The disclosed technology generally relates to door handles and locks, and more specifically to a door handle with a push button lock and display of lock status.
The Americans With Disabilities Act (ADA) requires various specifications to be met ensuring ease of use for even those with limited mobility. In the area of doors, this requires certain sized handles and types of locks which can be easily operated. This presents a challenge when one wants to meet these requirements while providing a sturdy door handle and offer other features that are helpful to users of doors, which, of course, is everyone. For example, no one likes to be in a bathroom and hear a door handle jiggle as someone tries to enter. In order to meet the ADA requirements for an easy to use door handle while also providing high quality and pleasant experience for the user of the door, these challenges need to be overcome.
In an embodiment of the disclosed technology, a door handle has an outer section and inner section. The “inner” and “outer” sections are on either an inside or outside of a room and need not be specific to which side of a door each is on, but in embodiments, the “inner” side has the ability to lock/unlock a door which the lock is attached to, where an occupancy display window is on the “outer side”. The disclosure is described using this nomenclature for consistency and ease of understanding. The outer section thus has an outer handle with a display window while the inner section has an inner handle with a locking button such as one which is depressed in order to lock the door. “Lock the door” and the like refers to an act of causing the handle on the outer side to cease functioning in a manner which will allow the door to be opened. Depressing the locking button rotates a shaft extending between the outer section and the inner section while also causing, in embodiments, a display within the display window to change from, for example, VACANT to IN-USE
The depressible locking button is part of a unitary piece having both the locking button and pin in these embodiments of the disclosed technology. The locking button is at an end of an elongated stem while the pin is at an opposite end thereof and extends perpendicular to the locking button/direction of movement of the locking button in such embodiments. The pin is within a channel of a collar which is covered by the inner handle in these embodiments. The channel extends circumferentially into the collar along substantially a diagonal to the direction the locking button moves when depressed.
Depressing the locking button causes the locking button to have a simultaneous rotation and be pressed inwards relative to a door situated between the outer section and the inner section of the lock in embodiments of the disclosed technology. A tensioning spring can provide a resistive force to the rotation. The channel (which holds the slidable pin therein) can have two parts at an acute angle to one another: a) a section which is diagonal to an elongated length of the shaft and b) a section which is parallel to the elongated length of the shaft. Depressing the locking button pushes the pin within the channel into the section of the channel which is parallel to the stem in these embodiments.
Rotating the inner handle, in embodiments of the disclosed technology, causes the pin to exit from the section which is parallel into the section which is diagonal. A tension spring provides a resistive force to the turning motion of the handle and combined with the turning of the handle causes the depressible button to extend (back to its starting configuration in embodiments) and the display window to turn (meaning that the indicia or display within the display window rotates). The outer handle is substantially unturnable when the pin is in the section which is parallel to the elongated length of the shaft in embodiments of the disclosed technology, such as when the door is locked.
A door handle with a rotating display of embodiments of the disclosed technology, described another way, has an exterior side of the door handle with a display which displays a locked or unlocked status of the door handle. A stem extends to an interior side of the door handle with a push-button type lock. Pushing the push-button type lock causes the door to lock and the display to rotate to display the locked status of the door handle. Rotation of the interior side of the door handle causes simultaneously, in these embodiments, the push-button to lift away from the interior side of the door handle, and the display to rotate to show an unlocked status of the door. The stem rotates with the interior side of the door handle and carries out rotational force through a door situated between the interior side of the door handle and the exterior side of the door handle.
The interior side of the door handle houses there-within a hollow cylinder with openings at each end and a channel extending partially circumferentially around the hollow cylinder in embodiments of the disclosed technology. In such an embodiment, the push-button can be connected to an elongated stem which further has a pin extending perpendicular to the elongated stem. The pin extends through the channel in such embodiments. The channel can be one which has two sections joined together as a unitary portal where the majority section is/extends diagonally to the elongated stem in its most elongated length and the minority section, in its most elongated length or a length thereof is in parallel to the elongated stem (extends at an acute angle to the majority section). When the pin is in the minority of the stem, the door display displays a locked status in embodiments of the disclosed technology. When the pin is in the majority of the stem, the door display displays an unlocked status in embodiments of the disclosed technology.
Any device or step to a method described in this disclosure can comprise or consist of that which it is a part of or the parts which make up the device or step. The term “and/or” is inclusive of the items which it joins linguistically and each item by itself. “Substantially” is defined as “at least 95% of the term being described” and any device or aspect of a device or method described herein can be read as “comprising” or “consisting” thereof.
