Depth adjusting system for a screw gun

Information

  • Patent Grant
  • 6758116
  • Patent Number
    6,758,116
  • Date Filed
    Thursday, June 28, 2001
    23 years ago
  • Date Issued
    Tuesday, July 6, 2004
    20 years ago
Abstract
A depth adjusting system for a screw gun comprises a base supported on the screw gun, an on/off collar removably attached to the base, and an adjusting collar and a depth locator mounted to the on/off collar. The adjusting collar rotates but cannot move axially relative to the on/off collar. Rotation of the adjusting collar causes the depth locator to move axially relative to the on/off collar for adjusting the depth setting. An indexing system is provided between the adjusting collar and the on/off collar for retaining the angular position of the adjusting collar and the depth setting. The on/off collar can be easily attached and detached from the base with a simple axial force applied to the on/off collar.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The field of this invention is depth adjusting systems for power tools. More particularly the field is depth adjusting systems for screw guns in which part of the system is easily removable from the screw gun to gain access to the spindle and screwdriving bit, and the system retains its depth setting when it is replaced on the screw gun.




2. Description of Related Art




U.S. Pat. Nos. 4,647,260 to O'Hara et al. and 5,341,704 to Klemm disclose depth adjusting systems for screw guns.




The O'Hara et al. patent discloses a two piece depth adjusting system comprising an adjustment collar (


26


,

FIG. 2

) and a depth locator (


28


). The adjustment collar releasably attaches to the nose portion (


24


) of the screw gun. The depth locator (


28


) engages the adjustment collar (


26


) through a screw thread arrangement. When attached to the nose portion (


24


), the adjustment collar (


26


) is rotated to adjust the axial position of the depth locator (


28


). The depth locator (


28


) is prevented from rotating relative to the nose portion (


24


) so that when the adjustment collar (


26


) rotates, the depth locator (


28


) is in turn driven axially through the screw thread arrangement. Indexing means are also provided between the nose portion (


24


) and the adjusting collar (


26


) to retain the adjusting collar (


26


) in a predetermined angular position relative to the nose portion (


24


) and thus also retain the depth setting of the depth locator (


28


). However, when the adjusting collar (


26


) is removed from the nose portion (


24


), the indexing means no longer retains the angular position of the adjusting collar (


26


). When a user removes the adjusting collar (


26


) and the depth locator (


28


) to, for example, change the screwdriving bit, the depth setting may be lost and will have to be reset when the adjusting collar (


26


) and depth locator (


28


) are replaced on the screw gun.




The Klemm patent discloses a two piece depth adjusting system comprising a sleeve (


94


,

FIG. 7

) and a depth locator (


76


). The sleeve (


94


) is releasably attached to the gear case of the tool. A groove (


40


,

FIG. 2

) on the gear case holds a resilient split retaining ring (


42


). A flange (


98


) on the sleeve (


94


) engages and moves over the retaining ring (


42


) with an audible snap when sleeve (


94


) is attached to the gear case. The sleeve (


94


) may be detached by pulling it axially away from the gear case. In the commercial embodiment of the Klemm patent, the force required to detach the sleeve (


94


) varies and is sometimes excessive when the flange (


98


) “hangs up” on the retaining ring (


42


).




Once attached, the sleeve (


94


) does not rotate or move axially relative to the tool. The depth locator (


76


) engages the sleeve (


94


) through a screw thread arrangement. Rotation of the depth locator (


76


) by the user causes the depth locator (


76


) to be driven axially by the screw thread arrangement to adjust the depth setting. An indexing means between the sleeve (


94


) and the depth locator (


76


) retains the angular position of the depth locator (


76


) relative to the sleeve (


94


) and thus maintains the depth setting. Although the indexing means functions regardless of whether the sleeve (


94


) is attached to the gear case, in order to adjust the depth locator (


76


), the user must manually turn the depth locator (


76


) itself. This can be awkward because the radius of the depth locator (


76


) is relatively small so that turning the locator (


76


) is not ergonomically comfortable.




SUMMARY OF THE INVENTION




It is an object of the invention to overcome these and other drawbacks found in the prior art depth adjusting systems and to provide additional advantageous features.




