1. Field of the Invention
The present invention relates to a servo field on a disk of a hard disk drive.
2. Background Information
Hard disk drives contain a plurality of magnetic heads that are coupled to rotating disks. The heads write and read information by magnetizing and sensing the magnetic fields of the disk surfaces. Each head is attached to a flexure arm to create a subassembly commonly referred to as a head gimbal assembly (“HGA”). The HGA's are suspended from an actuator arm. The actuator arm has a voice coil motor that can move the heads across the surfaces of the disks.
Data is stored on tracks located on the surfaces of the disks. Each track typically contains a plurality of sectors. A sector may have a servo field that is used to center the head on the track. The servo field contains a number of spaced apart servo bursts. The amplitude of the servo bursts will vary depending on the position of the head relative to each burst. A position error signal is generated from the servo bursts. The position error signal is used to center the head on the track.
The servo burst are typically written with a servo writer during the manufacturing process of the disk drive. The burst are created by magnetic transitions in the disk material. It is difficult to accurately write servo burst onto a disk surface with magnetic transitions. Additionally, the magnetic transitions create unwanted noise.
There have been developed disk media that includes concentric grooves that separate the various tracks of the disk. The grooves separate areas of magnetic material. The grooves themselves have no or little magnetic material. The inclusion of grooves reduces or eliminates cross-talk between tracks. This type of disk media is also known as a patterned disk. It is difficult to write servo information on a patterned disk because the written servo burst must be accurately aligned with the magnetic material of the tracks. It would be desirable to create servo information on a pattern disk without writing conventional servo burst on the disk.
A hard disk drive with a disk that has at least one servo field on a track. The servo field includes at least one DC erased servo burst. The disk drive also includes a perpendicular recording head and a controller. The controller causes the perpendicular recording head to read the DC erased servo burst and use the DC erased servo burst to position the head on the track.
Disclosed is a hard disk drive with a disk that has DC erased servo burst. The DC erased servo burst are read by a perpendicular recording head that produces a relatively square burst signal. The burst signal is used determine a position error signal and center the head on a track of the disk.
Referring to the drawings more particularly by reference numbers,
The disk drive 10 may include a plurality of heads 20 located adjacent to the disks 12. As shown in
Referring to
The hard disk drive 10 may include a printed circuit board assembly 38 that includes a plurality of integrated circuits 40 coupled to a printed circuit board 42. The printed circuit board 40 is coupled to the voice coil 32, heads 20 and spindle motor 14 by wires (not shown).
The read/write channel circuit 62 is connected to a controller 64 through read and write channels 66 and 68, respectively, and read and write gates 70 and 72, respectively. The read gate 70 is enabled when data is to be read from the disks 12. The write gate 72 is to be enabled when writing data to the disks 12. The controller 64 may be a digital signal processor that operates in accordance with a software routine, including a routine(s) to write and read data from the disks 12. The read/write channel circuit 62 and controller 64 may also be connected to a motor control circuit 74 which controls the voice coil motor 36 and spindle motor 14 of the disk drive 10. The controller 64 may be connected to a non-volatile memory device 76. By way of example, the device 76 may be a read only memory (“ROM”). The non-volatile memory 76 may contain the instructions to operate the controller and disk drive. Alternatively, the controller may have embedded firmware to operate the drive.
Perpendicular recording heads will produce a relatively square read signal when sensing a DC erased region of a disk. Consequently, utilizing DC erased servo bits will produce square servo signals which are easier to process. The position of the head 20 relative to the A and B servo burst will determine the amplitude of the burst signals. In the example shown the head is centered more over the A servo burst than the B servo burst. Consequently, the A burst signal has a higher amplitude than the B burst signal.
Patterned media typically includes a plurality of magnetic dots separated by non-magnetic material. To achieve the desired result it is desirable to have continuous bands of magnetic material in the servo burst areas. A continuous band of magnetic material that is DC erased will produced the desired square read signal. A servo with a pattern of magnetic dots would produce a read signal with an alternating waveform.
The A and B burst signals are used to determine a position error signal (“PES”). The PES is used to move and position the head onto the center of the track.
The servo patterns can be created within the disk drive by DC erasing regions of the disk. Using DC erased servo burst will reduce the noise created by servo burst of the prior art which have magnetic transitions.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
For example, when used on a continuous media regions 114 between the A and B servo bursts can be AC erased. The polarity of the servo burst can be alternated so that the net magnetic field will be zero in the cross direction. Alternatively, the servo bursts and adjacent regions 114 can have alternate polarity so that only an A servo burst is required.