A software application may include various functionality. Persons designing software may be confronted with a limited knowledge of their users. Developing functionality for software applications for users without understanding the ways in which users use software inhibits development. Developers wonder: Is certain functionality used? How popular is the functionality?
The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.
The following examples and aspects thereof are described and illustrated in conjunction with systems, tools, and methods that are meant to be exemplary and illustrative, not limiting in scope. In various examples, one or more of the above described problems have been reduced or eliminated, while other examples are directed to other improvements.
A technique for determining component statistics may include associating blocks with components. A component in a block may begin at a block offset and have a length. A component included in multiple blocks may have multiple block offsets and lengths. A component may be identified within a block. In addition, for example, it may be desirable to analyze statistics to determine component popularity.
A method based on the technique may include associating a component with a block, receiving a log of requests for blocks, and providing the association of the component with one or more requests for the block from the log.
In the following description, several specific details are presented to provide a thorough understanding. One skilled in the relevant art will recognize, however, that the concepts and techniques disclosed herein can be practiced without one or more of the specific details, or in combination with other components, etc. In other instances, well-known implementations or operations are not shown or described in detail to avoid obscuring aspects of various examples disclosed herein.
In the example of
A component of a conventionally coded software application may be a part of a deliverable file. The deliverable file may have a filename. A component may be identified by a tuple including a filename, an offset, and a length. A component may be equivalent to a deliverable file, or may include only a portion of a deliverable file. An application may be made up of one or more components. In a non-limiting example, a component may include executable code, game level data, phone number data, or any other data that may be stored in a file.
A feature may include one or more components, one or more features, or any combination of zero or more components and zero or more features. A feature defined in terms of components and other features may be reduced to a list of unique components by merging, without duplication, the components of the other features. In a non-limiting example a first feature may include the components that compose the English spell checking module; a second feature may include the components that compose the Spanish spell checking module; while a third feature may include the first and second features.
In the example of
Some features could be identified using a link map interpreting tool that locates components. In a non-limiting example, the tool may take a file including a description of levels of a game; the tool may provide information to identify the locations in files of components included in the features.
In the example of
In the example of
In the example of
In the example of
An engine typically includes a processor and memory. The memory may include instructions for execution by the processor. The memory may include random access memory (RAM), non-volatile (NV) storage, or any other known or convenient mechanism for storing data.
In the example of
In the example of
In the example of
In the example of
The feature associations file 206 could be created using link maps. Link maps may enable finer component analysis. With the link map it may be possible to locate functions, and components that are not readily identifiable from analysis of the deliverables. In some cases at least some of the information in a link map may be ascertainable through analysis of a software application. In a non-limiting example, a component can be associated with file “foo.dll,” offset 1000, length 128 Kb. Feature associations 206 would include an entry associating the component with file foo.dll at offset 1000, length 128K.
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In some cases it may be desirable to maintain raw log 906 in a format. Any format known or convenient may be used, and raw log 906 could be unformatted, as well. It should be noted that, as used herein, a “formatted log” is normally referred to in association with a log processed from the raw log. In this context, the raw log, regardless of format, would not be referred to as a “formatted log.”
In the example of
In the example of
The agent process associated with logging may have an associated delta transmission protocol. In a delta transmission protocol, the agent process remembers identifiers (ID)s of blocks that have already been transmitted and only sends the block IDs of blocks not previously transmitted. Advantageously, with a delta transmission protocol, block IDs are not normally redundantly retransmitted.
In the example of
In the example of
As another example, the streaming system 910 may maintain a cache of recently used blocks and may satisfy block requests from the cache. Streaming system 910 may or may not record block requests regardless of whether the requests are satisfied from the cache. If the raw log 906 is implemented to include substantially all resource requests, some block request logging might be redundant. Block access statistics may be generated from the block request log (not shown) of the streaming system 910 and/or from the raw log 906.
In a non-limiting example, an operating system (OS) may maintain a cache of recently used pages. If a request from a stream-enabled application can be satisfied from an OS's virtual machine (VM) cache, the OS may satisfy the request from the VM cache. An initial request may be logged, but subsequent requests to the cached blocks may be invisible the streaming system, and thus, may or may not be used to generate block frequency statistics.
In one implementation, a streaming playback device is remotely coupled to a server. The server may include the blocks 908. One or more block-caching servers might exist between the streaming playback device and the server. Such block-caching servers may provide a block to the playback device without a request reaching the server. In another implementation, a streaming playback device is coupled to an I/O device that includes the block 908. In this case, the playback device may be described as streaming from a peripheral device. In any case, the streaming system 910 may be treated in most requests as an OS or kernel of the playback device.
