The present invention relates to railways and, more particularly, to an indicator or warning light for derail or switch on a railway.
Currently, there is no portable indicator or LED indicator that can be turned on or turned off automatically based on the orientation of the derail, switch or metal flag. Currently, locomotive operators have a hard time seeing the orientation of the derail or switch point and in many cases hit the derail or switch point and derail. In many cases, nothing is placed as a more visual warning. In some cases, lights and flags are placed in those location, but the lights have to be constantly monitored and charged and the flags are hard to see and become ineffective. There is a need for a portable indicator that can be automatically turned on and turned off based on the orientation of the derail, switch, or metal flag.
Aspects of the disclosure relate to a derail warning system that may include a solar-powered LED indicator for derail or switch. The derail warning system may also include an orientation sensor that automatically turns on depending on the orientation of the derail (up or down), derail metal flag, or switch indicator flag. The derail warning system may bring more visibility with a 360-degree LED that is solar powered and may detect orientation and turn on based on the position of the derail, switch, or flag. The derail warning system may use a unique acceleration sensor or g-sensor that can detect orientation movement and automatically turn on or off and be fully charged to operate day or night. The derail warning system may also include a data-logging microprocessor to determine a time stamp of position and location.
According to an embodiment, a derail warning system for use on a rail includes a derail device and a derail warning light. The derail device may include includes a mounting section that mounts to the rail and a rotatable base plate adjacent to the mounting section. The derail warning light may include a plurality of LEDs configured to turn ON when the derail device is in a DERAIL position and turn OFF when the derail device is in a NON-DERAIL position. The derail warning light may include a mounting device that attaches the derail device to the base plate of the derail device. The derail warning light may further include a microprocessor and an orientation sensor. The microprocessor may include data storage capabilities for time-stamping and data-logging the DERAIL positions and NON-DERAIL positions of the derail device. The orientation sensor may sense the DERAIL position and the NON-DERAIL position and automatically turn on the derail warning light based on the position of the derail device.
Further, the railway cover board may include the mounting section that includes a pair of rotating brackets and a rotating pin to connect the base plate to the mounting section. The pair of rotating brackets and the rotating pin may allow the base plate and the derail device to rotate from the “NON-DERAIL” position to the “DERAIL” position. The mounting device may be a clamp to mechanically attach and connect the derail warning light to the base plate of the derail device. The clamp may mechanically attach to a handle bar that extends along the base plate of the derail device. The mounting device may include a magnet to magnetically attach and connect the derail warning light to the base plate of the derail device. The derail warning light may include a solar power panel that provides power via solar energy to the derail warning light, the plurality of LEDs, the microprocessor, and the orientation sensor. The microprocessor may be programmable to include data logging to record and log any and all data from the derail warning system, and further wherein the data logged is uploaded to be analyzed and reviewed. The plurality of LEDs may be multi-colored arrangements to include blue, red, amber, white, and green. Further, rotating the base plate and the derail warning light to the “NON-DERAIL” position may cause a first side of the mounting device to be facing upward and rotating the base plate and the derail warning light to the “DERAIL” position may cause a second side of the mounting device to be facing upward. The orientation sensor may include a tilt sensor and/or a compass sensor. The plurality of LEDs are located around the periphery of the derail warning light.
According to another embodiment, a derail warning system for use on a rail may include a derail device and a derail warning light. The derail device may include a mounting section that mounts to the rail and a rotatable base plate adjacent to the mounting section. The mounting section may include a pair of rotating brackets and a rotating pin to connect the base plate to the mounting section. The derail warning light may include a plurality of LEDs configured to turn ON when the derail device is in a DERAIL position and turn OFF when the derail device is in a NON-DERAIL position. The derail warning light may include a mounting device that attaches the derail device to the base plate of the derail device. The derail warning light may further include a microprocessor and an orientation sensor, wherein the microprocessor includes data storage capabilities for time-stamping and data-logging the DERAIL positions and NON-DERAIL positions of the derail device. The microprocessor may be programmable to include data logging to record and log any and all data from the derail warning system, and wherein the data logged is uploaded to be analyzed and reviewed. The derail warning light may include a solar power panel that provides power via solar energy to the derail warning light, the plurality of LEDs, the microprocessor, and the orientation sensor. Further, the orientation sensor may senses the DERAIL position and the NON-DERAIL position and automatically turn on the derail warning light based on the position of the derail device, wherein rotating the base plate and the derail warning light to the “NON-DERAIL” position may cause a first side of the mounting device to be facing upward and rotating the base plate and the derail warning light to the “DERAIL” position may cause a second side of the mounting device to be facing upward.