In one embodiment, a depth adjusting system for removably attaching to a base of a tool comprises an on/off collar removably attachable to the base so that the on/off collar is not rotatable relative to the base when it is attached thereto, an adjusting collar mounted to the on/off collar and being rotatably but not axially moveable relative to the on/off collar, and a depth locator mounted to the on/off collar and being rotatably and axially moveable relative to the on/off collar such that the depth locator moves axially in response to relative rotation between the depth locator and the on/off collar. The depth setting of the depth adjusting system can be adjusted by rotating the adjusting collar which in turn drives the depth locator to rotate in unison, such rotation causing axial movement of the depth locator.




In another embodiment, a depth adjusting system for a screw gun comprises a spindle extending from the screw gun and adapted to receive a screwdriving bit mounted on one end of the spindle for driving a screw into a workpiece, and a removable depth adjusting assembly removably attached to the screw gun. The removable depth adjusting assembly has a central opening therethrough at least partially surrounding the spindle, the opening defining an axis parallel to the rotational axis of the spindle. The removable depth adjusting assembly comprises an adjusting collar rotatably but not axially moveable relative to the screw gun when the removable depth adjusting assembly is releasably mounted to the screw gun, a depth locator operatively associated with the adjusting collar wherein the depth locator moves axially to adjust a depth setting responsive to rotation of the adjusting collar relative to the screw gun, and an indexing means for releasably retaining the adjusting collar in its selected angular position regardless of whether the removable depth adjusting assembly is attached to the screw gun. The indexing means can be overcome to rotate the adjusting collar by a deliberate torque applied to the adjusting collar by a user.




In another embodiment, a depth adjusting system for a tool comprises a base having receiving means, and a removable depth adjusting assembly removably attached to the base. The removable depth adjusting assembly comprises a depth locator whose axial position relative to the base is adjustable while the removable depth stop is attached to the base, and a first collar connected to the depth locator having at least two tabs projecting therefrom which engage with the receiving means when the removable depth adjusting assembly is attached to the base. The tabs have rounded profiles wherein an axial force applied to the collar can engage and disengage the tabs with the receiving means.




In another embodiment, a method for adjusting the depth setting of a depth adjusting system for a screw gun, the method comprises the steps of: rotating an adjustment collar and prohibiting the axial movement of the adjustment collar, causing a depth locator to rotate in response to the rotation of the adjustment collar, and causing the depth locator to move axially in response to its rotational movement, the axial movement of the depth locator effecting an adjustment of the depth setting.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an isometric view of one embodiment of the depth adjusting system along with a front portion of the housing of a screw gun.





FIG. 2

is an exploded view of the depth adjusting system of FIG.


1


.





FIGS. 3 and 4

are isometric views of the depth adjusting system of

FIG. 1

with the removable depth adjusting assembly detached from the screw gun.





FIGS. 5 and 6

are side views of the depth adjusting system of

FIG. 1

illustrating the attachment of the removable depth adjusting assembly to the screw gun.





FIG. 7

is a sectional view of the removable depth adjusting assembly of the depth adjusting system of

FIG. 1

taken along the longitudinal axis thereof.





FIG. 8

is a sectional view of the depth adjust system of

FIG. 1

taken along the longitudinal axis thereof.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The depth adjusting system of the present invention is especially useful in screw guns with a depth sensitive clutch to control the depth to which the head of a screw will be driven into a work piece. The depth adjusting system will be described in relation to its use in this preferred context. However, the depth adjusting system is not limited to use with a screw gun and may also find use in other tools.




Screw guns with depth sensitive clutches are well known in the art (see, e.g., U.S. Pat. Nos. 4,655,103 and 4,947,714). A co-pending application assigned to the same assignee as this application also discloses a depth sensitive clutch and its operation in detail. This co-pending application No. 09/923,434 is hereby incorporated by reference in its entirety into to this specification.