In the example of
In the example of
In the example of
In the example of
In the example of
It should be noted that in some cases, a streaming client will not be interested in waiting around for a streaming program to complete a clean-up routine. For example, if it takes time for a machine to close a streaming program when the user is finished with it, the user may tum off the computer or kill the program in some other manner. Thus, if the raw log is maintained on the client machine until the streaming session is over, and then attempts to send it, the raw log may never be sent. Accordingly, in one implementation, raw log entries are sent immediately to the streaming server as the entries are generated. A disadvantage of such an implementation is that formatting of the raw log may not be possible at the client.
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
Optionally, the feature association module 1412 may provide fine analysis using feature associations 1416. Feature associations 1416 may be provided by the manufacturer of the deliverables prior to stream enabling. Feature associations are often confidential, and associated functionality may be normally disabled and may only be enabled if the feature association data is available. So, a stream enabler service might make use of the component statistics engine 1406 without the feature associations 1416, while a software deliverables manufacturer might make use of the component statistics engine 1406 with the feature association module. Alternatively, a service may utilize the component statistics engine 1406 as a tool for multiple parties, but only enable functionality associated with the feature associations 1416 for those parties that provide feature associations 1416.
The report generation module 1414 uses the data from the component statistics & determination module 1410 and optionally the demographics module 1412 to generate report(s) 1408. Optionally, the report generation module receives report preferences 1420 and creates a formatted or unformatted report in accordance with the preferences. A variety of reports may be generated. In a non-limiting example, a % of sessions that used a certain component could be included in a report; a % coverage, or percentage of the streamed application used, could be included; a % coverage of an individual feature, or amount of an individual feature requested could be included.
In the example of
In the example of
Sometimes requesting a feature requires requesting more than one block. There, a number of blocks may be requested. In evaluating the number of block requests for the feature the number of associated block requests may be divided by the number of blocks of the feature to determine a number of requests for the feature. In a non-limiting example, 3 blocks are associated with components of a feature B. The three blocks are necessary to use feature B. 9 block requests are logged for the components of the feature B. The 9 block requests may be divided by the three blocks associated with the feature to determine that the feature was requested 3 times.
In the example of
In the example of
In the example of
In the example of
In the example of
The computer 1702 interfaces to external systems through the interface 1710, which may include a modem, network interface, CD-ROM drive, DVD-ROM drive, or any known or convenient interface. An interface may include one or more input-output devices. Interface 1710 may include one or more interfaces. An interface may include a device for reading a fixed media. An interface may receive deliverables. An interface may transmit a stream-enabled application. It will be appreciated that the interface 1710 can be considered to be part of the computing system 1700 or a part of the computer 1702. The interface 1710 can be an analog modem, ISDN modem, cable modem, token ring interface, satellite transmission interface (e.g. “direct PC”), or other interface for coupling a computing system to other computing systems.
The processor 1708 may be, for example, a conventional microprocessor such as an Intel Pentium microprocessor or Motorola power PC microprocessor. The memory 1712 is coupled to the processor 1708 by a bus 1720. The memory 1712 can be Dynamic Random Access Memory (DRAM) and can also include Static RAM (SRAM). The bus 1720 couples the processor 1708 to the memory 1712, also to the non-volatile storage 1716, and to the display controller 1714.
The non-volatile storage 1716 is often a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory 1712 during execution of software in the computer 1702. One of skill in the art will immediately recognize that the terms “machine-readable medium” or “computer-readable medium” includes any type of storage device that is accessible by the processor 1708 and also encompasses a carrier wave that encodes a data signal.
The computing system 1700 is one example of many possible computing systems which have different architectures. For example, personal computers based on an Intel microprocessor often have multiple buses, one of which can be an I/O bus for the peripherals and one that directly connects the processor 1708 and the memory 1712 (often referred to as a memory bus). The buses are connected together through bridge components that perform any necessary translation due to differing bus protocols.
Network computers are another type of computing system that can be used in conjunction with the teachings provided herein. Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 1712 for execution by the processor 1708. A Web TV system, which is known in the art, is also considered to be a computing system, but it may lack some of the features shown in
In addition, the computing system 1700 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software. One example of operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. Another example of operating system software with its associated file management system software is the Linux operating system and its associated file management system. The file management system is typically stored in the non-volatile storage 1716 and causes the processor 1708 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 1716.
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computing system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computing system's registers and memories into other data similarly represented as physical quantities within the computing system memories or registers or other such information storage, transmission or display devices.
The teachings included herein also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, or any type of media suitable for storing electronic instructions, and each coupled to a computing system bus.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, there is no reference to any particular programming language, and various examples may be implemented using a variety of programming languages.
