multiple working areas of the metallic workpiece 1116, one working area after another according to a heating plan, at a working distance WD which is greater than a predetermined height.
System 1101 may comprise one or more induction units 1111 (one induction unit is shown in
In some embodiments, the one or more induction units 1111 are movable by an XY-Z motion unit 1114 (e.g., a robot, a gantry motion system, and the like). In other embodiments, the motion unit may move the metallic workpiece 1116 (e.g., by a moving stage). The invention is not limited by the motion technique and can be implemented with any motion units that can generate relative motion of one or more induction units over the workpiece at a desired travel velocity.
Heating system 1101 further comprises an induction heating power supply unit 1122 coupled to the at least one induction unit for providing current at a desired magnitude and frequency.
Heating system 1101 comprises controller 1118 for controlling the at least one induction heating unit 1112, the at least one travel unit 1114, and the induction heating power supply unit 1122. A progression along a heating path HP (wide-edge progression) is illustrated in
In some embodiments, controller 1118 comprises an operational parameter control module 1120.
In some embodiments, operational parameter control module 1120 of controller 1118 is configured to provide the working areas with a target total energy by controlling at least one parameter of a group consisting of: the travel velocity, a provision of electric power to the at least one induction heating unit, a heating dwell time at selected locations of the heating path, and a magnitude of the current.
In some embodiments, operational parameter control module 1120 of controller 1118 is further configured to provide the working areas with a target current density by controlling at least one parameter of a group consisting of: current magnitude provided to each of the at least one induction heating unit, a working distance of the each of the at least one induction heating unit and the work areas.
In some embodiments, heating system 1101 further comprises one or more sensors 1124. For example, sensors 1124 may comprise a temperature sensor for sensing a temperature of the working areas before and after heating. Sensors 1124 may comprise a height sensor for sensing the height of the one or more induction units 1110 above the workpiece 1116. Controller 1118 may be responsive to sensor 1124 readings. For example, controller 1118 may adjust operational parameters of the heating system 1101 in response to sensor 1124 readings.
The heating system 1101 is configured for providing the working areas of the metallic workpiece with a target total energy and a target current density based on properties of the metallic workpiece 1120 by predetermining at least one parameter of a group consisting of: a target temperature of the working areas; a number of hairpin coils; a length of an active heating bottom part of the at least one induction unit; a shape of a cross-section of the at least one hairpin coil; a shape of the at least one hairpin coil; a shape of the one or more magnetic flux concentrator (MFC); a geometrical relationship between the at least one hairpin coil and the one or more magnetic flux concentrator (MFC); an extension of the at least one hairpin coil from the one or more magnetic flux concentrator (MFC) toward the working areas; and an extension of the one or more magnetic flux concentrator (MFC) from the at least one hairpin coil from toward the working areas.
Heating method 1212 may comprise sequentially providing multiple working areas of the metallic workpiece while a heating system having one or more induction units travels over the metallic workpiece at a travel velocity, at a predetermined working distance, with a target total energy and a target current density (operation 1214).
The target total energy and the target current density may be calculated previously, based on the material properties of the metallic workpiece, on considerations as discussed with reference to
In some embodiments, heating system 1101 may be configured for optimizing the total energy and current density. For example, heating system 1101 may be configured for maximizing the energy density and for reaching a target total energy. In some embodiments, optimization of the total energy and current density may be achieved by applying (1) a design operation at which specific design parameters are predetermined and (2) controlling operational parameters of the heating system during its operation (‘on the fly’ control).
Operation 1214 may comprise controlling, on the fly, at least one operational parameter of the heating system of a group consisting of: the travel velocity of the one or more induction units over the workpiece; a provision of electric power to the one or more induction heating units of the heating system; heating dwell time at selected working areas; current magnitude provided to the to one or more induction units of the heating system; current magnitude frequency provided to the to one or more induction units of the heating system; a working distance of one or more induction units of the heating system and the working areas (operation 1216).
Operation 1214 may comprise a design operation, including predetermining at least one parameter of a group consisting of: a target temperature of the working areas; a number of hairpin coils constituting each of the one or more induction units of the heating system; a length of an active heating bottom part of the one or more induction units; a shape of a cross-section of the at least one hairpin coil; a shape of the at least one hairpin coil; a shape of the one or more magnetic flux concentrator (MFC) included in the one or more induction units; a geometrical relationship between the at least one hairpin coil and the one or more magnetic flux concentrator (MFC); an extension of the at least one hairpin coil from the one or more magnetic flux concentrator (MFC) toward the working areas; and an extension of the one or more magnetic flux concentrator (MFC) from the at least one hairpin coil from toward the working areas (operation 1218).
Embodiments of the invention were described with respect to the additive casting of gray iron. The invention is not limited by the type of cast material. The invention is applicable for the additive casting of other metals, including ductile iron, steel, and other metals, with the appropriate modifications.
Aspects of the invention were described with respect to the melt pool embodiments; the invention is applicable for the overheating embodiments, with the appropriate modifications.
Unless specifically stated otherwise, as apparent from the preceding discussions, it is appreciated that, throughout the specification, discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like refer to the action and/or processes of a general-purpose computer of any type, such as a client/server system, mobile computing devices, smart appliances, cloud computing units or similar electronic computing devices that manipulate and/or transform data within the computing system's registers and/or memories into other data within the computing system's memories, registers or other such information storage, transmission or display devices.
Embodiments of the invention may include apparatus for performing the operations herein. This apparatus may be specially constructed for the desired purposes, or it may comprise a computing device or system typically having at least one processor and at least one memory, selectively activated or reconfigured by a computer program stored in the computer. The resultant apparatus, when instructed by software, may turn the general-purpose computer into inventive elements as discussed herein. The instructions may define the inventive device in operation with the computer platform for which it is desired. Such a computer program may be stored in a computer readable storage medium, such as, but not limited to, any type of disk, including optical disks, magnetic-optical disks, read-only memories (ROMs), volatile and non-volatile memories, random access memories (RAMS), electrically programmable read-only memories (EPROMs), electrically erasable and programmable read-only memories (EEPROMs), magnetic or optical cards, Flash memory, disk-on-key or any other type of media suitable for storing electronic instructions and capable of being coupled to a computer system bus. The computer readable storage medium may also be implemented in cloud storage.
Some general-purpose computers may comprise at least one communication element to enable communication with a data network and/or a mobile communications network.
The processes and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the desired method. The desired structure for a variety of these systems will appear from the description below. In addition, embodiments of the present invention are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.