As shown in

FIG. 1

, the depth adjusting system comprises a base


100


, an on/off collar


200


, an adjusting collar


300


, and a depth locator


400


. As will be described in further detail herein, the base


100


is mounted to the housing


500


of the screw gun. The on/off collar


200


, adjusting collar


300


, and depth locator


400


remain assembled one to another during normal use and will be referred to herein as the removable depth adjusting assembly A, or simply removable assembly A. The removable depth adjusting assembly A is releasably attached to the base


100


. The removable assembly A has a central opening therethrough and partially encloses a spindle


520


and screwdriving bit


530


. The spindle


520


and screwdriving bit


530


rotate to drive a screw into a work piece. When a wear surface


490


on the forward end of the depth locator


400


contacts the work piece, the depth sensitive clutch begins to disengage and the driving of the screw will stop upon complete disengagement. Thus, the axial position of the depth locator


400


determines the depth to which the screw will be driven.




A simple axial force applied to the removable depth adjusting assembly A in the direction of its longitudinal axis will reliably attach and detach it from base


100


. The longitudinal axis of the removable depth adjusting assembly A is coaxial with, or at least parallel with, the axis of rotation of the spindle


520


and the screwdriving bit


530


.




When the on/off collar


200


is attached to the base


100


, it is prevented from rotating. (In this application, when it is stated that one part does not move relative to another part, this means that the parts may still experience slight relative motion due to design and manufacturing tolerances.) The adjusting collar


300


can be rotated but cannot be moved axially relative to the screw gun. Rotation of the adjusting collar


300


by the user causes the depth locator


400


to rotate in unison. The depth locator


400


moves axially relative to the screw gun to adjust the depth setting of the depth adjusting system in response to relative rotation between the depth locator


400


and the screw gun.




An indexing means retains the adjusting collar


300


in its angular position, thus also retaining the axial position of the depth locator


400


and the depth setting of the depth adjusting system. Advantageously, the indexing means retains the depth setting even when the removable assembly A is not attached to the base


100


.




With reference now to

FIGS. 2 and 8

, the base


100


is mounted to the housing


500


of the screw gun and provides an attachment structure for releasably attaching the on/off collar


200


to the screw gun. In a preferred embodiment, the base


100


has threads


110


(

FIG. 8

) formed on an end thereof which engage with complementary threads


510


(

FIG. 8

) formed on the housing. Other mounting systems may also be used. When the depth adjusting system is used with a screw gun having a depth sensitive clutch, the base


100


may enclose a portion of the clutch assembly and even cooperate with support structure, such as bearings or seals, for the clutch assembly, as shown in FIG.


8


. In such a situation, it is advantageous to removably mount the base


100


to the housing


500


with a system such as threads


110


,


510


which permit the user to remove the base


100


from the housing


500


when it is desired, for example, to service the clutch components. Base


100


has gripping elements


120


formed around an exterior periphery to help remove base


100


from housing


500


. The threads


110


,


510


should also reliably prevent the base


100


from coming loose from the housing


500


during normal use. Other mounting systems for mounting the base


100


to the housing


500


may also be used and will be within the scope of the invention. Also, if it is unnecessary for the base


100


to be removable, the base


100


may be integrally formed with the housing


500


as part of a unitary component.




With reference to

FIGS. 2-6

, the on/off collar


200


is removably attachable to the base


100


, and thus through association the entire removable depth adjusting assembly A is removably attachable to the base


100


. Removably attachable and removably attached mean that the when the removable assembly A is attached to the base


100


, it resists detachment with a retention force, and the retention force can be easily overcome or released by the user to purposefully detach the removable assembly A. A feature of one embodiment is that the removable assembly A can be simply and reliably attached and detached from the base


100


by applying an axial force on the removable assembly A toward or away from the base


100


.




To this end, the on/off collar


200


may be provided with resilient hinges


210


, each with rounded tab portions


211


projecting inwardly from the surface thereof toward the longitudinal axis of the removable assembly A. The resilient hinges


210


may flex radially outwardly or inwardly from the longitudinal axis of the assembly A. The base


100


may have receiving means for receiving the tab portions


211


. The receiving means may be a circumferential groove


130


, or a circumferential array of detents for receiving the tab portions


211


therein, or any other appropriate structure for receiving the tab portions


211


therein.