It will be appreciated to those skilled in the art that the preceding examples are not limiting in scope. It is intended that all permutations, enhancements, equivalents, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of these teachings. It is therefore intended that the following appended claims include all such modifications, permutations, and equivalents as fall within the true spirit and scope of these teachings.
This application is a continuation of U.S. Ser. No. 12/062,766, filed Apr. 4, 2008, entitled “DERIVING COMPONENT STATISTICS FOR A STREAM ENABLED APPLICATION,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/986,260, filed on Nov. 7, 2007, entitled “DERIVING COMPONENT STATISTICS FOR A STREAM-ENABLED APPLICATION,” all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4562306 | Chou et al. | Dec 1985 | A |
4796220 | Wolfe | Jan 1989 | A |
4949257 | Orbach | Aug 1990 | A |
4970504 | Chen | Nov 1990 | A |
4999806 | Chernow et al. | Mar 1991 | A |
5012512 | Basso et al. | Apr 1991 | A |
5032979 | Hecht et al. | Jul 1991 | A |
5047928 | Wiedemer | Sep 1991 | A |
5063500 | Shorter | Nov 1991 | A |
5109413 | Comerford et al. | Apr 1992 | A |
5166886 | Molnar et al. | Nov 1992 | A |
5210850 | Kelly et al. | May 1993 | A |
5293556 | Hill et al. | Mar 1994 | A |
5311596 | Scott et al. | May 1994 | A |
5325489 | Mitsuhira et al. | Jun 1994 | A |
5442791 | Wrabetz et al. | Aug 1995 | A |
5481611 | Owens et al. | Jan 1996 | A |
5495411 | Ananda | Feb 1996 | A |
5533123 | Force et al. | Jul 1996 | A |
5537566 | Konno et al. | Jul 1996 | A |
5544321 | Theimer et al. | Aug 1996 | A |
5546526 | Li et al. | Aug 1996 | A |
5547202 | Tsumura | Aug 1996 | A |
5548645 | Ananda | Aug 1996 | A |
5553139 | Ross et al. | Sep 1996 | A |
5553143 | Ross et al. | Sep 1996 | A |
5555376 | Theimer et al. | Sep 1996 | A |
5611050 | Theimer et al. | Mar 1997 | A |
5629980 | Stefik et al. | May 1997 | A |
5630049 | Cardoza et al. | May 1997 | A |
5635906 | Joseph | Jun 1997 | A |
5638513 | Ananda | Jun 1997 | A |
5652887 | Dewey et al. | Jul 1997 | A |
5666293 | Metz et al. | Sep 1997 | A |
5696965 | Dedrick | Dec 1997 | A |
5701427 | Lathrop | Dec 1997 | A |
5706440 | Compliment et al. | Jan 1998 | A |
5715403 | Stefik | Feb 1998 | A |
5758150 | Bell et al. | May 1998 | A |
5761445 | Nguyen | Jun 1998 | A |
5764906 | Edelstein et al. | Jun 1998 | A |
5764918 | Poulter | Jun 1998 | A |
5765152 | Erickson | Jun 1998 | A |
5765153 | Benantar et al. | Jun 1998 | A |
5768528 | Stumm | Jun 1998 | A |
5768539 | Metz et al. | Jun 1998 | A |
5771354 | Crawford | Jun 1998 | A |
5778395 | Whiting et al. | Jul 1998 | A |
5790753 | Krishnamoorthy et al. | Aug 1998 | A |
5805809 | Singh et al. | Sep 1998 | A |
5809144 | Sirbu et al. | Sep 1998 | A |
5812865 | Theimer et al. | Sep 1998 | A |
5812881 | Ku et al. | Sep 1998 | A |
5818711 | Schwabe et al. | Oct 1998 | A |
5822537 | Katseff et al. | Oct 1998 | A |
5832289 | Shaw et al. | Nov 1998 | A |
5835722 | Bradshaw et al. | Nov 1998 | A |
5838910 | Domenikos et al. | Nov 1998 | A |
5839910 | Meller et al. | Nov 1998 | A |
5855020 | Kirsch | Dec 1998 | A |
5874986 | Gibbon et al. | Feb 1999 | A |
5878425 | Redpath | Mar 1999 | A |
5881229 | Singh et al. | Mar 1999 | A |
5881232 | Cheng et al. | Mar 1999 | A |
5892915 | Duso et al. | Apr 1999 | A |
5892953 | Bhagria et al. | Apr 1999 | A |
