1. Field of the Invention
The invention relates to closure systems and methods for blood vessel puncture sites.
2. Brief Description of the Related Art
A large number of diagnostic and interventional procedures involve the percutaneous introduction of instrumentation into a vein or artery. For example, coronary angioplasty, angiography, atherectomy, stenting of arteries, and many other procedures often involve accessing the vasculature through a catheter placed in the femoral artery or other blood vessel. Once the procedure is completed and the catheter or other instrumentation is removed, bleeding from the punctured artery must be controlled.
Traditionally, external pressure is applied to the skin entry site to stem bleeding from a puncture wound in a blood vessel. Pressure is continued until hemostasis has occurred at the puncture site. In some instances, pressure must be applied for up to an hour or more during which time the patient is uncomfortably immobilized. In addition, a risk of hematoma exists since bleeding from the vessel may continue beneath the skin until sufficient clotting effects hemostasis. Further, external pressure to close the vascular puncture site works best when the vessel is close to the skin surface and may be unsuitable for patients with substantial amounts of subcutaneous adipose tissue since the skin surface may be a considerable distance from the vascular puncture site.
More recently, devices have been proposed to promote hemostasis directly at a site of a vascular puncture. One class of such puncture sealing devices features an intraluminal anchor which is placed within the blood vessel and seals against an inside surface of the vessel puncture. The intraluminal plug may be used in combination with a sealing material positioned on the outside of the blood vessel, such as collagen. Sealing devices of this type are disclosed in U.S. Pat. Nos. 4,852,568; 4,890,612; 5,021,059; and 5,061,274.
Another approach to subcutaneous blood vessel puncture closure involves the delivery of non-absorbable tissue adhesives, such cyanoacrylate, to the perforation site. Such a system is disclosed in U.S. Pat. No. 5,383,899.
The application of an absorbable material such as collagen or a non-absorbable tissue adhesive at the puncture site has several drawbacks including: 1) possible injection of the material into the blood vessel causing thrombosis; 2) a lack of pressure directly on the blood vessel puncture which may allow blood to escape beneath the material plug into the surrounding tissue; and 3) the inability to accurately place the absorbable material plug directly over the puncture site.
The use of an anchor and plug system addresses these problems to some extent but provides other problems including: 1) complex and difficult application; 2) partial occlusion of the blood vessel by the anchor when placed properly; and 3) complete blockage of the blood vessel or a branch of the blood vessel by the anchor if placed improperly. Another problem with the anchor and plug system involves reaccess. Reaccess of a particular blood vessel site sealed with an anchor and plug system is not possible until the anchor has been completely absorbed because the anchor could be dislodged into the blood stream by an attempt to reaccess.
Such puncture sealing devices are generally used in conjunction with a cannula or arterial dilator which dilates an access tract in the tissue before inserting the sealing device for placing the intraluminal or sealing plug. By using the cannula to dilate the access tract, the sealing device can be easily advanced into the tissue toward the vascular puncture. However, a conventional cannula has either a constant diameter lumen which is sized to closely accommodate a guidewire, or the diameter of the lumen narrows at the distal end. When these conventional cannulas are advanced into the access tract, the cannulas often encounter scar or muscular tissue that requires substantial force to advance the cannula through these layers. In prior conventional cannulae, a cannula which has a constant diameter lumen may enter the vascular puncture while being advanced into the access tract, or the cannula will bounce against a wall of the blood vessel rather than accurately locate the blood vessel wall. Accordingly, the sealing plug may not be accurately placed over the puncture site.
The devices and methods described in the aforementioned '670 application are well-suited for controlling a blood vessel puncture. It has been observed, however, that in some circumstances blood flashing out the proximal end of the device does not form blood drops as readily as would be desired. The bleed-back presented by the devices of the '670 application is detected as it exits the coaxial space created by the inside diameter of the proximal end of the flash tube and the outside diameter of the guidewire. The feedback provided by this configuration can be compromised by several factors, including low surface tension, short length of the proximal flash tube, pooling of blood in the proximal luer, blood running onto the handle, and finally blood oozing from the proximal flash tube that has entered into the tip and/or into the bleed-back hole via tract oozing prior to the bleed-back hole entering the blood vessel lumen. These factors can conspire to make the resulting bleed-back signal challenging to interpret and less meaningful to the casual observer. Additionally, blood running onto the handle is messy and may undesirably wet the user's gloves. Providing a bleed-back system overcoming these limitations would provide significant benefit.
Accordingly, it would be desirable to provide a system for accurately locating the blood vessel wall for properly placing a hemostasis plug over a puncture site.
According to one aspect of the present invention, an apparatus useful for inhibiting blood loss out a puncture site in a blood vessel wall and for indicating the location of a blood vessel comprises a vent tube including a tubular shaft having a proximal end, a distal end, and a lumen extending longitudinally between the proximal end and the distal end, and a control head on the distal end of the vent tube shaft, the control head including a proximal end portion, a distal end portion having a distal port, and a central portion between the proximal end portion and the distal end portion, the control head including a lumen extending from the distal port to the vent tube shaft lumen.