As seen in

FIG. 5

, when the on/off collar


200


is being attached to the base


100


, the resilient hinges


210


must flex outwardly while the tab portions


211


slide over a larger diameter portion of base


100


and into the groove


130


. Because the resilient hinges


210


must flex outwardly before the on/off collar


200


can be removed from the base


100


and due to the rounded profile of tab portions


211


, a retention force is created resisting detachment of the on/off collar


200


from the base


100


. However, also due to the rounded profile of tab portions


211


, the retention force can be overcome by a deliberate axial pulling force from the user to detach the on/off collar


200


from the base


100


.




Other arrangements for releasably attaching the on/off collar


200


to the base


100


may be used. For example, a retaining ring may be provided on one of the base


100


and an internal flange on the on/off collar


200


. Or the on/off collar


200


and the base


100


may be provided with complementary threads. However, the arrangement illustrated herein is preferred because the pulling force necessary to detach the on/off collar


200


from the base


100


is more reliably consistent than with a retaining ring design. Due partly to their rounded profile, tab portions


211


do not “hang up” on the base


100


as a flange may do on a retaining ring. Also, the resilient hinges


210


and groove


130


may be sized so that the resilient hinges


210


are biased outwardly and the tab portions


211


are constantly exerting an inward force on the groove


130


when the on/off collar


200


is attached to the base


100


. This positive engagement tends to prevent the on/off collar


200


from feeling “loose” or “sloppy” when it is mounted on the base


100


.




When the on/off collar


200


is mounted to the base


100


, it is prevented from rotating relative to the base


100


. With reference to

FIGS. 2-6

, in a preferred embodiment base


100


has detents


140


radially evenly spaced around the circumference of at least a portion thereof. The on/off collar


200


has locking tabs


220


radially evenly spaced around at least a portion of an internal surface thereof. Locking tabs


220


align with and engage at least some of the detents


140


when the on/off collar


200


is mounted to the base


100


. The locking tabs


220


and detents


140


have an approximately semi-cylindrical cross-section in the illustrated embodiment, but any appropriate shape could be used. In the illustrated embodiment, eight detents


140


are provided so that there are eight positions in which the on/off collar


200


can removably attach onto the base


100


. This advantageously reduces the need to hunt for the correct orientation when attaching the on/off collar


200


to the base


100


. Other methods of preventing the relative rotation of the on/off collar


200


and the base


100


may be used.




The depth locator


400


is mounted to the on/off collar


200


in such a way that relative rotation causes the depth locator


400


to move axially away from or toward the on/off collar


200


to adjust the depth setting. With reference now to

FIGS. 2 and 7

, in a preferred embodiment threads


250


are formed on an interior portion of the on/off collar


200


and complementary threads


450


are formed on an exterior portion of the depth locator


400


. This arrangement is advantageous because rotating the depth locator


400


relative to the on/off collar


200


causes a relatively small amount of axial movement, dependent upon the pitch of the threads


250


,


450


. Thus, fine adjusting of the depth setting is possible.




Adjusting collar


300


is rotatably mounted to the on/off collar


200


, but is not axially moveable relative to the on/off collar


200


. With reference again to

FIGS. 2 and 7

, in a preferred embodiment adjusting collar


300


may be provided with resilient hinges


310


, each with locking tabs


311


projecting inwardly from the surface thereof toward the longitudinal axis of the removable assembly A. The resilient hinges


310


are flexible radially outwardly or inwardly from the longitudinal axis of the assembly A. A circumferential groove


260


may be formed on the on/off collar


200


for receiving the locking tabs


311


therein. When the adjusting collar


300


is being mounted to the on/off collar


200


, the resilient hinges


310


must flex outwardly while the locking tabs


311


slide over a large diameter portion of the on/off collar


200


and then snap into groove


260


. Locking tabs


311


each have a locking surface


312


formed at a right angle to the longitudinal axis of the removable assembly A, and the sides of groove


260


are also formed at a right angle to the longitudinal axis of the removable assembly A. Due to this construction, once the locking tabs


311


snap into groove


260


, they cannot easily be removed so that the adjusting collar


300


is held axially relative to the on/off collar


200


(but is free to rotate). Alternatively, the adjusting collar


300


may be detachably mounted to the on/off collar


200


, if desired. Other systems for preventing axial movement but allowing rotational movement of the adjusting collar


300


relative to the on/off collar


200


may be used within the scope of the invention.