5895454 | Harrington | Apr 1999 | A |
5895471 | King et al. | Apr 1999 | A |
5901315 | Edwards et al. | May 1999 | A |
5903721 | Sixtus | May 1999 | A |
5903732 | Reed et al. | May 1999 | A |
5903892 | Hoffert et al. | May 1999 | A |
5905868 | Baghai et al. | May 1999 | A |
5905990 | Inglett | May 1999 | A |
5909545 | Frese et al. | Jun 1999 | A |
5911043 | Duffy et al. | Jun 1999 | A |
5918015 | Suzuki et al. | Jun 1999 | A |
5923885 | Johnson | Jul 1999 | A |
5925126 | Hsieh et al. | Jul 1999 | A |
5926552 | Mckeon et al. | Jul 1999 | A |
5929849 | Kikinis | Jul 1999 | A |
5931907 | Davies et al. | Aug 1999 | A |
5933603 | Vahalia et al. | Aug 1999 | A |
5933822 | Braden-Harder et al. | Aug 1999 | A |
5940591 | Boyle et al. | Aug 1999 | A |
5943424 | Berger et al. | Aug 1999 | A |
5948062 | Tzelnic et al. | Sep 1999 | A |
5948065 | Eilert et al. | Sep 1999 | A |
5949877 | Traw et al. | Sep 1999 | A |
5950195 | Stockwell et al. | Sep 1999 | A |
5953506 | Kalra et al. | Sep 1999 | A |
5956717 | Kraay et al. | Sep 1999 | A |
5960411 | Hartman et al. | Sep 1999 | A |
5960439 | Hamner et al. | Sep 1999 | A |
5961586 | Pedersen | Oct 1999 | A |
5961591 | Jones et al. | Oct 1999 | A |
5963444 | Shidara et al. | Oct 1999 | A |
5963944 | Adams | Oct 1999 | A |
5968176 | Nessett et al. | Oct 1999 | A |
5973696 | Arganat et al. | Oct 1999 | A |
5987454 | Hobbs | Nov 1999 | A |
5987608 | Roskind | Nov 1999 | A |
6003065 | Yan et al. | Dec 1999 | A |
6003095 | Pekowski et al. | Dec 1999 | A |
6014686 | Elnozahy et al. | Jan 2000 | A |
6018619 | Allrad et al. | Jan 2000 | A |
6026166 | LeBourgeois | Feb 2000 | A |
6028925 | Van Berkum et al. | Feb 2000 | A |
6038379 | Fletcher et al. | Mar 2000 | A |
6038610 | Belfiore et al. | Mar 2000 | A |
6047323 | Krause | Apr 2000 | A |
6049792 | Hart et al. | Apr 2000 | A |
6049835 | Gagnon | Apr 2000 | A |
6061738 | Osaku et al. | May 2000 | A |
6065043 | Domenikos et al. | May 2000 | A |
6076104 | McCue | Jun 2000 | A |
6081842 | Shachar et al. | Jun 2000 | A |
6085186 | Christianson et al. | Jul 2000 | A |
6085193 | Malkin et al. | Jul 2000 | A |
6088705 | Lightstone | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094649 | Bowen et al. | Jul 2000 | A |
6098072 | Sluiman et al. | Aug 2000 | A |
6099408 | Schneier et al. | Aug 2000 | A |
6101482 | Diangelo et al. | Aug 2000 | A |
6101491 | Woods | Aug 2000 | A |
6101537 | Edelstein et al. | Aug 2000 | A |
6108420 | Larose et al. | Aug 2000 | A |
6115741 | Domenikos et al. | Sep 2000 | A |
6138271 | Keeley | Oct 2000 | A |
6154878 | Saboff | Nov 2000 | A |
6157948 | Inoue et al. | Dec 2000 | A |
6167510 | Tran | Dec 2000 | A |
6167522 | Lee et al. | Dec 2000 | A |
6173311 | Hassett et al. | Jan 2001 | B1 |
6173330 | Guo et al. | Jan 2001 | B1 |
6185608 | Hon et al. | Feb 2001 | B1 |
6192398 | Hunt | Feb 2001 | B1 |
6192408 | Vahalia et al. | Feb 2001 | B1 |
6195694 | Chen et al. | Feb 2001 | B1 |
6212640 | Abdelnur et al. | Apr 2001 | B1 |
6219693 | Napolitano et al. | Apr 2001 | B1 |
6226412 | Schwab | May 2001 | B1 |
6226665 | Deo et al. | May 2001 | B1 |
6253234 | Hunt et al. | Jun 2001 | B1 |
6275470 | Ricciulli | Aug 2001 | B1 |
6275496 | Burns et al. | Aug 2001 | B1 |
6278992 | Curtis et al. | Aug 2001 | B1 |
6281898 | Nikolovska et al. | Aug 2001 | B1 |
6282712 | Davis et al. | Aug 2001 | B1 |