According to another aspect of the present invention, a pledget delivery and blood vessel puncture site control system comprises a control tip including a vent tube having a tubular shaft with a proximal end, a distal end, and a lumen extending longitudinally between the proximal end and the distal end, and a control head on the distal end of the vent tube shaft, the control head including an externally tapered proximal end portion, a distal end portion having a distal port, and a central portion between the proximal end portion and the distal end portion, the control head including a lumen extending from the distal port to the vent tube shaft lumen, a pledget pusher positioned around the vent tube shaft, the pledget pusher including a tubular shaft having a proximal end, a distal end, and a lumen extending longitudinally between the pledget pusher proximal end and the pledget pusher distal end, the inner diameter of the pledget pusher lumen being larger than the outer diameter of the vent tube, a delivery cannula positioned around the pledget pusher, the delivery cannula a including a tubular shaft having a proximal end, a distal end, and a lumen extending longitudinally between the delivery cannula proximal end and the delivery cannula distal end, the inner diameter of the delivery cannula lumen being larger than the outer diameter of the pledget pusher, the control head extending distally from the delivery cannula distal end, the delivery cannula distal end extending distally of the pledget pusher distal end.
According to another aspect of the present invention, a method of positioning a pledget adjacent to the exterior surface of a blood vessel puncture site in a patient comprises the steps of advancing a control head of a control tip through the puncture site and at least partially into the blood vessel, the control tip including a proximal portion extending out of the puncture site and out of the patient, advancing an assembly over the control tip proximal portion and adjacent to an exterior surface of the blood vessel, the assembly including a delivery cannula having a lumen, a pledget pusher in the delivery cannula, and a pledget in the delivery cannula, proximally retracting the control head to engage the pledget, and expelling the pledget from the delivery cannula.
According to yet another aspect of the present invention, a method of measuring the distance between an epidermal outer surface and the outer surface of a blood vessel, the blood vessel having a puncture therethrough at a puncture site, comprises the steps of advancing a control tip through subcutaneous tissue and into the blood vessel through the puncture, advancing a tubular shaft over the control tip until a distal end of the tubular shaft engages the outer surface of the blood vessel, and positioning a marker along the tubular shaft against the epidermal outer surface.
According to yet another aspect of the present invention, a method of at least partially controlling blood flow through a puncture site in a blood vessel wall comprises the steps of inserting a control tip through the vessel wall at the puncture site and at least partially into the blood vessel, and positioning a pledget adjacent to an outer surface of the blood vessel wall at the puncture site with the control tip still at least part in the vessel puncture site.
Still other objects, features, and attendant advantages of the present invention will become apparent to those skilled in the art from a reading of the following detailed description of embodiments constructed in accordance therewith, taken in conjunction with the accompanying drawings.
The invention of the present application will now be described in more detail with reference to preferred embodiments of the apparatus and method, given only by way of example, and with reference to the accompanying drawings, in which:
a illustrates a first exemplary embodiment of a control tip in accordance with the present invention;
b illustrates a second exemplary embodiment of a control tip in accordance with the present invention;
c illustrates an enlarged cross-sectional view of a third exemplary embodiment of a control tip in accordance with the present invention, taken at line 1—1;
d illustrates an enlarged cross-sectional view of a third exemplary embodiment of a control tip in accordance with the present invention, taken at line 1—1;
a illustrates a side elevational view of portions of a first exemplary system in accordance with the present invention;
b illustrates an enlarged cross-sectional view of a portion of the exemplary embodiment of a pusher illustrated in
a-8f illustrate steps of an exemplary method in accordance with the present invention;
a and 23b illustrate views of a tube component useful in yet another embodiment of the present invention;
a-24c illustrate top plan, side elevational, and top proximal right hand side perspective views, respectively, of yet another embodiment of a handle in accordance with the present invention;
a-25d illustrate several views of another embodiment of a pledget pusher in accordance with the present invention;
a-26c illustrate perspective views, with portions broken away, of a hydration and loading device in accordance with the present invention;
a-27c illustrate perspective views, with portions broken away, of a handle, proximal hub of a control tip, and proximal hub of a pledget pusher in accordance with the present invention;
a-28c illustrate a collar in accordance with the present invention;
a-29c illustrate several steps in an exemplary method in accordance with the present invention; and
Referring to the drawing figures, like reference numerals designate identical or corresponding elements throughout the several figures.
In the context of the present invention, “pledget” means a piece of sponge formed into a generally elongated shape having a size which allows delivery in a hydrated state through a delivery cannula or introducer to a site of a puncture in a blood vessel.
“Sponge” means a biocompatible material which is capable of being hydrated and is resiliently compressible in a hydrated state. Preferably, the sponge is non-immunogenic and may be absorbable or non-absorbable.
“Absorbable sponge” means sponge which, when implanted within a human or other mammalian body, is absorbed or resorbed by the body.
