The present technology relates generally to derating methods. In particular, several embodiments are directed toward nonlinear derating methods for high intensity focused ultrasound systems.
High intensity focused ultrasound systems are used in various medical ultrasound applications. During diagnostic ultrasound procedures, for example, high intensity ultrasound energy can be pulsed in a Doppler or harmonic imaging mode to propagate nonlinear waves. The harmonic frequencies of the nonlinear waves have a higher contrast to noise ratio than that of the fundamental frequency, and therefore enhance the resolution of ultrasound imaging. In therapeutic ultrasound applications, high intensity focused ultrasound energy can be radiated toward a focal region in tissue (e.g., tumors, cancerous tissue regions, bleeding spots). The accumulation of the harmonic frequencies causes rapid heating at the focal region that ablates, necrotizes, and/or otherwise damages the tissue. Rapid heating can cause boiling in tissue in the focal region. Predicting the parameters of such high intensity focused acoustic fields in situ can be important for planning treatment protocols, anticipating ultrasound-induced bioeffects in tissue, and developing safety and efficacy standards for high intensity ultrasound.
A process known as “derating” can be used to estimate the parameters of an acoustic field in situ. During a typical derating process, acoustic field measurements are taken in water at low level ultrasound source outputs. The measured values are then linearly extrapolated to account (1) for higher source outputs used in medical procedures and (2) for tissue attenuation. For example, a measured source pressure can be scaled linearly to obtain the focal pressure amplitude in water, and the linearly scaled focal pressure can then be derated by a compensation factor that depends on the propagation path (i.e., the focal distance) and the linear attenuation coefficient of tissue to determine the focal pressure in tissue.
When working with high intensity diagnostic and therapeutic ultrasound applications that produce nonlinear acoustic fields, the assumption of linear acoustic propagation introduces errors into the derating process. For example, the wave intensity at the focus is not a quadratic function of the pressure amplitude at the fundamental frequency, but instead consists of contributions from all of the harmonics. Similarly, the heating rate at the focus is not proportional to the intensity at the focus due to the contribution of more readily absorbed higher frequency components. Accordingly, linear derating is generally unsuitable for the estimation of nonlinear acoustic field parameters in tissue.
The present technology is directed toward nonlinear derating methods for high intensity focused ultrasound systems. In several embodiments, a nonlinear derating method measures and/or models focal waveforms in water, and scales source outputs to generate the same focal waveform with the same focal pressure and focal shape in tissue. The pressure amplitude at the focus of HIFU sources having high focusing gains (e.g., between 20 and 50) is significantly higher than on the way to the focus and the length of the focal region is much shorter than the focal length. Without being bound by theory, it is thought that this causes the nonlinear effects in the high amplitude focus to dominate prefocal nonlinear propagation. Additionally, it is thought that the degree of nonlinear waveform distortion at the focus can be determined using the pressure levels in the focal region, and that the attenuation in tissue on the way to the focus can be determined using the operational frequency of the source. Therefore, the nonlinear derating method can use focal waveforms measured or modeled in water to determine parameters of nonlinear ultrasound fields in tissue for planning treatment protocols and for the development of safety and efficacy standards for high intensity ultrasound systems.
Certain specific details are set forth in the following description and in
As shown in
In selected embodiments, the hydrophone 108 can be a fiber optic probe hydrophone (“FOPH”) that has a large bandwidth and a small active diameter (e.g., approximately 100 μm) to capture high intensity nonlinear waveforms (e.g., sharp shock fronts) at a narrow focus. The hydrophone 108 can also be mechanically robust enough to withstand mechanical damage from cavitation (e.g., a FOPH 500 or a FOPH 2000 made by RP Acoustics of Leutenbach, Germany). The hydrophone 108 and/or additional hydrophones (not shown) can also be used to measure the axial and transverse beam profiles of the source 102.
As further shown in
In operation, the system 100 can be used to predict parameters of nonlinear acoustic fields in tissue. The source 102 can first be positioned in the tank of water 116 without the tissue sample 118, and the focus 120 of the source 102 in water can be substantially aligned with the hydrophone 108 (e.g., using the positioning system 110). If the focal length (i.e., the distance from the source 102 to the focus 120) is unknown, the focal length can be experimentally obtained by propagating ultrasound waves through the tank of water 116 and detecting (e.g., with the hydrophone 108 and/or other suitable monitoring devices) the location where the ultrasound waves have the highest pressure.