A door handle having two sides is disclosed. A single stem extends between the two door handles such that turning one handle causes the other to turn and a door situated between the handle to be openable. A depressible (push button) lock is on one of the door handles which, when pushed rotates causing the stem to rotate and a display shown within a display window of the other door handle to rotate and change to a different display. This is accomplished, in part, based on a collar with a channel cut—therein in which a pin attached to the depressible button travels through as it is pressed, converting mechanical energy in the direction of the pressing into rotational energy in embodiments of the disclosed technology.
Embodiments of the disclosed technology will become clearer in view of the following description of the figures. Before describing the figures, a part list may aid the reader. One skilled in mechanical locks should appreciate that with the named parts and figures, the invention is largely or fully understandable.
Moving on to the figures and discussing
Between the outside outer cover 20 and the outside door plate, at least when exploded as shown, there is an outer stem which is attached by a tension spring 24 to an outer stem larger collar having a portal 28 to attach using an attachment pin 29 to a smaller collar which, in turn, is attached inside an outer stem smaller collar 31 of the outside door plate in an embodiment of the disclosed technology. The afore-described pieces are connected together and either fixed to a door by way of fasteners and/or fixed to the inner door handle parts such as parts 40 and 50 by way of fasteners extending there-through.
Describing now the inner side of the device from the inner most side to the outside, the parts are divided between an inside handle stem 60 connecting the inside handle 65 to a inside outer cover 50 (meaning that it is the outer cover of the inside devices). An inside door plate 40 is covered by the inside outer cover 50 in embodiments of the disclosed technology and the inside door plate 40 abuts a door and is fastened through the door to the outside door plate 30 in embodiments of the disclosed technology.
The (push) button 68 is a button which is used to lock the door (temporarily disable the ability to open the door by way of rotating the outside handle 5) by pushing the button towards the door and/or towards the shaft/stem 35. That is, one pushes the button 68 “inwards”. While doing so, the button 68 rotates. This will be described in more detail with reference to
Skipping now briefly to
Describing the channel 2 in more detail, the channel is a portal through a circumferential collar. The channel has two sections which are acute to each other, one section being longer than the other. In the unlocked configuration of the door the pin 1 is in the channel 2 in the diagonal section thereof at a location furthest from the door and/or plane defined by the most elongated and substantially flat plane of the inside outer cover 50. When the button 68 is pressed, the pin 1 moves down through the channel 2. Recall that the channel 2 is stationary so the pin's movement through the channel is in a circumferential manner and angled such that the pin becomes closer to the door and/or afore-described plane of the outer cover 50. The rotation of the stem 35, in turn, by way of a rotationally fixed connection with a locking mechanism/handle stem 10 of on the outside then rotates
Referring now to
The display 15 is part of a circular wheel in embodiments of the disclosed technology as seen through a viewing window in
Finally, it should be understood that tension is provided in the system to give resistance to the rotational movement. As long as the pin 1 is in the acute or minority portion of the channel 2, this overcomes the rotational force which would push the lock back to the unlocked configuration with the button 68 fully extended. However, a tension spring 24 and/or 46 become more tightly wound when the door is in a locked configuration. Turning the inside handle 65 and/or the stem 35 by way of a key in the keyhole 8 releases the pin 1 from the minority portion/parallel section of the channel 2 back into the diagonal where the tension of the spring(s) and unhindered movement within the channel rotate at least the display 15, button 68, and shaft 35 back to their unlocked positions. The door handles can then be used on either side and the handles are ready to be locked again.
While the disclosed technology has been taught with specific reference to the above embodiments, a person having ordinary skill in the art will recognize that changes can be made in form and detail without departing from the spirit and the scope of the disclosed technology. The described embodiments are to be considered in all respects only as illustrative and not restrictive. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope. Combinations of any of the methods, systems, and devices described herein-above are also contemplated and within the scope of the disclosed technology.
Number | Name | Date | Kind |
---|---|---|---|
417326 | King | Dec 1889 | A |
8505345 | Sun | Aug 2013 | B2 |
20060156770 | Huang | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
107939158 | Apr 2018 | CN |
Number | Date | Country | |
---|---|---|---|
20200190856 A1 | Jun 2020 | US |