“Hydrate” means to partially or fully saturate with a fluid, such as saline, water, contrast agent, thrombin, therapeutic agents, or the like.
a illustrates a puncture control tip 10 in accordance with a first embodiment of the present invention. The puncture control tip 10 includes a tubular, hollow puncture control tip shaft 14 which functions as a flash tube, as described in greater detail below. The shaft 14 includes a lumen 34 (see
The puncture control tip 10 includes, at its distal end, a hollow puncture control head 16 mounted or otherwise secured to distal portions of the shaft 14. As illustrated in
b illustrates another embodiment of a puncture control tip 12 in accordance with the present invention. The control tip 12 is similar to control tip 10, but includes a puncture control tip head 24 which includes a hole 26 which communicates the exterior of the head with the interior thereof and functions as a flash hole or vent for the control tip. According to yet another embodiment, a hole 26′ can be included in addition to, and preferably instead of, hole 26. Hole 26′ is formed in the shaft 14 proximal of and proximate to the proximal portion 20, and communicates the interior lumen of the shaft with the exterior of the shaft. Turning to
As illustrated in
Preferably, the control tip is formed of a flexible, biocompatible material such as a thermoplastic. By way of example and not of limitation, the material out of which the control tip is formed has a Shore hardness between about 90A-82D, preferably between about 98A-74D, more preferably about 64D.
Turning now to
A control tip 12 (as illustrated in
a illustrates an embodiment of a depth marker 36 mounted over a control tip 12 in accordance with the present invention. Marker 36 is a hollow, tubular member preferably shorter than the control tip 12. Marker 36 optionally further includes a collar 38 slidable along the outer surface of the marker. The collar 38 is preferably elastic such that it will engage the exterior of the marker 36 to hold its position on the marker, yet be movable along the marker upon the application of a small force to slide the collar along the marker. Thus, collar 38 can be used as a depth indicator, as described in greater detail below.
The marker 36 includes a proximal end 40, a distal end 42, and an interior lumen 44 extending longitudinally between the proximal and distal ends. The proximal and distal ends of the marker 36 preferably include a seal with the shaft 14 of the control tip 12. The seal between the shaft 14 and the marker 36 can be formed in any suitable way that provides a fluid seal between the marker and the shaft. By way of example and not of limitation, the proximal and distal seals can be formed by forming the marker with a reduced inner diameter at (at least) the proximal and distal ends of the marker, or by including dynamic sealing members, such as O-rings or septa. Preferably, at least the distalmost portions of distal end 42 is slightly rounded to prevent trauma to the vascular tissues with which it comes into contact.
Marker 36 is preferably attached to control tip 12, or less preferably, positioned on the control tip 12 so that it is difficult to slide them longitudinally relative to each other. The distal end 42 is spaced from the elongated central portion 22 of the control head by a distance X, described in greater detail below. Optionally, the control tip and the marker can be interconnected using a releasable proximal connection, e.g. a Touhy-Borst connector (for which the marker would include cross-drilled holes or the like for blood flash), ultrasonic welding, gluing, etc.
b illustrates an enlarged cross-sectional view of a distal end of a marker 36 or 46 in accordance with the present invention. The marker includes an interior lumen 44 which terminates at the distal end 52 of the marker with a countersunk tapered distal port. For reasons which will be explained in greater detail below with reference to
Turning now to
In the embodiments of
The pledget 90 according to one preferred embodiment of the invention is formed from a sheet of absorbable sponge material which has been cut into a rectangular shape and rolled to form a compact, substantially cylindrical, elongated pledget. One type of absorbable sponge material which is acceptable for use in the present invention is Gelfoam™, manufactured by the Pharmacia & Upjohn Company. Gelfoam™ is a porous, pliable, cross-linked gelatin material and is available commercially in sheet form as pre-compressed or non-compressed sponge. The material may be provided preformed as a pledget 90 or may be cut with a punch, or a stencil, or template and knife and rolled to form a pledget. Once hydrated, the pledget 90 can be easily compressed to fit into a lumen having a smaller cross sectional area than the original cross sectional area of the pledget. Additionally, the kneading of the hydrated pledget 90 during delivery encourages air trapped within the Gelfoam™ to be expelled and replaced with fluid, allowing rapid expansion upon delivery. When a pledget 90 of a pre-compressed Gelfoam™ is hydrated and kneaded (expelling air) during delivery, the pledget will have the absorption capacity to rapidly expand to many times (e.g., 3 or more times) its original dry volume upon delivery. When a pledget 90 of the non-compressed Gelfoam™ is hydrated and kneaded (expelling air) during delivery, the pledget will have the absorption capacity to rapidly expand to its original dry volume upon delivery. These properties make the Gelfoam™ sponge material particularly useful for facilitating hemostasis of puncture sites by injection.
The delivery cannula 56 includes a proximal hub 60. Hub 60 includes mating structures to mate with corresponding mating structures formed in a distal hub 76 of handle 62. By way of example and not of limitations, the mating structures of hub 60 and hub 76 can be luer fittings, screw threads, releasable bayonet fittings, and any other fitting which can releasably connect together hubs 60, 76 so that the delivery cannula 56 and the handle 62 can be moved together when the structures are mated, and the delivery cannula and handle can be separated and moved independently when the structures are released.