6298356 | Jawahar et al. | Oct 2001 | B1 |
6301584 | Ranger | Oct 2001 | B1 |
6301605 | Napolitano et al. | Oct 2001 | B1 |
6301629 | Sastri et al. | Oct 2001 | B1 |
6301685 | Shigeta | Oct 2001 | B1 |
6311221 | Raz et al. | Oct 2001 | B1 |
6314425 | Serbinis et al. | Nov 2001 | B1 |
6321260 | Takeuchi et al. | Nov 2001 | B1 |
6330561 | Cohen et al. | Dec 2001 | B1 |
6343287 | Kumar et al. | Jan 2002 | B1 |
6347398 | Parthasarathy et al. | Feb 2002 | B1 |
6356946 | Clegg et al. | Mar 2002 | B1 |
6369467 | Noro | Apr 2002 | B1 |
6370686 | Delo et al. | Apr 2002 | B1 |
6374402 | Schmeidler et al. | Apr 2002 | B1 |
6385696 | Doweck | May 2002 | B1 |
6389467 | Eyal | May 2002 | B1 |
6418554 | Delo et al. | Jul 2002 | B1 |
6418555 | Mohammed | Jul 2002 | B2 |
6418556 | Bennington et al. | Jul 2002 | B1 |
6424991 | Gish | Jul 2002 | B1 |
6425017 | Dievendorff et al. | Jul 2002 | B1 |
6449688 | Peters et al. | Sep 2002 | B1 |
6453334 | Vinson et al. | Sep 2002 | B1 |
6457076 | Cheng et al. | Sep 2002 | B1 |
6508709 | Karmarkar | Jan 2003 | B1 |
6510458 | Berstis et al. | Jan 2003 | B1 |
6510462 | Blumenau | Jan 2003 | B2 |
6510466 | Cox et al. | Jan 2003 | B1 |
6524017 | Lecocq et al. | Feb 2003 | B2 |
6530082 | Del Sesto | Mar 2003 | B1 |
6574618 | Eylon et al. | Jun 2003 | B2 |
6584507 | Bradley et al. | Jun 2003 | B1 |
6587857 | Carothers et al. | Jul 2003 | B1 |
6594682 | Peterson et al. | Jul 2003 | B2 |
6598125 | Romm | Jul 2003 | B2 |
6601103 | Goldschmidt Iki et al. | Jul 2003 | B1 |
6601110 | Marsland | Jul 2003 | B2 |
6605956 | Farnworth et al. | Aug 2003 | B2 |
6609114 | Gressel et al. | Aug 2003 | B1 |
6611812 | Hurtado et al. | Aug 2003 | B2 |
6615166 | Guheen et al. | Sep 2003 | B1 |
6622137 | Ravid et al. | Sep 2003 | B1 |
6622171 | Gupta et al. | Sep 2003 | B2 |
6636961 | Braun et al. | Oct 2003 | B1 |
6651251 | Shoff et al. | Nov 2003 | B1 |
6687745 | Franco et al. | Feb 2004 | B1 |
6694510 | Willems | Feb 2004 | B1 |
6697869 | Mallart et al. | Feb 2004 | B1 |
6711619 | Chandramohan et al. | Mar 2004 | B1 |
6732179 | Brown et al. | May 2004 | B1 |
6735601 | Subrahmanyam | May 2004 | B1 |
6735631 | Oehrke et al. | May 2004 | B1 |
6757708 | Craig et al. | Jun 2004 | B1 |
6757894 | Eylon et al. | Jun 2004 | B2 |
6763370 | Schmeidler et al. | Jul 2004 | B1 |
6772209 | Chernock et al. | Aug 2004 | B1 |
6775779 | England et al. | Aug 2004 | B1 |
6779179 | Romm et al. | Aug 2004 | B1 |
6785768 | Peters et al. | Aug 2004 | B2 |
6785865 | Cote et al. | Aug 2004 | B1 |
6801507 | Humpleman et al. | Oct 2004 | B1 |
6810525 | Safadi et al. | Oct 2004 | B1 |
6816909 | Chang et al. | Nov 2004 | B1 |
6816950 | Nichols | Nov 2004 | B2 |
6832222 | Zimowski | Dec 2004 | B1 |
6836794 | Lucowsky et al. | Dec 2004 | B1 |
6854009 | Hughes | Feb 2005 | B1 |
6891740 | Williams | May 2005 | B2 |
6918113 | Patel et al. | Jul 2005 | B2 |
6925495 | Hegde et al. | Aug 2005 | B2 |
6938096 | Greschler et al. | Aug 2005 | B1 |
6959320 | Shah et al. | Oct 2005 | B2 |
6970866 | Pravetz et al. | Nov 2005 | B1 |
6985915 | Somalwar et al. | Jan 2006 | B2 |
7010492 | Bassett et al. | Mar 2006 | B1 |
7024677 | Snyder et al. | Apr 2006 | B1 |
7028305 | Schaefer et al. | Apr 2006 | B2 |
7043524 | Shah et al. | May 2006 | B2 |
7051315 | Artzi et al. | May 2006 | B2 |
7062567 | Benitez et al. | Jun 2006 | B2 |
7093077 | Cooksey et al. | Aug 2006 | B2 |
