The foregoing and other features and aspects of the present invention will be best understood with reference to the following detailed description of a specific embodiment of the invention, when read in conjunction with the accompanying drawings, wherein:
Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.
Seismic spread 16 includes an acoustic ranging system for navigation and positioning purposes. The acoustic ranging system includes a plurality of transmitters referred to as pingers 22 and receivers 24. The acoustic ranging system measures the range between pingers 22 and receivers 24. The range is the travel time of a direct arrival 28 (
Currently, bathymetric information is typically provided via an echo sounder or side scan sonar 38 from vessel 12. This depth information is of limited value since it only covers a limited area around vessel 12 and does not incorporate the area across seismic spread 16. Independent surveys may be conducted across an area in which the seismic survey is going to be provided, however, these surveys are expensive and time consuming. The current invention provides a method and system for conducting an accurate bathymetric survey of the area covered by spread 16 proximate the time the seismic survey is conducted.
With reference to
wherein “c” is the speed of sound in the water column, Zs is depth of streamer 14 below surface 34, TR,i is the arrival time of bottom reflection 30 at receiver 24a from pinger 22a and TD,i is the arrival time of direct arrival 28 at receiver 24a from pinger 22a. The index “i” represents that the measurement may be taken for several offsets or to average the measurements. Further, utilization of measurements of different offsets may be used to estimate the speed of sound in water column H.
Dipping seafloor inline may be addressed by comparing ranges between the distal ends of streamer 14 or by analysis of data from ping to ping. Cross-line dip may be determined by analysis of the relationship between pingers 22 and receivers 24 on neighboring streamers 14.
From the foregoing detailed description of specific embodiments of the invention, it should be apparent that a system and method for obtaining a depth survey across a seismic spread that is novel has been disclosed. Although specific embodiments of the invention have been disclosed herein in some detail, this has been done solely for the purposes of describing various features and aspects of the invention, and is not intended to be limiting with respect to the scope of the invention. It is contemplated that various substitutions, alterations, and/or modifications, including but not limited to those implementation variations which may have been suggested herein, may be made to the disclosed embodiments without departing from the spirit and scope of the invention as defined by the appended claims which follow.