Pusher 37 includes a proximal hub 78 which both limits the proximal and distal movement of the pusher, and provides an enlarged section at which a practitioner can grasp the pusher if necessary. Hub 78 optionally further includes a proximal outwardly flared stop 80 which limits longitudinal motion of the pusher 37 relative to the handle 62 and other structures of the system, described in detail below. More particularly, stop 80 limits distal motion of the pusher 37, because it has an outer dimension (e.g., diameter) larger than portions of hub 76 of handle 62, and limits proximal motion because the stop is longitudinally aligned with portions of a motion limiting device 82 (described below) positioned proximal of the stop.
Handle 62 generally provides a place for a practitioner to grasp and manipulate the control tip 12, pusher 37, and delivery cannula 56 together, while also permitting the practitioner to separately move these individual components. Therefore, while a particular embodiment of a handle in accordance with the present invention is illustrated in
Handle 62, as illustrated in
The proximal end of the handle 62 includes an opening, slot, or the like 74 which receives a proximal motion limiting device 82 for the control tip 12. In the embodiment illustrated in
As will be readily appreciated by one of ordinary skill in the art, device 82 can take forms different from those illustrated in
a-8f illustrate a system as illustrated in
When the hole 26 enters the blood vessel 5, blood B flashes out the proximal end of flash tube 14, as described above, indicating to the practitioner that entry to the blood vessel has been made. Because blood may have previously been present in lumen 34 of shaft 14, and therefore potentially has already clotted or coagulated, blocking the lumen 34, it is preferable that lumen 34 be coated with a blood anticoagulant, as described above. Another tactile indication to the practitioner that entry to the blood vessel 5 has been made is provided by the distance or gap X between the proximal end of the control head 24 and the distal end of the delivery cannula 56. Because the overall flexibility of the system between the proximal end of the control head 24 and the distal end of the delivery cannula 56 is less than both the longitudinally adjacent sections of the system, the practitioner can feel that the system is more easily moved laterally when the control head 24 is in the position illustrated in
b illustrates a stage in the exemplary method later than that illustrated in
c illustrates a stage in the exemplary method later than that illustrated in
d illustrates a stage in the exemplary method later than that illustrated in
e illustrates a stage in the exemplary method later than that illustrated in
f illustrates a stage in the exemplary method later than that illustrated in
Also illustrated in
In
Formed integrally with the delivery cannula 162, the control tip 168 extends longitudinally between a proximal end 170 and a distal end 172 radially offset from the center longitudinal axis of the lumen 166. The control tip 168 includes a longitudinally extending lumen 174 and a vent port or hole 176 similar to hole or holes 26. As in other embodiments described herein, the distal end 172 is preferably tapered, and preferably has an inner diameter which tapers distally, as at 178, to form a dynamic seal with a wire (not illustrated) over which the control tip 168 is inserted. As illustrated in
The delivery cannula 200 further includes a vent lumen 212 laterally offset from the lumen 202 and the lumen 210, and preferably between the lumenae 202, 210. In a fashion similar to that previously described herein, the vent lumen 212 permits blood to flash to the proximal end of the delivery cannula 200 to give a visual indication of when control of the puncture site 9 is made and lost.
a and 23b illustrate a fluid handling tube 300 useful in accordance with yet another embodiment of the present invention, one particular use of which will be described in greater detail below. The tube 300 includes a cylindrical sidewall 302 extending between a proximal end 306 and a distal end 304. A hollow interior 308 is delimited by the sidewall 302. The proximal end 306 preferably includes an enlarged portion 310 which assists the tube 300 in conducting fluid therethrough. At least one, and preferably numerous fluid ports 312 are formed through the sidewall 302 adjacent to the distal end 306.
a-24c illustrate several views of a handle 400 according to yet another embodiment of the present invention. Handle 400 is similar in many respects to handle 62. Handle 400 includes a top portion 402 and a bottom portion 404 which together form a generally rectangular housing. The handle 400 includes a proximal end 406 and a distal end 408. A releasable hollow locking hub 410 extends distally from the distal end 408, and is structured to releasably mate with a proximal hub of a delivery cannula, similar to cannula 56 and described in greater detail below. A longitudinally extending slot 412 is formed in each of the top 402 and bottom 404, each slot 412 including a proximal enlarged portion 414 and a proximal narrow portion 416. Adjacent to and on at least one, and preferably both sides of both narrow portions 416 are formed ramps 418 which extend outwardly from the outer surfaces of the top 402 and bottom 404 a distance sufficient to interfere with the movement of portions of a pledget pusher handle, described in greater detail below.
Also formed at the distal end of the ramps 418 are at least one, and preferable a pair of upstanding locking lips 422, one pair on the top 402 and one on the bottom 404. The lips 422 extend outwardly from the top 402 and bottom 404 a distance sufficient to enable portions of a pledget pusher handle to cam over the lips and releasably lock therewith, as described in greater detail below. The top 402 and bottom 404 can also optionally be further provided with raised ridges 420 adjacent the proximal end 406 which aid the user of the handle in manipulating it.