In yet another embodiment, a derail warning system for use on a rail may include a derail device and a derail warning light. The derail device may include a mounting section that mounts to the rail and a rotatable base plate adjacent to the mounting section. The mounting section may include a pair of rotating brackets and a rotating pin to connect the base plate to the mounting section. The derail warning light may include a plurality of LEDs configured to turn ON when the derail device is in a DERAIL position and turn OFF when the derail device is in a NON-DERAIL position. The derail warning light may include a mounting device that attaches the derail device to the base plate of the derail device. The derail warning light may further include a microprocessor and an orientation sensor with a tilt sensor and a compass sensor. The microprocessor may include data storage capabilities for time-stamping and data-logging the DERAIL positions and NON-DERAIL positions of the derail device. The orientation sensor may sense the DERAIL position and the NON-DERAIL position and automatically turn on the derail warning light based on the position of the derail device, wherein rotating the base plate and the derail warning light to the “NON-DERAIL” position may cause a first side of the mounting device to be facing upward and rotating the base plate and the derail warning light to the “DERAIL” position may cause a second side of the mounting device to be facing upward.
These features, along with many others, are discussed in greater detail below.
The reader is advised that the attached drawings are not necessarily drawn to scale.
In the following description of various examples of the invention, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example structures, systems, and steps in which aspects of the invention may be practiced. It is to be understood that other specific arrangements of parts, structures, example devices, systems, and steps may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Also, while the terms “top,” “bottom,” “front,” “back,” “side,” and the like may be used in this specification to describe various example features and elements of the invention, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures. Nothing in this specification should be construed as requiring a specific three dimensional orientation of structures in order to fall within the scope of this invention.
In the railroad industry it is often necessary to conduct maintenance or repairs of various sections of rail or tracks. This is relevant in high-rail traffic locations, such as for example in rail yards. In addition, sections of track may simply be shut down due to condition or other factors. It is often desirable to prevent the undesired or unauthorized movement of trains or rail cars across particular sections of track at particular times. When sections of track are shut down or need to be blocked from rail traffic, it is a standard procedure to place and engage one or more derail warning systems or derail devices on the tracks to prevent a train or other rail equipment from traversing those tracks where the derail device is engaged. These derail devices force the errant train or other rail equipment off of the tracks and onto the ground or onto a side rail beside the tracks at the position of the derail device.
There are several configurations of derail devices, such as “hinged”, “slide” and “portable.” All derail devices generally comprise a wedge component that is designed to be positioned over the top of one rail along a section of tracks. This wedge is shaped such that should a locomotive or other rail car traverse the derail device, the wedge will lift the wheels riding on the rail with the derail device and direct those wheels across and over the rail to the ground beside the tracks or onto a platform or other surface adjacent the derail device. A sign or warning may be positioned atop the rail in an “Active” or “ON” or “DERAIL” position, or alternately in one or more other positions not atop the rail, in an “Inactive” or “OFF” or “NON-DERAIL” position. That is, when not in use or engaged, the wedge component of the derail device can be folded or collapsed or moved away from the top of the rail in order to leave the rail unobstructed.
It is critical that when a derail device is positioned upon a section of tracks with the wedge in the “Active” or “ON” or “DERAIL” position—that is, when the derail device is configured to derail—that rail traffic has adequate notice of such “active” derail in order to prevent unintended or otherwise unnecessary derailings from occurring along that section of the track.