Once the source 102 and the hydrophone 108 are properly aligned, the function generator 104 can drive the source 102 at a first voltage to propagate acoustic waves through the water 116. The hydrophone 108 can then measure the focal waveform in water, from which the focal pressure waveform can be determined and the focal peak positive pressure (i.e., the maximum compression), the focal peak negative pressure (i.e., the maximum rarefaction), the shock amplitude (i.e., the pressure jump of the steepest portion of the focal waveform), and the intensity can be calculated (e.g., via the controller 114). The function generator 104 can then drive the source 102 at a second voltage different from the first voltage, and the hydrophone 108 can measure the resultant focal waveform. These steps can be repeated for varying source voltages and the results can be compiled in a table as described in greater detail below.
In other embodiments, the focal pressure amplitude can be measured at low power outputs of the source 102 (e.g., under linear propagation conditions) by scanning the hydrophone 108 along the source axis and across an axis in the focal plane. In this embodiment, the hydrophone 108 can be an uncalibrated needle hydrophone (e.g., a GL-150-1A hydrophone with an active diameter of 150 μm made by Specialty Engineering Associates of Soquel, CA), a calibrated polyvinylidene fluoride (“PVDF”) membrane hydrophone (e.g., an MHA-200 hydrophone with an active diameter of 200 μm and a sensitivity of 0.168 V/MPa made by NTR Systems of Seattle, Wash.), and/or other suitable monitoring devices known in the art.
In further embodiments, focal waveforms in water and in tissue can be modeled (i.e., rather than measured) for various source voltages and source pressures using a Khokhlov-Zabolotskaya-Kuznetsov (“KZK”) nonlinear parabolic equation:
where P is acoustic pressure normalized to the pressure amplitude at the source (P=p/p0); θ is dimensionless retarded time (θ=2πf0(t−x/c0), where c0 is the ambient sound speed); z is propagation distance normalized by the focal length (z=x/F, where F is the focal length); N is a parameter of nonlinearity (N=2πFf0βp0/c03ρ0, where ρ0 is the density of the medium, β is the nonlinear parameter of the medium, and f0 is the source frequency); Aw is a parameter of absorption in water (Aw=αwF where αw is the attenuation coefficient in water at the source frequency f0); At is a parameter of attenuation in tissue (At=αtF, where αt is the attenuation coefficient in tissue at the source frequency f0); L(P) is a linear operator that accounts for frequency dependent absorption and sound dispersion in tissue; and G is a parameter of diffraction (i.e., the linear focusing gain of the system, G=ω0r02/2c0). As described in further detail below, the nonlinear parameter (β) of Equation 1 can be derived experimentally when it is unknown.
The boundary conditions of Equation 1 can be given at the source as a focused beam with initial harmonic waveform and uniform distribution (e.g., a piston source). If the boundary conditions are unknown, they can be experimentally defined (e.g., using the system 100 of
where p is pressure; t is time; c0 is the ambient sound speed; β is the nonlinear parameter of the medium; ρ0 is the density of the medium, αw is the attenuation coefficient in water at the source frequency; and Lt(p) is a linear operator that accounts for frequency dependent absorption and sound dispersion in tissue.
Referring to
The table 300 of measured and/or modeled focal waveforms in water can be used to determine the parameters of the focal waveforms in tissue. For example, a focal waveform (e.g., a desired peak positive pressure, shock amplitude, etc.) can be selected from the table 300 for use during ultrasound imaging or therapy, and the source voltage corresponding to the focal waveform in water can be scaled to account for losses over the path in tissue caused by the linear attenuation in tissue on the way to the focus. More specifically, if α is the attenuation coefficient in tissue at the source frequency and L is the depth of the focus in the tissue, the initial amplitude of the wave propagating in tissue should be exp(αL) times higher than the initial amplitude of the wave in water to compensate for the pressure attenuation caused by the tissue on the way to the focus. Accordingly, the source voltage (Vt) required to generate the selected waveform in tissue can be calculated as follows:
Vt=Vwexp (αL), (Equation 3)
where Vw is a source voltage corresponding to the selected focal waveform in water, α is the attenuation coefficient in tissue at the source frequency, and L is the depth of the focus in tissue. For example, the source voltage in water (Vw) of a HIFU source having a source frequency of approximately 2.158 MHz and a depth of focus in tissue (L) of approximately 27 mm must be scaled by a scaling factor (i.e., exp(αL)) of 1.64 to obtain the same focal waveform in tissue having an attenuation coefficient (α) of 1.6 dB/cm at the source frequency. Therefore, Equation 3 can be used to determine a scaling factor for a source voltage in water for various focal waveforms to obtain the requisite source voltage to produce the focal waveform in tissue. As explained in greater detail below, the attenuation coefficient (α) can be derived experimentally when it is unknown.