The handle 400 includes a proximal opening 424. According to one aspect of the present invention, the proximal opening 424 is U-shaped with an enlarged, more open upper portion 426. The enlarged portion 426 acts as a slot to permit portions of a control tip proximal hub, similar in some respects to hub 82 and described in greater detail below, to pass out of the handle 400 and permitting the handle and the control tip to move relative to each other. The proximal opening 424 also includes a lower slot 430 which extends distally into the handle 400, and a proximally extending stud 428. Lower slot 430 cooperates with a portion of a proximal handle of a control tip, and stud 428 cooperates with other portions of the proximal handle of the control tip, described in greater detail below.
a-25d illustrate several views of a pledget pusher 500 according to yet another embodiment of the present invention. Pusher 500 is similar in some respects to pusher 37 described above. Pusher 500 includes a proximal end 502, a distal end 504, and a hollow tubular member 506 extending between the ends. As can be seen in the illustrations of
The proximal end 502 of the pledget pusher 500 includes a proximal hub 514 to which are attached several additional elements. At least one, and preferably two finger engaging portions 510, 512 are cantilevered to the proximal hub 514 through attachment posts 518, 518, respectively; when both portions 510, 512 are provided, they are preferably formed on diametrically opposite lateral sides of the pusher 500. As illustrated in the drawing figures, portions of the finger engaging portions 510, 512 extend distally of the attachment posts 516, 518 and include distal latches 520, 522 which extend radially inward. The distal latches are sized and positioned so that, when the pusher 500 is positioned relative to the handle 400 as described herein, the latches cam over the ramps 418 when pushed distally, and also are sized and positioned to cam over and latch the lips 422 to releasably hold together the pusher 500 and the handle 400.
The pusher 500 also includes at least one, and preferably two proximal latches 524, 526 which extend proximally from the proximal hub 514. The latches 524, 526 extend radially inward, and are sized and positioned to engage with and releasably lock with corresponding portions on the proximal hub of a control tip, as described in greater detail below. When both latches 524, 526 are provided, they are preferably formed on diametrically opposite lateral sides of the pusher 500. While
a-26c illustrate partial cross-sectional, perspective views of a pledget hydration and loading device 600 used to both hydrate a pledget 90 and load the hydrated pledget into a delivery cannula 56 in accordance with the present invention. Device 600 is similar in function to device 100, described above. Device 600 preferably includes the fluid handling tube 300 mounted therein, with the distal end 304 extending around the control tip 24 and the hole 26. In this position, the fluid handling tube 300 inhibits, and preferably prevents, hydration fluid from entering the flashback lumen of the control tip through the hole 26. As will be readily appreciated by one of skill in the art, the holes 312 are provided so that any hydration fluid which flows through the interior of the tube 300 can flow through the holes 312 and around the outside of the tube to hydrate and move the pledget 90. In the stage of hydration illustrated in
b illustrates a stage in a process of hydration and loading of the pledget 90 in the pusher 500 later than that illustrated in
a-27c illustrate perspective views, with portions broken away to aid in an understanding of the invention, of proximal portions of the pusher 300, handle 400, and a proximal hub 700 of a control tip 14 assembled together in accordance with the present invention. The distal portions of the control tip are similar to the distal portions of control tip 14, described above.
In
A distal cylinder 716 extends distally from the proximal cylinder 706, and preferably has a smaller outer diameter. At least one, and preferably a pair of ramp latches 712, 714 extend laterally from the exterior surface of the cylinder 716, with the higher portions of the ramps being at the ramps' proximal ends. The ramp latches 712, 714 are sized and positioned so that when the pledget pusher 500 is moved proximally, the proximal latches 524, 526 cam over the top surfaces of the ramp latches and releasably lock to the proximal faces of the ramp latches. This locked position is illustrated in
The first key 708 and the second flange 710 are diametrically oppositely arranged, and the ramp latches 712, 714 are also diametrically oppositely arranged. Another aspect of the present invention is that the key 708/flange 710 pair are offset along the circumferences of the cylinders 706, 716 from the ramp latches 714/712 pair. While in the embodiment illustrated in
b illustrates the pledget pusher 500 after having been moved proximally so that the proximal latches 524, 526 have cammed over the ramp latches 712, 714, securing the pusher to the control tip 14. Notable is that the finger engaging portions 510, 512 of the pusher 500 extend through the slots 412 of the handle 400, and therefore the pusher cannot rotate relative to the handle. In the orientation illustrated in
c illustrates relative positions of the proximal hub 700, handle 400, and pusher 500 after the hub 700 has been rotated clockwise (as seen from the proximal end of the assembly) and retracted proximally. In this position, the ramp latches 712, 714 have been rotated away from the proximal latches 520, 522, which permits the proximal hub 700 to move independently off the pledget pusher. This rotation of the proximal hub 700 is also relative to the handle 400, and results in the alignment of the key 708 with the open upper end 426, and the alignment of the flange 710 with the slot 430. The proximal hub 700 includes a set of structures on distally directed portions of the wings 702, 704, which cooperate with the stud 428 on the proximal end of the handle to restrict the motion of the proximal hub 700 relative to the handle 400 to a single direction of rotation. In the embodiment illustrated in
a-28c illustrate a collar 38 positioned on the outer surface of the delivery cannula 56, as described above, in combination with several alternative embodiments of the present invention. The collar 38 assists the user of the devices of the present invention in correctly positioning the control tip in the blood vessel of a patient, as discussed above. Additionally, it is advantageous for the length of the control head 24 to be equal or larger than the insertable length of the delivery cannula 56. By sizing the control head 24 in this manner, the user can achieve blood flow control at the puncture site much faster before the distal end of the delivery cannula reaches the puncture site.