Adjusting collar


300


engages the depth locator


400


so that they rotate in unison. With reference again to

FIGS. 2 and 7

, in a preferred embodiment the adjusting collar


300


has at least one driving key


350


extending radially inwardly from the surface thereof. The depth locator


400


has at least one elongated slot


420


formed on the exterior thereof. When the adjustment assembly A is assembled, the driving key


350


is received in the slot


420


. When the adjusting collar


300


is rotated (and the on/off collar


200


remains stationary), the driving key


350


pushes against the side of the slot


420


and drives the depth locator


400


to rotate in unison. When the depth locator


400


rotates relative to the on/off collar


200


it moves axially relative to the on/off collar


200


and the adjusting collar


300


. Slot


420


is elongated to allow the driving key


350


to move from end-to-end in the slot


420


. Other systems for allowing relative axial movement but for preventing relative rotational movement between the adjusting collar


300


and the depth locator


400


may be used, as desired.




An indexing means may be provided to retain the depth setting of the depth locator


400


. The purpose of the indexing means is to prevent the accidental loss of the depth setting. The indexing means will be overcome if the user purposefully adjusts the depth setting. In a preferred embodiment, the indexing means is provided between the adjusting collar


300


and the on/off collar


200


and retains the angular setting of the adjusting collar


300


relative to the on/off collar


200


, even when the adjusting assembly A is not mounted to the base


100


. The indexing means may alternatively be provided between the depth locator


400


and the on/off collar


200


. The indexing means could even conceivably be located between the adjusting collar


300


and the depth locator


400


, in which case the indexing means would retain the axial position of the depth locator


400


relative to the adjusting collar


300


.




With reference to

FIG. 2

, in a preferred embodiment the adjusting collar


300


may have detents


320


radially evenly spaced on an interior surface thereof. The on/off collar


200


may have resilient indexing tabs


270


radially formed on an exterior surface thereof which engage with the detents


320


when the adjusting collar


300


is mounted to the on/off collar


200


. When the adjusting collar


300


is rotated relative to the on/off collar


200


, the resilient indexing tabs


270


must flex in order to move in and out of the radially spaced detents


320


as the rotation occurs. The force required to flex the indexing tabs


270


is provided by torque applied to the adjusting collar


300


. Thus, the retaining action of the indexing means is overcome when the user applies a torque to the adjusting collar


300


great enough to flex the indexing tabs


270


and rotate the adjusting collar


300


. Other forms of indexing means may be used. For example, any structure which restricts the movement of one part relative to another part unless a minimum force is applied to flex a portion of one of the parts is one type of indexing means and may be used within the scope of the invention.




It would be possible to encompass the major features of the invention in a depth adjusting system which lacks a separate on/off collar


200


. Such a depth adjusting system would comprise merely an adjusting collar


300


and depth locator


400


. The adjusting collar would be releasably attached to the base


100


in a manner permitting rotational movement but preventing axial movement relative thereto through, e.g., hinge portions and rounded tab portions engaging a circumferential groove in the base


100


. The depth locator


400


would engage with the base


100


in a manner permitting axial movement, but preventing rotational movement relative thereto. The indexing means would in this case be constructed between the adjusting collar


300


and the depth locator


400


.




Although this invention has been described in relation to various preferred embodiments, it is not limited to those preferred embodiments. The invention is only limited by the scope of the appended claims. Insubstantial variations of the basic concepts of the invention will be readily apparent to those of skill in this art and will be considered equivalents protected hereby.