Referring again to
Accordingly, the system 100 of
The measured or modeled waveforms can be compiled in a table (block 506), and a desired focal waveform can be selected from the table (block 508). The table can include features generally similar to the features in the table 300 shown in
The source voltage in water corresponding to the selected focal waveform can then be scaled to account for the absorption of the wave caused by tissue (block 510). For example, Equation 3 scan be used to derate the source voltage in water and determine the appropriate source voltage to obtain the same focal waveform in tissue. An ultrasound source can then be calibrated to the scaled source voltage and irradiated into a patient to produce the selected waveform in tissue (block 512). In other embodiments, various source voltages can be scaled and compiled into a table for later reference. Therefore, the method 500 can be used to determine the increase in the source voltage necessary to overcome tissue attenuation to generate the same focal waveform in tissue as in water (e.g., the same focal pressures and same shape of nonlinearly distorted focal waveform). Accordingly, the method 500 can be used by physicians planning treatment protocols or ultrasound source manufacturers determining parameters for ultrasound devices.
In various embodiments, the attenuation coefficient of a tissue may be unknown and can be experimentally determined. For example, referring back to
In other embodiments, the measured focal waveform from behind the tissue sample 118 can be compared to the results of free-field modeling in water, e.g., using a KZK-type numerical model like Equation 1. The KZK-type numerical model can be calibrated by the free-field measurements and then used to perform simulations of the focal waveforms in water and tissue. For example, if the initial driving voltage to the source at low output in water corresponds to the initial pressure amplitude (p0) in water (e.g., determined during modeling) that provides the same focal pressure amplitude in the tissue sample 118 (e.g., measured using the system 100), the initial pressure amplitude in the modeling can be scaled linearly with the increase of the driving voltage to the source 102. The modeled focal waveforms in water can then be matched with the focal waveform measured from behind the tissue sample 118 to determine the attenuation coefficient of the tissue sample 118 as described above.
The method 700 can further include positioning a tissue sample between the ultrasound source and the focus (block 706) and, under linear or slightly nonlinear propagation, determining the source voltage that produces the same focal waveform behind the tissue sample as in water (block 708). For example, the source can operate at various low or medium source voltages until it generates a focal waveform in tissue that is the same as the focal waveform measured in water. In other embodiments, focal waveforms in water can be modeled using Equation 1 to determine the source voltage that provides the same focal waveform in water as measured in tissue. The attenuation losses in tissue can then be determined using the ratio of the source voltages that produce the same focal waveforms in tissue and in water (block 710).
In other embodiments, the attenuation coefficient can be determined by measuring the time to initiate boiling at the focus of an ultrasound source. Without being bound by theory, it is thought that in the instance of nonlinear fields that include shock waves at the focus, the absorption of ultrasound energy at the shock fronts becomes the dominant mechanism of tissue heating. Therefore, the heating rate (H) induced by an ultrasound wave containing shock fronts in the propagation medium (e.g., water, tissue) can be calculated using weak shock theory:
where As is in situ shock amplitude (e.g., measured using the system 100 of
where ΔT is the change in temperature of the medium and cv is the specific heat of the tissue.
In further embodiments, the time to initiate boiling can alternatively be measured in situ and used to determine the attenuation coefficient of the tissue using Equations 4 and 5. For example, a millisecond-long pulse of a source output can be transmitted into the body, and the time-to-boil (tb) can be measured. The in situ shock amplitude (As(tissue)) can then be calculated as follows:
where ΔT is the change in temperature of the medium, cv is the specific heat of the tissue, ρ0 is the density of the medium, c0 is the ambient sound speed, f0 is the source frequency, and β is the coefficient of nonlinearity.
Once the shock amplitude in tissue is calculated (e.g., using Equation 6), the driving voltage to the source that produces the same shock amplitude in water can be determined using a table of focal waveforms (e.g., the table 300 shown in
where L is the depth of the focus in the tissue, Vt is the source voltage in tissue, and Vw is the source voltage in water selected from a table (e.g., the table 300 of
The method 800 can continue by selecting a source voltage that produces the same shock amplitude in water (block 806). In various embodiments, a reference table of modeled focal waveforms and associated source voltages, such as the table 300 shown in
In various embodiments, tissues may have a nonlinear parameter higher than that of water, and therefore the focal waveform in tissue may be steeper and contain more energy at higher harmonics than that predicted by the nonlinear derating method described above. FIG. 9, for example, illustrates focal waveforms measured after propagation in tissue (solid line) and derated from measurements in water (dotted line) using the nonlinear derating method described above (e.g., Equation 3). The measured focal waveform in tissue has the same peak pressures and overall shape as a derated focal waveform, but the measured focal waveform has a steeper shock front than that of the derated focal waveform, thereby indicating that the tissue has a higher nonlinear parameter than that of water.