a-29c illustrate several steps of methods in accordance with the present invention, utilizing the handle 400, pledget pusher 500, and control tip proximal hub 700 described above. The steps illustrated in
The tube 800 is preferably extremely hydrophobic and has a very high surface tension. Any blood exiting the tube 800 at proximal end 802 immediately forms a drop and falls free prior to reaching the handle; as the device is typically used at an angle not exceeding about 60 deg from horizontal, the drop can form and fall. A short, less hydrophobic proximal flash tube “wets” out and shunts blood directly into or onto the adjacent fittings and handle. Further, the tube 800 has a larger ID at distal end 804 than the proximal flash tube and extends proximally of it, allowing the tube to act as a reservoir to slowly accumulate any tip or tract oozing prior to the bleed-back hole 26 entering the blood vessel lumen. In this way, oozing that would otherwise be observed exiting the proximal flash tube 14, and possibly be misinterpreted, is contained within the tube 800, allowing sufficient time to advance the system until the bleed-back hole 26 enters the blood vessel lumen. When the bleed-back hole enters the blood vessel lumen, the volume of blood exiting the proximal flash tube 14 increases dramatically and immediately (i.e. 1 second) fills the tube 800 and begins dripping free. The coaxial orientation of the tube 800 relative to the guidewire 28 ensures consistent interpretation of the bleed-back regardless of the radial alignment of the device with respect to the tissue tract.
The large proximal end 814 of the cone further provides a definitive point from which the drop can fall if it should get that far along the exterior of the cone 810, providing additional certainty that the drop does not reach the luer or handle. As with the tube 800, the cone 810 can act as a reservoir for blood.
For all of the embodiments of the control tip herein, the outer diameter of the central portion is between about 5 French and about 9 French, preferably between about 6 French and about 7 French. The length of the control head, between the distalmost end and the proximal end of the proximal tapered portion, is between about 1.5 inches (3.8 cm) and about 3 inches (7.6 cm), preferably between about 1.5 inches and about 2 inches (6.4 cm), and more preferably about 1.875 inches (4.8 cm). Control heads of these dimensions are well suited for controlling puncture sites as described herein, particularly puncture sites used during Seldinger-type vascular access.
The transverse cross sectional profile of all of the foregoing structures can be any desired shape, including square, oval, triangular, and preferably circular. The materials out of which the control tip, pledget pusher, and delivery cannula are constructed are preferably selected to be relatively rigid and biocompatible, and more preferably are biocompatible polymers, biocompatible metals and metal alloys, and combinations thereof.
While the invention has been described in detail with reference to preferred embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention. All of the aforementioned documents are incorporated by reference in each of their entireties herein.
This application is a continuation-in-part of U.S. application Ser. No. 09/621,670 filed Jul. 24, 2000, which is a continuation-in-part of U.S. application Ser. No. 09/613,439 filed Jul. 11, 2000, which is a division of U.S. application Ser. No. 09/071,284 filed May 1, 1998, now U.S. Pat. No. 6,162,192. This application also is a continuation-in-part of U.S. application Ser. No. 09/263,603 filed Mar. 5, 1999, now U.S. Pat. No. 6,315,753, which is a continuation-in-part of the '284 application. The '670 application claims the priority benefit under 35 USC §119(e) to U.S. provisional application Ser. No. 60/156,007 filed Sep. 23, 1999. The disclosures of the foregoing applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
581235 | Kenyon | Apr 1897 | A |
1578517 | Hein | Mar 1926 | A |
2086580 | Shirley | Jul 1937 | A |
2370319 | Lippincott | Feb 1945 | A |