Claims
  • 1. A depth adjusting system for a screw gun comprising:a spindle extending from the screw gun and adapted to receive a screwdriving bit mounted on one end of to the spindle for driving a screw into a workpiece; a removable depth adjusting assembly removably attached to the screw gun, the removable depth adjusting assembly having a central opening therethrough at least partially surrounding the spindle, the opening defining an axis parallel to the rotational axis of the spindle, the removable depth adjusting assembly comprising: an adjusting collar rotatable but not axially moveable relative to the screw gun when the removable depth adjusting assembly is releasably mounted to the screw gun; a depth locator operatively associated with the adjusting collar wherein the depth locator moves axially to adjust a depth setting responsive to rotation of the adjusting collar relative to the screw gun; and an indexing means for releasably retaining the adjusting collar in its selected angular position regardless whether the removable depth adjusting assembly is attached to the screw gun, wherein the indexing means can be overcome to rotate the adjusting collar by deliberate torque applied to the adjusting collar by a user, the indexing means comprising resilient indexing tabs that are received in radially spaced detents.
  • 2. The depth adjusting system of claim 1 wherein the screw gun further comprises a base attached to a housing of the screw gun with threads, the base enclosing a portion of a clutch assembly of the screw gun, and wherein the removable depth adjusting assembly is attached to the screw gun through attaching to the base.
  • 3. A depth adjusting system for a tool comprising:a base having receiving means; a removable depth adjusting assembly removably attached to the base and comprising: a depth locator whose axial position relative to the base is adjustable while the removable depth adjusting assembly is attached to the base; a first collar connected to the depth locator having at least two tabs projecting therefrom which engage with the receiving means when the removable depth adjusting assembly is attached to the base, the tabs having rounded profiles wherein an axial force applied to the collar can engage and disengage the tabs with the receiving means.
  • 4. The depth adjusting system of claim 3 wherein the tabs are constantly biased when they are received in the receiving means and when the first collar is attached to the base.
  • 5. The depth adjusting system of claim 3 wherein the removable depth adjusting assembly further comprises:a second collar, the second collar mounted to the first collar for rotational, non-axial movement relative thereto; wherein the second collar engages the depth locator causing the depth locator to rotate in unison when the second collar rotates relative to the first collar.
  • 6. The depth adjusting system of claim 3 wherein the at least two tabs are each formed on a resilient hinge attached to the first collar, the resilient hinges flexing radially from the first collar.
  • 7. The depth adjusting system of claim 4 wherein the base is removably attachable to the tool with complementary threads formed on the base and the tool.
  • 8. The depth adjusting system of claim 7 wherein the first collar does not rotate relative to the base when the depth adjusting assembly is attached to the base.
  • 9. A method for adjusting the depth setting of a depth adjusting system for a screw gun, the method comprising:removably attaching a first collar to the screw gun by pushing the first collar axially towards the screw gun that the first collar slides axially onto the screw gun; rotating a second collar relative to the first collar and prohibiting the axial movement of the second collar relative to the first collar; causing a third collar to rotate in response to the rotation of the second collar; and causing the third collar to move axially in response to its rotational movement, the axial movement of the third collar effecting an adjustment of the depth setting.
  • 10. The method for adjusting the depth setting of a depth adjusting system in claim 9 further comprising:providing an indexing means associated with the depth locator for retaining the depth setting of the depth locator.
  • 11. The method for adjusting the depth setting of a depth adjusting system in claim 9 further comprising:removing the first collar from the screw gun by pulling the first collar axially away from the screw gun so that the first collar slides axially off of the screw gun.