7096253 | Vinson et al. | Aug 2006 | B2 |
7112138 | Hendrick et al. | Sep 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7137072 | Bauer et al. | Nov 2006 | B2 |
7171390 | Song et al. | Jan 2007 | B1 |
7191441 | Abbott et al. | Mar 2007 | B2 |
7192352 | Walker et al. | Mar 2007 | B2 |
7197516 | Hipp et al. | Mar 2007 | B1 |
7197570 | Eylon | Mar 2007 | B2 |
7246119 | Kuwata et al. | Jul 2007 | B2 |
7451196 | DeVries et al. | Nov 2008 | B1 |
7577751 | Vinson et al. | Aug 2009 | B2 |
7606924 | Raz | Oct 2009 | B2 |
7653742 | Bhargava et al. | Jan 2010 | B1 |
7716335 | Dinker et al. | May 2010 | B2 |
8014400 | Zhang | Sep 2011 | B2 |
8166554 | John | Apr 2012 | B2 |
8831995 | Holler | Sep 2014 | B2 |
8977764 | Ramzan | Mar 2015 | B1 |
20010003828 | Peterson et al. | Jun 2001 | A1 |
20010014878 | Mitra et al. | Aug 2001 | A1 |
20010027493 | Wallace | Oct 2001 | A1 |
20010034736 | Eylon et al. | Oct 2001 | A1 |
20010037399 | Eylon et al. | Nov 2001 | A1 |
20010037400 | Raz et al. | Nov 2001 | A1 |
20010042833 | Kenway | Nov 2001 | A1 |
20010044850 | Raz et al. | Nov 2001 | A1 |
20010044851 | Rothman et al. | Nov 2001 | A1 |
20020015106 | Taylor, Jr. | Feb 2002 | A1 |
20020019864 | Mayer | Feb 2002 | A1 |
20020035674 | Vetrivelkumaran et al. | Mar 2002 | A1 |
20020038374 | Gupta et al. | Mar 2002 | A1 |
20020042833 | Hendler et al. | Apr 2002 | A1 |
20020057893 | Wood et al. | May 2002 | A1 |
20020059402 | Belanger | May 2002 | A1 |
20020065848 | Walker et al. | May 2002 | A1 |
20020078170 | Brewer et al. | Jun 2002 | A1 |
20020078203 | Greschler et al. | Jun 2002 | A1 |
20020083183 | Pujare et al. | Jun 2002 | A1 |
20020083187 | Sim et al. | Jun 2002 | A1 |
20020087717 | Artzi | Jul 2002 | A1 |
20020087883 | Wohlgemuth et al. | Jul 2002 | A1 |
20020087963 | Eylon et al. | Jul 2002 | A1 |
20020091763 | Shah et al. | Jul 2002 | A1 |
20020091901 | Romm | Jul 2002 | A1 |
20020116476 | Eyal et al. | Aug 2002 | A1 |
20020133491 | Sim et al. | Sep 2002 | A1 |
20020138640 | Raz et al. | Sep 2002 | A1 |
20020147849 | Wong et al. | Oct 2002 | A1 |
20020156911 | Croman et al. | Oct 2002 | A1 |
20020157089 | Patel et al. | Oct 2002 | A1 |
20020161908 | Benitez et al. | Oct 2002 | A1 |
20020174215 | Schaefer | Nov 2002 | A1 |
20030004882 | Holler et al. | Jan 2003 | A1 |
20030009538 | Shah et al. | Jan 2003 | A1 |
20030056112 | Vinson et al. | Mar 2003 | A1 |
20030065917 | Medvinsky et al. | Apr 2003 | A1 |
20030088511 | Karboulonis | May 2003 | A1 |
20030105816 | Goswami | Jun 2003 | A1 |
20030138024 | Williamson et al. | Jul 2003 | A1 |
20030140160 | Raz | Jul 2003 | A1 |
20030187617 | Murphy et al. | Oct 2003 | A1 |
20030221099 | Medvinsky et al. | Nov 2003 | A1 |
20040036722 | Warren | Feb 2004 | A1 |
20040128342 | Maes et al. | Jul 2004 | A1 |
20040133657 | Smith et al. | Jul 2004 | A1 |
20040199566 | Carlson et al. | Oct 2004 | A1 |
20040230784 | Cohen | Nov 2004 | A1 |
20040230971 | Rachman et al. | Nov 2004 | A1 |
20040267813 | Rivers-Moore et al. | Dec 2004 | A1 |
20040268361 | Schaefer | Dec 2004 | A1 |
20050010607 | Parker et al. | Jan 2005 | A1 |
20050010670 | Greschler et al. | Jan 2005 | A1 |
20050091534 | Nave et al. | Apr 2005 | A1 |
20050114472 | Tan | May 2005 | A1 |
20050188079 | Motsinger | Aug 2005 | A1 |
20050193139 | Vinson et al. | Sep 2005 | A1 |
20050289617 | Safadi et al. | Dec 2005 | A1 |