2465357 | Correll | Mar 1949 | A |
2492458 | Bering, Jr. | Dec 1949 | A |
2507244 | Correll | May 1950 | A |
2558395 | Studer | Jun 1951 | A |
2597011 | MacMasters et al. | May 1952 | A |
2680442 | Linzmayer | Jun 1954 | A |
2761446 | Reed | Sep 1956 | A |
2814294 | Figge | Nov 1957 | A |
2824092 | Thompson | Feb 1958 | A |
2874776 | Hooe | Feb 1959 | A |
2899362 | Sieger, Jr. et al. | Aug 1959 | A |
2997195 | Yuen | Aug 1961 | A |
3157524 | Artandi | Nov 1964 | A |
3358689 | Higgins | Dec 1967 | A |
3411505 | Nobis | Nov 1968 | A |
3703174 | Smith | Nov 1972 | A |
3724465 | Duchane | Apr 1973 | A |
3736939 | Taylor | Jun 1973 | A |
4000741 | Binard et al. | Jan 1977 | A |
4098728 | Rosenblatt | Jul 1978 | A |
4211323 | Olsen | Jul 1980 | A |
4218155 | Weidner | Aug 1980 | A |
4219026 | Layton | Aug 1980 | A |
4224945 | Cohen | Sep 1980 | A |
4238480 | Sawyer | Dec 1980 | A |
4292972 | Pawelchak | Oct 1981 | A |
4323072 | Rosenbluth et al. | Apr 1982 | A |
4340066 | Shah | Jul 1982 | A |
4390018 | Zuloowski | Jun 1983 | A |
4404970 | Sawyer | Sep 1983 | A |
4405314 | Cope | Sep 1983 | A |
4515637 | Cioca | May 1985 | A |
4587969 | Gillis | May 1986 | A |
4588395 | Lemelson | May 1986 | A |
4591094 | Morris | May 1986 | A |
4619261 | Guerriero | Oct 1986 | A |
4619913 | Luck et al. | Oct 1986 | A |
4644649 | Seaman et al. | Feb 1987 | A |
4645488 | Matukas | Feb 1987 | A |
4699616 | Norwak | Oct 1987 | A |
4708718 | Daniels | Nov 1987 | A |
4744364 | Kensey | May 1988 | A |
4790819 | Li et al. | Dec 1988 | A |
4829994 | Kurth | May 1989 | A |
4832688 | Sagae et al. | May 1989 | A |
4839204 | Yoshino | Jun 1989 | A |
4850960 | Grayzel | Jul 1989 | A |
4852568 | Kensey | Aug 1989 | A |
4869143 | Merrick | Sep 1989 | A |
4890612 | Kensey | Jan 1990 | A |
4900303 | Lemelson | Feb 1990 | A |
4929246 | Sinofaky | May 1990 | A |
4936835 | Haaga | Jun 1990 | A |
4950234 | Fujioka et al. | Aug 1990 | A |
5007895 | Burnett | Apr 1991 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5049138 | Chevalier et al. | Sep 1991 | A |
5053046 | Janese | Oct 1991 | A |
5061274 | Kensey | Oct 1991 | A |
5080655 | Haaga | Jan 1992 | A |
5106376 | Mononen et al. | Apr 1992 | A |
5108421 | Fowler | Apr 1992 | A |
5129889 | Hahn | Jul 1992 | A |
5160323 | Andrew | Nov 1992 | A |
5163904 | Lampropoulous et al. | Nov 1992 | A |
5167624 | Butler et al. | Dec 1992 | A |
5192290 | Hilal | Mar 1993 | A |
5192300 | Fowler | Mar 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5195988 | Haaga | Mar 1993 | A |
5219899 | Panster et al. | Jun 1993 | A |
5220926 | Jones | Jun 1993 | A |
5221259 | Weldon et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5242683 | Klaveness | Sep 1993 | A |
5254105 | Haaga | Oct 1993 | A |
5275616 | Fowler | Jan 1994 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5299581 | Donnell et al. | Apr 1994 | A |
5310407 | Casale | May 1994 | A |
5320639 | Rudnick | Jun 1994 | A |
5322515 | Karas et al. | Jun 1994 | A |
5325857 | Nabai et al. | Jul 1994 | A |
5334216 | Vidal et al. | Aug 1994 | A |
5342388 | Toller | Aug 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5352211 | Merskelly | Oct 1994 | A |
5366480 | Corriveau et al. | Nov 1994 | A |
5370656 | Shevel | Dec 1994 | A |
5383896 | Gershony et al. | Jan 1995 | A |
5383899 | Hammersiag | Jan 1995 | A |
5385550 | Su et al. | Jan 1995 | A |
5388588 | Nabai et al. | Feb 1995 | A |
5391183 | Janzen et al. | Feb 1995 | A |
5399361 | Song et al. | Mar 1995 | A |
5417699 | Klein | May 1995 | A |
5419765 | Weldon et al. | May 1995 | A |
5431639 | Shaw | Jul 1995 | A |
5437292 | Kipshidze | Aug 1995 | A |
5437631 | Janzen | Aug 1995 | A |
5443481 | Lee | Aug 1995 | A |
5447502 | Haaga | Sep 1995 | A |
5458570 | May, Jr. | Oct 1995 | A |
5462194 | Barnwell | Oct 1995 | A |
5467780 | Nabai et al. | Nov 1995 | A |
5478352 | Fowler | Dec 1995 | A |
5479936 | Nabai et al. | Jan 1996 | A |
5486195 | Myers | Jan 1996 | A |
5490736 | Haber | Feb 1996 | A |
5507279 | Fortune | Apr 1996 | A |
5522840 | Krajicek | Jun 1996 | A |