The derail warning system 100 may include a solar-powered LED indicator for derail or switch. The derail warning system 100 may also include an orientation sensor that automatically turns on depending on the orientation of the derail (up or down), derail metal flag, or switch indicator flag. The derail warning system 100 may bring more visibility with a flashing 360-degree LED that is solar powered and may detect orientation and turn on based on the position of the derail, switch, or flag. The derail warning system 100 may use an acceleration sensor or g-sensor that can detect orientation movement and automatically turn on or off and be fully charged to operate day or night. The derail warning system 100 may include multi-colored arrangements from blue, red, amber, white, and green.
The derail warning system 100 may include one or more of the following features: 360-degree viewable LED indicator, orientation sensor/acceleration sensor or g-sensor to allow for orientation position indication and automatic ON/OFF, portable device that can be mounted on a handle using a clamp, solar-powered, a data-logging microprocessor to determine a time stamp of position and location, a protection cage, and an octagon shape to allow multiple colors in one unit.
As illustrated in
The derail device 110 may be located on a rail 10 of a railyard. The derail device 110 may include a mounting section 112 that mounts or attaches to the rail 10. The derail device 110 may also include a base plate 114 adjacent to the mounting section 112. The derail device 110 may further include a warning arm 116 with a warning sign 118. The warning arm 116 and the warning sign 118 may move or rotate from the “Active” or “ON” or “DERAIL” position as illustrated in
As illustrated in
Additionally, as illustrated in
Additionally, as illustrated in
As further illustrated in
Additionally, within the base 144, the derail warning light 130 may also include an orientation sensor 148. The orientation sensor 148 may be an accelerometer or g-sensor. The orientation sensor 148 will sense the orientation of the derail device 110 and automatically turn ON or turn OFF based on the position of the derail device 110. The orientation sensor can detect orientation movement and automatically turn on or off in order to be fully charged to operate day or night. The base 144 may also include an access door 150 in order to access the microprocessor 146 and/or the orientation sensor 148. The orientation sensor 148 may include a tilt sensor and/or a compass sensor.
Furthermore, within the base 144 and under the cover 132, the derail warning light 130 may include a plurality of LEDs 142. The LEDs 142 may be dual-colored LEDs. As illustrated in
As illustrated in
The mounting section 512 may include a pair of rotating brackets 513 and a rotating pin 517. The pair of rotating brackets 513 and the rotating pin 517 may be utilized to connect the base plate 514 to the mounting section 512. The pair of rotating brackets 513 and the rotating pin 517 may allow the base plate 514 to rotate from the “NON-DERAIL” position to the “DERAIL” position. The pair of rotating brackets 513 may extend perpendicularly from the mounting section 512. Additionally, the pair of rotating brackets 513 may be attached of connected to the mounting section 512 with one or more supports or struts.
In some embodiments, the derail device 510 may further include a warning arm with a warning sign that may move or rotate from the “Active” or “ON” or “DERAIL” position as illustrated in
A derail warning light 530 may be included with the derail warning system 500. The derail warning light 530 may be located on the derail device 510. Specifically, the derail warning light 530 may be attached to the base plate 514 of the derail device 510. Generally, the derail warning light 530 may be configured to turn ON when the derail device 110 is in the “Active” or “ON” or “DERAIL” position as illustrated in
Additionally, the derail warning light 530 may include a mounting device 534 to mount and connect to the base plate 514 of the derail device 510. The mounting device 534 may include a clamp to mechanically attach and connect to the base plate 514 of the derail device 510. The tightening clamp of the mounting device 534 as illustrated in
The mounting device 534 as connected to the base plate 514 and the derail warning light 530 may allow rotation of the base plate 514 and the derail warning light 530 when the derail device 510 is moved from the “DERAIL” position to the “NON-DERAIL” position. Additionally, the mounting device 534 may include a first side 536 and a second side 538. This rotation of base plate 514 and the derail warning light 530 causes the first side 536 of the mounting device 534 to be facing upward when the derail device 510 is in the “NON-DERAIL” position and the second side 538 of the mounting device 534 to be facing upward when the derail device 510 is in the “DERAIL” position. The first side 536 may be the “NON-DERAIL” position. When the base plate 514 and the derail warning light 530 is rotated to the “DERAIL” position, the second side 538 may be the “DERAIL” position.