20060010074 | Zeitsiff et al. | Jan 2006 | A1 |
20060031165 | Nave et al. | Feb 2006 | A1 |
20060047716 | Keith, Jr. | Mar 2006 | A1 |
20060048136 | DeVries et al. | Mar 2006 | A1 |
20060064673 | Rogers et al. | Mar 2006 | A1 |
20060083305 | Dougherty et al. | Apr 2006 | A1 |
20060106770 | Vries | May 2006 | A1 |
20060120385 | Atchison et al. | Jun 2006 | A1 |
20060123185 | DeVries et al. | Jun 2006 | A1 |
20060136389 | Cover | Jun 2006 | A1 |
20060168294 | DeVries et al. | Jul 2006 | A1 |
20060218165 | DeVries et al. | Sep 2006 | A1 |
20060230175 | DeVries et al. | Oct 2006 | A1 |
20070038642 | Durgin et al. | Feb 2007 | A1 |
20070043550 | Tzruya | Feb 2007 | A1 |
20070067435 | Landis et al. | Mar 2007 | A1 |
20070074223 | Lescouet et al. | Mar 2007 | A1 |
20070126749 | Tzruya et al. | Jun 2007 | A1 |
20070129146 | Tzruya et al. | Jun 2007 | A1 |
20070129990 | Tzruya et al. | Jun 2007 | A1 |
20070130075 | Song et al. | Jun 2007 | A1 |
20070130292 | Tzruya et al. | Jun 2007 | A1 |
20070168309 | Tzruya et al. | Jul 2007 | A1 |
20070192641 | Nagendra | Aug 2007 | A1 |
20070196074 | Jennings et al. | Aug 2007 | A1 |
20070256056 | Stern et al. | Nov 2007 | A1 |
20080077366 | Neuse et al. | Mar 2008 | A1 |
20080155074 | Bacinschi | Jun 2008 | A1 |
20080178298 | Arai et al. | Jul 2008 | A1 |
20090119458 | de Vries et al. | May 2009 | A1 |
20100023640 | Vinson et al. | Jan 2010 | A1 |
20130132854 | Raleigh | May 2013 | A1 |
20130304616 | Raleigh | Nov 2013 | A1 |
20140040975 | Raleigh | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
0813325 | Dec 1997 | EP |
0658837 | Jun 2000 | EP |
1020824 | Jul 2000 | EP |
1143349 | Oct 2001 | EP |
200644550 | Dec 2006 | TW |
9840993 | Sep 1998 | WO |
9850853 | Nov 1998 | WO |
9957863 | Nov 1999 | WO |
9960458 | Nov 1999 | WO |
0004681 | Jan 2000 | WO |
0031657 | Jun 2000 | WO |
0031672 | Jun 2000 | WO |
0056028 | Sep 2000 | WO |
0127805 | Apr 2001 | WO |
0146856 | Jun 2001 | WO |
02044840 | Jun 2002 | WO |
2006022745 | Mar 2006 | WO |
2006047133 | May 2006 | WO |
2006055445 | May 2006 | WO |
2006102532 | Sep 2006 | WO |
2006102621 | Sep 2006 | WO |
Entry |
---|
Flexible Time Management in Data Stream Systems—Utkarsh Srivastava, Jennifer Widom—Stanford University—PODS 2004 Jun. 1416, 2004, Paris, France. |
Bailey, Peter et al., “Chart of Darkness: Mapping a Large Intranet,” Dept. of Computer Science, FEIT, The Australian National University, Canberra ACT 0200, Australia, pp. 1-23, Nov. 11, 1999 [retrieved online at http://research.microsoft.com/en-us/um/people/nickcr/pubs/bailey—tr00.pdf]. |
Bandi, Nagender et al., “Fast Data Stream Algorithms using Associative Memories,” Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 247-256, Jun. 12, 2007. |
Boneh, Dan et al., “An Attack on RSA Given a Small Fraction of the Private Key Bits,” Advances in Cryptology—ASIACRYPT '98, Lecture Notes in Computer Science, vol. 1514, pp. 25-34, Oct. 1998 [retrieved online at http://download.springer.com/static/pdf/450/chp%253A10.1007%252F3-540-49649-1—3.pdf?auth66=1394831295—318c7a44939193b5a2aff612b2a047ac&ext=.pdf]. |
Brin, Sergey et al., “The Anatomy of a Large-Scale Hypertextual Web Search Engine,” Proceedings of the Seventh International World Wide Web Conference, pp. 107-117, Apr. 1998 [retrieved online at http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf]. |