5522850 | Yomtov et al. | Jun 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5527332 | Clement | Jun 1996 | A |
5529577 | Hammershiag | Jun 1996 | A |
5540715 | Katseros et al. | Jul 1996 | A |
5542914 | Van Iten | Aug 1996 | A |
5545175 | Abidin et al. | Aug 1996 | A |
5545178 | Kensey et al. | Aug 1996 | A |
5554108 | Browning et al. | Sep 1996 | A |
5558853 | Quay | Sep 1996 | A |
5571168 | Toro | Nov 1996 | A |
5591204 | Janzen et al. | Jan 1997 | A |
5591205 | Fowler | Jan 1997 | A |
5601207 | Paczonay | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5601602 | Fowler | Feb 1997 | A |
5601603 | Illi | Feb 1997 | A |
5620461 | Muijs Van De Moer | Apr 1997 | A |
5645566 | Brennenman et al. | Jul 1997 | A |
5645849 | Pruss et al. | Jul 1997 | A |
5649547 | Ritchart et al. | Jul 1997 | A |
5653730 | Hammersiag | Aug 1997 | A |
5665107 | Hammersiag | Sep 1997 | A |
5674346 | Kundel | Oct 1997 | A |
5676689 | Kensey | Oct 1997 | A |
5681279 | Roper et al. | Oct 1997 | A |
5707393 | Kensey et al. | Jan 1998 | A |
5716375 | Fowler | Feb 1998 | A |
5725498 | Janzen et al. | Mar 1998 | A |
5741223 | Janzen et al. | Apr 1998 | A |
5769086 | Ritchart et al. | Jun 1998 | A |
5775333 | Burbank et al. | Jul 1998 | A |
5782861 | Cragg et al. | Jul 1998 | A |
5800389 | Burney et al. | Sep 1998 | A |
5810806 | Ritchart et al. | Sep 1998 | A |
5827218 | Nguyen et al. | Oct 1998 | A |
5830130 | Janzen et al. | Nov 1998 | A |
5858008 | Capaccio | Jan 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5902310 | Foerster et al. | May 1999 | A |
5931165 | Reich et al. | Aug 1999 | A |
5984950 | Cragg et al. | Nov 1999 | A |
6007563 | Nash et al. | Dec 1999 | A |
6027471 | Fallon et al. | Feb 2000 | A |
6027482 | Imbert | Feb 2000 | A |
6033427 | Lee | Mar 2000 | A |
6056768 | Cates et al. | May 2000 | A |
6063061 | Wallace et al. | May 2000 | A |
6066325 | Wallace et al. | May 2000 | A |
6071300 | Brenneman et al. | Jun 2000 | A |
6071301 | Cragg et al. | Jun 2000 | A |
6086607 | Cragg et al. | Jul 2000 | A |
6090130 | Nash et al. | Jul 2000 | A |
6126675 | Shchervinsky et al. | Oct 2000 | A |
6161034 | Burbank et al. | Dec 2000 | A |
6162192 | Cragg et al. | Dec 2000 | A |
6183497 | Sing et al. | Feb 2001 | B1 |
6197327 | Harrison et al. | Mar 2001 | B1 |
6200328 | Cragg et al. | Mar 2001 | B1 |
6315753 | Cragg et al. | Nov 2001 | B1 |
6371974 | Brenneman et al. | Apr 2002 | B1 |
6440151 | Cragg et al. | Aug 2002 | B1 |
6440153 | Cragg et al. | Aug 2002 | B2 |
6447534 | Cragg et al. | Sep 2002 | B2 |
6503222 | Lo | Jan 2003 | B2 |
6527734 | Cragg et al. | Mar 2003 | B2 |
6540735 | Ashby et al. | Apr 2003 | B1 |
6544236 | Cragg et al. | Apr 2003 | B1 |
6547806 | Ding | Apr 2003 | B1 |
6585680 | Bugge | Jul 2003 | B2 |
6610026 | Cragg et al. | Aug 2003 | B2 |
20020002889 | Ashby et al. | Jan 2002 | A1 |
20020016612 | Ashby et al. | Feb 2002 | A1 |
20020038133 | Sing et al. | Mar 2002 | A1 |
20020042378 | Reich et al. | Apr 2002 | A1 |
20020062104 | Ashby et al. | May 2002 | A1 |
20020156495 | Brenneman et al. | Oct 2002 | A1 |
20030028140 | Greff et al. | Feb 2003 | A1 |
20030088269 | Ashby | May 2003 | A1 |
20030088271 | Cragg et al. | May 2003 | A1 |
20030120258 | Ashby et al. | Jun 2003 | A1 |
20030135237 | Cragg et al. | Jul 2003 | A1 |
20040019328 | Sing et al. | Jan 2004 | A1 |
20040019330 | Ashby | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
0032826 | Jul 1981 | EP |
0476178 | Mar 1992 | EP |
0482350 | Apr 1992 | EP |
0557963 | Feb 1993 | EP |
0637431 | Nov 1994 | EP |
0637432 | Oct 1997 | EP |
2641692 | Jul 1990 | FR |
1509023 | Apr 1978 | GB |
1569660 | Jun 1980 | GB |
1088709 | Apr 1984 | RU |
782814 | Nov 1980 | SU |
WO 9112847 | Sep 1991 | WO |
WO 9402072 | Feb 1994 | WO |
WO 9428800 | Dec 1994 | WO |
WO 9528124 | Oct 1995 | WO |
WO 9532669 | Dec 1995 | WO |
WO 9532671 | Dec 1995 | WO |
WO 9608208 | Mar 1996 | WO |
WO 9624290 | Aug 1996 | WO |
WO 9709934 | Mar 1997 | WO |
WO 9806346 | Feb 1998 | WO |
WO 9966834 | Dec 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20020062104 A1 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
60156007 | Sep 1999 | US |