In another aspect of the present technology, the difference in nonlinear parameters of tissue and water can be compensated for by increasing the initial pressure amplitude at the source. More specifically, the degree of nonlinear effects in a KZK model (e.g., determined using Equation 1) in a weakly absorptive medium (e.g., water or a water-like medium) can be determined by a parameter of nonlinearity (N=2πFf0βp0/c03ρ0), which is proportional to the product of the initial source pressure (p0) and nonlinear parameter (β) of the propagation medium. A change in the nonlinear parameter (β) is therefore equivalent to an increase of the initial pressure amplitude. The dimensionless focal waveform (pFwater,β(t)/p0) in water with nonlinear parameter of β will therefore be the same as the focal waveform (pFwater,β*(t)/p0*) in water-like medium with a nonlinearity β* if βp0=β*p0*.
Accordingly, measured or modeled focal waveforms in water (e.g., the focal waveforms compiled in the table 300 shown in
then the focal waveforms are related according to:
where p(t)F,β(water) is the focal waveform in water with nonlinear parameter of β produced with the source voltage Vβ(water) and p(t)F,β(water) is the focal waveform in a water-like medium with nonlinear parameter of β* produced with the source voltage VB*(water). Equations 8 and 9 can be used to determine the source voltage and/or initial source pressure and corresponding focal waveform in a water-like medium having different nonlinear parameter β* than water. Once the data in the table is scaled to correct for the different nonlinear parameter (β*), the measured focal waveform in tissue can be compared to the focal waveform from the scaled table to determine attenuation in tissue using Equation 7.
When the nonlinear parameter in tissue (β*) is unknown, it can be determined experimentally. For example, referring back to
In other embodiments, the degree of nonlinear distortion can be quantified by comparing the harmonic content of measured and modeled focal waveforms.
The nonlinear parameter can then be used in Equation 1 to model the focal waveform of nonlinear waves in tissue and in water.
β*As3(Vsourse
β*As3(Vsourse
where βAs3 is inversely proportional to time-to-boil and
is a known coefficient (block 1104).
The method 1100 can further include plotting curves of βAs3 in water for various values of βAs3 (block 1106).
and the source voltage will be
Using this scaling factor, the source voltages and corresponding focal waveforms in a table of measured and/or modeled focal waveforms in water can be scaled for the nonlinear parameter.
The nonlinear parameter can then be selected by scaling the source voltages for the measured time-to-boil and matching the resultant curves with the modeled curves to determine the corresponding nonlinear parameter (block 1108). In
From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the disclosure. For example, the ultrasound system 100 of
This application claims the benefit of U.S. Provisional Patent Application No. 61/384,108, filed Sep. 17, 2010, entitled “A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND,” which is incorporated herein by reference in its entirety.
This invention was made with government support under R01EB007643 awarded by National Institutes of Health (NIH)—Federal Reporting, SMST0601 awarded by National Space Biomedical Research Institute (NSBRI). The government has certain right in the invention.
Number | Name | Date | Kind |
---|---|---|---|
7600410 | Sliwa, Jr. et al. | Oct 2009 | B2 |
Entry |
---|
Averkiou, M. et al., “Modeling of an Electrohydraulic Lithotripter with the KZK Equation,” Journal of Acoustical Society of America, Jul. 1999, pp. 102-112. |
Bessonova, O. et al., “A Derating Method for Therapeutic Applications of High Intensity Focused Ultrasound,” Acoustical Physics, 2010, vol. 56, No. 3, pp. 380-390. |
Bessonova, O. et al., “Nonlinear Derating Method for High Intensity Focused Ultrasound (HIFU) Fields,” 2009 IEEE International Ultrasound Symposium Proceedings, pp. 216-219. |
Canney, M. et al., “Acoustic Characterization of High Intensity Focused Ultrasound Fields: A Combined Measurement and Modeling Approach,” Journal of Acoustical Society of America, vol. 124, No. 4, Oct. 2008, pp. 2406-2420. |
Cheung, T.Y., “Thesis: Application of the Khokhlov-Zabolotskaya-Kuznetsov Equation to Modeling High-Intensity Focused Ultrasound Beams,” Boston University, College of Engineering, Submitted in partial fulfillment of the requirements for the degree of Master of Science, 2010, 57 pages. |
Khokhlova, T. et al., “Magnetic Resonance Imaging of Boiling Induced by High Intensity Focused Ultrasound,” Journal of Acoustical Society of America, vol. 125, No. 4, Apr. 2009, pp. 2420-2431. |
Khokhlova, T. et al., “Millisecond Bursts of Focused Ultrasound Shock Waves to Produce Boiling and Tissue Emulsification,” Submitted as a regular research paper for the Special Issue on the Acoustics of Bubbles and Cavitation (ABC), 2011, 41 pages. |
Number | Date | Country | |
---|---|---|---|
20120071795 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61384108 | Sep 2010 | US |