Chu, Yang-Hua et al., “REFEREE: Trust Management for Web Applications,” Proceedings of the Sixth International World Wide Web Conference, 1997, retrieved online on Jun. 15, 2006 at http://www.si.umich.edu/˜presnick/papers/Referee/www6-referee.htnnl. |
Faupel, Matthew, “Status of Industry Work on Signed Mobile Code,” Joint European Networking Conference (JENC), May 1997, 313-1-313-8. |
Fiedler, David et al., “UNIX System V. Release 4 Administration,” Second Edition, 1991, 1-13, 37-116, 152-153, 175-200, 291-312, Hayden Books, Carmel, Indiana, USA. |
George, Binto et al., “Secure Transaction Processing in Firm Real-Time Database Systems,” SIGMOD International Conference on Management of Data 1997, 462-473, V26, Issue 2, Association of Computing Machinery (ACM) Press, Tucson, Arizona, United States, May 13, 1997. |
Gralla, Preston, “How the Internet Works: Chapter 44—Shopping on the Internet,” IEEE Personal Communications, Aug. 1999, 260-67, QUE-A division of Macmillan Computer Publishing, Millennium Edition. |
Microsoft Corp., “Computer Dictionary,” 3rd edition, 1997, pp. 119 & 305, Microsoft Press. |
Microsoft Corp., “Understanding Universal Plug and Play,” pp. 1-39, Feb. 2000. |
Morrow, Brian et al., “Indexing Within—The Lost Gold Within the Enterprise” Endeavors Technology, Aug. 22, 2000, pp. 1-6. |
Mullender, Sape J. et al., “Amoeba:a Distributed Operating System for the 1990's,” Computer Magazine, May 1990, 44-53, 23(5). |
Nakayoshi et al., “A Secure Private File System with Minimal System Administration,” Communications, Computers and Signal Processing, 1997 IEEE Pacific Rim Conference, 251-255, vol. 1. |
O'Mahony, Donal, “Security Considerations in a Network Management Environment,” 1994, 12-17, vol. 8, IEEE, USA. |
Pyarali, Irfan et al., “Design and Performance of an Object-Oriented Framework for High-Speed Electronic Medical Imaging,” Fall 1996, Computing Systems Journal, 331-375, vol. 9, http://www.cs.wustl.edu/˜schmidt/PDF/COOTS-96.pdf. |
Rappaport, Avi, “Robots & Spiders & Crawlers: How Web and Intranet Search Engines Follow Links to Build Indexes,” Infoseek Software, pp. 1-38 (Oct. 1999). |
Reinhardt, Robert B., “An Architectural Overview of UNIX Network Security,” ARINC Research Corporation, Sep. 19, 1992, retrieved online on Jun. 15, 2006 at http://www.clusit.it/whitepapers/unixnet.pdf. |
Sirbu, Marvin et al., “Netbill: An Internet Commerce System Optimized for Network-Delivered Services,” IEEE Personal Communications, 2(4):34-39, Aug. 1995. |
Tardo, Joseph et al., “Mobile Agent Security and Telescript,” 4th International Conference of the IEEE Computer Society (IEEE CompCon1996), Feb. 1996. |
International Application No. PCT/US2004/028195, Search Report and Written Opinion mailed May 2, 2006. |
International Application No. PCT/US2005/041024, Search Report and Written Opinion mailed Feb. 27, 2007. |
International Application No. PCT/US2006/010637, Search Report and Written Opinion mailed Sep. 25, 2007. |
International Application No. PCT/US2006/010904, Search Report and Written Opinion mailed Dec. 26, 2007. |
U.S. Appl. No. 09/996,180, filed Nov. 27, 2001. |
Number | Date | Country | |
---|---|---|---|
20150019749 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
60986260 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12062766 | Apr 2008 | US |
Child | 14499619 | US |