Additionally, as specifically illustrated in
The derail warning light 530 may also include a microprocessor 546. The microprocessor 546 may include data storage capabilities as well. Generally, the microprocessor will be utilized for time stamping and data-logging the various movements of the derail device 510. The microprocessor 546 may be programmable to include various data logging features as well and to record and log any and all data from the derail warning system 500. The data logged may then be uploaded to be analyzed and reviewed as needed and required.
Additionally, the derail warning light 530 may also include an orientation sensor 548. The orientation sensor 548 may be an accelerometer or g-sensor. The orientation sensor 548 will sense the orientation of the derail device 510 and automatically turn ON the derail warning light 530 (for the DERAIL position as illustrated in
Furthermore, the derail warning light 530 may include a plurality of LEDs 542. The plurality of LEDs 542 may be located around the outer periphery of the derail warning light 530. The LEDs 542 may be dual-colored LEDs. The derail warning light 530 may include several different LEDs. Other types of lighting sources may be utilized without departing from this invention. The LEDs 542 may be multi-colored arrangements that include blue, red, amber, white, and green.
Additionally, the derail warning system 500 may include a solar-powered LED indicator for derail or switch. The derail warning system 500 may also include an orientation sensor that automatically turns on depending on the orientation of the derail (up or down), derail metal flag, or switch indicator flag. The derail warning system 500 may bring more visibility with a flashing 360-degree LED that is solar powered and may detect orientation and turn on based on the position of the derail, switch, or flag. The derail warning system 500 may use a unique acceleration sensor or g-sensor that can detect orientation movement and automatically turn on or off and be fully charged to operate day or night. The derail warning system 500 may include multi-colored arrangements from blue, red, amber, white, and green.
The derail warning system 500 may include one or more of the following features: 360-degree viewable LED indicator, orientation sensor/acceleration sensor or g-sensor to allow for orientation position indication and automatic ON/OFF, portable device that can be mounted on a handle using a clamp, solar-powered, a data-logging microprocessor to determine a time stamp of position and location, and various shapes to allow multiple colors in one unit.
As illustrated in
In an embodiment of the system, wireless sensors located at various locations throughout a rail yard may be set up in a wireless network with each sensor (node) having its own power source and transceiver. The nodes can communicate with other nodes and determine the best path of communication and minimize power requirements to reach the safest operation throughout the rail yard.
The derail warning system 100, 500 and derail warning light 130, 530 may also include a receiver/CPU and a GPS transponder which interacts with the U.S. Federal location satellites. This feature gives location, altitude, speed and other features offered by conventional GPS capabilities. The GPS and sensor data is then transmitted via a modem in the specified form of transmission along with the remaining railcar anti-collision data. Once the data is received by the end user, the data can be further combined for additional value. A preferred method to add value to data generated by the system is by associating the location data (GPS) with information stored in the on-board memory of microprocessor in the derail warning system 100, 500 and derail warning light 130, 530.
Once data is received by the end user (such as receiving station 156 or portal 160 in
It is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth herein. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Variations and modifications of the foregoing are within the scope of the present invention. It should be understood that the invention disclosed and defined herein extends to all alternative combinations of two or more of the individual features mentioned or evident from the text and/or drawings. All of these different combinations constitute various alternative aspects of the present invention. The embodiments described herein explain the best modes known for practicing the invention and will enable others skilled in the art to utilize the invention.
While the preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made therein without departing from the spirit of the invention, the scope of which is defined by this description.
This application is a continuation of U.S. application Ser. No. 16/554,776, filed Aug. 29, 2019, entitled “Derail Warning Light System,” which claims priority to U.S. Provisional Patent Application No. 62/727,366, filed Sep. 5, 2018, entitled “Derail Warning Light System,” each of which is incorporated by reference herein in their entirety and made a part hereof.