  • 12. A depth adjusting system for a tool comprising:a base having threads on a first end thereof for mounting the base to the tool; a removable depth adjusting assembly removably attached to the base, the removable depth adjusting assembly having: an on/off collar, the depth adjusting assembly removably attaching to the base through the on/off collar removably attaching to the base at a second end of the base, and the on/off collar is not rotatable relative to the base when it is attached thereto; an adjusting collar mounted to the on/off collar and being rotatably but not axially moveable relative to the on/off collar; a depth locator mounted to the on/off collar and being rotatably and axially moveable relative to the on/off collar such that the depth locator moves axially in response to relative rotation with the on/off collar; and wherein a depth setting of the removable depth adjusting assembly can be adjusted by rotating the adjusting coil which in turn drives the depth locator to rotate in unison, such rotation causing axial movement of the depth locator and adjusting of the depth setting.
  • 13. The depth adjusting system of claim 12 wherein the depth locator is mounted to the on/off collar through complementary threads formed on the depth locator and on the on/off collar.
  • 14. The depth adjusting system of claim 12 wherein the on/off collar is removably attached to the base with a system comprising:a plurality of resilient hinge portions formed on the on/off collar; each resilient hinge portion having a tab portion extending radially therefrom; receiving means formed on the base for receiving the tab portions; and wherein when the on/off collar is attached to the base, the tabs portions are first radially flexed, and then received in the receiving means to removably attach the on/off collar to the base.
  • 15. The depth adjusting system of claim 14 wherein the tab portions remain radially biased when they are received in the receiving means.
  • 16. The depth adjusting system of claim 12 further comprising:indexing means for retaining depth setting of the depth locator, the indexing means retaining the depth setting regardless of whether the removable depth adjusting assembly is attached to the base.
  • 17. The depth adjusting system of claim 12 further comprising:resilient indexing tabs formed the on/off collar; and detents formed on the adjusting collar; wherein the resilient indexing tabs engage with the detents to index the depth setting by retaining the angular position of the adjusting collar relative to the on/off collar.
  • 18. The depth adjusting system for a screw gun comprising:a screw gun having a housing a base removably attached to the housing, the base enclosing a portion of a clutch assembly of the screw gun, and a spindle extending from the screw gun and adapted to receive a screwdriving bit mounted on one end of the spindle for driving a screw into a workpiece; a removable death adjusting assembly removably attachable to the base, the removable depth adjusting assembly attaching to and detaching from the base through axial movement of the removable depth adjusting assembly, the removable depth adjusting assembly having: an adjusting collar rotatably but not axially moveable relative to the screw gun when the removable depth adjusting assembly is releasably mounted to the screw gun: a depth locator operatively associated with the adjusting collar wherein the depth locator moves axially to adjust a depth setting responsive to rotation of the adjusting collar relative to the screw gun; and an indexing means for releasably retaining the adjusting collar in its selected angular position regardless of whether the removable depth adjusting assembly is attached to the screw gun, wherein the indexing means can be overcome to rotate the adjusting collar by a deliberate torque applied to the adjusting collar by a user: and wherein the removable depth adjusting assembly has a central opening therethrough at least partially surrounding the spindle, the opening defining an axis parallel to the rotational axis of the spindle.
US Referenced Citations (38)
Number Name Date Kind
3834252 Abell et al. Sep 1974 A
4030383 Wagner Jun 1977 A
4592257 Diirr Jun 1986 A
4630512 Diirr Dec 1986 A
4647260 O'Hara et al. Mar 1987 A
4655103 Schreiber et al. Apr 1987 A
4762035 Fushiya et al. Aug 1988 A
4809572 Sasaki Mar 1989 A
4947714 Fluri Aug 1990 A
5044233 Tatsu et al. Sep 1991 A
5134909 Sasaki Aug 1992 A
5138916 Sato et al. Aug 1992 A
5209308 Sasaki May 1993 A
5271471 Sasaki Dec 1993 A
5341704 Klemm Aug 1994 A
5341708 Nick Aug 1994 A
5350026 Markus et al. Sep 1994 A
5360073 Akazawa Nov 1994 A
5372206 Sasaki et al. Dec 1994 A
5380132 Parks Jan 1995 A
5509330 Nick Apr 1996 A
5524512 Wolfe Jun 1996 A
5538089 Sanford Jul 1996 A
5557990 Shin Sep 1996 A
5568849 Sasaki et al. Oct 1996 A
5601387 Sanford et al. Feb 1997 A
5682800 Jore Nov 1997 A
5709275 Neumaier Jan 1998 A
5775186 Rahm Jul 1998 A
5778989 Neumaier Jul 1998 A
5865076 Fujiyama et al. Feb 1999 A
5881613 Han Mar 1999 A
5947210 Sasaki et al. Sep 1999 A
6105450 Sasaki et al. Aug 2000 A
6176162 Ludwig et al. Jan 2001 B1
6240816 Riedl et al. Jun 2001 B1
6536537 Sasaki et al. Mar 2003 B1
6547013 Riedl et al. Apr 2003 B2