Number | Name | Date | Kind |
---|---|---|---|
2475578 | Halstead | Jul 1949 | A |
3544960 | Hayes | Dec 1970 | A |
5791605 | Howie, II | Aug 1998 | A |
5859693 | Dunne et al. | Jan 1999 | A |
8529107 | Moran et al. | Sep 2013 | B2 |
9981676 | Sandstrom | May 2018 | B2 |
20020053879 | Thoma | May 2002 | A1 |
20080023592 | Hertel | Jan 2008 | A1 |
20130015298 | Cooper et al. | Jan 2013 | A1 |
20150102739 | Millar | Apr 2015 | A1 |
20170018166 | Johnson | Jan 2017 | A1 |
20170217456 | McCarthy | Aug 2017 | A1 |
20180009453 | Eckl et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2241044 | Oct 1999 | CA |
2093128 | Jan 1992 | CN |
201547535 | Aug 2010 | CN |
102173299 | Sep 2011 | CN |
203601307 | May 2014 | CN |
204548151 | Aug 2015 | CN |
106828533 | Jun 2017 | CN |
107075878 | Aug 2017 | CN |
2260397 | Apr 1993 | GB |
2288659 | Oct 1995 | GB |
Entry |
---|
Orientation Sensor—Stackoverflow.com (Year: 2010). |
Aldon Company Inc., “Flashing Solar Combo Light with Mounting Bracket” visited Jul. 27, 2018, <https://www_1:11donco.com/store/p/941-Flashing-Solar-Combo-Light-with-mounting bracket.aspx (009037.00007)>. |
Aldon Company Inc., “Flashing Blue Light for Sign Holders and Chocks” visited Jul. 27, 2018, <htlps://www. 1:11donco.com/store/p/51-Flashing-Blue-Light-for-Sign-Holders-and-Chocks.aspx (009039.00007)>. |
Aldon Company Inc., “Clip-on Flashing Light—Blue” visited Jul. 27, 2018, <https://www.aldonco.com/slorel p/567-Clip-on-Flashing-Light-Blue.aspx (009039.00007)>. |
Aldon Company Inc., “Magnetic Mini-Light for Sign Holders” visited 7127/18 <https.www.aldonco.com/store/ p/50-Magnelic-mini-light-for-Sign-Holders.aspx (009039.00007)>, Jul. 17, 2018. |
Aldon Company Inc., “Magnet Base Solar Lantern” visited Jul. 27, 2018, <ht1ps://www.aldonco.com/store/p/571 Magnet-base-solar-lanlern.aspx (009039.00007)>. |
Aldon Company Inc., “Solar Flashing Light, Blue, with Magnet Bracket” visited Jul. 27, 2018, <http://www. aldonco.com/store/p/572-Solar-Flashing-Light-Blue-with-Magnet-Bracket.aspx (009039_00007)>. |
Railroad Tools and Solutions LLC, “Ergonomic Stand And Opposite Throw Connecting Rod” visited Jul. 30, 2018, <http://www_rrtoolsnsolutions_com/trackAccessories/Derails.asp (009039_00007)>. |
Switchrit D.A.S Rail Enterprise, “Switchrite Derail Model” visited Jul. 30, 2018, <https://switchrite.com/ products/ (009039_00007)>. |
The Nolan Company, “AOD-l Automated Derail Operator” visited Jul. 30, 2018, <https:J/nolancompany/products aod-1-automated-derail-operator/ (009039_00007)>. |
The Nolan Company, “EOD-l Automated Derail Operator” visited Jul. 30, 2019, <https:J/nolancompany_com/ Products/eod-1-automated-derail-operator/ (009039 .00007)>. |
Number | Date | Country | |
---|---|---|---|
20230150558 A1 | May 2023 | US |
Number | Date | Country | |
---|---|---|---|
62727366 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16554776 | Aug 2019 | US |
Child | 17877842 | US |